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Abstract
Considered in this paper is the initial value problem of periodic multi-dimensional
Camassa—Holm-type system. It is shown that the solution map of this problem is not

. . . 1+4 4 .
uniformly continuous in Besov spaces B;l_z (Td) X BZZ](Td) withd € ZT,d > 1.
Based on the local well-posedness results, the method of approximate solutions is
utilized.
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1 Introduction

In this paper, we are concerned with the following initial value problem of the periodic
multi-dimensional Camassa—Holm-type system with o = 1:
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my +u-Vm+ (V) -m+m(divu) + pVp =0, >0, x e,
pr +div(pu) =0, t>0, x¢€ e,

m:(l—azA)u, r>0, xeT9,

m(0, x) =mo, p(0,x) = po,

(1.1)

where T¢ = R?/(2nZ)%. The vector field u = (u1(z, x), us(t, x), - , uq(t, x)) is
the velocity of the fluid, m denotes the momentum of the fluid, and the function p (¢, x)
represents the density or the total depth. The constant > 0 stands for the length scale
and is called the dispersive parameter.

The systemin (1.1) was proposed in [24,29]. Just as the authors in [13] stated that this
system was presented as a framework for nonlinear shallow water waves, geophysical
fluids and turbulence modeling, or recasting the geodesic flow on the diffeomorphism
groups. The local well-posedness in Sobolev spaces H*(R?) x H*"1(R?) with k >
3+ %, k,deZ™, blow-up and global existence results with d = 2, 3 for the solutions
of the initial value problem (1.1) were found in [13]. Recently, the local well-posedness
in Besov spaces and blow-up phenomenon for the solutions of this problem with
d > 2, d € 7 were investigated by Li and Yin [34].

In this paper, we consider the initial value problem (1.1) with « = 1. Thanks to
[34], we know that the solutlon map zo > z(¢) of this problem is continuous in

Besov spaces Bp p(Td) X B”l(Td) withl < p < 2d,d > 2,d € Z*. Owing to
the local well- posedness results in [34] the non-uniform continuity of this solution

map in Besov spaces 32 1 + (Td) X B 1("JI“") is studied. Next, we establish that the
solutlon map of this problem with d = 1 is not uniformly continuous in Besov spaces

By l('H‘) X B2 1 (T), which is based on the local well-posedness results in [19].
When p = 0, the system in (1.1) reduces to the following classical mathematical
model of the fully nonlinear shallow water wave system [25]

m,+u-Vm+(Vu)T -m~+m(divu) =0, m = (1 —a2A)u. (1.2)

Ford = 1,0 = 1, Eq. (1.2) was regarded as the famous Camassa—Holm equation. It
is called the Euler—Poincaré equations in the high dimensional case d > 2, d € Z™.
The Camassa—Holm (CH) equation was firstly proposed in the context of hereditary
symmetries studied by Fokas and Fuchssteiner in [15] and then was written explicitly
as a shallow water wave equation by Camassa and Holm [5]. They also showed that the
CH equation is completely integrable with a bi-Hamiltonian structure and infinitely
many conservation laws in [5,6]. Moreover, they established that this equation admits
peaked traveling waves which interact like solitons. In 2000, Constantin and Strauss
claimed that these peakons are orbitally stable in [7]. The local well-posedness for the
initial value problem associated with the CH equation was proved by many scholars
in [10-12,31], who verified the fact that the solution map uo — u(t) is continuous in
Sobolev spaces H*(s > %) and Besov spaces B;’r(s > { l+iL1<pr<.
On the basis of these local well-posedness results, the non- unlform continuity of
the solution map in corresponding energy spaces was investigated in [23,35] by the
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The solution map for m-d C-H system 437

method of approximate solutions. Other results about wave breaking and persistence
properties, we can refer to [2,3,22] and references therein.
Ford > 2, d € Z", Chae and Liu established the local well-posedness in Hilbert

spaces mg € Hs+% (s > 2), local existence of weak solutions in W>?(R%), p >
d and a blow-up criterion of the Cauchy problem associated with Eq. (1.2) in [8].
Furthermore, Li et al. [30] revealed the fact that the solution of this problem containing
non-zero dispersion with a large class of smooth initial data blows up in finite time and
exists globally in time under some assumptions on initial data. For o = 1, itis in [37]
that Yan and Yin investigated the local well-posedness of the solutions in Besov spaces

d
B (RT)(s > max{1+%, 31,1 < p,r < o0)and B;"(Rd)(l < p < 2d). Ablow-
up criterion in Besov spaces and analytic solutions were also given in this paper. In
the light of the local well-posedness results in [37], the non-uniform continuity of the
solution map of this problem in Besov spaces Bg’r(Td)(s > 14+ %, 1 <r < o0)was
studied in [38].
When o = 1,d = 1 and p is a non-constant function in the system of (1.1), it
reduces to the celebrated two-component CH system [4]

(1.3)

me +2uxm +umy + ppy = 0,m = u — uyy,
o+ (pu)y = 0.

where u denotes the horizontal velocity of the fluid and p is related to the free surface
elevation. The local well-posedness, wave breaking results, the global existence and
analytic solutions for the initial value problem associated with System (1.3) have been
extensively studied in the past decade by many scholars. For more details, we refer
to [16-19] and references therein. According to the local well-posedness results in
[17], Lv et al. [32] established the non-uniform continuity of the solution map of this
problem in Sobolev spaces H*(R) x H s=I(R) with s > %

After the phenomena of non-uniform continuity for some dispersive equations was
studied by Kenig et al. [27], the issue of nonuniform dependence on the initial data
has been the subject of many papers. At first, Koch and Tzvetkov [28] proved that
the flow map of the Benjamin-Ono equation cannot be uniformly continuous on
bounded sets of H*(R) for s > 0. Then Himonas and Misiotek [21] obtained the
result on the non-uniform dependence for the CH equation in appropriate Sobolev
spaces. For more results with respect to the non-uniform continuity of the solution
map of the Cauchy problem associated with CH-type equations or systems such as
the Degasperis—Procesi, Novikov, Hunter—Saxton and p-b equations in energy spaces
can be found in [14,20,26,32,33,36], etc.

In view of the properties of Besov spaces that B , x Bi—zl = H' x H* " and

! _ 1+4 4 . .
B, x B;rl > B, X By (s > 1+ %, 1 <r < 00), the non-uniform continuity

of the solution map of the initial value problem associated with equations or systems
in Besov spaces with critical index seems to be the better results. However, the non-
uniform continuity of the solution map of the initial value problem associated with the
high dimensional equations or systems in Besov spaces with critical index remains an
open problem. Thus, we mainly consider this property in Besov spaces with critical
index. Motivated by the method of approximate solutions in [23,35], our first goal is
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to prove that this solution map of the Cauchy problem (1.1) with a =1,d>2,d¢e

7 is not uniformly continuous in Besov spaces B2 12 (T9) x 322, 1(']1“1 ). In order to
manage all terms especially those including p, we have to construct the appropriate
approximate solutions which are different from other CH-type equations or systems
in [35,36,38]. Next, the case d = 1 is taken into consideration in detail. The procedure
of the proof is similar to the case d > 2, d € Z*. However, we find that the results
in this part cannot be obtained only by the properties of Besov spaces and transport
equations. The Osgood Lemma is quite crucial in the process of estimations. Our main
results are as follows:

d d
Theorem 1.1 If (uo, po) = zo € BZ'jZ(Td) x B} |(T9) withd > 2,d € Z%, then
there exists a lower bound Ty of the maximal existence time of the solutions such that
the solution map zo — z(t) = (u(t), p(t)) of the initial value problem (1.1) with
d

1+4 d
a = 1 is not uniformly continuous from any bounded subset of sz 2(T9) x By, (T9)
1+4 d
into C([0, Tpl; szz ('JI‘d ) X BZ% 1 (’]Td)). More precisely, there exist two sequences of

d d
solutions (u" (t), pf (t)) and (V" (), p5 (1)) into C([0, Tol; BZHI— (T x 322,1 (TY) such
that

WO g +ION e +1FOI ¢ +15O1 ¢ S 1,
By} (1) gty U gy s
lim [u"©) — " O ¢ = lim [0}©) — o5 ¢ =0,
n—oo BZ,IZ(T[I) n—o0o 322‘1( d
and
timinf (1) =" Ol g +1o{O = o301 4 )2 |sine| 01 =T,
n—o00 BZ412 Td) B2%I(Td)

Remark 1.1 If p = 0, the non-uniform continuous dependence on initial data for the
periodic initial value problem associated with Eq. (1.2) with « = 1 in Besov spaces

d
B, | 2(T9) withd > 2, d € Z* holds.

Another result of non-uniform continuous dependence on the initial data withd = 1
reads:

3 1
Theorem 1.2 If (uo, po) = z0 € Bzz’l(']T) X Bzz, \(T), then there exists a lower bound T
of the maximal existence time of the solutions such that the solution map zo — z(t) =
(u(t), p(t)) of the initial value problem (1 1) with d = 1, = 1 is not uniformly
3

continuous from any bounded subset of B} 1(']I‘) X B 1(']I‘) into C([0, T2 1; BZ 1 (T) x
1
BZZ’I(T)) with 0 < To < Ti. More precisely, there exist two sequences of solutions

" (1), p} (1)) and (V" (t), p5 (1)) into C([0, T1]; Bz%l(’]l‘) X BZ]?I(T)) such that

" (1) 3 + " @)l 3 + llof )l +leosOl 1+ S,
T T 2 (T

B;(T) B;(T) ,|( ) B (T)
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lim [[u"(0) =v"(O)[] 3 = lim [|p{(0) —p3(O)] 1 =0,
n—o00o 2 n— 00

7
BZ‘I(’Ir 21(

and

timinf (" =" 3+l O-p50l | )2 |sint| 01 =T <7y,
n—oo 2 2 T)

B2,I(T) B2,l(

where T, satisfies exp(—ct) > 1 — 3§ (0 <8<3,0=<r=TDh< T1) andc > 0isa
constant.

The paper is organized as follows. In Sect. 2, we present some facts about
Littlewood—Paley decomposition, the definition and properties of Besov spaces, the
transport equation theories and the Osgood Lemma. In Sect. 3, the non-uniform con-
tinuity of the solution map of the initial value problem (1.1) with « = 1 in Besov

d d

spaces lejf('ll‘d) X le(']l“d) is proved when d > 2,d € Z*. At first, we give the
local well-posedness results which is necessary for our proof. Next, we construct
the appropriate approximate solutions and calculate the error. And then we solve the
Cauchy problem for the periodic Camassa—Holm-type system with initial data given
by the approximate solutions evaluated at + = 0. In the following, we estimate the
difference between actual and approximate solutions. Finally, we complete the proof
of the non-uniform continuity of the solution map in the case d > 2,d € Z*. In
Sect. 4, we consider the non-uniform continuity of the solution map in the case d = 1.
The specific procedure is similar to that of Sect. 3.

Notation. In the following, for a given Banach space Z, we denote its norm by || - || z.
We denote A < Bif A <cBand A 2 Bif A > ¢B, where c is a positive constant.

Let IIZ(t)IIBs gy = Nu®llsy,, + 1oOlgs-1 = S g Olisy, + 1Ol -1,
if z = (u, ,0) (u1 uz, -+ ,ug, p) . For convenience, let u = (uy, uz,...,uq),
v = (v1,V2,...,vy) be vector fields, and A = (a;j)axa, B = (bij)axa be d x d

matrices. Then

() u-Vv=uVv)l = Z‘;:l u;jojv, here Vu = (Vuy, Vua, - -, Vug)T and -7
denotes the transpose of -. Moreover, Vv - u = u - Vu.

)divu = ijl djuj, while divA = (divA;,divAs, ..., divAg) with A =
(A1, Ay, - -+, Ad)T and each component A; = (a;1,aj2,a;3, ..., a;q).

(3)A: B = Zf’,,-zl a;jbij and |A| = (A : A)1/2.

DA =(A1,A2, ..., Au—1,A0) = (Aj)1<j<a-

2 Preliminaries

In this section, some facts about Littlewood—Paley decomposition, the definition and
properties of the nonhomogeneous Besov spaces will be recalled in the first place. For
more details, the readers can refer to [1,10,12].

Proposition 2.1 [1,10, 12] (Littlewood—Paley decomposition) Let B déf {&¢ €

RY, €| < 3} and C = (& € % < |&] < 3}. There exist two radial func-
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tions x € C2°(B) and ¢ € C°(C) such that

XE+Y e %) =1, forall £eR,

q>0
lg —q'| = 2= Supp p(279) N Supp p(2 ™) = &,
g > 1= Supp x(-) N Supp p(279-) = &,

and

< x4 92798 <1, forall & e R
q=0

W[ =

In the periodic setting, we decompose the functions on the circle T¢ in Fourier
series:

u(x) = Z 0(€)e'™% where 6(€) = ﬁ /Td u(®)e ¥4 dx.

tezd

The periodic dyadic blocks can be defined as

a0 for g=-1. ALY Y x@i@e,
Eezd
A 3 019 for g > 0.

tezd

We also use the notation S, u = > p<qg—1 Dpu. The formal equality

u= ZAqu

g=—1

holds in &’(T?) and is called the Littlewood—Paley decomposition.

Definition 2.1 [1,10,12] (Besov space) Lets € R, 1 < p, r < 0o. The inhomogenous
Besov space B‘f,, , (T9) (B‘f,’ , for short) is defined by

d
B, (f €S T Iflgy, < ool

where .

r

def (querAqfurL,,) , for r < oo,
Ifllsy, = | \qez
sup 2| Ag fllLr, for r = oo.
qeZ

If s = 00, B, := (\yer By,
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Proposition 2.2 [1,10,12] The following properties hold.

. L d~ . d
(i) Density: if p, r < 00, then S(T?) is dense in B, (T%), where S denotes the
Schwartz space.
c-ah -
ra, then By, . <> By, ,"" " If
+00, then the embedding By, <

(ii) Besov embededings: if p1 < pa and rq
s1 <8, 1 <p<+4ooandl <ry, rn
By, is locally compact.

(iii) Algebraic properties: for s > 0, B‘;J N L is an algebra. Moreover, B;‘, is an

algebra{z)B;’, > [P =5 > %ors > %andr: 1.

=
=

(iv) Fatou property: if (u™),cn is a bounded sequence of B, , which tends to u in
S, thenu € By, , and

. . (Vl)
< ,
||u||B[s” < lim nlnf [lu ||B;”_

(v) Complex interpolation: ifu € B;’, N B;, and 0 € [0,1], 1 < p,r < o0, then

O0s+(1-6)5 _
u e Bpfr ( )$ a}’ld ”l/l” 954 (1-0)5 < ”Ilt”@Y ”M”lee
BP»’ p.r Bp.r

(vi) Real interpolation: if u € B), . N Bf;,oo and s < § then u € BGT(FQ)E for all
6 € (0, 1) and there exists a universal constant C such that

0 1-6
U|| pos+(1-65 < —————=——||[U]| p: uf - .
lalgossi-os < G gra s g Ml

(vii) Letn € R and f be a S"-multiplier (that is, f : T¢ — R is smooth and satisfies
that for all multi-index «, there exists a constant Co such that for any & € S,
[0% f(€)] < Co(14+|E)""12l. Then foralls € Rand 1 < p,r < oo, the operator
f (D) is continuous from By, . to By, "

Lemma 2.1 [1] Assume that 1 < p, r < +00, the following estimates hold:

(i) fors >0, I fgls;, = CUSfNBy, lIglhLe + llglsy, I1f L)

p.r
(ii) forsy < %, 52 > % (s2 > % ifr =1)and sy + sy > max{0, % —d)

1 /8l < ClLF g N8l 5,

where the constant C is independent of f and g.

Lemma22 [38] Leto,a e R. Ifn € Z*,1 <r <oocandn > 1, then fori, j =
1,2,3,---,d we have

| sin(nx; — a)||B;r(Td) = || cos(nx; — a)||BZr(Td) ~n?,

| sin(nx; — o) cos(nx; — a)”Bf_,(Td) ~n°.
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Lemma 2.3 [10] Forany f € le’/lz, g€ Biiﬂ, there holds the product estimate
18l < 1 pylgl g

Lemma 2.4 [12] There is a constant C > O such that fors e R,e > 0and 1 < p <

oo,
l+e¢ Il gste
Ifllgs, = C——Iflgy . In <€+ —1)
” € ’ 1185

Next, we shall list the properties about the transport equation which play an impor-
tant role in our work.

Lemma 2.5 [1,10] Suppose that (p,r) € [1,+00]? and s > —%. Let v be
a vector field such that Vv belongs to L'([0, T1; Bf,;l) ifs > 1+ % or to

d
L0, TT; B;rﬂLoo) otherwise. Suppose also that fo € B;ﬁr, F e L0, T]; B;,r

and f € L*°([0, T1; Bf,’,) N C([0, T1; 8') solves the d-dimensional linear transport
equations

@y |prrevr=r
Sfli=0 = fo.

Then there exists a constant C depending only on s, p and d such that the following
statements hold:

(1) Ifr:lors;él—i—%,then

t t
If 1By, < Nl follss, +/0 IF(D)llBy,dT + C/o V'Ol f@llgy,dr,

or
t
I1f 1By, <eV® <||fo||3;‘,+ /0 eC”f)nF(r)nB;,,dr) 2.1)
hold, where V(t) = fé V(@) « dtifs < 1+ 2 and Vt) =
Bl,NL> P

Jo V(@) gy ad else.
() If f = v, then for all s > 0, the estimate (2.1) holds with V(t) =
Jo IVv(@)llL~dr.

Lemma 2.6 [34] Supposethat (p,r) € [1, +o0)? ands > — min d{%, —%}.Assume
fo € B (RY), F e L'([0, T): B . (RY)), and

1 . —1mdy\y. d _ d _
Vo e LY(0, T1: By, RD): if s > 1+ 4 (s_l—i-;,r_l),
Vv e L'([0,T]; By ,(RY); ifs=14+%,r>1,

d
Vv e L'([0, T1; By, (R N L®[RY)), ifs <1+ %
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The solution map for m-d C-H system 443

If f € L°°([0, T1; B;’r(Rd)) N C([0, T1; 8') solves (T), then there exists a constant
C, such that the following statements hold:

t
1£ls;, < Il follas, + fo |F@llsy, dr
t
+C [LAF@lay, IT0@ i + V0@ gy 119 F O,
d

Lemma 2.7 [34] Suppose that o = i L,r = 1,1 < p < 2d,d = 2.

Assume that fy € Bg F e L! (10, T1; B” ;) and v € L! ([0, T1; B"+2) If
f e L0, T], B” A NCI0, T S) solves (T) then there exists a constant C
such that

t
I fllsg, < CeCV® (nfong;, + /0 e‘CV“>||F<r>||B;;,,dr),

where V(1) = [; [v(D)]l g 2d.

Ford = 1in (T), we also have

Lemma 2.8 [9] Suppose that v € LP ([0, T], By )for some p > 1, M > 0 and
ve € L'([0, T, By}). Denote V(1) = [ ||vx(t)|| 1pde. I fo € Byl 2 F ¢
LY([0,T]; B _1/2) then (T) has a unique solution f € C([O TI; B_l/2
we have fort € [0, T,

). Moreover,

t
CvV@)
1700 <€ <||fo||BZ;/z+ fo ||F<r)||32;ézdr>.

Finally, the Osgood Lemma which is essential in the proof of Theorem 1.2 will be
presented.

Lemma 2.9 [1](Osgood Lemma) Let p > 0 be a measurable function, y > 0 be a
locally integrable function and | be a continuous and increasing function. Assume
that, for some nonnegative real number c, the function p satisfies

t

p(t) < c+ / Y (up(e) dr.
1

0

Ife > 0, then —M(p(1)) + M(A) < [ y(x)dT with M = [} 45 Ifc = 0 and

stasfies fo M(r) = 400, then the function p = 0.

Remark 2.1 Setting p(r) = r(1 —Inr), we obtain M(x) = In(1 — Inx) by the simple
calculation. Moreover, for all ¢ > 0 Lemma 2.9 shows us that

o(t) < P v (@do)
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3 The proof of Theorem 1.1

In this section, we are going to discuss the non-uniform continuity of the solution map
L . . 1+4
z0 > z(t) of the initial value problem (1.1) with @ = 1 in Besov spaces B, 12 (T9) x

d
Bﬁ 1 (’H‘d Ywhend > 2, d € Z*. Since all spaces of functions are over T4 in this part,

we drop T? if there is no ambiguity. At first, the Cauchy problem (1.1) with = 1
can be rewritten as follows:

up+u-Vu+ fu,p)+gu,p)=0, t>0 xeT?,
o +u-Vo+pdivu =0, t>0 xeT?, (3.1
u(0,x) =ug, p(0,x) = po,

where
fu, p)=I— A" div <Vu(Vu~|—(Vu)T)—(Vu)TVu—Vu(divu)+%I|Vu|2)> ,

—1 . T, lg o
gu,p)=U—-A) <udlvu +u-Vu)' + EV,O ) .

Next, we give the local well-posedness results for the Cauchy problem (3.1). For
T>0,seRand1 < p,r < 0o, we define

def [ CUO, T B (T') N C'([0, TT; By, N(T9)), r < oo,
pr(D = L®([0, T1; B ,o(T) N Lip([0, T1; BY (T9), r = oo.

1+4 4
Lemma 3.1 Suppose zo = (ug, po) € Bp’l” X B;,l withl < p <2d,d > 2 and
d € 7T, then there exists a time T = T(z9) > 0 such that (u(t), p(t)) = z(t) €
144 d
Ep’IP (T) x E;I;,l(T) is the unique solution to the initial value problem (3.1), and the

solution depends continuously on the initial data, that is, the solution map zo +— z(t) is
d d 1 d d

continuous from B " x B r 1 into C([0, T]; B Px B b ) Furthermore, the solution
z(t) satisfies the followmg esnmate

1
<2Cllzoll ,¢ a, 0=<t<Ty:= ,
P pr 4C?||zol d d

o XBy

3.2)

HOT
Bp1 pr.

where C > 1 is a constant independent of z.
Proof The proof of existence, uniqueness and continuity of the solution map can

be found in [34]. Therefore, our main goal is to establish (3.2). From the proof of
Theorem 3.2 in [34], we know that there exists a constant C > 1 and T satisfying
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2C%T ||zol d < 1 such that for every ¢ € [0, T'], we have
Py

d
P
p.1 Bp.l

Clizoll 14 4

1 XBpl
12" 1,a ¢ < - -, (3.3)
B Pxp? T 1=2C%|z0ll ,a
p.1 p.1 P P
p,1 XBp,I
Putting Ty := —5————— into (3.3) yields
u g 10 4C2||ZO|| 1ad d ( )y

Y
Bpa” xBpy

1
, 0<t<Ty:=
4C20zoll (a4

X

El

n
t i 4 <2C d
1O g g <2CNe0l g

d
P
p.1 ><Bp,l p.1 ><Bp,l

p.l p.l

Since 7" () converges to z(¢) and z(¢) is the solution to the initial value problem (3.1),
(3.3) holds. This completes the proof of Lemma 3.1. O

In the following, we prove Theorem 1.1. Motivated by the approach in [23,35], we
construct the approximate solutions in two cases:

(1) If d > 2 is even, we define the approximate solutions as:
d
w.n _ -1 —1-4 . ) w,n __ -1 -4 .
u®" =(wn"" +n 2cosai)i<i<d, P =own T 4+n2 cos «;,
i=1

where o; = nxg 1 —wt,d >2, w==%1,n,d eZ,n> 1.
(2) If d > 3 is odd, the approximate solutions are defined as:
d d
u®" = (n ' +n "2 cosBroon M+ "2 cos Bo, ..., on”!

d
+n~'72 cos Ba-1. 0),
, 4!
P =wn 4072 Zcosﬂi,

i=1
where B; = nxy_i —owt,1<i<d—1,d >3, w==%1,n,deZ ,n> 1.
3.1 Estimating the error of approximate solutions
Lemma3.2 Whenw = —1,1,n>> 1,d > 2, n,d € Z*, we have

IEON ¢, IFOI 4, <n72, 0<1<T.
BZ BZ

2.1 2.1
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Proof We only give the proof of the case that d > 2 is even. For the case that d > 3
is odd, the proof is similar. Substituting u®-" and p®-" into the equations in (3.1), we
obtain

E(t) — 8tua),n +uw,n . Vuw,n + f(ua),n’ pw,n) _’_g(uw,n’ pw,n)
= E1(0) + (1= &) E2(1) + (1 = 8)7 ' E3(0),
F(l) — 8tpa),n + uw,n . pr,n + pw,ndivuw‘n’

where

Ei(t) = ;u®"™ + u®" - Vu®",
(1= A Ex(t) = fw®”, p”™), (1= A E5@t) = g™, p™).

Owing to the definition of u®"", we obtain that

d
du”" = (60’1_1_2 sino;)1<i<d,
0 0 0 sin oq
0 0 ... sinoyp 0
d . . . . .
Vu®" = —n"2 ,
0 Sin g — | : .
sin oy 0 0 0

dxd

In conclusion,
Ei(t) = 3,u®" 4+ u®"(Vu®")T = (—=n~""?sina; cos gy 1-i)1<i<d-
A few simple calculations yield

Vu®" (Vua),n 4 (vuw,n)T) _ (Vuw.n)Tvuw,n

[sinotl (sina| + sinayg)

R 0 0
—sin® ay ]
[sinaa(sinoy + sinag_1)
0 i~ 0
— n—d — S ad,l] ,
0 0 [sinag(siney + sina)

— sin? ocl]

d
1 1 1
51|Vuw~”|2 = <2n_d ,2—1 sin? a{,-) I= En—dhl,

where [ is a d-order unit matrix and 7 = ZLI sin® a;. Consequently, combining

above equalities and the fact that divu®-" = 0 yields
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1
Ey(1) = div (vw" (Vu®" 4+ (Vu®")'y = (Vu®" T vu®" + EIqu‘”‘”F))

=n"div
[sinoel(sinoq + sinayg)
.2 I 0 0
—sin“ ag + 2]
0 [sin ap(sinap + sinwg—1) 0
—sinzad,l—l—%]
0 0 [sin og(sinog + sinay)
e . 2 h
—sin“ oy + 7]
—a+1 (o [
n Sin o COS og+1—j — = Sin20g41—i
2 1<i<d

By the definition of p®"*, we derive that

&_

p®" = -2t sinad+1—i)1§i5d’

—n
. d
V(p®™? = on” 2 sineg41—; — 2n~ 4 sin Qgt1—i Zcos o ,

i=l1 1<i<d
0, 0" = wn -5 Zsinai.
i=1
As a result, we deduce that
w,n w,n 1 w,n\2
E3(t) =u®"Vu® —{-EV(,O i)
_d_ _d .
=<—a)<n 2 +n 2)51n<xd+1_,-)
l<i<d
| d
+ —zn’]’d Sin 20¢g41—i — n—dtl SIN Qg 41—i Zcosai ,
i=1 1<i<d
d
F(1) = 3,p°" + u®"(Vpo™T = —p~ Zcos Q; Sinag1_;.
i=1
Estimating the || £ (2) | K @ p2 I g g™, p )| %,IIF(I)II ¢ by
2 B2I B2,I 2]
using Lemma 2.2 yields
IEV@] ¢ = | (n'sin cosaai-iziza| g
2
d d
Sy i sinay cos g1l o ST

24

i=1
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ILf @, p ™)

d

H(l —A)7!
BZ

. 1.
(ndJrl (sm o COS gy 1—i — E sin20g41—;
I<i<d 51

d
—d+1
Snmdt (Z lIsina; cosaari—ill g, + ) llsin2aqsi-il g )

i=1 21 i=1 21

d
< n_l_f’

d .
@™, o ¢ 5 (1= &) (i a8 ) Ginaas-iziza| g
322, BZZ.I
= a7 (7 sin 20441 ,>1<,<d)H

d
+a=na"! ! sin gy COS o
( ) ( d+1 ZZ t> .

i=l Isi<d| g2,

d_ ,d
< (" z)Z||smad+1 g

—1—-d
+n Zn sin2eari-ill g

i=1

d d

Z Z I sinagq1—jcosa;ll ¢,
P B}

2,1

2 +4+n

d
n S 4n 43 2 <n7?
d d
—d . —1-4
IFON g, SnY llcosasinagpr—ill ¢, Sn~'77.
B} ‘ ;4
2, i=1 2,1

Putting the above estimates together yields

F L@, p” ™M g+ llg@®™, p”™Ml g Sn72,
B2 B2

IE®I % SIEDI 4
32
2,1 2,1 2,1
IFOI 4, <178 <n2
322,1
This completes the proof of Lemma 3.2. O

3.2 Difference between approximate and actual solutions

In this section, we also only consider the case that d > 2 is even. The proof of the case
that d > 3 is odd is similar. Let z4 ,,(t, X) = (4w n(t, X), pw.n(t, X)) be the solution
of the system (3.1) with initial data given by the approximate solution z*"(t, x) =
@®"(t, x), p”"(t, x)) evaluated at the initial time. That means z,, , (¢, x) solves the
following Cauchy problem
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8tua),n +Uyn - V”w,n + f(”wna pw,n) + g(”w,n» pw,n) =0, r>0, xe Td,
0 Pwn +Uwn - Voon + Pondivig, =0, >0, x¢€ Td,

_1_4d
U (0, %) = u®™(0, x) = (wn~" +n"172 cos nxgq1-i)1<i<d

d
Pwn(0,x) = p®(0,x) = wn~" +n72 Y| cosnxgr1-i,
(3.4)

where

F o Pon) = (= D)V (Vitin Vit + (Vo)) = (Vitin)T Vit )

1
+ (I — A~ div (—Vuw,n(divuw,n) + §I|Vuw,n|2)) ,

_ . 1
g ns Pon) = I — A (uw,ndwuw,n g - (Vi)' + vaw,n)z) :

Due to Lemma 2.2, we deduce that

d _d
It n O g S llon™ “Zeosnxgriill g S 1
21 i=1 B,

-1 _d
1pwn O ¢ Snt 4 lln2 cosnxgpill ¢ S 1.
B im1 By,

According to Lemma 3.1, we derive that (¢4, Pw,n) 1S the unique solution of the
initial value problem (3.4) with the maximal existence time

1 B 1
4C7Ne0n O g 4 (

T>T0

le X B3y

w0 (O) I 51+ + 11P0.n O) I g)
2

21

To estimate the difference between approximate and actual solutions, letting o =

U — gy, T = p?" — pp.n yields
o0 +u®" Vo +0o0-Vugy, — EQ@)+ fw®", p©™")
f(uwnvan)+g('4wn wn)_g(uw,nuow,n):o’ 3.5
T+ Uupn -Vt +o - Vo' + vdivu®" 4 py, pdive — F(t) =0,
0(0,x)=00=0, 7(0,x)=1=0,
where

Fu", p®my — fWens Pwn)
= —A)"'div (V(u“”" + o) Vo + Vo (Vu™)T + Vuw,n(VU)T)

(- A) iy (—(va)Tvuw'" — (Vity.)T Vo — Vodivu®" — Ww,ndiva)
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1
+ (I — A Udiv <§V(u“”" +lgn) VO‘) .

w,n! pw.n) - g(uw,n» pu),n)

g(u
1
YN (odivu‘“’” + Uy pdive + o Vu®" +ug, ,Vo + EV((,O‘”’" + pa),n)r))

Lemma3.3 Whenw=—1,1,n>> 1,d >2,n,d € Z*, we have
(3.6)

lo@l o, It ¢, <n™2 0<t<T.
B B2

2.1 2.1

Proof Dealing the first and second equation in (3.5) with Lemmas 2.5 and 2.7 yields

t
loe®Il 4 Sexp( / IVu"apll g dn)
0 B NL*

BZ,I
t
(IIGoII g / lo - Vugall ¢ +N1EMI ¢ |dn
0 B} By
1 2,1 2

2

t
+/ (Ilf(u"”",p“”")—f(uw,n,pw,n)ll g
0 B;

+ llg@™", p®") — g(Uewn, pw,n)”B% >d77>, (3.7)
2,1
It « ,_1 NeXp(/ luwn I +1d77>
21 2]
(||TO|| d_ / IFmI a 4 1dn
21
f lo - Vo' 4+ tdivu®" + pg, nleO’H g 1d77> (3.8)
21
From Lemmas 2.2 and 3.1, we deduce that
d
O S llon™" + 2cosa,||31+g <L
i=1 2,1
d
16" ®Il ¢ 5n‘1+Znn zcosaln ¢ S
21 21
< 1.

lw,n O 4, ”Ma)n(t)”BHd S Mu® 0] e + 1p” " O)l K
21

21

BZI 2,1

Using the properties (ii), (iii) in Proposition 2.2 and Lemma 2.1 yields

S g S lluwnll g0 ST

VU™l 4
2I

ZIQL BZI
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T
lo Vitoull 4 Sholl g 1Vo)" I ¢ Sloll g Mol g Slol o,
BZ] BZ] BZ,I B2,I 2,1 BZ.
IIf(u“’”,p“’")—f(uwn,pwn)ll
21
IV @™ + ) Voll ¢+ IVa(Vu | g | + Vit (VO || 4,
B2 B} B}
2,1 2,1 2,1
HIVO VU™ g + (Vo) Vol g, +[Vodivu®"| o,
BZI 21 B2,1
+IVug, pdivo || ,_1+|IV(u“’"+uwn) Vo| 4 K=
BZI 21
T
SIV@™" +upa)ll g IVoll 4 +|IV<7|| 4 _ I(Vu®™) ||
B2,1 BZI 21 2,1
T T s
HIVupull ¢« (VO ¢y + 1V g IVU®"|| 4
B22.1 B22.1 3221 B22,1
T
HVuw) Il ¢ [IVoll ,,1+|IVUII _y Idiva™| d
BZl BZI 21 BZ,l
IVl 4 lldivel] 4
B2,1 B2,l
S g+ lonll g )l 4 STl o,
BZ,I 2,1 BZ,I BZ,I
”g(uw,n’ ,Ow’n) - g(uw,n’ pw,n)”
B2,1
S lodivu® || g, + o divoll g, + 1oVu"I| 4, + luoaVoll 4,
Bz,l 2.1 Bz,l 32,1
HIV(®" + po)OIl 4
BZI
S llodivu®™|| 4 ¢ +lugadivol ¢ + loVu®"|| 4 ¢t lluwnVol 4
BZ] BZI BZI 21
+||(,0“’"+,0wn)fll 4
21
S e ird ol o1+ +lp“" | ¢ +lponl 4 loll ¢ + 7l
BZI 21 BZ‘I BZ,I B2,l B2,l
Sloll ¢+l g
BZ,I BZ,I
In the same manner, we obtain
lo - Vo' + tdivu®" + p,, ndivo || 4
2,1
S 1g #1621 g + ool g ) (Mol g+l g,
B, | By, By By, By,
Sloll g+l 4
BZ,] BZ,]
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As a consequence of ||og|| 4 4= = |looll % =0, (3.7) and (3.8) reduce to
21 2
t
loOIl « STEMI 4 +/ lomll ¢ + Izl 4, )dn, (3.9
B}, B}, 0 B}, B},

21 BZ]

t
@)l d_l NIIF(t)IIBd_l /o (IIO(n)II ¢ +llrml ¢ 1)6177- (3.10)
Combining (3.9). (3.10) and Lemma 3.2 yields

IIE(I)IIg ¢y =llo@l

21><le

an.

1

< —2
2%11+||T(f)|| g 3n / Izl % 2%

Using the Gronwall’s inequality, we obtain (3.6). This completes the proof of
Lemma 3.3. O

3.3 Non-uniform dependence

In this section, we only discuss the case that d > 2 is even in detail. The proof of
the case that d > 3 is odd is similar, so we omit it here. Let z1 , (¢, x) and z_1 , (¢, x)
are the solutions to the system (3.1) with the initial data Zbn (0, x) and z’]’”(O, x),
respectively. Using Lemma 2.2, we obtain

L,
21O g ¢ SO g ¢ ST,

By 17 xBy By 7 xBj
and

~

-1,
lz—1..O)|l s+ Sz 0] g 4 SL
By 7 x 21 le x By

According to Lemma 3.1, we know that z1 ,, (¢, x) and z_1 , (¢, x) are the unique solu-
tions to the initial value problem (3.1) with the initial value z1(0, x) and z_ 200, x),
respectively. And the maximal existence time 7 is independent of . In order to achieve
our goals, we have to prove the following lemma.

Lemma3.4 Whenn>> 1,d >2,n,d € Zt, we have

llu *1"<t)—ui1n<t)||32+ ||pi1"(r)—pi1n(r>||3.+d <n, 0<t1<Tp.
2,1 2,1

Proof For the equations in (3.4), using Lemma 2.6 yields

ltonOI 2.4 S NuwnO) .4
32,12 B2,I2

t
/0 (”f(uwn»pwn)” 244 d + lgwowns Pon)ll 2+ )dﬁ

21 21
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/ ”uwn” 2+d||“wn|| ]+dd77,
By

21
[ 2. (D] R ¢ S o .

2] 21

t
/0 (II,Ow nll s Vito,nllee + 11Vt nl

21

||pr,n||po) di
21

/ | o, ndivite ul 1+d dn.

21

From Lemma 2.1, we deduce that

ltwn®l sid S lton O 2pg
B 5

t
/ <||Mwn(77)|| 114t llown g)
0 B, B3,

(||uwn(77)|| 204+ 10w M 1+)d77, (3.1D)

21 21

2. (D)l RS S 1w O)] o

By, By,*
t
/ luw,n (M i+4 d + 10w, (M K
0 B, Bs
(||Mw n(M| 2+ d + 1pw,n (M 1+2)d77 (3.12)
By By,

Combining [lue nll .¢: |Pw.nll ¢ <1, (3.11)and(3.12) yields
B

d
B2
2,1 2

ltew,n (Ol 2 + 100 O] 1+
By By

= ”an(t)” 2+7 BH—%

21" %P2
SHn Ol 2y g / ol 5.g g,
X X B,
2,1 2I 2,1
Using the Gronwall’s inequality and Lemma 2.2 yields
lton O 2 1P0n Ol 1
BZ,I BZI
SHzon Ol sea g SO 5g g S 01T,

By " xBy By 17 xBy
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Furthermore,

+1, +1,
lu="" () —us1.aON o0 SNe™"ON 5pa + luxrnON 510 Sn,
B, 2 B, 2 B, 2

2,1 2,1 2,1
+1 +1
lo="" @) = px1.aON 11 a SO 1,a +lo£1aOI ;e Sn, 0=t =<To.
32,12 32,12 32,12
This completes the proof of Lemma 3.4. O

By using Lemmas 3.3, 3.4 and the property v) in Proposition 2.2, we have

1 1
+1 + 2 + 2
=" () —us1.aON pa SN @) —ur O 4 Nu™" @) —ur (O,
2 2+
B B, 2 B2
2,1 2.1 2,1

N—=

Sne,
and

1 1

+1, =+, 2 =+, 2
16571 = o101 g S 105" = pea®I | 105" 0) —uz @1, |
B, 32,17 sz,l

A
3
N‘l'—‘

Using Lemma 2.2, we obtain

lu—10ON g +lur O g +lo—1.O1 ¢« + 1O ¢« ST,
Bz,l : 3241 : Bzz,l B22,I
10 (0) = =10 (O rav 1p1,4(0) = p—14 O « S
By,* By,
Hence we have
lim [[u1,,(0) —u—1,0)] ,¢ = lim [p1,(0)—p-1,0)] ¢« =0.
n—oo 32117 n—oo sz.l

Note that

im | furn (@) —u—12OI 1 g +1p1a@) — p—12OI ¢
n—00 82’12 32%1

2 im fuyn(t) —u—1 0@l | a-
n—>00 B2

From the formula

sin

L
cosa —cos B = —2sin 5 7
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it follows that

1, -1, —1-4 . -1
lu™" (@) —u™2"ON ¢,y 20 2IISlnnxcmfiIlBH%lsmtl—n :

BZ.I 2,1

Moreover, we have

liminf 1" () — = O 4 2 ‘sint‘.
n—oo 212

Altogether, for all 0 < t < Ty we have

le1,n () —u—1,,@)l 1+ d
Bz,l2

= (O = O + @) = O —ua O T ON g
2,1

1 —1
2o — a1 g
BZ,]

—(nul,n(t)—ul’"(t)n g H @) — a0 %)
B B

2,1 2,1

1, -1, -1
2 " @) —u " @)l d —n2
2,1

Consequently, we obtain

iminf [l () — w10l 0 > |sint].
n—0oo 3212

This completes the proof of Theorem 1.1.

4 The proof of Theorem 1.2

In this section, we will pay attention to the initial value problem (3.1) withd = 1. The
3

non-uniform continuity of the solution map zp — z(¢) in Besov spaces B27 1 (T) x
1
B; (T) would be considered in detail. Since all spaces of functions are over T, we

drop T if there is no ambiguity. The problem can be rewritten as follows:

u,—l—uux—i—ax(l—af)_l (u2+%u§+%p2)=0, t>0, xeT,
pr+upy +pu, =0, t>0 xeT, “.1)
u(0,x) =up, p(0,x) = po.

The local well-posedness results for initial value problem (4.1) is stated as follows:
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3 1
Lemma 4.1 Let zg = (1o, po) € By | x By |, then there exists a time T = T (zo) > 0

3 1
such that z(t) € Ezz’1 (T) x E22’1(T) is the unique solution to the initial value problem

(4.1), and the solution depends continuously on the initial data, that is, the solution map
3 1 3 1

zo > z(t) is continuous from BZI X Bzzl into C([0, T'1; B;l X B;l). Furthermore,
the solution z(t) satisfies the following estimate

1

3 1, 0=5t<T:=
2, xB2, 4C2||ZO||B

, “4.2)
|
1><sz.1

izl 1 = 2Czoll
B. B

3 1
2
31 %B3

3
2
2,
where C > 1 is a constant independent of zo and (u(t), p(t)) = z(t).

Proof The proof of existence, uniqueness and continuity of the solution map can
be found in [19]. Therefore, our main goal is to establish (4.2). From the proof of
Theorem 3.3 in [19], we know that there exist a constant C > 1 and atime 7 satisfying
2C%T ||zo |l 1< 1 such that for every ¢t € [0, T'], we have

B

Clizoll 3 1
B2 xB}
L < 2,1 2,1

3 1 <
B2 xB?, 11— 2C2l||Z0||B

2" @l .
3 pt
51%B3

The rest proof is similar to Lemma 3.1. This completes the proof of Lemma 4.1. 0O

Next, Theorem 1.2 will be proved by a similar way. The approximate solutions can
be given as follows:

3 1
u®" = wn~!' +n"2 cos(nx — wt), PP = on”' 4+ 172 cos(nx — wi),

where w = 1, n € Zt,n > 1. Substituting u®"* and p®*" into the equations in
(3.1), we obtain

1 1
G(t) — atua),n + uw,naxuw,n + ax(l _ a?)—l ((uw,n)z + E(axuw,n)z + 5(pw,I’l)2> ,

Ht) = 8p°" +u®" 3. p™" + 0" 3",
A few simple calculations and estimations yield

. _3 .
IGOI 1 < In2sin@nx —2w1)|| 1 + |n~ 2 sin(nx — wt)|| 3
B’Z BZ 2z
2,00 2,00 2,00

+ ||n_2 sin(nx — wt)|| -3 + ||n_% sin(2nx — 2wt)|| 3

2,00 2,00

_ 1 3
+n P +n 240t <nz,

(T[]

Sn
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. _3 .
IH®ON _y Slln~'sin@ax —200)]| _) + ln” 2 sin(ex —on)]
2,00 BZ,oo BZ,oc

+n2<n2.

[SI[N)
[T

Sn

Consequently, we have the following lemma.

Lemma4.2 Whenw = —1,1, n > 1, we have

3
IGOI + IIHOI -1 Sn72, 0=t =<T.
B} 2

,00 2,00

In the following, the difference between approximate solution and actual solution
will be taken into consideration as in Sect. 3.2. The Osgood Lemma is necessary
during the process of estimations. Let z,, » = (4.1, Pw,n) solve the following Cauchy
problem:

8tua),n + uw,naxuw,n
0, (1= 97" ((o.n)? + 3Ot n)* + 3(pon)?) =0, 1>0, x€T,
0t Pw,n + U nOx Po,n + Pondxlwn =0, t>0, xeT,
Upn(0,x) =u®"(0,x) = on~ ! + n_% cosnx,
Po.n(0,x) = p?"(0,x) = won~ 4 n’% cosnx.
4.3)
Since IIMw,n(O)IIB% , ||,0w’n(0)||B% < 1. From Lemma 4.1, we know the existence,

2,1 2,1
uniqueness of z,, , and the lifespan satisfies

T T; !
> =
! 4CNz0n O

1

3 p2
51%B5

Similar to Theorem 1.1, letting 0 = u®" — ug ., T = p®" — pw.n yields

30 + U0 + 0ty + 3y (1 —32)7! ((u‘“’" + Upn)o

+%3x(uw,n + Uep,n)0x0 + %(Iow'n + ,Oa),n)t) —-G@)=0, t>0, xeT,

T + Uy n0xT + 00 p”" + 10u®" + py pdxoc —H() =0, t>0 xeT,
0(0,x) =09 =1 =71(0,x) =0.

“4.4)
Lemma4.3 Whenw = —1,1, n > 1, we have
lo @l 1 Tl 3 $n3eRCen, (4.5)
BZZ,OO 2,30
3 <n, 0<t<T. (4.6)

oI 5. Izl
By, B

N

,1
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Proof Dealing the first and second equation in (4.4) with Lemmas 2.5 and 2.8 yields

t
Sexp( / 1o Gl 1 dn)
o] 0 BZZ,mmLOO
t
x <||00|| , +/ lodettonll 1 +1GGI 1 |dn
B} 0 B} B3,

2,00 2,00
t
+ /‘U

lo@®I 1
B}

1
(1 — a)%)_l ((Mwn + uw,n)U + Eax(uw’n + uw,n)axa

1 w,n
+ = (p* +pw,n)f 1 dn |, 4.7
2 B2
2,00
t
@l 1 Sexp</ 10x e, n (Ml %dﬁ>
By % 0 B;
t t
X <||T0|| ,1+/ 1H )l ,LdnJr/ o0, 0" +Tou”" + p“"0y0| 1d77>-
B, 0 B, 5, 0 B, 5
4.8)
From Lemmas 2.2 and 4.1, we deduce that
lton®l 3 100n®l 1 S lzoa®l 3 1 SI"ON 3 4 S
B; Bj BjxBj, Bj X Bj
Using Lemmas 2.1, 2.3 and 4.1 yields
1 S 5 Sty S ol 3 S 1,
300 WL B;, B;, B;,
lodetanll 1 Sloditonl v Sloll 1 I0etonl 1 Sloll 4,
B; B34 B34 B34 B3
1 1
0y (1 — a)%)il ((uw,n + Uy n)o + Eax(uw'n + Uy )00 + E(Pw'n + Pw,n)f) 1
BZZ,OC

5 ”(uwn + U)o || 7% =+ [|0x (™" 4+ Ug n)0x0 || 7% + ”(pw,n + Pw,n)Tll ,%
BZ.oo Bz,oo BZ,oc
<
Sloll y +lel .
2,00 2,00
o0y p®" 4+ 10,u”" + pondcoll _1 Sloll 1+l 1.
2 BZ B 2

BZ,oo 2,00 2,00

Owing to Lemma 4.2 and ||og| 1= lIzoll = 0, (4.7) and (4.8) reduce to
BZ.oo B2,l

_3 !
st | (Ila(n)ll |+l _%>dn,
0 B; B,y i

lo®I 1
By,

,00
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_3 !
eI 1 Sn2 / <||U(77)|| 1 +||T(77)|| ) n.
B, & 21 B}
Let |Z(O] 3 i =|oll 3 4+t 1 < M, and then using Lemma 2.4 yields
E’Zz,oo>< 2,00 BZZ,oo BZZ,oo

_3 ! M
||U(f)|| ||T(l)|| ST+ loll 1 In{e+ ———
fo 0 Bl llo(m) ||B%

2,00

+lrl y In ( LM )d
P P e, )
52

Due to the fact that x In(e + %) is nondecreasing when x > 0 and In(x + %) <
(1 —Ing;)In(e + 1) if x € (0, M], we have

Izl 43 Izl - Izl -l
BZOCXBZOO 2 BZOOXBZOO BZooXBZOC
_— § +[ — == 1l—-In{ —————==) }dn.

M M 0 M M
Using Remark 2.1, (4.5) holds. The proof of (4.6) is similar to Lemma 3.4. This
completes the proof of Lemma 4.3. O

Finally, we shall deal with the problem as in Sect. 3.3. However, the estimations

of lo(®)] 3, |t() || | are different. The property vi) in Proposition 2.2 instead of
2 1 I
v) should be used in thlS part. With Lemma 4.3 in hand, the specific process is as

follows:

% % % % 1_ 3exp(=ct)
lo@I 3 SHe®I*y oIy Mo, llo@l*s Sn2™ 4,
By 32200 322 32200 Bz2
1 1_ 3exp(=ct)
@I 3 <IIT(I)II2 1||T(f)||2; <IIT(I)II2 1||T(f)||2; nzoA
B2~l BZoo 22.00 B2oo 22.]

Choosing 0 < T» < Ty and 0 <t < Tp such thatexp(—ct) > 1 -8 (0 < § < %), we
obtain
36—1
ol 3. lz®l 1 Sn*,0=<t=<71,
322 322,1
where 36 — 1 < 0. The rest of proof is similar to Theorem 1.1. This completes the
proof of Theorem 1.2.
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