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Abstract
It is known that if f : R2 → R is a polynomial in each variable, then f is a polynomial.
We present generalizations of this fact, when R2 is replaced by G × H , where G and
H are topological Abelian groups. We show, e.g., that the conclusion holds (with
generalized polynomials in place of polynomials) if G is a connected Baire space and
H has a dense subgroup of finite rank or, for continuous functions, if G and H are
connected Baire spaces. The condition of continuity can be omitted if G and H are
locally compact or one of them is metrizable. We present several examples showing
that the results are not far from being optimal.
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1 Introduction

It was proved by Carroll in [3] that if f : R2 → R is a polynomial in each variable,
then f is a polynomial. Our aim is to find generalizations of this fact, when R

2 is
replaced by the product of two topological Abelian groups.
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On topological Abelian groups we have to distinguish between the class of poly-
nomials and the wider class of generalized polynomials (see the next section for the
definitions). The two classes coincide if the group contains a dense subgroup of finite
rank. Now, the scalar product on the square of a Hilbert space is an example of a con-
tinuous function which is a polynomial in each variable, is a generalized polynomial
on the product, but not a polynomial (see Example 1 below). Therefore, the appro-
priate problem is to find conditions on the groups G and H ensuring that whenever a
function onG×H is a generalized polynomial in each variable, then it is a generalized
polynomial.

This problem was considered already by Mazur and Orlicz in [10] in the case when
G and H are topological vector spaces. They proved that if X ,Y , Z are Banach spaces
and the map f : (X ×Y ) → Z is a generalized polynomial in each variable,1 then f is
a generalized polynomial [10, Satz IV]. They also considered the case when continuity
is not assumed, and X ,Y , Z are linear spaces without topology [10, Satz III] (see also
[2, Lemma 1]). The topic has an extensive literature; see [14,16] and the references
therein.

In this note we consider the analogous problem when G and H are topological
Abelian groups.We show that ifG is a connected Baire space, H has a dense subgroup
of finite rank, and if a function f : (G × H) → C is a generalized polynomial in
each variable, then f is a generalized polynomial on G × H (Theorem 1). The same
conclusion holds if G and H are both connected Baire spaces, and one of them is
metrizable or, if both are locally compact (Theorem 3).

If G and H are connected Baire spaces, f : (G × H) → C is a generalized poly-
nomial in each variable, and if f has at least one point of joint continuity, then f is a
generalized polynomial ((iii) of Theorem 2).

It is not clear if the extra condition of the existence of points of joint continuity
can be omitted from this statement (Question 1). The problem is that a generalized
polynomial must be continuous by definition, and a separately continuous function
on the product of Baire spaces can be discontinuous everywhere, as it was shown
recently in [11]. In our case, however, there are some extra conditions: the spaces
are also connected, and the function in question is a generalized polynomial. It is
conceivable that continuity follows under these conditions. As for the biadditive case,
see [4].

There are several topological conditions implying that separately continuous func-
tions on a product must have points of joint continuity. In fact, the topic has a vast
literature starting with the paper [12]. See, e.g., the papers [5–7,13].

2 Preliminaries

Let G be a topological Abelian group. We denote the group operation by addition, and
denote the unit by 0. The translation operator Th and the difference operator Δh are

1 Actually Mazur and Orlicz only assume that X , Y , Z are F-spaces; that is, topological vector spaces
whose topology is induced by a complete invariant metric.
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defined by Th f (x) = f (x+h) andΔh f (x) = f (x+h)− f (x) for every f : G → C

and h, x ∈ G.
We say that a continuous function f : G → C is a generalized polynomial, if there

is an n ≥ 0 such thatΔh1 . . . Δhn+1 f = 0 for every h1, . . . , hn+1 ∈ G. The smallest n
with this property is the degree of f , denoted by deg f . The degree of the identically
zero function is −1. We denote by GP = GPG the set of generalized polynomials
defined on G.

A function f : G → C is said to be a polynomial, if there are continuous addi-
tive functions a1, . . . , an : G → C and there is a P ∈ C[x1, . . . , xn] such that
f = P(a1, . . . , an). It is well-known that every polynomial is a generalized poly-
nomial. It is also easy to see that the linear span of the translates of a polynomial is
of finite dimension. More precisely, a function is a polynomial if and only if it is a
generalized polynomial, and the linear span of its translates is of finite dimension (see
[9, Proposition 5]). We denote byP = PG the set of polynomials defined on G.

Let f be a complex valued function defined on X × Y . The sections fx : Y → C

and f y : X → C of f are defined by fx (y) = f y(x) = f (x, y) (x ∈ X , y ∈ Y ).
Let G, H be topological Abelian groups. A function f : (G × H) → C is a

separately polynomial function if fx ∈ PH for every x ∈ G and f y ∈ PG for
every y ∈ H . Similarly, we say that f : (G × H) → C is a separately generalized
polynomial function if fx ∈ GPH for every x ∈ G and f y ∈ GPG for every y ∈ H .

In general we cannot expect that every separately polynomial function on G × H
is a polynomial; not even if G = H is a Hilbert space.

Example 1 Let G be the additive group of an infinite dimensional Hilbert space. Then
the scalar product f (x, y) = 〈x, y〉 on G2 is a separately polynomial function, since
its sections are continuous additive functions. In fact, f y is a linear functional and
fx is a conjugate linear functional for every x, y ∈ G. Thus the sections of f are
polynomials.

Now, while the scalar product is a generalized polynomial (of degree 2) on G2, it
is not a polynomial on G2, because the dimension of the linear span of its translates
is infinite. Indeed, let g(x) = 〈x, x〉 = ‖x‖2 for every x ∈ G. Then Δhg(x) =
2〈h, x〉 + ‖h‖2 for every h ∈ G. It is easy to see that the functions 〈h, x〉 (h ∈ G)

generate a linear space of infinite dimension, and then the same is true for the translates
of g and then for those of f as well.

Therefore, the best we can expect is that, under suitable conditions on G and
H , every separately generalized polynomial function on G × H is a generalized
polynomial.

We denote by r0(G) the torsion free rank of the group G; that is, the cardinality of
a maximal independent system of elements of G of infinite order. Thus r0(G) = 0 if
and only if G is torsion. In the sequel by the rank of a group we shall mean the torsion
free rank. It is known that if G has a dense subgroup of finite rank, then the classes of
polynomials and of generalized polynomials on G coincide (see [9, Theorem 9]).

The set of roots of a function f : G → C is denoted by Z f . That is, Z f = {x ∈
G : f (x) = 0}. We put

NP = NP (G) = {A ⊂ G : ∃p ∈ PG, p 
= 0, A ⊂ Z p}
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and

NGP = NGP (G) = {A ⊂ G : ∃p ∈ GPG , p 
= 0, A ⊂ Z p}.

It is easy to see thatNP andNGP are proper ideals of subsets ofG. LetN σ
P andN σ

GP
denote the σ -ideals generated by NP and NGP , respectively. Note that NP ⊂ NGP

and N σ
P ⊂ N σ

GP .
If G is discrete, then N σ

P and N σ
GP are not proper σ -ideals (except when G is

torsion), according to the next observation.

Proposition 1 Let G be a discrete Abelian group. If G is not torsion, then G ∈ N σ
P .

Proof Let a ∈ G be an element of infinite order. Then φ(na) = n (n ∈ Z) defines a
homomorphism from the subgroup generated by a into Q, the additive group of the
rationals. Since Q is divisible, φ can be extended to G as a homomorphism from G
into Q. Let ψ be such an extension.

Then pr = ψ + r is a nonzero polynomial on G for every r ∈ Q. If x ∈ G, then x
is the root of pr , where r = −ψ(x) ∈ Q. Therefore, G = ⋃

r∈Q Z pr ∈ N σ
P . ��

A simple sufficient condition for G /∈ N σ
GP is given by the next result.

Lemma 1 If G is a connectedBaire space, then theσ -idealsN σ
P andN σ

GP are proper;
that is, G /∈ N σ

P and G /∈ N σ
GP.

Proof It is enough to prove that every element of NGP is nowhere dense. Suppose
A ∈ NGP is dense in a nonempty open setU . Let p ∈ GPG be a nonzero generalized
polynomial vanishing on A. Since A ⊂ Z p and Z p is closed, we haveU ⊂ Z p. Since
G is connected, every neighbourhood of the origin generates G. It is known that in
such a group, if a generalized polynomial vanishes on a nonempty open set, then it
vanishes everywhere (see [15, Theorem 3.2, p. 33]). This implies that p is identically
zero, which is impossible. ��

3 Main results

Theorem 1 Let G, H be topological Abelian groups, and suppose that

(i) N σ
GP (G) is a proper σ -ideal in G, and

(ii) H has a dense subgroup of finite rank.

If f : (G × H) → C is a separately generalized polynomial function, then f is a
generalized polynomial on G × H.

Theorem 2 Let G, H be topological Abelian groups, and suppose that N σ
GP (G) is

a proper σ -ideal in G, and N σ
GP (H) is a proper σ -ideal in H. Then the following

statements are true.

(i) If f : (G × H) → C is a separately generalized polynomial function, then f is a
generalized polynomial on G × H with respect to the discrete topology.
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(ii) Every joint continuous separately generalized polynomial function f : (G×H) →
C is a generalized polynomial on G × H.

(iii) If G and H are connected and a separately generalized polynomial function
f : (G × H) → C has at least one point of joint continuity, then f is a gen-
eralized polynomial on G × H.

ByLemma1, (i) of Theorem1 can be replaced by the condition thatG is a connected
Baire space. Similarly, the condition of Theorem 2 can be replaced by the condition
that G and H are connected Baire spaces.

As for (iii) of Theorem 2 note the following facts.

• If X ,Y are nonempty topological spaces, X is Baire, Y is first countable and
f : (X × Y ) → C is separately continuous, then f has at least one point of joint
continuity. (See, e.g. [17, p. 441].)

• A topological group is first countable if and only if it is metrizable.
• If X ,Y are nonempty locally compact and σ -compact topological spaces, f : (X×
Y ) → C is separately continuous, then f has at least one point of joint continuity.
(See [12, Theorem 1.2]).

• Every connected and locally compact topological group is σ -compact.

Comparing these with (iii) of Theorem 2 we obtain the following.

Theorem 3 Suppose that the topological Abelian groups G, H are connected and
Baire, and either

(i) at least one of G and H is metrizable, or
(ii) G and H are locally compact.

If f : (G × H) → C is a separately generalized polynomial function, then f is a
generalized polynomial on G × H.

Question 1 Are the conditions (i) and (ii) necessary in the statement of Theorem 3?
(See the introduction.)

We prove Theorems 1 and 2 in the next section. In Sect. 5 we present examples
showing that some of the conditions appearing in Theorems 1 and 2 cannot be omitted.

4 Proof of Theorems 1 and 2

Lemma 2 Let H be a topological Abelian group, and suppose that H has a dense
subgroup of finite rank. Then, for every positive integer d, there are finitely many
points x1, . . . , xs ∈ H and there are generalized polynomials q1, . . . , qs ∈ GPH of
degree < d such that p = ∑s

i=1 p(xi ) · qi for every p ∈ GPH with deg p < d.

Proof Let GP<d denote the set of generalized polynomials f ∈ GPH of degree< d.
Clearly, GP<d is a linear space over C.

Let K be a dense subgroup of H with r0(K ) = N < ∞. Let {h1, . . . , hN } be
a maximal set of independent elements of K of infinite order, and let L denote the
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subgroup of K generated by the elements h1, . . . , hN . If k = (k1, . . . , kN ) ∈ Z
N ,

then we put ‖k‖ = max1≤i≤N |ki |. We abbreviate the sum
∑N

i=1 ki ·hi by 〈k, h〉. Then
we have L = {〈k, h〉 : k ∈ Z

N }. We put

A = {〈k, h〉 : k ∈ Z
N , ‖k‖ ≤ [d/2]}.

First we prove that if p ∈ GP<d vanishes on A, then p = 0.
Suppose p 
= 0. Since p is continuous and K is dense in H , there is an x0 ∈ K

such that p(x0) 
= 0. Themaximality of the system {h1, . . . , hN } implies that nx0 ∈ L
with a suitable nonzero integer n. It is easy to see that there is a polynomial P ∈ C[x]
such that p(mx0) = P(m) for every integer m. Since P(1) = p(x0) 
= 0, it follows
that P 
= 0, hence P only has a finite number of roots. Thus p(mnx0) = P(mn) 
= 0
for all but a finite number of integers m. Fix such an m. Then mnx0 ∈ L , and thus
mnx0 = 〈k, h〉 with a suitable k ∈ Z

N . We find that p(〈k, h〉) 
= 0 for some k ∈ Z
N .

Let k = (k1, . . . , kN ) ∈ Z
N be such that p(〈k, h〉) 
= 0 and ‖k‖ is minimal. If

‖k‖ ≤ [d/2], then 〈k, h〉 ∈ A, and we have p(〈k, h〉) = 0 by assumption. Thus we
have ‖k‖ > [d/2]. Put � = (�1, . . . , �N ), where

�i =

⎧
⎪⎨

⎪⎩

1 if ki > [d/2],
0 if |ki | ≤ [d/2],
−1 if ki < −[d/2]

(i = 1, . . . , N ).

Then we have ‖k − j�‖ < ‖k‖ for every j = 1, . . . , d. By the minimality of ‖k‖ we
have p(〈k − j�, h〉) = 0 for every j = 1, . . . , d.

Put v = 〈�, h〉. Since deg p < d, it follows that Δd−v p(x) = 0 for every x ∈ H .
Now we have

0 = Δd−v p(〈k, h〉) =
d∑

j=0

(−1)d− j
(
d

j

)

p(〈k, h〉 − jv) =

= (−1)d p(〈k, h〉) +
d∑

j=1

(−1)d− j
(
d

j

)

p(〈k − j�, h〉) =

= (−1)d p(〈k, h〉),
which is impossible. This proves p = 0.

The set of functions V = {p|A : p ∈ GP<d} is a finite dimensional linear space
over C. The map p �→ p|A is linear from GP<d onto V and, as we proved above, it
is injective. Therefore GP<d is of finite dimension.

Let b1, . . . , bs be a basis of GP<d . Since the functions b1, . . . , bs are linearly
independent, there are elements x1, . . . , xs such that the determinant det |bi (x j )| is
nonzero (see [1, Lemma 1, p. 229]). Put X = {x1, . . . , xs}. Then b1|X , . . . , bs |X are
linearly independent, and thus the map f �→ f |X is bijective and linear from GP<d

onto the set of functions f : X → C.
Then there are functions q1, . . . , qs ∈ GP<d such that qi (xi ) = 1 and qi (x j ) = 0

for every i, j = 1, . . . , s, i 
= j .
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Let p ∈ GP<d be given. Then p − ∑s
i=1 p(x j )q j is a generalized polynomial of

degree < d vanishing on X , hence on H . That is, we have p = ∑s
i=1 p(x j )q j . ��

Proof of Theorem 1 Let f : (G × H) → C be a separately generalized polynomial
function. Put Gn = {x ∈ G : deg fx < n} (n = 1, 2, . . .). Since N σ

GP (G) is a proper
σ -ideal in G, there is an n such that Gn /∈ NGP (G). Fix such an n.

By Lemma 2, there are points y1, . . . , ys ∈ H and generalized polynomials
q1, . . . , qs ∈ GPH such that p = ∑s

i=1 p(yi ) · qi for every p ∈ GPH with
deg p < n. Therefore, we have

f (x, y) =
s∑

i=1

f (x, yi )qi (y)

for every x ∈ Gn and y ∈ H . If y ∈ H is fixed, then f (x, y) − ∑s
i=1 f (x, yi )qi (y)

is a generalized polynomial on G vanishing on Gn . Since Gn /∈ NGP (G), it follows
that f (x, y) = ∑s

i=1 f (x, yi )qi (y) for every (x, y) ∈ G × H . By f yi ∈ GPG and
qi ∈ GPH , we obtain f ∈ GPG×H . ��
Lemma 3 Let G, H be discrete Abelian groups. A function f : (G × H) → C is a
generalized polynomial if and only if the sections fx (x ∈ G) and f y (y ∈ H) are
generalized polynomials of bounded degree.

Proof Suppose f : (G × H) → C is a generalized polynomial of degree < d. Then
Δ(x1,0) . . . Δ(xd ,0) f = 0 for every x1, . . . , xd ∈ G. Then, for every y ∈ H , we have
Δx1 . . . Δxd f

y = 0 for every x1, . . . , xd ∈ G, and thus f y is a generalized polynomial
of degree < d for every y ∈ H . A similar argument shows that fx is a generalized
polynomial of degree < d for every x ∈ G, proving the “only if” statement.

Now suppose that f : (G × H) → C is such that fx (x ∈ G) and f y (y ∈ H) are
generalized polynomials of degree < d. Then we have

Δ(h1,0) . . . Δ(hd ,0) f = 0 (1)

for every h1, . . . , hd ∈ G, and

Δ(0,k1) . . . Δ(0,kd ) f = 0 (2)

for every k1, . . . , kd ∈ H . In order to prove that f is a generalized polynomial of
degree < 2d, it is enough to show that

Δ(a1,b1) . . . Δ(a2d ,b2d ) f = 0 (3)

for every (ai , bi ) ∈ G × H (i = 1, . . . , 2d). The identity Δu+v = TuΔv + Δu gives

Δ(ai ,bi ) = T(ai ,0)Δ(0,bi ) + Δ(ai ,0)

for every i . Therefore, the left hand side of (3) is the sum of terms of the form
TcΔc1 . . . Δc2d f , where c ∈ G × {0}, and ci ∈ (G × {0}) ∪ ({0} × H) for every i . If
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there are at least d indices i with ci ∈ (G × {0}), then (1) gives Δc1 . . . Δc2d f = 0.
Otherwise there are at least d indices i with ci ∈ ({0} × H), and then (2) gives
Δc1 . . . Δc2d f = 0. This proves (3). ��

Proof of Theorem 2 (i) Suppose f satisfies the conditions. By Lemma 3, it is enough
to show that the degrees deg fx and f y are bounded.

Put An = {x ∈ G : deg fx < n}. Then G = ⋃∞
n=1 An . Since N σ

GP (G) is a proper
σ -ideal, there is an n such that An /∈ NGP (G). We fix such an n, and prove that

Δ(0,h1) . . . Δ(0,hn) f = 0 (4)

for every h1, . . . , hn ∈ H . Let g denote the left hand side of (4). Then g(x, y) =∑s
i=1 ai f (x, y + bi ), where s = 2n , ai = ±1 and bi ∈ H for every i . Let y ∈ H be

fixed. Then gy = ∑s
i=1 ai f

y+bi , and thus gy is a generalized polynomial on G.
If x ∈ An , then deg fx < n, and thus gx = 0. Therefore gy(x) = 0 for every

x ∈ An . Since gy is a generalized polynomial and An /∈ NGP (G), it follows that
gy = 0. Since y was arbitrary, this proves (4). Thus deg fx < n for every x ∈ G.

A similar argument shows that, for a suitable m, deg f y < m for every y ∈ H .
Statement (ii) of the theorem is clear from (i).

Suppose that G and H are connected. Now we use the fact that if f is a discrete
generalized polynomial on an Abelian group which is generated by every neighbour-
hood of the origin, and if f has a point of continuity, then f is continuous everywhere.
(See [15, Theorem 3.6]) or, for topological vector spaces, [2, Theorem 1].) In our case
the group G × H is connected, so the condition is satisfied, and we conclude that f
is continuous everywhere on G × H . Thus (iii) follows from (ii). ��

5 Examples

In Theorem 1 none of the conditions on G and H can be omitted. First we show that
without condition (i) the conclusion of Theorem 1 may fail. We shall need the easy
direction of Lemma 3.

Example 2 Let G, H be discrete Abelian groups. We show that if none of G and H is
torsion, then there is a separately polynomial function f : (G × H) → C such that f
is not a generalized polynomial on G × H .

By Proposition 1, N σ
P (G) is not a proper σ -ideal; that is, G = ⋃∞

n=1 An , where
An 
= ∅ and An ∈ NP (G) for every n. Let pn ∈ PG be such that pn 
= 0 and
An ⊂ Z pn . Then pn is not constant; that is, deg pn ≥ 1.

Let Pn = p1 · · · pn ; then Pn(x) = 0 for every x ∈ ⋃n
i=1 Ai , and we have 0 <

deg P1 < deg P2 < . . .. (Here we use the fact that deg pq = deg p + deg q for every
p, q ∈ GPG , p, q 
= 0.) Note that for every x ∈ G we have Pn(x) = 0 for all but a
finite number of indices n.

Similarly, we find polynomials Qn ∈ PH such that 0 < deg Q1 < deg Q2 < . . .,
and for every y ∈ H we have Qn(y) = 0 for all but a finite number of indices n.
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Separately polynomial functions 133

We put f (x, y) = ∑∞
n=1 Pn(x)Qn(y) for every x ∈ G and y ∈ H . If y ∈ H

is fixed, then the sum defining f is finite, and thus f y ∈ PG . Similarly, we have
fx ∈ PH for every x ∈ G.
The degrees deg f y (y ∈ H) are not bounded. Indeed, for every N , there is an

y ∈ H such that QN (y) 
= 0. Then f y = ∑M
n=1 Qn(y) · Pn with an M ≥ N , where

the coefficients Qn(y) are nonzero if n ≤ N . Therefore, deg f y ≥ deg PN ≥ N ,
proving that the set {deg f y : y ∈ H} is not bounded. By Lemma 3, it follows that f
is a not a generalized polynomial.

By the example above, ifG and H are discrete Abelian groups of positive and finite
rank, then the conclusion of Theorem 1 fails. That is,G /∈ N σ

GP (G) cannot be omitted
from the conditions of Theorem 1.

Next we show that the condition on H cannot be omitted either.

Example 3 Let H be a discrete Abelian group of infinite rank. We show that if G is
a topological Abelian group such that PG contains nonconstant polynomials, then
there is a continuous separately polynomial function f on G × H such that f is not
a generalized polynomial.

Let hα (α < κ) be a maximal set of independent elements of H of infinite order,
where κ ≥ ω. Let K denote the subgroup of H generated by the elements hα (α < κ).
Every element of K is of the form

∑
α<κ kαhα , where kα ∈ Z for every α, and all but

a finite number of the coefficients kα equal zero.
Let p ∈ PG be a nonconstant polynomial. We define f (x, y) = ∑∞

i=1 ki · pi (x)
for every x ∈ G and y ∈ K , y = ∑

α<κ kαhα . (Note that the sum only contains a
finite number of nonzero terms for every x and y.) In this way we defined f on G×K
such that fx is additive on K for every x ∈ G.

If y ∈ H , then there is a nonzero integer n such that ny ∈ K . Then we define
f (x, y) = 1

n · f (x, ny) for every x ∈ G. It is easy to see that f (x, y) is well-defined
on G × H , and fx is additive on H for every x ∈ G. Therefore, fx is a polynomial
on G for every x ∈ G.

If y ∈ H and ny ∈ K for a nonzero integer n, then f y is of the form 1
n ·∑N

i=1 ki · pi ,
and thus f y ∈ PG . Since f y is continuous for every y ∈ H and H is discrete, it
follows that f is continuous on G × H .

Still, f is not a generalized polynomial on G × H , as the set of degrees deg f y

(y ∈ H) is not bounded: if y = hi , then f y = pi , and deg pi = i · deg p ≥ i for
every (i = 1, 2, . . .).

In the example above we may choose G in such a way that G /∈ N σ
GP (G) holds.

(Take, e.g., G = R.) In our next example this condition holds for both G and H .

Example 4 Let E be a Banach space of infinite dimension, and let G be the additive
group of E equipped with the weak topology τ of E . It is well-known that every ball
in E is nowhere dense w.r.t. τ , and thus G is of first category in itself.

Still, we show that G /∈ N σ
GP (G). Indeed, the original norm topology of E is

stronger than τ , and makes E a connected Baire space. If a function is continuous
w.r.t. τ , then it is also continuousw.r.t. the norm topology. Therefore, every polynomial
p ∈ P(G) is also a polynomial on E , and thus NP (G) ⊂ NP (E) and N σ

P (G) ⊂
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134 G. Kiss, M. Laczkovich

N σ
P (E). SinceN σ

P (E) is proper by Lemma 1, it follows thatN σ
P (G) is proper. The

same is true for N σ
GP (G).

Now let H be an infinite dimensional Hilbert space, and let G be the additive group
of H equipped with the weak topology of H . Let f be the scalar product on H2. Since
the linear functionals and conjugate linear functionals are continuous w.r.t. the weak
topology, it follows that f is a separately polynomial function on G2 (see Example
1).

However, f is not a generalized polynomial on G2, since f is not continuous. In
order to prove this, it is enough to show that f (x, x) = ‖x‖2 is not continuous on H
w.r.t. the weak topology. Suppose it is. Then there is a neighbourhood U of 0 such
that ‖x‖ < 1 for every x ∈ U . By the definition of the weak topology, there are
linear functionals L1, . . . , Ln and there is a δ > 0 such that whenever |Li (x)| < δ

(i = 1, . . . , n), then ‖x‖ < 1.
Since H is of infinite dimension, there is an x 
= 0 such that Li (x) = 0 for every

i = 1, . . . , n. (Otherwise every linear functional would be a linear combination of
L1, . . . , Ln , and then H = H∗ would be finite dimensional.) Then λx ∈ U for every
λ ∈ C and ‖λx‖ < 1 for every λ ∈ C, which is impossible.

The example above shows that in (ii) of Theorem 2 the condition of joint continuity
cannot be omitted. Note also that the group G defined in Example 4 is a topological
vector space, hence connected. This shows that in (iii) of Theorem 2 the condition of
the existence of points of joint continuity cannot be omitted either.
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