
Monatshefte für Mathematik (2022) 197:111–123
https://doi.org/10.1007/s00605-021-01561-5

Profinite groups with an automorphism of prime order
whose fixed points have finite Engel sinks

E. I. Khukhro1 · P. Shumyatsky2

Received: 9 January 2021 / Accepted: 21 April 2021 / Published online: 4 May 2021
© The Author(s) 2021

Abstract
A right Engel sink of an element g of a group G is a set R(g) such that for every
x ∈ G all sufficiently long commutators [...[[g, x], x], . . . , x] belong toR(g). (Thus,
g is a right Engel element precisely when we can choose R(g) = {1}.) We prove
that if a profinite group G admits a coprime automorphism ϕ of prime order such
that every fixed point of ϕ has a finite right Engel sink, then G has an open locally
nilpotent subgroup. A left Engel sink of an element g of a group G is a set E (g) such
that for every x ∈ G all sufficiently long commutators [...[[x, g], g], . . . , g] belong
to E (g). (Thus, g is a left Engel element precisely when we can choose E (g) = {1}.)
We prove that if a profinite group G admits a coprime automorphism ϕ of prime
order such that every fixed point of ϕ has a finite left Engel sink, then G has an open
pronilpotent-by-nilpotent subgroup.

Keywords Profinite groups · Engel condition · Locally nilpotent · Automorphism
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1 Introduction

Let G be a profinite group, and ϕ a (continuous) automorphism of G of finite order.
We say for short that ϕ is a coprime automorphism of G if its order is coprime
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to the orders of elements of G (understood as Steinitz numbers), in other words, if
G is an inverse limit of finite groups of order coprime to the order of ϕ. Coprime
automorphisms of profinite groups have many properties similar to the properties of
coprime automorphisms of finite groups. In particular, if ϕ is a coprime automorphism
of G, then for any (closed) normal ϕ-invariant subgroup N the fixed points of the
induced automorphism (which we denote by the same letter) in G/N are images of
the fixed points in G, that is, CG/N (ϕ) = CG(ϕ)N/N . Therefore, if ϕ is a coprime
automorphism of prime order p such that CG(ϕ) = 1, Thompson’s theorem [13]
implies that G is pronilpotent, and Higman’s theorem [3] implies that G is nilpotent
of class bounded in terms of p.

In our joint paper with Acciarri [2] we considered profinite groups admitting a
coprime automorphism of prime order all of whose fixed points are right Engel ele-
ments. Recall that the n-Engel word [y, nx] is defined recursively by [y, 0x] = y and
[y, i+1x] = [[y, i x], x]. An element g of a group G is said to be right Engel if for any
x ∈ G there is an integer n = n(g, x) such that [g, nx] = 1. If all elements of a group
are right Engel (therefore also left Engel), then the group is called an Engel group.
By a theorem of Wilson and Zelmanov [18] based on Zelmanov’s results [19–21] on
Engel Lie algebras, an Engel profinite group is locally nilpotent. Recall that a group is
said to be locally nilpotent if every finite subset generates a nilpotent subgroup. The
following theorem was proved in [2].

Theorem 1.1 ([2]) Suppose that ϕ is a coprime automorphism of prime order of a
profinite group G. If every element of CG(ϕ) is a right Engel element of G, then G is
locally nilpotent.

In this paper we consider profinite groups admitting a coprime automorphism of
prime order all of whose fixed points have finite Engel sinks. Recall that Engel sinks
are used to study generalizations of Engel conditions and are defined as follows.

Definition A left Engel sink of an element g of a group G is a set E (g) such that for
every x ∈ G all sufficiently long commutators [x, g, g, . . . , g] belong to E (g), that
is, for every x ∈ G there is a positive integer l(x, g) such that [x, l g] ∈ E (g) for all
l ≥ l(x, g).

(Thus, g is a left Engel element precisely when we can choose E (g) = {1}, and G is
an Engel group when we can choose E (g) = {1} for all g ∈ G.)

Definition A right Engel sink of an element g of a group G is a setR(g) such that for
every x ∈ G all sufficiently long commutators [g, x, x, . . . , x] belong to R(g), that
is, for every x ∈ G there is a positive integer r(x, g) such that [x, r g] ∈ R(g) for all
r ≥ r(x, g).

(Thus, g is a right Engel element precisely when we can choose R(g) = {1}, and G
is an Engel group when we can choose R(g) = {1} for all g ∈ G.)

Our main result concerning right Engel sinks is as follows.

Theorem 1.2 Let G be a profinite group admitting a coprime automorphism ϕ of prime
order such that all fixed points of ϕ have finite right Engel sinks. Then G has an open
locally nilpotent subgroup.
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Note that if all elements of a profinite or compact group have finite or even countable
left or right Engel sinks, then the group has a finite subgroup with locally nilpotent
quotient [6–9]. Examples show that such a stronger conclusion does not hold under
the hypotheses of Theorem 1.2, which is in a sense best-possible.

One of the important tools in the proof of Theorem 1.2 is a strengthened version
of Neumann’s theorem about BFC-groups from the recent paper of Acciarri and
Shumyatsky [1]. The proof also makes use of the quantitative version for finite groups
that we proved earlier in [10]. In that paper [10] we also proved that if a finite group G
has a coprime automorphism ϕ of prime order such that all fixed points of ϕ have left
Engel sinks of cardinality at most m, then G has a metanilpotent subgroup of index
bounded in terms of m (examples show that here “metanilpotent” cannot be replaced
by “nilpotent”). We prove the following profinite analogue of this result.

Theorem 1.3 Let G be a profinite group admitting a coprime automorphism ϕ of prime
order p. If all fixed points of ϕ have finite left Engel sinks, then G has an open subgroup
that is an extension of a pronilpotent group by a nilpotent group of class h(p), where
h(p) is Higman’s function depending only on p.

There are examples showing that in the conclusion of Theorem 1.3 “pronilpotent-
by-nilpotent” cannot be replaced even by “pronilpotent”, in contrast to the stronger
virtual local nilpotency conclusion of Theorem 1.2 about right Engel sinks. Similarly,
if all fixed points of ϕ are left Engel elements, then the group G is an extension of a
pronilpotent group by a nilpotent group of class h(p), where h(p) isHigman’s function
(Remark 4.2), but G does not have to have an open locally nilpotent subgroup, unlike
for the right Engel condition in Theorem 1.1. Thus, the situation with Engel sinks
for fixed points of an automorphism is markedly different from the aforementioned
results with conditions on Engel sinks of all elements of a profinite or compact group,
where the finiteness (or countability) of right or left Engel sinks resulted in the same
conclusion that the group is finite-by-(locally nilpotent).

It is worth mentioning that if, under the hypotheses of Theorems 1.2 (or 1.3),
there is m ∈ N such that all right (respectively, left) Engel sinks of fixed points of
ϕ have cardinality at most m, then the conclusions can be strengthened, with bounds
for the index of a locally nilpotent (respectively, pronilpotent-by-nilpotent) subgroup
(Remarks 3.6 and 4.3).

We present preliminary material on profinite groups and left and right Engel sinks
in Sect. 1. Theorems 1.2 and 1.3 about right and left Engel sinks are proved in Sect. 3
and Sect. 4, respectively. In Sect. 5 we present examples showing that in some respects
Theorems 1.2 and 1.3 cannot be improved.

2 Preliminaries

In this section we recall some definitions and general properties related to profinite
groups and Engel sinks.

Our notation and terminology for profinite groups is standard; see, for example,
[11] and [17]. We normally denote by 〈S〉 the subgroup topologically generated by
a subset S; in some cases, which will be explicitly indicated, 〈S〉 will denote the
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abstract subgroup generated by S. By a subgroup we always mean a closed subgroup,
unless explicitly stated otherwise. Recall that centralizers are closed subgroups, while
commutator subgroups [B, A] = 〈[b, a] | b ∈ B, a ∈ A〉 are the closures of the
corresponding abstract commutator subgroups.

For a group A acting by automorphisms on a group B we use the usual notation
for commutators [b, a] = b−1ba and commutator subgroups [B, A] = 〈[b, a] | b ∈
B, a ∈ A〉, as well as for centralizers CB(A) = {b ∈ B | ba = b for all a ∈ A} and
CA(B) = {a ∈ A | ba = b for all b ∈ B}. A section A/B of a group G is a quotient
of a subgroup A ≤ G by a normal subgroup B of A. The centralizer of a section is
CG(A/B) = {g ∈ G | [A, g] ≤ B}. The definition and some properties of coprime
automorphisms of profinite groups were already mentioned at the beginning of the
Introduction in Sect. 1.

Recall that a pro-p group is an inverse limit of finite p-groups, a pronilpotent group
is an inverse limit of finite nilpotent groups, a prosoluble group is an inverse limit of
finite soluble groups. We denote by π(k) the set of prime divisors of k, where k may
be a positive integer or a Steinitz number, and by π(G) the set of prime divisors of
the orders of elements of a (profinite) group G. Let σ be a set of primes. An element
g of a group is a σ -element if π(|g|) ⊆ σ , and a group G is a σ -group if all of
its elements are σ -elements. We denote by σ ′ the complement of σ in the set of all
primes. When σ = {p}, we write p-element, p′-element, etc. Profinite groups have
Sylow p-subgroups and satisfy analogues of the Sylow theorems. Prosoluble groups
satisfy analogues of the theorems on Hall π -subgroups. We refer the reader to the
corresponding chapters in [11, Ch. 2] and [17, Ch. 2].

We denote by γ∞(G) = ⋂
i γi (G) the intersection of the lower central series of a

group G. A profinite group G is pronilpotent if and only if γ∞(G) = 1, which is also
equivalent to G being the Cartesian product of its Sylow subgroups. Every profinite
groupG has amaximal normal pronilpotent subgroupdenoted by F(G). This subgroup
has the following characterization, similar to that of the Fitting subgroup of a finite
group.

Lemma 2.1 The maximal normal pronilpotent subgroup F(G) of a profinite group G
is equal to the intersection of the centralizers of all chief factors of all finite quotients
of G by open normal subgroups.

Proof The intersection in question is clearly a closed normal subgroup. In any finite
quotient of G, the image of this intersection is nilpotent by the well-known character-
ization of the Fitting subgroup of a finite group [12, 5.2.9]. Hence this intersection is
contained in F(G). Conversely, the image of any element of F(G) clearly belongs to
the Fitting subgroup of any finite quotient of G and therefore centralizes every chief
factor of it. 
�

We can define a profinite analogue of the Fitting series by setting F1(G) = F(G),
and then by induction Fk+1(G) being the inverse image of F(G/Fk(G)). It is natural
to say that a profinite group has pronilpotent length l if Fl(G) = G and l is minimal
with this property. We record a useful elementary lemma about the pronilpotent series.

Lemma 2.2 (a) If H is a subgroup of a profinite group G such that F(G) ≤ H ≤
F2(G), then F(H) = F(G).
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(b) If g is a p-element in F2(G) \ F(G), then g induces by conjugation a non-trivial
automorphism of the Hall p′-subgroup of F(G).

Proof (a) Clearly, F(G) ≤ F(H). We now prove the reverse inclusion. Let �G be
a finite quotient of G by an open normal subgroup, and let the bar denote the
images in this quotient. Then F(G) and F2(G) are normal subgroups of �G and the
quotient F2(G)/F(G) is nilpotent. Since F(G) ≤ �H ≤ F2(G), the subgroup �H
is subnormal in �G. Therefore, F(H) ≤ F( �H) ≤ F(�G). Hence F(H) centralizes
every chief factor of �G. Thus, F(H) centralizes every chief factor of any finite
quotient of G by an open normal subgroup, and therefore, F(H) ≤ F(G) by
Lemma 2.1.

(b) By Lemma 2.1 the element g must act nontrivially on some chief factor of a
finite quotient of G by an open normal subgroups. Since g ∈ F2(G), such a chief
factor must be a section of F(G), and since g is contained in a Sylow p-subgroup
containing the Sylow p-subgroup of F(G), such a chief factor must be a section
of the Hall p′-subgroup of F(G).


�
If P is a pro-p group, the Frattini subgroup of P is �(P) = [P, P]P p . If α

is a coprime automorphism of P , then α acts nontrivially on P/�(P). The Frattini
subgroup of a pronilpotent group is the Cartesian product of the Frattini subgroups of
its Sylow p-subgroups. It follows from Lemmas 2.1 and 2.2 that

F(G/�(F(G))) = F(G)/�(F(G)). (2.1)

Lemma 2.3 Let G be a profinite group such that γ∞(G) is finite. Then CG(γ∞(G)) is
an open pronilpotent subgroup.

Proof The subgroup CG(γ∞(G)) is closed and has finite index, since G/CG(γ∞(G))

faithfully acts by automorphisms on γ∞(G); hence CG(γ∞(G)) is an open normal
subgroup.Any chief factor A/B of a finite quotient ofG by an open normal subgroup is
either a section of G/γ∞(G), which is pronilpotent, or of γ∞(G). Hence any element
of CG(γ∞(G)) centralizes A/B and the result follows by Lemma 2.1. 
�

We recall the well-known consequence of the Baire Category Theorem (see [4,
Theorem 34]).

Theorem 2.4 If a profinite group is a countable union of closed subsets, then one of
these subsets has non-empty interior.

We now recall some general properties of Engel sinks. Clearly, the intersection of
two left Engel sinks of a given element g of a group G is again a left Engel sink of
g, with the corresponding function l(x, g) being the maximum of the two functions.
Therefore, if g has a finite left Engel sink, then g has a unique smallest left Engel sink,
which has the following characterization.

Lemma 2.5 ([6, Lemma 2.1]) If an element g of a group G has a finite left Engel sink,
then g has a smallest left Engel sink E (g) and for every s ∈ E (g) there is an integer
k ≥ 1 such that s = [s, kg].
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The intersection of two right Engel sinks of a given element g of a group G is again
a right Engel sink of g, with the corresponding function r(x, g) being the maximum
of the two functions. Therefore, if g has a finite right Engel sink, then g has a unique
smallest right Engel sink, which is henceforth denoted by R(g). It has the following
characterization.

Lemma 2.6 ([7, Lemma 2.2]) If an element g of a group G has a finite right Engel
sink, then g has a smallest right Engel sink R(g) and for every z ∈ R(g) there are
integers n ≥ 1 and m ≥ 1 and an element x ∈ G such that z = [g, nx] = [g, n+mx].
(Here, the elements x and numbers m, n can be different for different z.)

Furthermore, for metabelian groups we have the following.

Lemma 2.7 ([7, Lemma 2.5]) If G is a metabelian group, then a right Engel sink of
the inverse g−1 of an element g ∈ G is a left Engel sink of g.

Remark 2.8 If ϕ is an automorphism of finite order p of a profinite groupG and H is an
open normal subgroup of G, then

⋂p−1
i=0 Hϕi

is a ϕ-invariant open normal subgroup.
Thus, ϕ-invariant open normal subgroups of G form a base of neighbourhoods of 1
in the profinite topology. We freely use this property throughout the paper without
special references.

Remark 2.9 If every element of a subgroup C has a finite right Engel sink in a group
G, then this condition is inherited by the image of C ∩ A in every section A/B, and
we shall use this property without special references. The same applies to a subgroup
in which every element has a finite left Engel sink.

Throughout the paper, we write, say, “(a, b, . . . )-bounded” to abbreviate “bounded
above in terms of a, b, . . . only”.

3 Right Engel sinks

In this section we prove Theorem 1.2 concerning right Engel sinks of fixed points of
an automorphism.

Lemma 3.1 If G is a pronilpotent group and an element g ∈ G has a finite right Engel
sink, then in fact R(g) = {1}, that is, g is a right Engel element.

Proof SinceR(g) is finite, there is an open normal subgroup N such thatR(g)∩N =
{1}. If z ∈ R(g), then by Lemma 2.6 there are integers n ≥ 1 and m ≥ 1 and x ∈ G
such that z = [g, nx] = [g, n+mx]. Therefore the image of z in G/N must be trivial,
since G/N is nilpotent. Hence z ∈ N ∩ R(g) = {1}. 
�

Combining Lemma 3.1 with Theorem 1.1 we obtain the following.

Corollary 3.2 If a pronilpotent groupG admits a coprimeautomorphismof primeorder
such that every fixed point has a finite right Engel sink, then G is locally nilpotent.
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The following quantitative version of Theorem 1.2 for finite groups was proved in
[10].

Theorem 3.3 ([10, Theorem 1.4]) Let G be a finite group admitting an automorphism
ϕ of prime order coprime to |G|. Let m be a positive integer such that every element
g ∈ CG(ϕ) has a right Engel sink R(g) of cardinality at most m. Then G has a
nilpotent normal subgroup of m-bounded index.

In the proof of Theorem 1.2 we will combine this result with Corollary 3.2 and a
reduction to the case of uniformly bounded sizes of right Engel sinks of fixed points.

Proof of Theorem 1.2 Recall that G is a profinite group admitting a coprime automor-
phism ϕ of prime order such that all fixed points of ϕ have finite right Engel sinks; we
need to produce an open locally nilpotent subgroup. By Corollary 3.2 any ϕ-invariant
pronilpotent subgroup of G is locally nilpotent and therefore it is sufficient to produce
an open pronilpotent subgroup.

Let g ∈ CG(ϕ) and let Ng be an open normal subgroup such that Ng ∩R(g) = {1}.
Then g is a right Engel element of the subgroup Ng〈g〉. ByBaer’s theorem [12, 12.3.7],
in every finite quotient of Ng〈g〉 the image of g belongs to the hypercentre. Therefore
the subgroup [Ng, g] is pronilpotent.

Let Ñg be the normal closure of [Ng, g] inG. Since [Ng, g] is normal in the subgroup
Ng , which has finite index, [Ng, g] has only finitely many conjugates. Hence Ñg is
a product of finitely many normal subgroups of Ng , each of which is pronilpotent,
and therefore Ñg is pronilpotent. Therefore all the subgroups Ñg are contained in the
largest normal pronilpotent subgroup F(G).

The image ḡ of every element g ∈ CG(ϕ) in �G = G/F(G) has finite conjugacy
class ḡG , since [g, Ng] ≤ F(G) and Ng has finite index in G. We now use a strength-
ened version of Neumann’s theorem about BFC-groups and a lemma about finite
conjugacy classes in profinite groups from the recent paper of Acciarri and Shumy-
atsky [1]. Namely, by [1, Lemma 4.2] there is an integer n such that |ḡ�G | ≤ n for
every ḡ ∈ C�G(ϕ). Let H = 〈C�G(ϕ)

�G〉 be the abstract normal closure of C�G(ϕ) in �G.
Then by [1, Theorem 1.1] the derived subgroup H ′ is finite (of n-bounded order). In
particular, H ′ is a closed subgroup of �G. Let H̃ be the topological closure of H in �G.
Since H/H ′ is abelian, H̃/H ′ is also abelian. (We had to consider the abstract normal
closure first, since [1, Theorem 1.1] is stated for abstract groups; but it is clear that it
also works for profinite groups as shown above.)

Note thatC�G(ϕ) ≤ H̃ and therefore �G/H̃ is nilpotent by the theorems of Thompson
[13] and Higman [3]. Let N be a ϕ-invariant open normal subgroup of G containing
F(G) such that �N ∩H ′ = 1. Then N/F(N ) is abelian-by-nilpotent. ReplacingG with
N we can assume from the outset that G/F(G) is soluble and proceed by induction
on the derived length of it.

Themain case is whenG/F(G) is abelian. Indeed, in the general case, by induction
hypothesis, G ′F(G) has a ϕ-invariant open pronilpotent subgroup M . Since G ′M/M
is finite, there is a ϕ-invariant open normal subgroup N such that N ∩ G ′ = M . Note
that F(N ) ≥ M . Then N/F(N ) is abelian, so we may assume thatG/F(G) is abelian
from the outset. We need to show that G/F(G) is finite.
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We write F = F(G) to lighten the notation. Since F(G/�(F)) = F/�(F) by
(2.1), we can assume that �(F) = 1. In particular, then G is metabelian.

Lemma 3.4 CG(ϕ)F/F is finite.

Proof By Lemma 2.7 we have E (g) ⊆ R(g−1) in a metabelian group. Hence all
elements of CG(ϕ) have finite left Engel sinks. Every subset Ek = {x ∈ CG(ϕ) |
|E (x)| ≤ k} is closed in the induced topology of CG(ϕ). Indeed, this is equivalent to
the complement of CG(ϕ)\ Ek being an open subset of CG(ϕ). For every element g ∈
CG(ϕ) \ Ek we have |E (g)| ≥ k + 1, so there are distinct elements z1, z2, . . . , zk+1 ∈
E (g). By Lemma 2.5 we can write for every i = 1, . . . , k + 1

zi = [zi , g, . . . , g], where g is repeated ki ≥ 1 times. (3.1)

Let N be an open normal subgroup of G such that the images of z1, z2, . . . , zk+1 are
distinct elements in G/N . Then equations (3.1) show that for any u ∈ N ∩CG(ϕ) the
Engel sink E (gu) contains an element in each of the k + 1 cosets zi N . This means
that the whole coset g(N ∩ CG(ϕ)) is contained in CG(ϕ) \ Ek . Thus every element
of CG(ϕ) \ Ek has a neighbourhood contained in CG(ϕ) \ Ek , which is therefore an
open subset of CG(ϕ).

Since CG(ϕ) = ⋃
k Ek , by the Baire Category Theorem 2.4 there is m ∈ N,

an open (in the induced topology) normal subgroup C1, and a coset c0C1 such that
|E (c0x)| ≤ m for any x ∈ C1. We now obtain that |E (x)| is m-bounded for any
x ∈ C1. Indeed, by [7, Lemma 2.5], in a metabelian group, if E (g) is finite, then
E (g) is a normal subgroup. In the quotient �M = M/

(
E (c0)E (c0x)

)
, both �M ′〈c̄0〉 and

�M ′〈c̄0 x̄〉 are normal locally nilpotent subgroups. Hence their product, which contains
x̄ , is also a locally nilpotent subgroup by the Hirsch–Plotkin theorem [12, 12.1.2]. As
a result, E (x) ≤ E (c0)E (c0x) and therefore

|E (x)| ≤ |E (c0)| · |E (c0x)| ≤ m2 for any x ∈ C1. (3.2)

To prove that CG(ϕ)F/F is finite, it remains to show that C1F/F is finite. For that
we use the following lemma.

Lemma 3.5 ([10, Lemma 2.4]) Suppose that V is an abelian finite group, and U a
group of coprime automorphisms of V . If |[V , u]| ≤ n for every u ∈ U, then |[V ,U ]|
is n-bounded, and therefore |U | is also n-bounded.

Let q be any prime in π(C1F/F), and let Q be a Sylow q-subgroup of C1F . Let
f (n) be the function furnished by Lemma 3.5 as a bound in terms of n for |U |. We
claim that |QF/F | ≤ f (m2); this will imply that C1F/F is finite. Note that every
element of Q \ F acts non-trivially on the Hall q ′-subgroup Fq ′ of F . For every
u ∈ Q, the left Engel sink E (u) is a normal subgroup of order ≤ m2 by (3.2). Since
Fq ′ 〈u〉/E (u) is pronilpotent and u induces a coprime automorphism on Fq ′ , we have
Fq ′ = E (u)CFq′ (u). Hence [Fq ′, u] = [E (u)CFq′ (u), u] = [E (u), u] = E (u), where
the last equality holds by the minimality of E (u). Therefore in every finite quotient
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�G of G by a ϕ-invariant open normal subgroup we have |�Q/C�Q(�Fq ′)| ≤ f (m2) by

Lemma 3.5. Hence |QF/F | = |Q/CQ(Fq ′)| ≤ f (m2), as claimed.
Since C1 has finite index in CG(ϕ) and C1F/F is finite, we conclude that

CG(ϕ)F/F is finite. 
�
Let N be a ϕ-invariant open normal subgroup of G containing F such that N ∩

CG(ϕ) ≤ F . Then Since F(N ) = F , we have CN (ϕ) ≤ F(N ). Replacing G with N
we can assume from the outset that CG(ϕ) ≤ F .

Every subset Rk = {x ∈ CG(ϕ) | |R(x)| ≤ k} is closed in the induced topology
of CG(ϕ). Indeed, this is equivalent to the complement of Rk being an open subset of
CG(ϕ). For every element g ∈ CG(ϕ) \ Rk we have |R(g)| ≥ k + 1 and there are
distinct elements z1, z2, . . . , zk+1 ∈ R(g). Using Lemma 2.6 we can write for every
i = 1, . . . , k + 1

zi = [g, ni xi ] = [g, ni+mi x] for some xi ∈ G, ni ≥ 1, mi ≥ 1. (3.3)

Let N be an open normal subgroup of G such that the images of z1, z2, . . . , zk+1 are
distinct elements in G/N . Then equations (3.3) show that for any u ∈ N ∩CG(ϕ) the
right Engel sink R(gu) contains an element in each of the k + 1 cosets zi N . Thus,
the coset g(N ∩ CG(ϕ)) is contained in CG(ϕ) \ Rk . This means that every element
of CG(ϕ) \ Rk has a neighbourhood contained in CG(ϕ) \ Rk , which is therefore an
open subset of CG(ϕ).

Since CG(ϕ) = ⋃
k Rk , by the Baire Category Theorem 2.4 there is m ∈ N, an

open (in the induced topology) normal subgroup C1 of CG(ϕ), and a coset c0C1 such
that

|R(c0x)| ≤ m for any x ∈ C1. (3.4)

By the standard commutator formula [xy, z] = [x, z]y[y, z], using the fact that F
is abelian we have

[ab, x, . . . , x
︸ ︷︷ ︸

n

] = [a, x, . . . , x
︸ ︷︷ ︸

n

] · [b, x, . . . , x
︸ ︷︷ ︸

n

]

for any a, b ∈ F , any x ∈ G, and any n ∈ N. Therefore we obtain that R(ab) ⊆
R(a)R(b) for any a, b ∈ CG(ϕ) ≤ F . The same commutator formula shows that
R(a−1) = {z−1 | z ∈ R(a)}, so that |R(a−1)| = |R(a)|. From (3.4) we now obtain

|R(x)| ≤ |R(c−1
0 )| · |R(c0x)| ≤ m2 for any x ∈ C1. (3.5)

Let N be a ϕ-invariant open normal subgroup of G such that N ∩ CG(ϕ) = C1.
Then |R(x)| ≤ m2 for any x ∈ CN (ϕ). By Theorem 3.3, every finite quotient of
N by a ϕ-invariant open normal subgroup has a nilpotent subgroup of index at most
f (m2) for some function f (n) depending on n alone. Therefore N has a ϕ-invariant
open pronilpotent subgroup M of index at most f (m2), which is locally nilpotent by
Corollary 3.2. Clearly, M is a sought-for open locally nilpotent subgroup of G. 
�
Remark 3.6 If, under the hypotheses of Theorem 1.2 there is a positive integer n such
that all fixed points of ϕ have finite right Engel sinks of cardinality at most n, then the

123



120 E. I. Khukhro, P. Shumyatsky

group G has a locally nilpotent subgroup of finite n-bounded index. This immediately
follows fromTheorem 3.3 applied to finite quotients ofG by aϕ-invariant open normal
subgroup: every such quotient has a nilpotent subgroup of index at most f (n) for a
function f (n) depending only on n. Therefore G has a ϕ-invariant open pronilpotent
subgroup M of index at most f (n), which is locally nilpotent by Corollary 3.2.

4 Left Engel sinks

In this section we prove Theorem 1.3 concerning left Engel sinks of fixed points. We
begin with the following lemma.

Lemma 4.1 Suppose that G = F2(G) is a profinite group of pronilpotent length 2
admitting a coprime automorphism ϕ of prime order such that all elements of CG(ϕ)

have finite left Engel sinks.

(a) Then CG/F(G)(ϕ) is finite.
(b) If there is m ∈ N such that |E (c)| ≤ m for all c ∈ CG(ϕ), then |CG/F(G)(ϕ)| is

m-bounded.
(c) If all elements of CG(ϕ) are left Engel elements, then CG(ϕ) ≤ F(G).

Proof We write F = F(G) to lighten the notation. Let �(F) be the Frattini subgroup
of F . Since F(G/�(F)) = F/�(F) by (2.1), we can assume that F is abelian in all
parts of the lemma.

(a) Since the group FCG(ϕ)/F is pronilpotent and all its elements have finite left
Engel sinks, this group is locally nilpotent by [6, Lemma 4.2]. We further claim
that all elements of FCG(ϕ) have finite left Engel sinks in FCG(ϕ). Indeed, let
g = uc and h = vd, whereu, v ∈ F and c, d ∈ CG(ϕ). For some k the commutator
[h, kg]belongs to F , since 〈u, v〉F/F is nilpotent. Then [h, k+ng] = [[h, kg], nc]
for any n, since F is abelian. As a result, E (g) is contained in E (c), which is finite
by hypothesis.
Applying [6, Theorem 1.2] we obtain that γ∞(FCG(ϕ)) is finite. By Lemma 2.3,
CG(γ∞(FCG(ϕ))) is a closed normal pronilpotent subgroup, which has finite
index in FCG(ϕ). It follows that F(FCG(ϕ)) has finite index in FCG(ϕ), and the
result follows, since F(FCG(ϕ)) = F by Lemma 2.2.

(b) If there is m ∈ N such that |E (c)| ≤ m for all c ∈ CG(ϕ), then the above
argument shows that |E (g)| ≤ m for all g ∈ FCG(ϕ). By [6, Theorem 3.1] then
|γ∞(�FC�G(ϕ))| is m-bounded for every finite quotient �G of G by a ϕ-invariant
open normal subgroup. Hence |γ∞(FCG(ϕ))| is also m-bounded, and so is the
index of F in FCG(ϕ) by the above argument.

(c) Since all elements ofCG(ϕ) are left Engel elements, the above argument shows that
CG(ϕ)F is an Engel group, and therefore pronilpotent. Since F = F(FCG(ϕ))

by Lemma 2.2, we obtain F = FCG(ϕ).


�
Proof of Theorem 1.3 Recall that G is a profinite group admitting a coprime automor-
phism ϕ of prime order such that all elements of CG(ϕ) have finite left Engel sinks.
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We need to show that G has an open pronilpotent-by-nilpotent subgroup. First we
perform reduction to the case of pronilpotent length 3, that is, G = F3(G). Since all
elements of CG(ϕ) have finite left Engel sinks, by [6, Theorem 1.2] there is a finite
normal subgroup C0 of CG(ϕ) such that CG(ϕ)/C0 is locally nilpotent. Let N be a
ϕ-invariant open normal subgroup of G such that N ∩C0 = 1. Then CN (ϕ) is locally
nilpotent. Then the centralizer C�N (ϕ) is nilpotent for every finite quotient �N of N by
a ϕ-invariant open normal subgroup. Wang and Chen [16] used the classification of
finite simple groups to prove that a finite group admitting a coprime automorphism
of prime with nilpotent fixed-point subgroup is soluble. Furthermore, by a theorem of
Turull [15] (the best-possible improvement of the earlier result of Thompson [14]),
the Fitting height of �N is at most 3. Thus, every finite quotient of N by an open normal
subgroup has Fitting height at most 3; hence N has pronilpotent length at most 3.
Replacing G with N , we can assume from the outset that G = F3(G).

ByLemma4.1, bothCG/F2(G)(ϕ) andCF2(G)/F(G)(ϕ) arefinite.Hence,CG/F(G)(ϕ)

is finite. Let H be a ϕ-invariant open normal subgroup containing F(G) such that
H ∩CG(ϕ) ≤ F(G). Then CH (ϕ) ≤ F(G) = F(H). By the theorems of Thompson
[13] and Higman [3] the quotient H/F(H) is nilpotent of class at most h(p), where
p = |ϕ|.

Thus, G has an open subgroup that is an extension of a pronilpotent group by a
nilpotent group of class at most h(p). 
�
Remark 4.2 If, under the hypotheses of Theorem 1.3 all fixed points of ϕ are left Engel
elements, then the group G is an extension of a pronilpotent group by a nilpotent
group of class h(p), where h(p) is Higman’s function. Indeed, then CG(ϕ) ≤ F(G)

by Lemma 4.1(c). Then G/F(G) is nilpotent of class at most h(p), where p = |ϕ|,
by the theorems of Thompson [13] and Higman [3].

Remark 4.3 If, under the hypotheses of Theorem 1.3 there is a positive integer m such
that all fixed points of ϕ have finite left Engel sinks of cardinality at most m, then the
group G has

(a) a meta-pronilpotent subgroup of finite m-bounded index, and
(b) a subgroup of finite (p,m)-bounded index that is an extension of a pronilpotent

group by a nilpotent group of class g(p), where p = |ϕ| and g(p) is a function
depending only on p.

Indeed, then by [10, Theorem 1.3] for every finite quotient �G of G by a ϕ-invariant
open normal subgroup, the index of F2(�G) in �G is m-bounded. Hence the index of
F2(G) inG is alsom-bounded. Furthermore, by Lemma 4.1(b) the order |CḠ/F(Ḡ)(ϕ)|
is m-bounded. By Khukhro’s theorem [5, Theorem 2], then Ḡ/F(Ḡ) has a subgroup
of (p,m)-bounded index that is nilpotent of p-bounded class g(p). This implies that
�G has an open subgroup of (p,m)-bounded index that is nilpotent of class g(p).

5 Examples

Here we present examples showing that in some respects Theorems 1.2 and 1.3 cannot
be improved.
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Example 5.1 Let V be an elementary abelian group of order 72, and D6 = 〈a〉 �

〈b〉 a group of automorphisms of V such that a3 = 1, b2 = 1, CV (a) = 1, and
|CV (b)| = 7. Let F = ∏∞

i=1 Vi be the Cartesian product of isomorphic copies Vi
of V as F7D6-modules. Then D6 can be regarded as a group of automorphisms of
F . Let G = F〈a〉 and let ϕ be the automorphism of G of order 2 induced by b.
Then CG(ϕ) = ∏∞

i=1 CVi (ϕ). Using the fact that all the Vi are isomorphic F7〈a〉-
modules, one can show that for any c ∈ CG(ϕ) the right Engel sink R(c) is finite
and, moreover, the sizes of these sinks are uniformly bounded. At the same time,
γ∞(G) = F is infinite. This example shows that the hypotheses of Theorem 1.2 do
not imply the existence of a finite subgroup with a pronilpotent quotient.

Example 5.2 For the same V and D6 = 〈a〉 � 〈b〉 as in Example 5.1, let F = ∏n
i=1 Vi

be a finite direct product of n copies Vi of V as F7D6-modules. Let G = F〈a〉 and let
ϕ be the automorphism of G of order 2 induced by b. Then CG(ϕ) = ∏n

i=1 CVi (ϕ).
There is a constant m independent of n such that |R(c)| ≤ m for any c ∈ CG(ϕ). In
these examples, γ∞(G) = F , so |γ∞(G)| cannot be bounded in terms of m (and |ϕ|).
This shows that the conclusion of Theorem 3.3 ([10, Theorem 1.4]) also cannot be
improved in this respect.

Example 5.3 For the same V and D6 = 〈a〉�〈b〉 as in Example 5.1, let H = ∏∞
i=1 Vi�

(〈ai 〉 � 〈bi 〉) be the Cartesian product of isomorphic copies Vi � (〈ai 〉 � 〈bi 〉) of the
semidirect product V � (〈a〉 � 〈b〉) with Vi , ai , bi naturally corresponding to V , a, b.
Let G = ∏∞

i=1 Vi � 〈ai 〉 and let ϕ be the automorphism of G of order 2 induced by
the ‘diagonal’

∏∞
i=1 bi . Then F(G) = ∏∞

i=1 Vi and CG(ϕ) = ∏∞
i=1 CVi (ϕ). Since

F is abelian, all left Engel sinks of fixed points of ϕ are trivial. At the same time,
G/F(G) is infinite. This example shows that the hypotheses of Theorem 1.3 do not
imply the existence of an open pronilpotent subgroup (and therefore also of a finite
normal subgroup with a pronilpotent quotient).

Example 5.4 Similarly to Example 5.2, using finite direct products H = ∏n
i=1 Vi �

(〈ai 〉 � 〈bi 〉) instead of the Cartesian product, we obtain examples of finite groups
G with a coprime automorphism ϕ of order 2 such that all elements of CG(ϕ) have
trivial left Engel sinks. These examples show that the conclusion of [10, Theorem 1.3]
giving a bound for the index of F2(G) cannot be improved to a bound for the index
of F(G).

Example 5.5 Let p be an odd prime and let A = 〈a1〉 × 〈a2〉 � Zp × Zp be a direct
product of two copies of p-adic integers regarded as procyclic pro-p groups with
(topological) generators a1, a2. Let B = 〈b〉 � Zp be another procyclic pro-p group
with generator b. We define an action of b by an automorphism on 〈a1〉 by setting
ab = a p+1. Then we define the action of b by an automorphism on 〈a2〉 as the inverse
of the automorphism a2 �→ a p+1

2 . The resulting semidirect productG = A�B admits
an automorphism ϕ of order 2 such that bϕ = b−1 and aϕ

1 = a2. ThenCG(ϕ) ≤ A and
therefore all left Engel sinks of fixed points of ϕ are trivial. This example shows that
a pronilpotent group with a coprime automorphism of prime order all of whose fixed
points have trivial left Engel sinks does not have to have an open locally nilpotent
subgroup, in contrast to Theorem 1.1 concerning right Engel sinks.
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