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Abstract
We consider Diophantine equations of the shape f (x) = g(y), where the polynomials
f and g are elements of power sums. Using a finiteness criterion of Bilu and Tichy,
we will prove that under suitable assumptions infinitely many rational solutions (x, y)
with a bounded denominator are only possible in trivial cases.
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1 Introduction

Let f and g be integer polynomials. Diophantine equations of the shape f (x) = g(y)
were already considered by many authors and under different assumptions. See [8]
for an overview.

Bilu and Tichy gave in [3] a criterion based on Siegel’s theoremwhich characterizes
the situations when the equation f (x) = g(y) has infinitely many rational solutions
with a bounded denominator (see also [2]). For that, they used the notion of so-called
standard pairs. We shall describe standard pairs and their result in section 3.

Furthermore, several authors studied the case when f and/or g come from special
families of polynomials. Recently, Kreso (cf. [7]) considered the case when f and g
are lacunary polynomials and used the criterion of Bilu and Tichy to deduce results
about the finiteness of the number of solutions of the equation f (x) = g(y). Lacunary
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polynomials are polynomials of the shape c1xe1 +· · ·+cl xel +cl+1 for a fixed number
l of nonconstant terms where the ci and ei may vary with the only restriction that the ei
must be pairwise distinct. Kreso proved that under some assumptions on the exponents
ei and if g is indecomposable, then f (x) = g(y) has infinitely many solutions with a
bounded denominator if and only if f = g ◦ μ for a linear polynomial μ.

Dujella and Tichy proved in [6] the finiteness of the number of integer solutions
for the situation when f , g are generalized Fibonacci polynomials. Moreover, Dujella
and Gusic [5] as well as Stoll [10] considered families of polynomials parametrized
by two parameters and a binary recurrence relation. Beyond this the case of truncated
binomial polynomials was considered in [4] by Dubickas and Kreso, sums of products
of consecutive integers are considered in [1] by Bazso et al., and Bernoulli and Euler
polynomial related families in [9] by Pinter and Rakaczki.

In the present paper we are also considering Diophantine equations of the type
f (x) = g(y). Here we are going to assume that the polynomials f and g come from
polynomial power sums, i.e. simple linear recurrence sequences of polynomials. We
remark that polynomial power sums can be seen as a variant of lacunary polynomials
since its Binet representation has a fixed number of summands.

2 Results

Let Gn(x) = a1α1(x)n + · · · + adαd(x)n with d ≥ 2 and polynomial characteristic
roots α1(x), . . . , αd(x) ∈ Q[x] as well as constants a1, . . . , ad ∈ Q be the n-th
polynomial in a linear recurrence sequence of polynomials satisfying the dominant root
condition degα1 > maxi=2,...,d degαi and having at most one constant characteristic
root. Assume furthermore that Gn(x) cannot be written in the form ã1α̃1(x)n + ã2α̃2

n

for α̃1(x) ∈ Q[x] a perfect power of a linear polynomial and ã1, ã2, α̃2 ∈ Q. We
will refer to the assumptions in this paragraph by saying Gn(x) = a1α1(x)n + · · · +
adαd(x)n is the n-th polynomial in a linear recurrence sequence of the required shape.

We call a polynomial f of degree deg f ≥ 2 decomposable if it can be written in
the form f = g ◦ h for polynomials g, h satisfying deg g ≥ 2 and deg h ≥ 2. Here ◦
denotes the composition of functions. If such a decomposition does not exist, then we
call the polynomial f indecomposable.

Furthermore, we say that an equation f (x) = g(y) has infinitely many rational
solutions with a bounded denominator if there exists a positive integer z such that
f (x) = g(y) has infinitely many solutions (x, y) ∈ Q2 with zx, zy ∈ Z.
Our main result is the following theorem. In Remark 1 below we give a possibility

how to generalize it to arbitrary number fields:

Theorem 1 Let Gn(x) = a1α1(x)n+· · ·+adαd(x)n be the n-th polynomial in a linear
recurrence sequence of the required shape. Analogously, let Hm(y) = b1β1(y)m +
· · ·+btβt (y)m be the m-th polynomial in a linear recurrence sequence of the required
shape.Moreover, assume that n,m > 2. If Gn(x) is indecomposable, then the equation
in separated variables

Gn(x) = Hm(y) (1)
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has infinitely many rational solutions with a bounded denominator if and only if there
exists a polynomial P(y) ∈ Q[y] such that Hm(y) = Gn(P(y)) holds identically.

If in addition Hm(y) is also indecomposable, then in the above statement we can
restrict P(y) to be linear.

We exclude the case when Gn or Hm has exactly one constant and one noncon-
stant characteristic root, where the nonconstant one is (a perfect power of) a linear
polynomial, since the conclusion is not true in general in this situation. Consider
for instance Gn(x) = a(ex + c)n + b and Hm(y) = a( f y + d)m + b for integers
a, b, c, d, e, f , where a, e, f are non-zero, and different primes n,m. Then all other
assumptions of the theorem are satisfied. Moreover, there is no polynomial P such
that Hm(y) = Gn(P(y)) since the degrees of Gn and Hm are different primes. But
there are obviously infinitely many rational solutions with a bounded denominator of
the form x = (tm − c)/e and y = (tn − d)/ f for t ∈ Z.

Now we give two examples where all assumptions of the theorem are satisfied
and where in the first one we have infinitely many rational solutions with a bounded
denominator whereas in the second one there are only finitely many such solutions.
Thus both situations can occur. Let

G3(x) = (x2)3 + (x + 1)3 = x6 + x3 + 3x2 + 3x + 1,

H3(y) = (y4 − 2y2 + 1)3 + (y2)3 = y12 − 6y10 + 15y8 − 19y6 + 15y4 − 6y2 + 1.

We leave it up to the reader to verify that all assumptions of the theorem are satisfied.
One can check that the identity Hm(y) = Gn(P(y)) holds for the polynomial P(y) =
y2 − 1. Therefore, by Theorem 1, we have infinitely many rational solutions with a
bounded denominator. If we consider G3(x) from above and

H7(y) = (y2)7 + (y + 2)7,

then we get degG3 = 6 as well as deg H7 = 14. Hence degG3 does not divide deg H7
and therefore there is no polynomial P such that Hm(y) = Gn(P(y)). By Theorem 1
we cannot have infinitely many rational solutions with a bounded denominator.

Note that we can check whether there exists a polynomial P(y) such that Hm(y) =
Gn(P(y)) holds a priori. To do so we first determine deg P by the equality deg Hm =
degGn · deg P . If this equation has no solution in positive integers, then there is no
such polynomial P . Otherwise we start with a polynomial P of the given degree
and unknown coefficients. By a comparison of coefficients we determine step by step
(starting with the leading coefficient) the values for the coefficients of P . If we end
up in a contradiction, then there is no such polynomial P . In the case that there is no
contradiction we have found a polynomial with the sought property. We remark that
in the case that there are only finitely many solutions our result is ineffective in the
sense that we do not find all the solutions (for a given common denominator).

Note that Gn and Hm can be elements of different linear recurrence sequences, but
they could also be elements of the same linear recurrence sequence. We do neither
require nor exclude the situation Gn(x) = Gm(y) for n �= m if the assumptions of
our theorem are satisfied.
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Furthermore, we remark that the polynomial of the second linear recurrence
sequence Hm can be replaced by an arbitrary fixed polynomial h(y) ∈ Q[y]. If we
replace all assumptions about Hm by the two assumptions that deg h > 4 and that h is
not of the shape h(y) = a(cy + d)k + b for rational numbers a, b, c, d, then the same
result as in Theorem 1 holds. The proof is completely analogous to the below given
proof of Theorem 1.

3 Preliminaries

The proof of our theorem uses a criterion of Bilu and Tichy [3], for which the following
terminology of so-called standard pairs is needed.

In our notation, k and l are positive integers, a and b are non-zero rational numbers
and p(x) is a non-zero polynomial with coefficients in Q. We denote by Dk(x, a) the
k-th Dickson polynomial which is defined by the equation

Dk

(

x + a

x
, a

)

= xk +
(a

x

)k
.

Using this notation we have the following five kinds of standard pairs (over Q); in
each of them the two coordinates can be switched: A standard pair of the

• first kind is

(xk, axl p(x)k)

with 0 ≤ l < k, gcd(k, l) = 1 and l + deg p(x) > 0;
• second kind is

(x2, (ax2 + b)p(x)2);

• third kind is

(Dk(x, a
l), Dl(x, a

k))

with gcd(k, l) = 1;
• fourth kind is

(a−k/2Dk(x, a),−b−l/2Dl(x, b))

with gcd(k, l) = 2;
• fifth kind is

((ax2 − 1)3, 3x4 − 4x3).

Our main tool is now the following theorem which is proven as Theorem 1.1 in [3]
by Bilu and Tichy:
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Theorem 2 Let f (x), g(x) ∈ Q[x] be non-constant polynomials. Then the following
two assertions are equivalent:

(a) The equation f (x) = g(y) has infinitely many rational solutions with a bounded
denominator.

(b) We have f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ μ, where λ(x), μ(x) ∈ Q[x] are linear
polynomials, ϕ(x) ∈ Q[x], and ( f1(x), g1(x)) is a standard pair overQ such that
the equation f1(x) = g1(y) has infinitely many rational solutions with a bounded
denominator.

4 Proof

All necessary preparations that are needed for the proof of our theorem are finished.
So we can start with the proof:

Proof of Theorem 1 First note that by the dominant root condition we have the bounds
degα1 ≥ 1 and degGn = n degα1 > 2. Analogously, the bound deg Hm =
m degβ1 > 2 holds.

The next important observation is that we can neither have degα1 = 1 nor degβ1 =
1. Otherwise, if degα1 = 1, then Gn(x) would have exactly two characteristic roots
and one of them would be constant. This shape is forbidden by the conditions of the
theorem. The argument for degβ1 is the same.

Now assume that Eq. (1) has infinitely many rational solutions with a bounded
denominator. Thus, by Theorem 2, we have

Gn = ϕ ◦ g ◦ λ

and

Hm = ϕ ◦ h ◦ μ

for a polynomial ϕ(x) ∈ Q[x], linear polynomials λ(x), μ(x) ∈ Q[x] and a standard
pair (g(x), h(x)).

From here on we distinguish between two cases. In the first case we assume that
degϕ = 1.

Then (g(x), h(x)) cannot be a standard pair of the first kind. Otherwise we would
either have

Gn(x) = e1(λ(x))n degα1 + e0 = e1
(

(λ(x))degα1
)n + e0

or

Hm(y) = e1(μ(y))m degβ1 + e0 = e1
(

(μ(y))degβ1
)m + e0,

which contradicts the restrictions on the shape of Gn(x) and Hm(y).
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Moreover, (g(x), h(x)) cannot be a standard pair of the second kind since we have
degGn > 2 and deg Hm > 2.

If (g(x), h(x)) is a standard pair of the third kind, then we get

Gn(x) = e1Dp(λ(x), a) + e0. (2)

Since Gn(x) is indecomposable and Dickson polynomials have the composition prop-
erty

Dkl(x, a) = Dk(Dl(x, a), al)

the index p in (2) must be a prime. Hence

n degα1 = degGn = deg Dp = p

together with n > 2 implies degα1 = 1. As shown above this is a contradiction.
Therefore (g(x), h(x)) cannot be a standard pair of the third kind.

Also, (g(x), h(x)) cannot be a standard pair of the fourth kind since otherwise

Gn(x) = e1Dk(λ(x), a) + e0

with an even k would contradict the fact that Gn(x) is indecomposable.
Furthermore, (g(x), h(x)) cannot be a standard pair of the fifth kind. Otherwise we

would have either g(x) = 3x4−4x3 or h(x) = 3x4−4x3. This means n | degGn = 4
or m | deg Hm = 4 and therefore n = 4 or m = 4, since n,m > 2. This ends up in
the contradiction degα1 = 1 or degβ1 = 1.

Thus the case degϕ = 1 is not possible. So we can assume the second case, namely
that degϕ > 1. Since Gn is indecomposable, we have deg g = 1. Consequently the
identities

Gn(x) = ϕ(c1x + c0)

and

Hm(y) = ϕ(q(y))

hold for a polynomial q(y) ∈ Q[y]. Now we define the polynomial P(y) ∈ Q[y] by
the equation

P(y) := q(y) − c0
c1

which gives us the final identity

Gn(P(y)) = Gn

(

q(y) − c0
c1

)

= ϕ(q(y)) = Hm(y).
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If Hm(y) is indecomposable, then q(y) is linear. Thus by construction P(y) is
linear, too.

Conversely, if we assume the identity Gn(P(y)) = Hm(y), then Eq. (1) obviously
has infinitely many rational solutions with a bounded denominator. ��
Remark 1 We remark that if we utilize Theorem 10.5 in [3] instead of Theorem 1.1,
then we can replace Q by an arbitrary number field K and get for a finite set S
of places of K , containing all archimedean ones, the analogous result as above for
infinitely many solutions with a bounded OS-denominator.
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