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Abstract
We give an elementary proof of a Landesman-Lazer type result for systems by means
of a shooting argument and explore its connection with the fundamental theorem of
algebra.
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1 Introduction andmain results

In the well known paper Landesman and Lazer [2], gave a sufficient condition for
the existence of solutions of a nonlinear scalar equation under resonance at a simple
eigenvalue.Although the original result was devoted to a second order elliptic problem,
an extremely simplified first order analogue is the periodic problem

u′(t) + g(u(t)) = p(t), u(t + T ) = u(t)

where g : R → R is a smooth bounded function with limits g± at ±∞ and p ∈ C(R)

is T -periodic. Here, the Landesman-Lazer condition reads

g− < p < g+
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or

g+ < p < g−

where p denotes the average of p, namely p := 1
T

∫ T
0 p(t) dt . Thus, the Landesman-

Lazer conditions express in fact two different things, that can be summarized as
follows:

1. g± �= p.
2. The mapping Γ : {−1, 1} → R given by Γ (±1) = g± wraps around p, in the

sense that (Γ (−1) − p) and (Γ (1) − p) have different signs.

In order to extend this idea for a system of differential equations, assume now that
g : R2 → R

2 is bounded and the radial limits

gv := lim
r→+∞ g(rv),

exist and are uniform for v ∈ ∂B. Identifying R
2 with C, we may define the curve

Γ (θ) := gv(θ), with v(θ) = eiθ and θ ∈ [0, 2π ]. The continuity of Γ follows in a
straightforward manner: for example, given ε > 0 we may fix a constant r > 0 such
that |g(reiθ ) − Γ (θ)| < ε

3 for all θ . Then

|Γ (θ) − Γ (θ̃)| ≤ |Γ (θ) − g(reiθ )| + |g(rei θ̃ ) − Γ (θ̃)| + |g(reiθ ) − g(rei θ̃ )|.

Using now the continuity of g, there exists δ > 0 such that |g(reiθ ) − g(rei θ̃ )| < ε
3 ,

whence |Γ (θ) − Γ (θ̃)| < ε. In this setting, the following result due to Nirenberg
[4] may be considered as a natural extension of the Landesman-Lazer theorem for a
system. The condition that Γ ‘wraps around’ p shall be obviously expressed in terms
of the winding number I (Γ , p):

Theorem 1 In the previous situation, assume that

1. gv �= p for all v ∈ ∂B.
2. I (Γ , p) �= 0.

Then the problem

u′(t) + g(u(t)) = p(t) (1)

has at least one T -periodic solution.

In the interestingpaper [5],Ortega andSánchezobserve that theNirenberg condition
does not hold for the so-called vanishing nonlinearities, that is, when g(u) → p as
|u| → ∞ and propose to assume instead that g(u) �= p for |u| � 0 and the limits

qv := lim
r→+∞

g(rv) − p

|g(rv) − p|
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exist and are uniform for v ∈ ∂B. In this case, Nirenberg’s result is retrieved by
defining now the (continuous) curve Γq(θ) := qv(θ).

Theorem 2 In the previous context, assume that

1. qv �= p for all v ∈ ∂B.
2. I (Γq , 0) �= 0.

Then the system (1) has at least one T -periodic solution.

Remark 1 Observe that the second condition is analogous to the second condition in
Theorem 1 due to the obvious fact that I (Γ , p) = I (Γ − p, 0).

As a corollary, it follows that if (1) is a gradient system, that is

u′(t) = ∇G(u(t)) + p(t),

then the condition that g = ∇G is bounded can be dropped. The reason of this, as we
shall see, is the fact that if u is a T -periodic solution then multiplying the system by
u′(t) it is obtained, upon integration:

∫ T

0
|u′(t)|2 dt =

∫ T

0
(G ◦ u)′(t) dt +

∫ T

0
〈p(t), u′(t)〉 dt

whence

‖u′‖L2 ≤ ‖p‖L2 .

Corollary 1 Assume that g = ∇G and that conditions 1. and 2. of Theorem 2 are
satisfied. Then the system (1) has at least one T -periodic solution.

A particular instance of Corollary 1 is the complex equation

z′(t) = f (z(t)) + p(t), (2)

where f is a polynomial. Indeed, in this case the Ortega-Sánchez condition follows
trivially since

lim
r→+∞

f (re−iθ ) − p

| f (re−iθ ) − p| = an
|an|e

−inθ ,

uniformly on θ , where an is the leading coefficient of f . This implies that Γq performs
n clockwise turns around the origin and the conditions 1. and 2. in Theorem 2 are
fulfilled.

The fact that (2) is a gradient system follows from the Cauchy-Riemann conditions:
if f = a + ib and F = A + i B is a (complex) primitive of f , then

[A(z)]x = Ax (z) = a(z), [A(z)]y = −Ay(z) = b(z).
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Alternatively, we may multiply the equation by z′(t) to obtain

|z′(t)|2 = z′(t)z′(t) = G(z(t))′ + p(t)z′(t);

thus, if z is a T -periodic solution it follows, as before, that

‖z′‖L2 ≤ ‖p‖L2 . (3)

This explains why a general version of the preceding result is interpreted by Mawhin
in [3] as an extension of the Fundamental Theorem of Algebra: indeed, taking p = 0,
the inequality (3) implies that the periodic solutions are constants and, consequently,
roots of f .

To conclude this introduction, let us mention that most of the literature concerning
Landesman-Lazer theorem and its extensions involves second order problems, which
sometimes go beyond the context of the standard semilinear problems. For instance,
using the saddle point theorem and other classical results of the calculus of variations,
Landesman-Lazer type condition were obtained for a p-Laplacian Neumann problem
in [1], and (p, q)-Laplacian Neumann problems in [6], among other works. On the
other hand, Nirenberg’s original result was formulated for a more general abstract
problem, from which the version presented in Theorem 1 follows easily. It is not
difficult to adapt the ideas in the present paper to the second order case, although
the first order system is simpler and already captures the geometrical meaning of the
conditions described above.

2 Proofs and discussion

In order to give elementary proofs of the preceding results, it proves convenient to
recall a useful property of the winding number, which follows straightforwardly from
the homotopy invariance: if F : Br (0) → R

2 is continuous and I (γ, 0) �= 0, where
γ (θ) := F(reiθ ), then F vanishes in Br (0).

Proof of Theorem 1 Without loss of generality, we may assume that p = 0. Let u(t)
be a solution of (1) with initial value u(0) = u0, then

|u(t) − u0| =
∣
∣
∣
∣

∫ t

0
(g(u(s)) + p(s)) ds

∣
∣
∣
∣ ≤ M := T (‖g‖∞ + ‖p‖∞).

This implies that the Poincaré map u0 �→ P(u0) := u(T ) is well defined, continuous
and

P(u0) − u0 =
∫ T

0
g(u(t)) dt .
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Writing u0 = reiθ with r > 0, it follows that u(t) = r [eiθ + a(t)] with |a(t)| ≤ M
r

and hence

u(t) = r(t)eiθ(t)

where

|r(t) − r | ≤ M, |θ(t) − θ | ≤ M

r
.

Thus, given ε > 0, for sufficiently large r we obtain

|g(u(t)) − Γ (θ)| ≤ |g(u(t)) − Γ (θ(t))| + |Γ (θ(t)) − Γ (θ)| < ε

and hence

|P(u0) − u0 − TΓ (θ)| ≤
∫ T

0
|g(u(t)) − Γ (θ)| dt < T ε.

Choosing ε < |Γ (θ)| for all θ and setting γ (θ) := P(reiθ ) − reiθ , it follows that

|γ (θ) − Γ (θ)| < |Γ (θ)|

for r � 0 which, in turn, implies that

I (γ, 0) = I (Γ , 0) �= 0.

This proves the existence of u0 such that P(u0) = u0, and the corresponding u(t) is
a T -periodic solution of the problem. ��

The proof of Theorem 2 is essentially the same as the preceding one: assuming
w.l.o.g. that p = 0, for r � 0 it is seen that

I (γq , 0) = I (Γq , 0),

where γq(θ) := P(reiθ )−reiθ

|g(reiθ )| , and the result follows.

Proof of Corollary 1 We may assume again that p = 0. With the aim of keeping the
exposition at a very elementary level, let us assume for simplicity that∇G is controlled
by G, in the sense that

|∇G(u)| ≤ ξ(G(u)) (4)

for some continuous mapping ξ : R → (0,+∞). For example, this holds when G is
a polynomial, or if G(u) = r(|u|) with r ↗ +∞. In this case, we may replace G by a
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mapping Ĝ(u) := ϕ(G(u)) with ϕ : R → R a smooth increasing function such that

ϕ′(s) =
{
1 if |s| ≤ R
1

ξ(s) if |s| ≥ 2R

for some R to be specified. Observe that ∇Ĝ(u) = ϕ′(G(u))∇G(u) is bounded and
∇Ĝ(u)

|∇Ĝ(u)| = ∇G(u)
|∇G(u)| , so by Theorem 2 the problem u′(t) = ∇Ĝ(u(t)) + p(t) has a

T -periodic solution u. We claim that if R is large enough, then ‖u‖∞ ≤ R and,
consequently, u is a solution of the original problem. Indeed, as in the introduction it
is verified that

‖u′‖L2 ≤ ‖p‖L2

and hence

|u(t) − u(0)| =
∣
∣
∣
∣

∫ t

0
u′(s) ds

∣
∣
∣
∣ ≤ T 1/2‖p‖L2 := M .

As before, fix ε < |Γq(θ)| for all θ and r0 such that if r ≥ r0 then

∣
∣
∣
∣
∇G(r(eiθ + a))

|∇G(reiθ )| − Γq(θ)

∣
∣
∣
∣ < ε

for |a| ≤ M
r . Because

∫ T
0 ∇Ĝ(u(t)) dt = 0, if u0 = reiθ with r ≥ r0 then we deduce

that

Γq(θ)

∫ T

0
ϕ′(G(u(t)) dt =

∫ T

0
ϕ′(G(u(t))

[

Γq(θ) − ∇G(u(t))

|∇G(reiθ )|
]

dt .

Thus

|Γq(θ)|
∫ T

0
ϕ′(G(u(t)) dt < ε

∫ T

0
ϕ′(G(u(t)) dt,

a contradiction. Notice that r0 depends only on G and M ; thus, it suffices to take
R = r0 + M . ��

Further comments

It is easy to see that Theorem 1 still holds when p is a bounded function depending also
on u; however, one needs to guarantee that, for r large, the curve γ (θ) := P(reiθ ) −
reiθ wraps around 1

T

∫ T
0 p(t, u(t)) dt , which varies also with θ . This is achieved if

for example we assume
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lim sup
|u|→∞

|p(t, u)|
|g(u)| = 0 (5)

uniformlyon t . It is readily verified that the samecondition suffices also in the situations
of Theorem 2 and Corollary 1, assuming now that the limits

q0v := lim
r→+∞

g(rv)

|g(rv)| (6)

exist uniformly for v ∈ ∂B and replacing the curve Γq by

Γ 0
q (θ) := q0v(θ)

The results may be extended also for delay systems like

u′(t) = g(u(t)) + p(t, u(t), u(t − τ)) (7)

where τ > 0 and p is bounded, continuous and T -periodic in the first coordinate:

Theorem 3 Assume that g is bounded or g = ∇G such that the radial limits (6) exist
uniformly on v ∈ ∂B. Further, assume that p is bounded with

lim sup
|u|→∞

|p(t, u, u)|
|g(u)| = 0 (8)

uniformly on t. If I (Γ 0
q , 0) �= 0, then problem (7) has at least one T -periodic solution.

It should be noticed that, in this case, the problem cannot be reduced to find a fixed
point in a finite dimensional space and less elementary tools are required. However,
the proof is still easy in the context of the Leray-Schauder degree, which yields the
following continuation theorem:

Theorem 4 Assume that

1. There exists R > 0 such that any T -periodic solution of the problem

u′(t) = λ[g(u(t)) + p(t, u(t), u(t − τ))]

with λ ∈ (0, 1] satisfies ‖u‖∞ < R.
2. I (ΓR, 0) �= 0, where

ΓR(θ) := g(reiθ ) +
∫ T

0
p(t, reiθ , reiθ ) dt .

Then problem (7) has at least one T -periodic solution u with ‖u‖∞ < R.
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Indeed, when g is bounded or g = ∇G, it follows as before that ‖u′‖L2 is bounded
by a constant depending only on ‖p‖∞. This, in turn, implies that |u(t) − u(0)| is
also bounded and the conditions of Theorem 4 are obtained under the assumptions of
Theorem 2. It is clear that condition (4) is not necessary at all.

Analogous results may be obtained for larger systems: let g ∈ C(Rn,Rn) and
p : R × R

2n → R
n be continuous, bounded and T -periodic in its first coordinate.

Assume that g is bounded or g = ∇G and that the radial limits (6) exist uniformly for
v ∈ Sn−1 ⊂ R

n . Furthermore, assume that (8) holds. Then the problem has at least
one T -periodic solution, provided that the degree of the mapping Γ 0

q : Sn−1 → Sn−1

given by Γ 0
q (v) := q0v is different from 0. It is readily seen that the latter condition is

equivalent to

deg(g, BR(0), 0) �= 0 when R is sufficiently large, (9)

where deg stands for the Brouwer degree. A more delicate argument given in [7]
shows that, if (9) is fulfilled, then the existence of the limits (6) is not necessary when
g = ∇G is coercive, that is |∇G(u)| → +∞ as |u| → +∞.

As a final remark, let us try to understand why the result does not hold for the
equation

z′(t) = f (z(t)) + p(t)

when f is an arbitrary entire function. Because g is analytic, the bounds for z′ are
obtained exactly as before; however, if f is not a polynomial then the curves f (Reiθ )
with R � 0 are very badly behaved. This is clearly related to the fact that f has an
essential singularity at ∞; for example, when f (z) = ez the problem has no solutions
for p = 0 and

f (Reiθ ) = eRe
−iθ = eR cos(θ)e−i Rsin(θ),

which has zero winding number although for R � 0 it passes many times back and
forth around the origin.
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