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Abstract
In this paper, we study the standard problem of the wind in the steady atmospheric
Ekman layer with classical boundary conditions. We consider the system with varying
eddy viscosity coefficients that are small perturbation of a constant. We derive the
explicit solution by using a different argument in the previous works. For two layers,
the eddy viscosity is constant in the upper layer, while is only continuous with height
in the lower layer, we transform the system to a first order Riccati equation with a
suitable initial value and derive the solution for piecewise-constant eddy viscosity.

Keywords Ekman layer · Variable eddy viscosity · Explicit solutions · Riccati
equation

Mathematics Subject Classification 2010 · 34B05

1 Introduction

The Ekman layer covers 90% of the atmospheric boundary layer which contains three
parts [1,2]: the lamina sublayer, surface (Prandtl) layer and the Ekman layer. It is con-
trolled by frictional effects, pressure gradient and the coriolis force [1,3,4]. Thepursued
analysis pertains to non-equatorial regions.Whether for ocean flow or for atmospheric
flows, Ekman-type solutions require a balance between the wind stress, frictional
forces and the Coriolis acceleration and this breaks down in equatorial regions, where
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the Coriolis effect vanishes so that the wind drift current moves azimuthally, in the
same direction as the wind, andwhere nonlinear effects have to be accounted for [5–7].
Classic Ekman theory contains the derivation of the explicit solution for a constant
eddy viscosity k [8,9], but field data show that this is an extreme simplification, in
reality k usually varies with the height [1,2], but explicit solutions are scare and almost
all focused on the numerical simulations [10–16].

Constantin and Johnson [17] studied the Ekman flows with variable eddy viscosity
k(z), and derived the explicit solution and verified the existence of the solution by the
transformation and the iterative technique. Bressan and Constantin [18] studied the
wind-drift currents for depth-dependent eddy viscosities which were perturbations of
the asymptotic reference value and obtained the solution by the perturbation approach.
For the atmospheric Ekmanflows, Fečkan et al. [19] obtained existence and uniqueness
result and derived the smooth result by computing the first approximation of solutions.
In addition, [20–22] studied wind-stress induced ocean currents and obtained the
representation of solutions.

Motivated by [20–22], we consider atmospheric Ekman flows with classic bound-
ary conditions. The eddy viscosity k(z) denotes the perturbation of the asymptotic
reference value like [19]. Fečkan et al. [19] used the variable change and get a lin-
ear, non-homogeneous second order differential equation and obtained the existence
and uniqueness and smooth results to justify computing first order approximation of
solutions via a Green’s function.

In the present paper, we transform the original equation to a first-order linear non-
homogeneous differential equation to give a new direction method to compute the
explicit solution. For a two-layer with uniform eddy viscosity in the upper layer and
continuous eddy viscosity in the lower layer, we transform the system to a Riccati
equation with a initial value problem on a finite interval. Further, we construct the
solution for piecewise-constant eddy viscosity.

2 Model description

Recall the model for Ekman layer is formulated by the following equations, see [1,2]

⎧
⎨

⎩

Du
Dt = − 1

ρ
dP
dx + f v − ∂(u′w′)

∂z ,

Dv
Dt = − 1

ρ
dP
dy − f u − ∂(v′w′)

∂z ,

where u, v and w are the components of the wind in the x, y and z directions respec-
tively, P is the atmospheric pressure, ρ is the reference density, f = 2� sin θ is the
Coriolis parameter at the fixed latitude θ , � ≈ 7.29 × 10−5 is the angular speed of
the roattion of the earth in the northern Hemisphere, and θ ∈ (0, π/2] is the angle
of latitude in right-handed rotating spherical cooridates, t is time and k is the eddy
diffusivity for momentum.

Assuming a steady state we get Du
Dt = 0, Dv

Dt = 0. From the geostrophic balance,
we have
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Explicit solution of atmospheric Ekman flows with some… 73

⎧
⎨

⎩

1
ρ
dP
dx = f vg,

1
ρ

= − f ug.

From the Flux–Gradient theory, we get

{
u′w′ = −k ∂u

∂z ,

v′w′ = −k ∂v
∂z ,

where k is the eddy viscosity coefficient. Then we obtain

{
f (v − vg) = − ∂

∂z (k
∂u
∂z ),

f (u − ug) = ∂
∂z (k

∂v
∂z ),

(1)

where ug and vg are the corresponding constant geostrophic wind components. We
use the traditional boundary conditions for (1) as

u = 0, v = 0 at z = 0, (2)

u → ug, v → vg for z → ∞. (3)

Let � = (u − ug) + i(v − vg), and from (1), we will get

(k(z)�′(z))′ = i · f �(z). (4)

The boundary conditions (2) and (3) are transformed into the equivalent form

� = −ug − ivg at z = 0, (5)

� = 0 for z → ∞. (6)

If k=constant, then

�(z) = −(ug + ivg)e
(1+i)γ z, (7)

where γ =
√

f
2k . However, if k �=constant, then solving (4) will be more interesting

and complex.
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3 Main results

3.1 Systems with two layers

The eddy viscosity k always varies with height [13], here we consider the following
situation

k(z) =
{
k0, z > z0,

k1(z), 0 ≤ z ≤ z0,
(8)

where k0 = k1(z0) > 0 and k1(z) > 0 is continuous with z.
Equation (4) simplifies on (z0,+∞) to

�′′(z) = i f

k0
�(z), z > z0,

the general solution is a linear combination of the linearly independent functions

e
±

√
f

2k0
(1+i)z

.
If we denote by �± the solutions of (4) with

�±(z) = e
±

√
f

2k0
(1+i)z

, z > z0,

the condition (6) ensures that the solution �(z) to (4) satisfies

�(z) = c �−(z), z ≥ z0,

for some complex constant c.
It is well-known [23, p. 331] that

q(z) = k(z)�′(z)
�(z)

, z > 0, (9)

solves a Riccati equation

q ′(z) + q2(z)

k(z)
= i f , z > 0, (10)

with

q(z0) = k(z0)�′−(z0)

�−(z0)
= −

√
f k0
2

(1 + i), z = z0. (11)

(10) is not, in general, solvable by quadratures, one has to rely on numerical methods to
obtain accurate approximations solution to (10) and (11). On the other hand, following
[23, p. 332], we have the following result.
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Theorem 3.1 The function defined by

�(z) =
⎧
⎨

⎩

−(ug + ivg)e
∫ z
0

q(s)
k(s) ds, z ∈ [0, z0],

−(ug + vg)e
−

√
f

2k0
(1+i)(z−z0)e

∫ z0
0

q(s)
k(s) ds, z > z0,

is the solution of (4) with (5) and (6), where q(z) is the solution to (10) and (11).

Proof By the definition of q(z), we obtain

�′(z)
�(z)

= q(z)

k(z)
, z ≥ 0. (12)

Integrating (12), we get

�(z) = �(0)e
∫ z
0

q(s)
k(s) ds = −(ug + ivg)e

∫ z
0

q(s)
k(s) ds, z ≥ 0. (13)

For z ≥ z0, we get

�(z) = −(ug + ivg)e
∫ z0
0

q(s)
k(s) dse

∫ z
z0

q(s)
k(s) ds = −(ug + ivg)e

−
√

f
2k0

(1+i)(z−z0)e
∫ z0
0

q(s)
k(s) ds ,

(14)

since q(s) = q(z0) and k(s) = k0 for s ≥ z0, so

∫ z

z0

q(s)

k(s)
ds =

∫ z

z0

q(z0)

k0
ds =

∫ z

z0
−

√
f

2k0
(1 + i)ds = −

√
f

2k0
(1 + i)(z − z0).

The proof is complete. 
�
Example 3.2 Consider the case of an eddy viscosity which is constant, that is
k=constant. Then (10) and (11) change to

⎧
⎨

⎩

q ′(z) + q2(z)
k = i f , z ≥ 0,

q(z) = −
√

k f
2 (1 + i), z = z0.

(15)

The unique solution to (15) is q(z) = −
√

k f
2 (1 + i). From (13), we have

�(z) = −(ug + ivg)e
− ∫ z

0

√
k f
2 (1+i)
k ds = −(ug + ivg)e

−
√

f
2k (1+i)z

, z ∈ [0, z0].

For z > z0, from (14), we get

�(z) = −(ug + ivg)e
−

√
f
2k (1+i)(z−z0)e−

√
f
2k (1+i)z0 = −(ug + ivg)e

−
√

f
2k (1+i)z

,
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so

�(z) = −(ug + ivg)e
−

√
f
2k (1+i)z

, z ∈ [0, + ∞).

this coincides with (7).

Example 3.3 For

k(z) =
{

[b(z − z0) + a]2, z ∈ [0, z0],
a2, z > z0.

Let

Q(z) = q(z)

[b(z − z0) + a] , z ∈ [0, z0], (16)

then Q(z0) = −
√

a2 f
2 (1 + i), as q ′(z) = i f − q2(z)

k(z) = i f − Q2(z), we get

Q′(z) = q ′(z)[b(z − z0) + a] − bq(z)

[b(z − z0) + a]2 = i f − Q2(z) − bQ(z)

b(z − z0) + a
, z ∈ [0, z0),

then

dQ(z)

(Q(z) − −b−
√

b2+4i f
2 )(Q(z) − −b+

√
b2+4i f
2 )

= − dz

b(z − z0) + a
, z ∈ [0, z0),

(17)

integrating both side of (17), we obtain

1
√
b2 + 4i f

ln
Q(z) − −b+

√
b2+4i f
2

Q(z) − −b−
√

b2+4i f
2

= −1

b
ln[b(z − z0) + a] + c, z ∈ [0, z0],

where

c = 1
√
b2 + 4i f

ln
−

√
a2 f
2 (1 + i) − −b+

√
b2+4i f
2

−
√

a2 f
2 (1 + i) − −b−

√
b2+4i f
2

+ ln a

b
.

Using (16), we have q(z) = Q(z)[b(z − z0) + a], consequently, an explicit formula
for the solution of �(z) emerges by (13) and (14).
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3.2 Systems with piecewise-constant

Different form (8), we assume eddy viscosity is piecewise-constant, so it is not con-
tinuous, for the sake of simplicity, we consider two regions, that is

k(z) =
{
a, z ∈ [0, z0],
b, z > z0,

where a, b > 0 and a �= b.
The equation (4) will be transformed to

�′′(z) = i f

b
�(z), z ∈ (z0, + ∞), (18)

and

�′′(z) = i f

a
�(z), z ∈ [0, z0]. (19)

By using the boundary condition (6), we have the general solution

�(z) = Ce−
√

f
2b (1+i)z

, z ∈ (z0, + ∞),

and

�(z) = Ae

√
f
2a (1+i)z + Be−

√
f
2a (1+i)z

, z ∈ [0, z0].

The boundary condition �(0) = −ug − ivg implies

A + B = −(ug + ivg). (20)

We consider a solution of (18) and (19) which is continuous with �(t) and �′(t), so
we get

Ae

√
f
2a (1+i)z0 + Be−

√
f
2a (1+i)z0 = Ce−

√
f
2b (1+i)z0 . (21)

and

A

√
f

2a
(1 + i)e

√
f
2a (1+i)z0 − B

√
f

2a
(1 + i)e−

√
f
2a (1+i)z0 = −C

√
f

2b
(1 + i)e−

√
f
2b (1+i)z0 .

(22)

Using (20), (21), and (22), it follows that

A = κC, B = −(ug + ivg) − κC,
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and

C =
√

f
2a (ug + ivg)e

−
√

f
2a (1+i)z0

f
2a κ(e

√
f
2a (1+i)z0 − e−

√
f
2a (1+i)z0) −

√
f
2b e

−
√

f
2b (1+i)z0

,

where

κ =
√

f
2a −

√
f
2b

2
√

f
2a e

√
f
2a (1+i)z0

e−
√

f
2b (1+i)z0 .

3.3 Systems with perturbation of a constant

Now we regard the physically relevant eddy viscosity k(z) as perturbations

k(z) = k0 + εk1(z), at z ≥ 0, (23)

where ε 
 1, and k1(z) is absolutely continuous on [0,+∞) and
∫ +∞
0 |k′

1(z)|dz <

+∞. Different from the approach in [19], we transform the initial boundary problem
to a first-order differential system. Writing

�(z) = �0(z) + ε�1(z), z ≥ 0 (24)

is the solution of (4) with condition (5) and (6), here �0(z) is the classic Ekman
solution for the constant eddy viscosity k0, that is �0(z) = −e−(1+i)γ z[ug + ivg],
where γ =

√
f

2k0
.

Inserting (24) into (4), we get

εk′
1(z)(�

′
0(z) + ε�′

1(z)) + (k0 + εk1(z))[�′′
0(z) + ε�′′

1(z)] = i f [�0(z) + ε�1(z)],

using k0�′′
0(z) = i f �0(z), one obtains

k0�
′′
1(z) − i f �1(z) = −k′

1(z)�
′
0(z) − k1(z)�

′′
0(z).

Note that

�′
0(z) = (1 + i)

√
f

2k0
�0(z), �′′

0(z) = − i f

k0
�0(z),

so we have

�′′
1(z) − i f

k0
�1(z) = b(z), (25)
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where b(z) = −[k′
1(z)(1 + i)

√
f

2k30
− i f

k20
]�0(z).

Note that

�0(0) = −(ug + ivg), �0(z) → 0 as z → +∞,

so we get the boundary conditions

�1(0) = 0, �1(z) → 0 as z → +∞. (26)

Writing (25) in the following first-order differential system

� ′(z) = A�(z) + B(z),

where

�(z) =
[
�1(z)
�′

1(z)

]

, A =
[
0 1
i f
k0

0

]

, B(z) =
[

0
b(z)

]

.

Theorem 3.4 The function defined by (see also (32))

�1(z) = −1

2(1 + i)γ
[e(1+i)γ z − e−(1+i)γ z]

∫ ∞

0
e−(1+i)γ sb(s)ds

+
∫ z

0

1

2(1 + i)γ
[e(1+i)γ (z−s) − e−(1+i)γ (z−s)]b(s)ds, z ≥ 0 (27)

is the solution of (25) with boundary condition (26).

Proof Using the variation of constants formula, we get the general solution in the form

�(z) = eAz�(0) +
∫ z

0
eA(z−s)B(s)ds, z ≥ 0,

where

eAz =
[ 1

2 [e(1+i)γ z + e−(1+i)γ z] 1
2(1+i)γ [e(1+i)γ z − e−(1+i)γ z]

(1+i)γ
2 [e(1+i)γ z − e−(1+i)γ z 1

2 [e(1+i)γ z + e−(1+i)γ z]

]

is the fundamental matrix of the homogeneous constant coefficient differential system
� ′(z) = A�(z). Since �1(0) = 0, we have

�1(z) = 1

2(1 + i)γ
[e(1+i)γ z − e−(1+i)γ z]�′

1(0)

+
∫ z

0

1

2(1 + i)γ
[e(1+i)γ (z−s) − e−(1+i)γ (z−s)]b(s)ds, z ≥ 0, (28)
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with �′
1(0) to be chosen so that

lim
z→+∞ �1(z) = 0. (29)

We claim that this is equivalent to

�′
1(0) = −

∫ ∞

0
e−(1+i)γ sb(s)ds. (30)

In fact, writing (28) as

�1(z) = 1

2(1 + i)γ
e(1+i)γ z

[

�′
1(0) +

∫ z

0
e−(1+i)γ sb(s)ds

]

− 1

2(1 + i)γ
e−(1+i)γ z�′

1(0) −
∫ z

0

1

2(1 + i)γ
e−(1+i)γ (z−s)b(s)ds, z ≥ 0.

(31)

It is obvious that lim
z→+∞

1
2(1+i)γ e

−(1+i)γ z�′
1(0) = 0. Since b(·) is integrable on

[0,+∞) and |e−(1+i)γ (z−s)| ≤ 1, we get

lim
z→+∞

∫ z

0

1

2(1 + i)γ
e−(1+i)γ (z−s)b(s)ds = 0

by the dominated convergence theorem. So (29) implies (30).
Conversely, if (30) holds, then (31) becomes to

�1(z) = − 1

2(1 + i)γ

[∫ +∞
z

e(1+i)γ (z−s)b(s)ds

]

+ 1

2(1 + i)γ

∫ +∞
0

e−(1+i)γ )(z+s)b(s) −
∫ z

0

1

2(1 + i)γ
e−(1+i)γ (z−s)b(s)ds, z ≥ 0.

(32)

It is again obvious from the dominated convergence theorem that (29) holds. This
implies that (29) is equivalent to (30), so (27) is the solution of (25) with boundary
condition (26). 
�
Remark 3.5 Recall [19, Sect. 3.2], let k∗ > 0 and

s = s(z) = k∗
∫ z

0

1

k(t)
dt, k2(s) = f

k2∗
k1(z), �(s) = U (s) + iV (s),

where U (s) = u(z) − ug, V (s) = v(z) − vg, and k1(z) is the same as (23). Like
(24), set

�(s) = �0(s) + εϕ(s), (33)
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Explicit solution of atmospheric Ekman flows with some… 81

where �0(s) is the classical Ekman solution

�0(s) = −e−(1+i)λs(ug + ivg), λ =
√

f

2k∗
.

Using the Green function in [19, Lemma 3.3], (33) is the solution of (1) with the
condition (2) and (3) if

ϕ(s) = vg − iug
2(1 + i)λ

∫ s

0
k2(t)e

−(1+i)λ(s+t)(e(1+i)λt − e−(1+i)λt )dt

+ vg − iug
2(1 + i)λ

∫ ∞

s
k2(t)(e

(1+i)λ(s−t) − e−(1+i)λ(s+t))e−(1+i)λt dt .

From above, one can see the idea in this article is more straightforward.

Example 3.6 Consider the piecewise linear eddy viscosity

k(z) =
{
k0 + εμ(z − z0), z ∈ [0, z0],
k0, z > z0,

where k0 > μ > 0, so we have

k1(z) =
{

μ(z − z0), z ∈ [0, z0],
0, z > z0,

, k′
1(z) =

{
μ, z ∈ [0, z0],
0, z > z0,

and

b(z) =

⎧
⎪⎨

⎪⎩

−[(1 + i)μ
√

f
2k30

− i f
k20

]�0(z), z ∈ [0, z0],
i f
k20

�0(z), z > z0,
(34)

using (34), we have

∫ ∞

0
e−(1+i)γ sb(s)ds

= (ug + ivg)(1 − e−2(1+i)γ z0)

[

(1 + i)μ

√
f

2k30
− i f

k20

]

+2(1 + i)γ (ug + ivg)e
−2(1+i)γ z0 . (35)
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If z ≤ z0, we have

∫ z

0

1

2(1 + i)γ
[e(1+i)γ (z−s) − e−(1+i)γ (z−s)]b(s)ds

=
(ug + ivg)[(1 + i)μ

√
f

2k30
− i f

k20
]

8iγ 2 [e(1+i)γ z − 2e−(1+i)γ z + e−3(1+i)γ z]. (36)

If z > z0, we have

∫ z

0

1

2(1 + i)γ
[e(1+i)γ (z−s) − e−(1+i)γ (z−s)]b(s)ds

= (ug + ivg)

8iγ 2

[

(1 + i)μ

√
f

2k30
− i f

k20

]

[e(1+i)γ z0 − 2e−(1+i)γ z0 + e−3(1+i)γ z0 ]

+ i f

2k20(1 + i)γ
(ug + ivg)e

−(1+i)γ z + i f

k20
(ug + ivg)e

(1+i)γ z

+ i f

k20
(ug + ivg)e

−(1+i)γ z(z − z0). (37)

From (27), (35), (36) and (37), we obtain the following results.
For z ≤ z0,

�1(z) = A[e(1+i)γ z − e−(1+i)γ z] + B
[
e(1+i)γ z − 2e−(1+i)γ z + e−3(1+i)γ z

]
,

where

A = (ug + ivg)

[

(1 + i)μ

√
f

2k
− i f

k20

]

[1 − e−2(1+i)γ z0 ] + 2(1 + i)γ e−2(1+i)γ z0

and

B = (ug + ivg)

[

(1 + i)μ
√

f
2k30

i f
k20

− i f
k20

]

8iγ 2 .

For z > z0,

�1(z) = A[e(1+i)γ z − e−(1+i)γ z]

+ (ug + ivg)

8iγ 2

[

(1 + i)μ

√
f

2k30
− i f

k20

][

e(1+i)γ z0 − 2e−(1+i)γ z0 + e−3(1+i)γ z0

]
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+ i f

2k20(1 + i)γ
(ug + ivg)e

−(1+i)γ z + i f

k20
(ug + ivg)e

(1+i)γ z

+ i f

k20
(ug + ivg)e

−(1+i)γ z(z − z0).
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