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Abstract
The notion of rigid commutators is introduced to determine the sequence of the log-
arithms of the indices of a certain normalizer chain in the Sylow 2-subgroup of the
symmetric group on 2n letters. The terms of this sequence are proved to be those of the
partial sums of the partitions of an integer into at least two distinct parts, that relates
to a famous Euler’s partition theorem.
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1 Introduction

In a recent paper [5], the authors observed a rather surprising coincidence between the
sequence of integers

1, 2, 4, 7, 11, 16, 23, 32, 43, 57 . . .

representing the partial sums of the famous sequence {b j } of the number of partitions
of the integer j into at least two distinct parts, already studied by Euler [15], and
a sequence of group-theoretical invariants. Our sequence arises in connection with a
problem in algebraic cryptography, namely the study of the conjugacy classes of affine
elementary abelian regular subgroups of the symmetric group on 2n letters [4,9,10].
This is relevant in the cryptanalysis of block ciphers, since it may trigger a variation of
the well-known differential attack [7]: a statistical attack which allows us to recover
information on the secret unknown key by detecting a bias in the distribution of the
differences on a given set of ciphertexts when the corresponding plaintext difference is
known. In particular, if F

n
2 serves as the message space of a block cipher (see e.g. [12])

which has been proven secure with respect to differential cryptanalysis [22] and if T
represents the translation group on F

n
2, any conjugate of T can be potentially used

to define new alternative operations on F
n
2 for a successful differential attack [11].

In [5], on the basis of the aforementioned motivation, the authors studied a chain of
normalizers, which begins with the normalizer N 0

n of T in a suitable Sylow 2-subgroup
Σn of Sym(2n) andwhose i th term Ni

n is defined as the normalizer inΣn of the previous
one. After providing some experimental as well as theoretical evidence, the authors
conjectured [5, Conjecture 1] that the number log2

∣
∣Ni

n : Ni−1
n

∣
∣ is independent of n

for 1 ≤ i ≤ n − 2, and indeed is equal to the (i + 2)th term of the sequence of the
partial sums of the sequence1 {b j } mentioned above [1, https://oeis.org/A317910].
In this paper we completely settle this conjecture. The first attempts to solve this
problem were based on theoretical techniques which clashed with their own growing
computational complexity. For this reason, we develop here a framework to approach
the problem from a different point of view. In this new approach, indeed, we take
into account both the imprimitivity and the nilpotence of the Sylow 2-subgroup Σn to
represent its elements in terms of a special family of left-normed commutators, that
we call rigid commutators, in a fixed set of generators. Any such commutator [X ] can
be identified with a subset X of {1, . . . , n}. The subgroups ofΣn that can be generated
by rigid commutators are called here saturated subgroups. A careful inspection led
us to prove that the normalizers Ni

n are saturated subgroups. In particular, a set of
generators of Ni

n can be obtained from a set of generators of Ni−1
n by adding the rigid

commutators of the form [X ] for all X such that the elements of the complementary
set of X in {1, . . . , k}, where k = max X ≤ n, yield a partition of i + 2 − n + k into
at least two distinct parts. This is the key to prove the conjecture.

1 The sequence b j +1 appears in several others areas of mathematics, from number theory to commutative
algebra [14]. In particular, it was already known to Euler that b j +1 corresponds to the number of partitions
of j into odd parts (see [15, Chapter 16] and [3, §3]). Several proofs of this Euler’s partition theorem have
been offered ever since [2,20,24], and several important refinements have been obtained [6,8,16,23,24].
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Rigid commutators and a normalizer chain 433

The advantage of adopting rigid commutators is twofold. In the first place, they
prove to be handy in calculations with the use of the rigid commutator machinery, a
dedicated set of rules which we develop in this paper. Secondly, rigid commutators
can be seen as factors in a unique factorization formula for the elements of any given
saturated subgroup. This representation is crucial in showing that the normalizers Ni

n
are saturated. By means of this result and of the machinery, we derive an algorithm
which efficiently computes the normalizer chain.

The paper is organized as follows: in Sect. 2 some basic facts on the Sylow 2-
subgroup Σn of Sym(2n) are recalled. Section 3 is totally devoted to the introduction
and the study of rigid commutators and to the construction of the rigid commutator
machinery. In Sect. 4 the rigid commutator machinery is used to prove the conjecture
on the normalizer chain previously mentioned [5, Conjecture 1]. In Sect. 5 it is shown
that each term of the normalizer chain is a saturated group and an efficient procedure to
determine the rigid generators of the normalizers is derived. An explicit construction
of the normalizer chain in a specific case is provided in Section 6, and some open
problems arising from computational evidence are discussed. Finally, some hints for
future investigations are presented in Sect. 7.

2 The Sylow 2-subgroup of Sym(2n)

Let n be a non-negative integer. We start recalling some well-known facts about the
Sylow 2-subgroup Σn of the symmetric group on 2n letters.

Let us consider the set

Tn = {

w1 . . . wn | wi ∈ {0, 1}}

of binary words of length n, where T0 contains only the empty word. The infinite
rooted binary tree T is defined as the graph whose vertices are

⋃

j≥0 T j and where
two vertices, say w1 . . . wn and v1 . . . vm , are connected by an edge if |m − n| = 1
and wi = vi for 1 ≤ i ≤ min(m, n). The empty word is the root of the tree and it is
connected with both the two words of length 1.

We can define a sequence {si }i≥1 of automorphisms of this tree. Each si necessarily
fixes the root, which is the only vertex of degree 2. The automorphism s1 changes the
value w1 of the first letter of every non-empty word into w̄1

def= (w1 + 1) mod 2 and
leaves the other letters unchanged. If i ≥ 2, we define

(w1 . . . wn)si
def=

⎧

⎪⎨

⎪⎩

empty word if n = 0

w1 . . . w̄i . . . wn if n ≥ i and w1 = · · · = wi−1 = 0

w1 . . . wn otherwise.

(1)

In general, si leaves a word unchanged unless the word has length at least i and the
letters preceding the i th one are all zero, in which case the i th letter is increased by
1 modulo 2. If i ≤ n and the word w1 . . . wn ∈ Tn is identified with the integer
1 + ∑n

i=1 2
n−iwi ∈ {1, . . . , 2n}, then si acts on Tn as the the permutation whose

cyclic decomposition is
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w1

•
0 1

• s1 •

wn

•
0 1

•
0 1

• sn • . . . • •

1 2 . . . (2n − 1) 2n

Fig. 1 The action of Σn on the subtree
⋃n

i=0 Ti

2n−i
∏

j=1

( j, j + 2n−i )

which has order 2. In particular, the group 〈 s1, . . . , sn 〉 acts faithfully on the set Tn ,
whose cardinality is 2n , as a Sylow 2-subgroup Σn of the symmetric group Sym(2n)
(see also Fig. 1).

It is also well known that

Σn = 〈 sn 〉 � Σn−1 = 〈 sn 〉 � · · · � 〈 s1 〉 ∼= �ni=1C2

is the iterated wreath product of n copies of the cyclic group C2 of order 2.
The support of a permutation is the set of the letters which are moved by the

permutation. We say that two permutations σ and τ are disjoint if they have disjoint
supports; two disjoint permutations always commute.

The closure

Si
def= 〈 si 〉〈 s1,...,si 〉

is generated by disjoint conjugates of si , hence Si is an elementary abelian 2-group
which is normalized by S j if j ≤ i . Moreover, Σn = S1 � · · · � Sn ∼= Σn−1 � Sn .

3 Rigid commutators

The commutator of two elements h and k in a group G is defined as [h, k] def=
h−1k−1hk = h−1hk . The left-normed commutator of them elements g1, . . . , gm ∈ G
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Rigid commutators and a normalizer chain 435

is the usual commutator if m = 2 and is recursively defined by

[g1, . . . , gn−1, gm] def= [[g1, . . . , gm−1], gm
]

if m ≥ 3. It is well known that the commutator subgroup G ′ of a finitely generated
nilpotent group G can be generated by left-normed commutators involving only gen-
erators ofG [19, III.1.11]. From now on, we will focus on left-normed commutators in
s1, . . . , sn . For the sake of simplicity, we write [i1, . . . , ik] to denote the left-normed
commutator [si1, . . . , sik ], when k ≥ 2, and we also write [i] to denote the element si .

Definition 1 A left-normed commutator [i1, . . . , ik] is called rigid, based at i1 and
hanging from ik , if i1 > i2 > · · · > ik . Given a subset X = {i1, . . . , ik} ⊆ {1, . . . , n}
such that i1 > i2 > · · · > ik , the rigid commutator indexed by X, denoted by [X ], is
the left-normed commutator [i1, . . . , ik]. We set [X ] def= 1 when X = ∅. The set of all
the rigid commutators of Σn is denoted byR and we letR∗ def= R\ {[∅]}.

At the end of this section we prove that every permutation in the Sylow 2-subgroup
Σn can be expressed, in a unique way, as a product of the objects previously defined.
To this purpose, we develop below a set of rules to perform computations with (rigid)
commutators.

3.1 Rigid commutator machinery

Let 1 ≤ i1, i2, . . . , ik ≤ n be integers and let us consider the commutator [i1, . . . , ik].
The following facts are easily checked.

Fact 1 Denoting by i = max {i1, . . . , ik}, the commutator [i1, . . . , ik] is a product of
conjugates of si by way of elements in

〈

si1 , . . . , sik
〉

and thus it belongs to Si . Any
two such conjugates commute, since they belong to the same Si .

Fact 2 As a direct consequence of Fact 1, if max {i1, . . . , ik} = max { j1, . . . , jl} then
[i1, . . . , ik] and [ j1, . . . , jl ] commute.

Note that if g ∈ Si and h ∈ S j , then [g, h] ∈ Sk , where k = max {i, j}, so [g, h]2 = 1
since Sk is elementary abelian. It follows that [g, h, h] = [g, h]2[g, h, h] = [g, h2] =
[g, 1] = 1. As a consequence we have:

Fact 3 If k ≥ 2 and i j = i j+1 for some 1 ≤ j ≤ k − 1, then [i1, . . . , ik] = 1.

The following result is crucial since it allows us to rewrite every commutator as a
rigid commutator.

Lemma 1 Let k ≥ 2 and l ≥ 1 be integers. If

c
def= [[i1, . . . , ik], [ j1, . . . , jl ]]

is the commutator of the two rigid commutators [i1, . . . , ik] and [ j1, . . . , jl ], then
1. the order of c divides 2, so c = [[ j1, . . . , jl ], [i1, . . . , ik]];
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2. if i1 = j1, then c = 1;
3. if l ≥ 2 and ik > jl , then jl can be dropped, i.e.

c = [[i1, . . . , ik], [ j1, . . . , jl−1]];

4. if i1 > j1, {i1, . . . , ik} ∩ { j1, . . . , jl} = ∅, and s
def= max {h | ih > j1}, then

c = [i1, . . . , is, j1];

5. if l ≥ 2 and ik = jl , then

c = [[i1, . . . , ik−1], [ j1, . . . , jl−1], jl ];

6. if is > j1 ≥ is+1, then

c = [i1, . . . , is, j1, h1, . . . , ht ],

where h1 > · · · > ht and {h1, . . . , ht } def= {i1, . . . , ik} ∩ { j1, . . . , jl}. Moreover,
c = 1 if j1 ∈ {i1, . . . , ik}.

Proof Let us prove each claim separately.

1. The claim c2 = 1 depends on the fact that c ∈ Si , where the index i is defined as
i

def= max {i1, . . . , ik, j1, . . . , jl}.
2. If i1 = j1, then both of [i1, . . . , ik] and [ j1, . . . , jl ] belong to Si1 which is abelian,

thus the claim follows.
3. Assume that l ≥ 2 and jl < ik . In this case

c = [i1, . . . , ik][i1, . . . , ik][ j1,..., jl−1]s jl [ j1,..., jl−1]s jl

= [i1, . . . , ik]
([i1, . . . , ik][ j1,..., jl−1])s jl [ j1,..., jl−1]s jl .

The permutations s jl [ j1, . . . , jl−1]s jl and [i1, . . . , ik][ j1,..., jl−1] are disjoint: the
first one has support contained in

{

2n− jl + 1, . . . , 2n− jl+1
}

and the support of the
second one is contained in

{

1, . . . , 2n−min(ik , jl−1)+1
}

⊆
{

1, . . . , 2n− jl
}

.

Hence

c = [i1, . . . , ik][i1, . . . , ik][ j1,..., jl−1] = [[i1, . . . , ik], [ j1, . . . , jl−1]],

which proves the claim.
4. The claim follows by a repeated applications of items (3) and (1).
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5. For every x, y ∈ G
def= 〈

sn, . . . , sil+1
〉

the permutations x and ys jl are disjoint and
so they commute. In particular, if x2 = 1, then [x, s jl ]2 = (xxs jl )2 = x2(x2)s jl =
1. If a, b ∈ G are such that a2 = b2 = 1, then

[[a, b], s jl ] = [abab, s jl ]
= ababas jl bs jl as jl bs jl = aas jl bbs jl aas jl bbs jl

= [a, s jl ][b, s jl ][a, s jl ][b, s jl ]
= [a, s jl ]−1[b, s jl ]−1[a, s jl ][b, s jl ] = [[a, s jl ], [b, s jl ]].

For a
def= [i1, . . . , ik−1] and b

def= [ j1, . . . , jl−1], we have

[[i1, . . . , ik−1, jl ], [ j1, . . . , jl−1, jl ]] = [[i1, . . . , ik−1], [ j1, . . . , jl−1], jl ],

as required.
6. An iterated use of items (1), (3) and (5) yields

c = [[i1, . . . , is], [ j1, . . . , jv], h1, . . . , ht ]

if j1 > is+1 ≥ h1, where the intersection {i1, . . . , is} ∩ { j1, . . . , jv} = ∅ is trivial,
while, if j1 = h1 = is+1, then c = [[[i1, . . . , is, h1], h1], . . . , ht ]. By Fact 3, the
commutator [[i1, . . . , is, h1], h1] is trivial, and so c = 1. We may then assume
that j1 > is+1 ≥ h1. By (4), we obtain the equality [[i1, . . . , is], [ j1, . . . , jv]] =
[i1, . . . , is, j1], therefore

c = [i1, . . . , is, j1, h1, . . . , ht ]

as claimed. ��
A repeated application of Lemma 1 shows that every left-normed commuta-

tor [i1, . . . , ik] can be written as a commutator [ j1, . . . , jl ], where { j1, . . . , jl} ⊆
{i1, . . . , ik} and jh ≥ jh+1 for all 1 ≤ h ≤ l − 1. If jh = jh+1 for some h, then Fact 3
shows that [ j1, . . . , jh, jh+1] = 1, which in turn implies [ j1, . . . , jl ] = 1. This fact is
summarized in the following result.

Proposition 1 Any left-normed commutator [i1, . . . , ik] can be written as a rigid com-
mutator [ j1, . . . , jl ], for a suitable subset { j1, . . . , jl} ⊆ {i1, . . . , ik}.
It is worth noticing here that rigid commutators are the images of P. Hall’s basic
commutators [18] under the presentation of the groupΣn as a factor of the n-generated
free group, once the order of the generators is reversed.

3.2 Saturated subgroups

In this section we give a representation of the elements of Σn in terms of rigid com-
mutators.
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Lemma 2 The set of all the rigid commutators [X ] ∈ R, where X varies among the
subsets of {1, . . . , n} such that max(X) = i , is a basis for Si .

Proof Let 1 ≤ i ≤ n. To prove the claim, we look at Si as a 2i−1-dimensional vector
space over F2. Proceeding by backward induction on j , for i ≥ j ≥ 1, we show that
the set of all the rigid commutators based at i and hanging from h, for some h ≥ j , is
linearly independent. When j = i there is nothing to prove. Assume

∏

i>i1>···>it≥ j

[i, i1, . . . , it ]ei,i1,...,it = 1, (2)

where the exponents are in F2. We aim at proving that all the exponents are 0. From
Eq. (2) we have

∏

i>i1>···>it> j

[i, i1, . . . , it ]ei,i1,...,it
∏

i>i1>···>it−1>it= j

[i, i1, . . . , it−1, j]ei,i1,...,it−1, j = 1,

and so

∏

i>i1>···>it> j

[i, i1, . . . , it ]ei,i1,...,it

=
⎡

⎣

⎛

⎝
∏

i>i1>···>it−1>it= j

[i, i1, . . . , it−1]ei,i1,...,it−1, j

⎞

⎠ , j

⎤

⎦ . (3)

Note that if the permutation on the right-hand side of Eq. (3) is non-trivial, then it
moves some x with x > 2n− j , which is fixed by the one on the left-hand side. Hence
the permutations on both sides are trivial. By induction, the exponents in the left-hand
side of Eq. (3) are all 0. Now, the commutator map

[ ·, s j ] :
〈

s j+1, . . . , sn
〉 → 〈

s j , . . . , sn
〉

is injective, hence the equality

⎡

⎣

⎛

⎝
∏

i>i1>···>it−1>it= j

[i, i1, . . . , it−1]ei,i1,...,it−1, j

⎞

⎠ , j

⎤

⎦ = 1

implies

∏

i>i1>···>it−1>it= j

[i, i1, . . . , it−1]ei,i1,...,it−1, j = 1.

Again, by the inductive hypothesis, we find ei,i1,...,it−1, j = 0 for every choice of
i1 > · · · > it−1. As the number of rigid commutators based at i equals the dimension
of Si , the proof is complete. ��
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Wecan now state our firstmain result as a straightforward consequence of Lemma2.
Let us call a proper order ≺ on R∗ any total order refining the partial order defined
by [i1, . . . , it ] ≺ [ j1, . . . , jl ] if i1 < j1. Here we denote by Pn the power set of
{1, . . . , n}.
Theorem 1 Given a proper order ≺ in R∗, every element g ∈ Σn can be uniquely
represented in the form

g =
∏

Y∈Pn\{∅}
[Y ]eg(Y ),

where the factors are ordered with respect to≺ and eg : Pn\ {∅} → {0, 1} is a function
depending on g.

Proof Since Σn = S1 � · · · � Sn , the claim is a straightforward consequence of
Lemma 2. ��
Some of the following corollaries are straightforward and their proof will be omitted.

Corollary 1 If G is a subgroup of Σn containing k distinct rigid commutators, then
|G| ≥ 2k .

We now need a new concept which plays a key role in the remainder of this work.

Definition 2 A subset G of R is called saturated if G ∪ {[∅]} is closed under taking
commutators and the subgroup G

def= 〈G 〉 ≤ Σn is called a saturated subgroup.

Remark 1 A subgroup G ≤ Σn is saturated if and only if it can be generated by some
subset X of R: indeed G is also generated by the smallest saturated subset of G ∩ R
containing X .

Corollary 2 Let G ≤ Σn be a saturated subgroup generated by a saturated setG ⊆ R∗
and let ≺ be any given proper order on G. Every element g ∈ G has a unique
representation

g =
∏

c∈G
cec(g),

where the commutators in the product are orderedwith respect to≺ and ec(g) ∈ {0, 1}.
In particular |G| = 2|G|.

Corollary 3 Let G ≤ Σn be a saturated subgroup generated by a saturated setG ⊆ R∗
and let ≺ any given proper order on G. If the product c1 · · · ck ∈ G, where ci ∈ R∗,
and c1 � c2 � · · · � ck , then ci ∈ G for all 1 ≤ i ≤ k.

Proof Note that since every rigid commutator belongs to some Si , the group G has
the semidirect product decomposition G = (G ∩ S1) � · · · � (G ∩ Sn). In particular
every element of G can be written as an ordered product of elements of G. Write
c1 · · · ck = g1 · · · gt where gi ∈ G and g1 � · · · � gt . By Theorem 1, we have k = t
and ci = gi ∈ G. ��
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The next statement follows immediately from Corollary 3.

Corollary 4 Let G ≤ Σn be a saturated subgroup. If g = g1 · · · gn, where gi ∈ Si
for 1 ≤ i ≤ n, then g ∈ G if and only if gi ∈ G ∩ Si for 1 ≤ i ≤ n. Moreover if
g = h1 · · · hn, where hi ∈ Si for 1 ≤ i ≤ n, then hi = gi for 1 ≤ i ≤ n.

4 Elementary abelian regular 2-groups and their chain of normalizers

A vector space T of dimension n over F2 acts regularly over itself as a group of
translations. By way of this action, T can be seen as a regular elementary abelian
subgroup of Sym(2n), and any other regular elementary abelian subgroup of Sym(2n)
is conjugate to T in Sym(2n) [13]. The normalizer of T in Sym(2n) is the affine
group AGL(T ), where T embeds as the normal subgroup of translations. For this
reason, we refer to any of the conjugates of T as a translation subgroup of Sym(2n).
Every chief series F = {Ti }ni=0 of T , where 1 = T0 < T1 < · · · < Tn = T , is
normalized by exactly one Sylow 2-subgroup UF of AGL(T ). In [21, Theorem p.
226] it is proved that every chief series F of T corresponds to a Sylow 2-subgroup
ΣF of Sym(2n) containing T and having a chief series that intersects T in F. The
correspondence F �→ ΣF is a bijection between the sets of the chief series of T and
the set of Sylow 2-subgroups of Sym(2n) containing T . In [5] it is also pointed out that
UF = NΣF(T ) = ΣF ∩ AGL(T ). From now on the chief series F will be fixed, and
so, without ambiguity, we will write Σn and Un to denote respectively ΣF and UF.
In [4] it is proved thatUn contains, as normal subgroups, exactly two conjugates of T ,
namely T and TUn = T g , for some g ∈ Sym(2n). It is also shown that the normalizer
N 1
n = NSym(2n)(Un) interchanges by conjugation these two subgroups and that N 1

n
containsUn as a subgroup of index 2. In particular, N 1

n ≤ Σn . In the following section
we will extend these results on T ,Un, N 1

n to the entire chain of normalizers, which is
defined below.

4.1 The normalizer chain

The normalizer chain starting at T is defined as

Ni
n

def=
{

Un = NΣn (T ) if i = 0,

NΣn (N
i−1
n ) if i ≥ 1.

(4)

In [5] the authors proved that NΣn (N
i
n) = NSym(2n)(Ni

n), for all i ≥ 0, computed
the normalizer chain for n ≤ 11 by way of the computer algebra package GAP [17],
and conjectured that the index

∣
∣Ni+1

n : Ni
n

∣
∣ does not depend on n for n ≥ i + 3 [5,

Conjecture 1]. In this section we prove this conjecture arguing by induction, by means
of the rigid commutator machinery developed in Sect. 3.1. We start by defining

T
def= 〈 t1, . . . , tn 〉
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where

ti
def= [si , si−1, . . . , s1] = [i, i − 1, . . . , 1] ∈ R∗.

Lemma 3 T is an elementary abelian regular subgroup of Σn. In particular, T is a
translation subgroup of Sym(2n).

Proof T is a subgroup of Σn as it is generated by elements belonging to Σn . By item
6 of Lemma 1 it follows that [ti , t j ] = 1, so that T is abelian. Note that t2i = 1 as
ti ∈ Si , and so T is elementary abelian of order at most 2n . Let us now prove that T
is transitive. Let 1 ≤ x ≤ 2n be an integer represented as x = 1 + ∑n

i=1 2
n−iwi in

binary form and let t = ∏n
i=1 t

wi
i . A direct check shows that t moves 1 to x . Since

T has an orbit with 2n elements and it has order at most 2n , it follows that |T | = 2n

and that every point stabilizer is trivial, therefore T is a regular permutation group on
{1, . . . , 2n}. ��

Let us now determine the permutations in Σn normalizing T . For 1 ≤ j < i ≤ n
let us define Xi j

def= {1, . . . , i} \ { j} and

ui j
def= [Xi j ] = [i, . . . , j + 1, j − 1, . . . , 1] ∈ R∗.

From now on we will set

Un
def= {

t1, . . . , tn, ui j | 1 ≤ j < i ≤ n
} ⊆ R∗.

Proposition 2 The group 〈Un 〉 is the normalizer of T in Σn, i.e.

Un = 〈

T , ui j | 1 ≤ j < i ≤ n
〉

.

Proof Let us set U
def= 〈

T , ui j | 1 ≤ j < i ≤ n
〉

and let us prove that U = Un =
NΣn (T ). By Lemma 1 we have

[th, ui j ] =
{

1 if h �= j

ti if h = j .

This shows that U ≤ NΣn (T ) = Un and that Un is a saturated set. Therefore, from

Corollary 2, |U | = 2|Un | = 2
n(n+1)

2 = |Un|, which proves the claim. ��
Weaimat provingour secondmain result, providing the generators of the normalizer

Ni
n in terms of rigid commutators. The result is proved by induction on i ≥ 1.
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Induction basis

Let us denote by ηn the rigid commutator based at n and hanging from 3 such that no
intermediate integer is missing, i.e.

ηn
def= [n, n − 1, . . . , 3]. (5)

We now prove that we can generate N 1
n by appending ηn to the list Un of the rigid

commutators generating Un .

Proposition 3 If n ≥ 3, then the group 〈Un, ηn 〉 is the normalizer N 1
n of Un in Σn,

i.e.

N 1
n = 〈

T , ui j , ηn | 1 ≤ j < i ≤ n
〉

.

Moreover,
∣
∣N 1

n : Un
∣
∣ = 2.

Proof By Lemma 1,

[ti , ηn] =

⎧

⎪⎨

⎪⎩

un,2 if i = 1

tn if i = 2

1 otherwise

and [ui j , ηn] =
{

un,1 if i = 2 and j = 1

1 otherwise
,

Thus the rigid commutator ηn belongs to NΣn (Un), hence 〈Un, ηn 〉 ≤ NΣn (Un).
Moreover Un ∩ Sn = 〈

tn, un,1, . . . , un,n−1
〉

and so ηn , which is based at n, is such
that ηn /∈ Un . The claim now follows from

∣
∣NΣn (Un) : Un

∣
∣ = 2 [4, Theorem 7]. ��

Inductive step

Let 1 ≤ b ≤ n and let I be a (possibly empty) subset of {1, 2, . . . , b − 1}. We define
the rigid commutator based at b and punctured at I as

∨[b; I ] def= [{1, . . . , b} \I ] ∈ R∗ (6)

and, if I = {i1, i2, . . . , ik} we also denote ∨[b; I ] by ∨[b; i1, i2, . . . , ik].
For example, the permutation ηn defined in Eq. (5) is equal to ∨[n; 2, 1].

We also define

Wi j
def=
{

∨[i; I ] ∈ R∗
∣
∣
∣ I ⊆ {1, 2, . . . , i − 1} , |I | ≥ 2,

∑

x∈I
x = j

}

(7)

for each 1 ≤ i ≤ n and j , and

N i
n

def=
{

Un if i = 0

N i−1
n ∪̇

( ˙⋃i
j=1Wn+ j−i, j+2

)

for i > 0.
(8)
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Note that, if j ≤ i −2, then
∣
∣Wi, j

∣
∣ = b j , i.e. the number of partitions of j into at least

two distinct parts. Our next goal is to prove that Ni
n = 〈

N i
n

〉

for each 0 ≤ i ≤ n − 2,
where Ni

n is defined as in Eq. (4). Propositions 2 and 3 show that this is actually the
case when i ∈ {0, 1}.

In order to prove the general result, we need the following reformulation of item 6
of Lemma 1 to compute commutators of rigid commutators written in punctured form.

Proposition 4 Let 1 ≤ a, b ≤ n and let I and J subsets of {1, 2, . . . , a − 1} and
{1, 2, . . . , b − 1} respectively. Then

[∨[a; I ] ,∨[b; J ] ] =
{

∨[max(a, b); (I ∪ J )\ {min(a, b)}] if min(a, b) ∈ I ∪ J

1 otherwise.

Proof Let c
def= [∨[a; I ] ,∨[b; J ] ]. If a = b, then c = 1. Without loss of generality,

we can assume that a > b. By Lemma 1, if b /∈ I , then c = 1. If b ∈ I , the claim
follows from item 6 of Lemma 1. ��

In the following facts, we summarize some properties that will be useful in the
proof of the conjecture.

Fact 4 A commutator∨[a; J ] such that 1 ≤ a ≤ n and J ⊆ {1, 2, . . . , a − 1} belongs
to N i

n if and only if one of the following conditions is satisfied:

1. J = ∅, and so ∨[a; J ] = ta ;
2. |J | = 1, and so ∨[a; J ] = uaj where J = { j};
3. |J | ≥ 2, and

∑

j∈J j ≤ i + 2 − (n − a).

Fact 5 Note that for 2 ≤ i ≤ n − 2 the set N i
n ∩ (S1 � · · · � Sn−1) is equal to N i−1

n−1.
Indeed, at the i th iteration, the newly generated elements of N i

n , which are those in
N i

n\N i−1
n , are constructed by lifting the elements of N i−1

n \N i−2
n , i.e. by replacing

a rigid commutator based at j with the rigid commutator obtained by removing its
left-most element, for j ≤ n, and by adding some new rigid commutators based at n,
in accordance with Eq. (8). Proceeding in this way it is easy to check that, disregarding
all the commutators based at n in N i

n , the lifted elements are exactly the elements of
N i−1

n−1. The reader is referred to Sect. 6 for explicit examples.

Fact 6 In the proof of Proposition 3 we showed that [N 1
n ,N 0

n ] ⊆ N 0
n ∪{[∅]}. Assum-

ing by induction on 2 ≤ i ≤ n − 2 that [N i−1
n−1,N

i−2
n−1] ⊆ N i−2

n−1∪ {[∅]} and using
Fact 5, we can conclude that

[N i
n ∩ (S1 � · · · � Sn−1),N i−1

n ∩ (S1 � · · · � Sn−1)] =
[N i−1

n−1,N
i−2
n−1] ⊆ N i−2

n−1∪ {1} = N i−1
n ∩ (S1 � · · · � Sn−1) ∪ {[∅]} .

Similarly,

[N i
n ∩ (S1 � · · · � Sn−1),N i

n ∩ (S1 � · · · � Sn−1)]
⊆ N i

n ∩ (S1 � · · · � Sn−1) ∪ {[∅]} .
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From the previous fact we have that, in order to prove by induction on i that
[N i

n,N i−1
n ] ⊆ N i−1

n ∪ {[∅]} and that [N i
n,N i

n] ⊆ N i
n ∪ {[∅]}, it suffices to show

that [Wn, i+2 , N i−1
n ] ⊆ N i−1

n ∪ {[∅]} and that [Wn, i+2 , N i
n] ⊆ N i

n ∪ {[∅]}. This is
accomplished in the following result.

Lemma 4 If i ≤ n−2, then [N i
n,N i−1

n ] ⊆ N i−1
n ∪{[∅]} and [N i

n,N i
n] ⊆ N i

n ∪{[∅]}.
Proof If∨[n; I ] ∈ Wn, i+2 ⊆ N i

n\N i−1
n and∨[a; J ] ∈ N i−1

n then, by Proposition 4,

c
def= [∨[n; I ] ,∨[a; J ] ] =

{

∨[n; (I ∪ J )\ {a}] if a ∈ I

1 otherwise.

We may assume a ∈ I . From Fact 4, if ∨[a; J ] is as in case (3), we have
∑

x∈(I∪J )\{a}
x ≤

∑

x∈J

x +
∑

x∈I
x − a

≤ i + 1 − (n − a) + i + 2 − (n − n) − a

= i + 2 − (n − i − 1)

≤ i + 2 − 1 = i + 1,

and so c ∈ N i−1
n . If ∨[a; J ] is as in case (1), i.e. ∨[a; J ] = ta , then we have

∑

x∈(I∪J )\{a}
x =

∑

x∈I
x − a = i + 2 − a ≤ i + 1

and so, also in this case, c ∈ N i−1
n . Finally, if ∨[a; J ] is as in case (2), i.e. ∨[a; J ] =

ua, j , we have

∑

x∈(I∪J )\{a}
x ≤

∑

x∈I
x − a + j = i + 2 − (a − j) ≤ i + 1

and again c ∈ N i−1
n . Similar computations prove that, if ∨[a; J ] ∈ N i

n , then also
c ∈ N i

n . ��
The following result is now straightforward.

Proposition 5 The set N i
n is a saturated set of rigid commutators and

〈

N i
n

〉 ≤
NΣn

(〈

N i−1
n

〉)

. Moreover,
∣
∣
〈

N i
n

〉∣
∣ = 2

∣
∣N i

n

∣
∣
.

Proof The claim follows from Lemma 4, Fact 6 and Corollary 2. ��
We conclude this section with our main result showing that the i th term of the

normalizer chain is actually generated by the set N i
n of rigid commutators defined

in Eq. (8). We prove, indeed, that the inclusion
〈

N i
n

〉 ≤ NΣn

(〈

N i−1
n

〉)

shown in the
previous proposition is actually an equality.
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Theorem 2 For i ≤ n − 2, the group
〈

N i
n

〉

is the i th term Ni
n of the normalizer chain.

Proof The cases i = 0 and i = 1 has been addressed respectively in Propositions 2

and 3. We assume by induction on i ≥ 2 that N j
m =

〈

N j
m

〉

for all m ≤ n whenever

j < i ≤ m − 2. In particular

N j
m ∩ Σm−1 = N j−1

m−1 = 〈N j−1
m−1 〉 .

Notice that
〈

N i
n

〉

∩ Σn−1 =
〈

N i−1
n−1

〉

= Ni−1
n−1 = NΣn−1(N

i−2
n−1)

= NΣn−1(N
i−1
n ∩ Σn−1)

= NΣn−1(N
i−1
n ∩ Σn−1) ∩ NΣn−1(N

i−1
n ∩ Sn) = NΣn−1(N

i−1
n ),

where the first equality in the last line holds since the following inclusions

[N i−1
n−1,N

i−1
n ] ⊆ [N i

n,N i−1
n ] ⊆ N i−1

n ∪ {[∅]}

imply that NΣn−1(N
i−1
n ∩ Σn−1) ⊆ NΣn−1(N

i−1
n ∩ Sn). As Sn is abelian, we have

Ni
n = NΣn (N

i−1
n ) = NΣn−1�Sn (N

i−1
n )

= NΣn−1(N
i−1
n )NSn (N

i−1
n ) =

〈

N i−1
n−1

〉

NSn (N
i−1
n ).

(9)

We are then left to determine NSn (N
i−1
n ) =

{

x ∈ Sn | [x,N i−1
n−1] ⊆ Ni−1

n ∩ Sn
}

.

Let us point out that, by Eqs. (7) and (8), the groups

A
def=
〈

N i
n ∩ Sn

〉

and B
def= 〈 ⋃

j≥i+1

Wn, j+2
〉

have trivial intersection and that Sn = A × B. By Lemma 4 we have that A is a
subgroup of Ni

n ∩ Sn , for 1 ≤ j ≤ i , so that Ni
n = A × H where

H
def=
{

x ∈ 〈 ⋃

j≥i+1

Wn, j+2
〉
∣
∣
∣ [x,N i−1

n−1] ⊆ Ni−1
n ∩ Sn

}

.

We denote a generic element of H by

x
def=
∏

I∈I
∨[n; I ]eI ,

where the product is taken over the set I of all the subsets I ⊆ {1, . . . , n − 1} such
that

∑

y∈I y ≥ i + 3. For 1 ≤ l ≤ n let Il = {I ∈ I | min(I ) = l}. Let u = ul, l−1 if
l > 1, or u = t1 = [1] if l = 1. Since x ∈ H , we have that
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[x, u] =
{∏

I�l ∨[n; (I ∪ {l − 1})\ {l}]eI if l > 1
∏

I�1 ∨[n; I\ {1}]eI if l = 1

belongs to N i−1
n , and in particular eI �= 0 implies

∑

y∈(I∪{l−1})\{l}
y ≤ i + 1.

If I ∈ Il then
∑

y∈(I∪{l−1})\{l}
y =

∑

y∈I
y − l + (l − 1) =

∑

y∈I
y − 1 ≥ i + 2,

so that eI = 0 for I ∈ Il . As I = ⋃n
l=1 Il , we have H = {1}. This finally shows that

NSn (N
n
i−1) = A = Nn

i ∩ Sn = 〈

N i
n ∩ Sn

〉

and, by Eq. (9), that

Nn
i = NΣn (N

n
i−1) =

〈

N i−1
n−1

〉

NSn (N
i−1
n ) =

〈

N i−1
n−1 ∪ (N i

n ∩ Sn)
〉

=
〈

(N i
n ∩ Σn−1) ∪ (N i

n ∩ Sn)
〉

=
〈

N i
n

〉

,

as claimed. ��

4.2 Partitions into at least two distinct parts

This work was motivated by the computational evidence that the number ci
def=

log2
∣
∣Ni−2

n : Ni−3
n

∣
∣ does not depend on n, if 3 ≤ i ≤ n [5]. The first terms of the

sequence {ci } coincide with those of the sequence {ai } defined in [1, https://oeis.org/
A317910], where ai is the i th partial sum of the sequence {bi }, where bi is the number
of partitions of i into at least two distinct parts. Some values of the aforementioned
sequences are displayed in Table 1.

We have developed the rigid commutator machinery as a theoretical tool of investi-
gation. It is no longer surprising that the equality bi = ∣

∣Wn,i
∣
∣, whereWn,i is defined by

Eq. (7), is the link with the mentioned sequence. This combinatorial identity, Eq. (1),
Proposition 5 and Theorem 2 give at last a positive answer to Conjecture 1 in [5].

Corollary 5 For 1 ≤ i ≤ n − 2, the number log2
∣
∣Ni

n : Ni−1
n

∣
∣ is independent of n. It

equals the (i + 2)th term of the sequence
{

a j
}

of the partial sums of the sequence
{

b j
}

counting the number of partitions of j into at least two distinct parts.

Table 1 First values of the
sequences ai and bi

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

bi 0 0 0 1 1 2 3 4 5 7 9 11 14 17 21

ai 0 0 0 1 2 4 7 11 16 23 32 43 57 74 95
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5 Normalizers of saturated subgroups

In this section we will prove that the normalizer N
def= NΣn (G) of a saturated subgroup

G of Σn is also saturated, provided that T ≤ N , and thus we can use our rigid
commutator machinery in the computation of N . In particular, for i ≤ n − 2, the
machinery could be used as an alternative tool to derive the theoretical description of
Ni
n as in Theorem 2. Even if we do not have such a description when i > n − 2, the

machinery can be anyway used to efficiently compute viaGAP the complete normalizer
chain.

We denote below by Ni the intersection N ∩ Si .

Proposition 6 If G is a saturated subgroup of Σn, and N = NΣn (G) is its normalizer
in Σn, then

N = N1 � · · · � Nn = �
n
i=1NSi (G).

In particular if x ∈ N and x = x1 · · · xn, with xi ∈ Si for all 1 ≤ i ≤ n, then xi ∈ Ni

for all 1 ≤ i ≤ n.

Proof Let x ∈ N and write x = xi1 . . . xik where 1 ≤ i1 < · · · < ik ≤ ik+1
def= n and

xi j ∈ Si j , for 1 ≤ j ≤ k. In order to prove our claim we first show that [xi1 , c] ∈ G for
every non-trivial rigid commutator c of G. Since G is generated by its own non-trivial
rigid commutators, it will follow that xi1 ∈ N . As a consequence, also xi2 . . . xik ∈ N .
Thus, we may argue by induction on k to obtain that xi j ∈ N for all 1 ≤ j ≤ k.

Let i be such that c ∈ G ∩ Si . Suppose first that i < i1. If [c, xi1 ] = 1, then
[c, xi1 ] ∈ G. If [c, xi1 ] �= 1, then [c, x] = [c, xi1 ]h ∈ G, where [c, xi1 ] ∈ Si1 and
h ∈ ∏

t>i1 St . By Corollary 4 we obtain that [c, xi1 ] ∈ G ∩ Si1 ≤ G. If i = i1, then
trivially [c, xi1 ] = 1 ∈ G. The last possibility is i1 < · · · < im < i ≤ im+1 for some
m ≤ k. Suppose that [xi1 , c] �= 1. In this case

G � [x, c] = [xi1 . . . xik , c] = [xi1 , c]xi2 ...xik · [xi2 . . . xik , c]
= ([xi1 , c]xi2 ...xim

)xim+1 ...xik · [xi2 . . . xik , c]
= [xi1 , c]xi2 ···xim · [[xi1 , c]xi2 ···xim , xim+1 · · · xik ] · [xi2 . . . xik , c].

Let us consider the commutators

[xi1 , c]xi2 ···xim = [xi1 , c][[xi1 , c], xi2 · · · xim ] = d1 · · · dt ,
[[xi1 , c]xi2 ···xim , xim+1 · · · xik ] = m1 · · ·mr ,

[xi2 · · · xim · xim+1 · · · xik , c] = f1 · · · fs · l1 · · · lu,

written as ordered product of distinct rigid commutators

d1, . . . , dt , f1, . . . , fs ∈ G ∩ Si ,
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and

m1, . . . ,mr , l1, . . . , lu ∈ G ∩ (Si+1 � · · · � Sn).

Notice that {d1, . . . , dt } ∩ { f1, . . . , fs} = ∅ since the commutators di are of the form
[X ] for some set X with i1 ∈ X , whereas the commutators f j are of the form [Y ] for
some set Y with i1 /∈ Y . This yields [xi1 , c]xi2 ···xim ∈ G∩ Si and so [xi1 , c] ∈ G∩ Si ≤
G. ��
Lemma 5 Suppose that G is a saturated subgroup of Σn normalized by T . If
x1, . . . , xk ∈ S j are distinct rigid commutators such that x = x1 · · · xk ∈ N, then
xi ∈ N for all 1 ≤ i ≤ k.

Proof Let c1, . . . , ch ∈ R∗ such that G = 〈 c1, . . . , ch 〉 and let us write every cs and
xt in punctured form: cs = ∨[ms;Cs] and xt = ∨[ j; Xt ].

Suppose first that ms < j , so that

[cs, x] =
k
∏

t=1

ds,t ∈ G ∩ S j , (10)

where ds,t
def= [cs, xt ] = ∨[ j;Cs ∪ (Xt\ {ms})]. Notice that if the commutator ds,t

appears only once in the product, then, by Corollary 3, ds,t ∈ G. If Cs ∩ Xt = ∅ for
all 1 ≤ t ≤ k, then all the non-trivial ds,t appearing in the product are distinct and
hence they appear only once in the product, so that ds,t ∈ G for all 1 ≤ t ≤ k. If
Cs ∩ Xt �= ∅, then the commutator ds,t may appear more than once in the product
displayed in Eq. (10). Let l ∈ Cs ∩ Xt and consider the commutator cs,l = [cs, tl ] =
∨[ms;Cs\ {l}] ∈ G as tl = [l, . . . , 1] ∈ T ≤ NΣn (G). Notice that

[cs,l , xt ] = ∨[ j; (Cs\ {l}) ∪ (Xt\ {ms})]
= ∨[ j;Cs ∪ (Xt\ {ms})] = [cs, xt ] = ds,t .

LetC = Cs\ {l}. We have determined a new rigid commutator c = cs,l = ∨[ms;C] ∈
G such that |C ∩ Xt | < |Cs ∩ Xt |, that |C | < |Cs | and that ds,t = [c, xt ] appears
in the expansion of [c, x]. Using the same strategy, after a finite number of steps, we
obtain c = ∨[ms;C] ∈ G such that C ∩ Xt = ∅. If ds,t = [c, xt ] = [c, xt1 ] = ds,t1 ,
for some t1 �= t , then C ∩ Xt1 �= ∅, since otherwise Xt = Xt1 and consequently
xt = xt1 with t �= t1, contrary to the hypotheses. Thus we may proceed in the same
way with ds,t1 . Since at each step the cardinality of C is strictly decreasing, after a
finite number of steps we find a c ∈ G and xtr such that ds,t = ds,t1 = · · · = ds,tr
appears only once in [c, x] giving ds,t ∈ G. This finally shows that ds,t ∈ G for all
1 ≤ t ≤ k.

If j = ms then xi and cs commute for all i and there is nothing to prove.
We are left with the case when ms > j . As above, we have

[cs, x] =
k
∏

t=1

ds,t ∈ G ∩ S j ,
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where ds,t
def= [cs, xt ] = ∨[ms; (Cs\ { j}) ∪ Xt ]. Reasoning as we did for ms < j , we

obtain that ds,t ∈ G for all 1 ≤ t ≤ k.
In all the cases we have proved that xi ∈ N for all 1 ≤ i ≤ k, which is our claim. ��
As an easy consequence of Proposition 6 and Lemma 5we find the following result.

Theorem 3 The normalizer N in Σn of a saturated subgroup of Σn is also saturated,
provided that N contains T .

Remark 2 Let A and B be two subsets of R such that {t1, . . . , tn} ⊆ A ⊆ B, let
A = 〈A 〉 and B = 〈B 〉 be the corresponding saturated subgroups. It is easy to
recognize that NB(A) = 〈 b ∈ B | [b,A] ⊆ A ∪ {[∅]} 〉. Similarly, the normal closure
AB of A in B is the subgroup generated by the intersection of all the subsets C of
R such that A ⊆ C ⊆ B and [C,B] ⊆ C ∪ {[∅]}. In particular, both the normalizer
NB(A) and the normal closure AB are saturated.

Remark 3 The condition that T is contained in the normalizer N = NΣn (G) of a
saturated subgroup G cannot be removed from the hypotheses of Theorem 3. Indeed,
if G = 〈 [n, . . . , 3] 〉, then the product [2] · [2, 1] is contained in the centralizer of A,
and hence also in the normalizer N of A, but none of the two rigid commutators [2]
or [2, 1] ∈ T normalizes G. In particular, by Corollary 4, the subgroup N cannot be
saturated.

Remark 4 Another proof of Theorem 2 can be obtained from Theorem 3. Indeed, it is
not difficult, but rather tedious, to check that

N i
n =

{

c ∈ R∗ | [c,N i−1
n ] ⊆ N i−1

n ∪ {[∅]}
}

.

for 0 ≤ i ≤ n − 2. The result then follows by Proposition 5.

From Theorems 2 and 3 and from Remark 4 we derive a straightforward corollary
resulting in an algorithm whose GAP implementation is publicly available at GitHub
(see https://github.com/ngunivaq/normalizer-chain). This script produces a significant
speed-up in the computation of the normalizer N of a saturated subgroup provided
that N contains T . We could easily apply this script to compute our normalizer chain
up to the dimension n = 22. For example, whereas the standard libraries required one
month on a cluster to compute the terms of the normalizer chain in Sym(210), our
implementation of the rigid commutator machinery gives the result in a few minutes,
even on a standalone PC. With a similar approach, we can also use rigid commutators
to compute the normal closure of a saturated subgroup. Some explicit calculations are
shown below in Sect. 6. Let Mi

n be the set of all the rigid commutators belonging
to Ni

n . From Theorem 3, the subgroups Ni
n are saturated, hence Ni

n = 〈

Mi
n

〉

for all
i ≥ 1.

Corollary 6 The set Mi
n is the largest subset of R that normalizes Mi−1

n , i.e.

Mi
n =

{

c ∈ R | [c,Mi−1
n ] ⊆ Mi−1

n

}

.
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Moreover, N i
n = Mi

n\ {[∅]} for 1 ≤ i ≤ n − 2.

The construction of the terms of the normalizer chain is then reduced to the determi-
nation of the sets Mi

n , a task which turns out to be way faster than computing the
terms of the normalizer chains as subgroups of Σn via the Normalizer command
provided by GAP.

6 A computational supplement

In this sectionwe showan explicit construction of the first four groups in the normalizer
chain when n = 6, i.e. in Sym(64). Let us start by determining the generators of T in
terms of rigid commutators:

t1 = [1] = (1, 33)(2, 34)(3, 35) . . . (30, 62)(31, 63)(32, 64),

t2 = [2, 1] = (1, 17)(2, 18)(3, 19) . . . (46, 62)(47, 63)(48, 64),

t3 = [3, 2, 1] = (1, 9)(2, 10)(3, 11) . . . (54, 62)(55, 63)(56, 64),

t4 = [4, 3, 2, 1] = (1, 5)(2, 6)(3, 7) . . . (58, 62)(59, 63)(60, 64),

t5 = [5, 4, 3, 2, 1] = (1, 3)(2, 4)(5, 7) . . . (58, 60)(61, 63)(62, 64),

t6 = [6, 5, 4, 3, 2, 1] = (1, 2)(3, 4)(5, 6) . . . (59, 60)(61, 62)(63, 64).

We have that T = 〈 t1, t2, . . . , t6 〉 and, from Proposition 2, its normalizer in Σn is
N 0
6 = U6 = 〈U6 〉 = 〈

T , ui j | 1 ≤ j < i ≤ 6
〉

. Thus the generators of N 0
6 , besides

those of T , are

∨[6; 5] ,∨[6; 4] ,∨[6; 3] ,∨[6; 2] ,∨[6; 1] ,
∨[5; 4] ,∨[5; 3] ,∨[5; 2] ,∨[5; 1] ,

∨[4; 3] ,∨[4; 2] ,∨[4; 1] ,
∨[3; 2] ,∨[3; 1] ,

∨[2; 1] ,

consequently |N 0
6 | = 221. Now, in accordance with Eq. (8) and Theorem 2, the nor-

malizer N 1
6 is generated by the rigid commutators previously listed and by η6, the only

element ofW6,3 (see Eq. (7)). The commutator η6 is the punctured rigid commutator
based at 6 and missing the integers 1 and 2, i.e.

η6 = [6, 5, 4, 3] = ∨[6; 2, 1] , (11)

where 1 and 2 indeed represent the sole partition of 3 into at least two distinct parts.
From this, log2

∣
∣N 1

6 : N 0
6

∣
∣ = 1 = a3. Again from Eq. (8) and Theorem 2, the nor-

malizer N 2
6 is generated, along with the elements already mentioned, by the rigid

commutators inW5,3 and W6,4, i.e.

[5, 4, 3] = ∨[5; 2, 1] , (12)
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[6, 5, 4, 2] = ∨[6; 3, 1] . (13)

The commutator of Eq. (12), which belongs toW5,3, is the punctured rigid commutator
based at 5 andmissing the integers 1 and 2. The commutator of Eq. (13) instead, which
belongs to W6,4, is based at 6 and misses the integers 1 and 3, composing the sole
partition of 4 into at least two distinct parts. Notice that [5, 4, 3] = [�6, 5, 4, 3]. Indeed,
as discussed in Fact. 5, the commutator of Eq. (12) is obtained by lifting the one of
Eq. (11), i.e. by removing 6, the left-most element of η6. We have log2

∣
∣N 2

6 : N 1
6

∣
∣ =

2 = a4. Similarly, N 3
6 is generated by adding the new rigid commutators

[�5, 4, 3] = [4, 3] = ∨[4; 2, 1] , (14)

[�6, 5, 4, 2] = [5, 4, 2] = ∨[5; 3, 1] , (15)

[6, 5, 3, 2] = ∨[6; 4, 1] , (16)

[6, 5, 4, 1] = ∨[6; 3, 2] , (17)

where the commutators of Eqs. (14) and (15) are respectively obtained by lifting those
of Eqs. (12) and (13), and the commutators of Eqs. (16) and (17) belong to W6,5,
respectively corresponding to the partitions 4 + 1 and 3 + 2 of 5. At this stage, we
have that log2

∣
∣N 3

6 : N 2
6

∣
∣ = 4 = a5. Ultimately, the commutators

[�4, 3] = [3] = ∨[3; 2, 1] ,
[�5, 4, 2] = [4, 2] = ∨[4; 3, 1] ,

[�6, 5, 3, 2] = [5, 3, 2] = ∨[5; 4, 1] ,
[�6, 5, 4, 1] = [5, 4, 1] = ∨[5; 3, 2] ,

[6, 4, 3, 2] = ∨[6; 5, 1] ,
[6, 5, 3, 1] = ∨[6; 4, 2] ,
[6, 5, 4] = ∨[6; 3, 2, 1]

complete the set of rigid generators of N 4
6 , and log2

∣
∣N 4

6 : N 3
6

∣
∣ = 7 = a6.

Using Corollary 6, we can find a saturated set of rigid generators for all the elements

of the chain.Notice that for i > 5, the sequence log2

∣
∣
∣Ni

6 : Ni−1
6

∣
∣
∣does not fit the pattern

of the sequence {a j }. Althoughwe do not have a general formula to calculate the values
of the relative indices between two consecutive terms in the normalizer chain, they
can be explicitly determined by the algorithm in GitHub. Computational results are
summarized in Table 2, where we list all the relative indices of the normalizer chain.
In the second column, the logarithms of the sizes of the intersections of each termwith
each of the subgroups S6, . . . , S1 are displayed.
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Table 2 The normalizer chain
for n = 6 i

dim(Ni
6 ∩ S j )

j = 6, 5, 4, 3, 2, 1
log2

∣
∣
∣Ni

6

∣
∣
∣ log2

∣
∣
∣Ni

6 : Ni−1
6

∣
∣
∣

0 6, 5, 4, 3, 2, 1 21 15

1 7, 5, 4, 3, 2, 1 22 1

2 8, 6, 4, 3, 2, 1 24 2

3 10, 7, 5, 3, 2, 1 28 4

4 13, 9, 6, 4, 2, 1 35 7

5 14, 10, 6, 4, 2, 1 37 2

6 16, 11, 7, 4, 2, 1 41 4

7 18, 12, 8, 4, 2, 1 45 4

8 19, 12, 8, 4, 2, 1 46 1

9 20, 12, 8, 4, 2, 1 47 1

10 21, 13, 8, 4, 2, 1 49 2

11 22, 14, 8, 4, 2, 1 51 2

12 23, 15, 8, 4, 2, 1 53 2

13 24, 16, 8, 4, 2, 1 55 2

14 25, 16, 8, 4, 2, 1 56 1

15 26, 16, 8, 4, 2, 1 57 1

16 27, 16, 8, 4, 2, 1 58 1

17 28, 16, 8, 4, 2, 1 59 1

18 29, 16, 8, 4, 2, 1 60 1

19 30, 16, 8, 4, 2, 1 61 1

20 31, 16, 8, 4, 2, 1 62 1

21 32, 16, 8, 4, 2, 1 63 1

7 Problems for future research

We conclude this work by highlighting some suggestions for further properties and
structures of the set R of rigid commutators and providing some hints for future
research.

7.1 Algebras of rigid commutators

Theoperation of commutation inR is commutative and [∅] represents the zero element.
Moreover, for every x, y ∈ R the following identity is satisfied

[[x, x, y], x] = [[x, x], [y, x]] (Jordan identity).

Let F be any field of characteristic 2 and let r be the vector space over F having the
setR∗ of the non-trivial rigid commutators as a basis. The space r is endowed with a
natural structure of an algebra. The product x�y of two rigid commutators x, y ∈ R
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Table 3 Values of
log2|Ni

n : Ni−1
n | for small i and

n

n log2|Ni
n : Ni−1

n | for 1 ≤ i ≤ 14

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 2 1 1 0 0 0 0 0 0 0 0 0 0

5 1 2 4 1 2 2 1 1 1 1 0 0 0 0

6 1 2 4 7 2 4 4 1 1 2 2 2 2 1

7 1 2 4 7 11 4 7 3 4 2 2 4 4 4

8 1 2 4 7 11 16 7 5 6 2 6 6 3 3

9 1 2 4 7 11 16 23 4 9 4 11 4 12 9

10 1 2 4 7 11 16 23 32 4 14 5 20 7 19

11 1 2 4 7 11 16 23 32 43 5 22 7 32 4

12 1 2 4 7 11 16 23 32 43 57 7 32 12 43

13 1 2 4 7 11 16 23 32 43 57 74 12 42 18

14 1 2 4 7 11 16 23 32 43 57 74 95 8 24

15 1 2 4 7 11 16 23 32 43 57 74 95 121 8

For i ≤ n − 2 these numbers do not depend on n and in the table are
represented by bold digits

is defined as

x�y
def=
{

[x, y] if [x, y] �= [∅]
0 otherwise.

This operation is then extended to the whole r by bilinearity and turns r into a Jordan
algebra, since it is commutative and x�x = 0 for all x ∈ r. Moreover, if H is a
saturated subset of R∗, then, on the one hand the group H = 〈H 〉 is a saturated
subgroup of Σn and, on the other hand, the F-linear span h ofH is a subalgebra of r.
The property [R,H] ⊆ H ∪ {[∅]} is a necessary and sufficient condition for H to be
a normal subgroup of Σn and for h to be an ideal of r. We point out that the fact that
R is closed under commutation is crucial to check the previous statement. If c is the
nilpotency class of Σn , then the product of c+1 elements of r is always zero, so that r
is nilpotent. The study of the properties and the representations of this algebra seems
to be a problem of independent interest, in connection with the study of the saturated
subgroups of Σn .

7.2 Again on the normalizer chain

We have obtained from Theorem 2 an explicit description of the non-trivial rigid
generators of the i th term of the normalizer chain when 1 ≤ i ≤ n − 2, i.e. the set
N i

n . We have seen that N i
n has a nice description by way of Eqs. (7) and (8), i.e. it is

generated by some rigid commutators either belonging to Un or having a punctured
form corresponding to suitable partitions into at least two distinct parts. Although
we can efficiently compute all the normalizers in the chain, as described in the lines
following Corollary 6, it is an interesting problem to find a similar combinatorial
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formula for the generating set Mi
n of Ni

n when i > n − 2. Moreover, as already
mentioned in Sect. 6, the values of the sequence log2|Ni

n : Ni−1
n | do not seem to

conform to any special known pattern when i > n − 2. Table 3 contains the values of
log2|Ni

n : Ni−1
n | for 1 ≤ i ≤ 14 and 3 ≤ n ≤ 15. The determination of the general

behavior of the sequence is an open problem.

7.3 An odd generalization

It appears natural to ask whether a similar rigid commutator machinery can be devel-
oped in a Sylow p-subgroup of the symmetric group Sym(pn)when p is an odd prime.
This seems to be an entirely different problem in terms of techniques and results. For
example, a rigid commutator could contain repetitions. It may turn out interesting
on a computational point of view, although such a machinery might have a weaker
cryptographic application.
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