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Abstract
In this paper, we study the well-posedness and regularity of mild solutions for a class
of time fractional damped wave equations, which the fractional derivatives in time are
taken in the sense of Caputo type. A concept of mild solutions is introduced to prove
the existence for the linear problem, as well as the regularity of the solution. We also
establish a well-posed result for nonlinear problem. By applying finite dimensional
approximation method, a compact result of solution operators is presented, follow-
ing this, an existence criterion shows that the Lipschitz condition or smoothness of
nonlinear force functions in some literatures can be removed. As an application, we
discuss a case of time fractional telegraph equations.
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1 Introduction

Fractional differential equations have gained considerable importance due to their
widespread applications in a variety of fields such as physics, chemistry, engineer-
ing, biology, geophysics and hydrology. In recent years, partial differential equations
with fractional derivatives have been investigated extensively. For details and exam-
ples, we refer the reader to a series of papers [1,2,4–10,12,15–18,20–24,26–29,31,32]
and the references cited therein. The main purpose of this paper is to investigate the
initial/boundary value problems for time fractional damped wave equation

∂
β
t u + ∂αt u = �u + f (u), t > 0, (1.1)

subject to Dirichlet’s boundary condition

u(t, x) = 0, x ∈ ∂�, t > 0, (1.2)

and initial value conditions

u(0, x) = φ(x), ∂t u(0, x) = ψ(x), x ∈ �, (1.3)

where � ⊂ R
d (d ≥ 1) is a bounded domain with the sufficiently smooth boundary

∂�, ∂βt , ∂
α
t are standard fractional derivatives in the sense of Caputo type of order

β ∈ (1, 2] and α ∈ (0, 1], respectively. f is an appropriate force function which will
be special later. Taking the case of β = 2 and α = 1 in (1.1), it becomes the standard
damped wave equation, which is an important mathematical model in studying many
physic problems. Readers can easily find a large number of related researches that
are focused on the well-posedness of some linear or nonlinear Cauchy problems. In
addition, various papers have considered to establish the asymptotic behavior and
regularity estimates of the solutions, we refer to [3,11,14] and the references therein.
Observe that, if β = 2α for α ∈ (1/2, 1] associated with (1.1), this equation contains a
typical time fractional telegraph equation, which is derived from the law of the iterated
Brownian motion and Brownian time for the telegraph process, see e.g. [23].

A strongmotivation for investigating the Eq. (1.1) comes fromphysical phenomena.
The time fractional diffusion equation ∂

β
t u = �u of order β ∈ (0, 1) can be used

to model anomalous diffusion phenomena, which is driven by fractional Brownian
motion and it represents the subdiffusion behavior [32], while the time fractional
wave equation of order β ∈ (1, 2) will interpolate between the heat equation (β = 1)
and the wave equation (β = 2) that govern intermediate processes between diffusion
and wave propagation, and it further is interpreted as the superdiffusion behavior.
Moreover, fractional wave equations also can model a cable made with special smart
materials or a vibrating string in presence of a fractional friction with power-law
memory kernel. From these physical points of view, some partial differential equations
with fractional derivative will be better suitable to describe in practical problems. As
for the current problem, in fact, without the term ∂

β
t u associated with (1.1), there are

more researches concerning with this fractional diffusion equation, the analysis of
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well-posedness, asymptotic analysis, decay estimates, blow-up solutions have been
studied in [1,6,15,17]. Without the forcing term f and damped term ∂αt u associated
with (1.1), the analysis theories of fractional wave equations have been studied by
Luchko [20], Mainardi [21,22], Sakamoto and Yamamoto [26], Schneider and Wyss
[27], etc. Recently, concerning with fractional wave equations, Kian and Yamamoto
[16] have investigated the existence of weak solution and some Strichartz estimates
under the case of semilinear force function on bounded domain. The well-posedness
results associated with a Dirichlet space have been considered by Alvarez et al. [4]. In
addition, Otarola and Salgado [24] have studied the regularity of weak solutions, and
also discussed the spatial-time regularities of the solution for an extended problem.
Djida et al. [8] have concerned with the well-posedness results on whole spaceRN and
they derived some L p − Lr estimates of solution. Associated with an extra damping
term in fractional wave equation, that can describe the interaction between the vector
electric field and the electric and magnetic properties of the material (see e.g. [13]),
we observe that there are still few researches addressing the following wave equation
with damping

∂
β
t u + ∂αt u − �u = 0.

In 2005, Alaimia and Tatar [2], Tatar [29] have investigated the blow up for the wave
equationwith a fractional damping. In one dimensional unbounded domain, Stojanovic
and Gorenflo [28] obtained an upper viscosity solution for the case β ∈ (1, 2) and α ∈
(0, 1), while on a bounded domain, Lin and Nakamura [18] investigated the Carleman
estimate that give the unique continuation property of solutions for an anomalous
diffusion equation with multi-terms time fractional Caputo derivative, as well as the
case for fractional diffusion equation [19]. Consequently, it is natural to discuss more
general fractional wave equations with damping term.

Motivated by the above mentioned works, in this paper, we will focus on the well-
posedness and regularity of linear fractional damped wave equations, one reason to
consider these properties is that there are few papers to establish the qualitative theory
of damped wave equations in the sense of fractional versions. Especially in nonlinear
problem, there is an urgent need for existence results to extend some known conclu-
sions. The second reason is that the Laplacian operator associated with Dirichlet’s
boundary condition on a bounded domain with the sufficiently smooth boundary on
L2(�) can be expressed as a spectrum problem, and this will lead to the relative solu-
tion operators are compact and are uniformly continuous on their domains, following
these properties, we get a general existence result without the Lipschitz condition or
the smoothness assumption on nonlinear function.

This paper is organized as follows. Section 2 recalls some concepts and known
results which will be useful throughout this paper. In Sect. 3, we first introduce a
suitable definition of mild solution for the linear problem, and then we obtain some
existence and regularity of mild solutions. In Sect. 4, some exact upper bounds of
several Mittag–Leffler functions are obtained. Under the local Lipschitz condition of
nonlinear force function, a well-posed result of problem (1.1)–(1.3) is established.
Next, we show the continuation and blow-up alternative of the solution. In addition,
we also prove the compactness of the solution operator, which allows us to study the
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existence of mild solutions by removing the Lipschitz condition or higher regularity
hypothesis of force function. Finally, an application is introduced to verify our main
results.

2 Preliminary results

In this section, we will provide some notations and preliminary lemmas.
Let us first recall the Riemann–Liouville fractional integral of order β ∈ R+ with

the lower limit zero for a function v ∈ L1(0, T ; X) with X a Banach space defined
by

Jβ
t v(t) = 1

	(β)

∫ t

0
(t − s)β−1v(s)ds, t ≥ 0,

where 	(β) is the usual gamma function of order β.

Definition 2.1 Let α ∈ (0, 1), β ∈ (1, 2) and T > 0. Consider a function v ∈
L1(0, T ; X) such that J 1−α

t v ∈ W 1,1(0, T ; X) or J 2−β
t v ∈ W 2,1(0, T ; X). The

representations

∂αt v(t) = ∂t
(
J 1−α

t (v(t) − v(0))
)
,

and

∂
β
t v(t) = ∂2t t

(
J 2−β

t (v(t) − v(0) − t ∂tv(0))
)
,

are called the Caputo fractional derivative of order α and β, respectively.

In particular, whenρ = 0, one finds that Jρ
t v(t) = v(t). Hence, ifα = 1 orβ = 2, then

the Caputo fractional derivatives commute with integer order derivatives, respectively.

2.1 Mittag–Leffler functions

In what follows, the Mittag–Leffler function Eμ,ν(z) is defined by

Eμ,ν(z) =
∞∑

n=0

zn

	(μn + ν)
, μ > 0, ν ∈ R, z ∈ C.

From the properties of power series, one can see that Eμ,ν(z) is an entire function.
Moreover, it is well known that Eμ,1(−t) is a positive and completely mono-
tonic function for μ ∈ (0, 1), t > 0, that is, for all t > 0, k ∈ N0, we have
(−1)k

( d
dt

)k
Eμ,1(−t) ≥ 0. Additionally, one can find that ω(t) := Eμ,1(λtμ) is a

solution of equation ∂
μ
t ω(t) = λω(t), λ ∈ R, μ ∈ (0, 2). We use the notation a � b

that stands for a ≤ Cb, with a positive constant C that does not depend on a, b. The
following lemmas will be frequently used and can be found in [25].
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Lemma 2.1 For λ > 0, μ > 0, ν ∈ R and any arbitrary positive number m, we have

(
d

dt

)m (
tν−1Eμ,ν(−λtμ)

)
= tν−m−1Eμ,ν−m(−λtμ), t > 0.

in particular,
d

dt
Eμ,1(−λtμ) = −λtμ−1Eμ,μ(−λtμ), t > 0.

Lemma 2.2 If 0 < μ < 2, ν ∈ R, πμ/2 < θ < min(π, πμ), then

∣∣Eμ,ν(z)
∣∣ � 1

1 + |z| , z ∈ C, θ ≤ |argz| ≤ π.

Lemma 2.3 If 0 < μ < 2, ν ∈ R, θ is such that πμ/2 < θ < min(π, πμ), then

|Eμ,ν(z)| � (1 + |z|)(1−ν)/μ exp
(
Re(z1/μ)

) + 1

1 + |z| , z ∈ C, |argz| ≤ θ.

By the fractional order term-by-term integration of the series, there is a more general
relationship obtained as follows

1

	(ϑ)

∫ t

0
(t −s)ϑ−1sν−1Eμ,ν(λsν)ds = tν+ϑ−1Eμ,ν+ϑ(λtν), ϑ > 0, ν > 0, t > 0.

(2.1)

Lemma 2.4 [4] Let 1 < β < 2, β ′ ∈ R and λ > 0. Then the following estimates hold.

(i) Let 0 ≤ μ ≤ 1, 0 < ν < β. Then
∣∣λμtν Eβ,β ′(−λtβ)

∣∣ � tν−βμ, t > 0.
(ii) Let 0 ≤ ν ≤ 1. Then

∣∣λ1−ν tβ−2Eβ,β ′(−λtβ)
∣∣ � tβν−2, t > 0.

2.2 Fractional power spaces

Let L2(�) be the standard real Hilbert space with the norm ‖ · ‖ and scalar product
(·, ·). Hl(�) and Hm

0 (�) denote the usual Sobolev spaces for l,m ≥ 0. Let X be
a Banach space equipped with norm ‖ · ‖X and B(X) stands for the spaces of all
bounded linear operators from X into itself. Let C([0, T ]; X) be the Banach space
of all continuous functions from [0, T ] into X equipped with the supremum norm
‖u‖C = supt∈[0,T ] ‖u(t)‖X . The symbol L p(0, T ; X) denotes the Banach space of all
p-integrable measurable functions u such that:

‖u‖L p(0,T ;X) =

⎧⎪⎪⎨
⎪⎪⎩

(∫ T

0
‖u(t)‖p

X dt

)p

< ∞, if 1 ≤ p < ∞,

ess sup
0≤t≤T

‖u(t)‖X < ∞, if p = ∞.
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The symbol W k,p(0, T ; X) (k ≥ 1) stands for the Banach space of all k-times differ-
entiable functions u such that:

‖u‖W k,p(0,T ;X) =
k∑

n=0

‖∂n
t u‖L p(0,T ;X) < ∞.

It is well-known that the Laplacian operator A = −� is nonegative and self-adjoint
in Sobolev space H1

0 (�), and there exists an orthonormal basis of L2(�) consisting
of eigenfunctions {en}∞n=1 ⊂ H1

0 (�), which are corresponding to the discrete positive
eigenvalues {λn}∞n=1 for every n ∈ N, here 0 < λ1 ≤ λ2 ≤ · · · with limn→∞ λn = ∞
satisfing

Aen = λnen, in � ; en = 0, on ∂�.

For any γ ≥ 0, let fractional power operator Aγ possess the following representation:

Aγ u =
∞∑

n=1

λ
γ
n (u, en)en, u ∈ D(Aγ ),

where

D(Aγ ) =
{

u ∈ L2(�) :
∞∑

n=1

λ
2γ
n |(u, en)|2 < ∞

}
,

as a Hilbert space of functions

u(t, x) :=
∞∑

n=1

un(t)en(x) =
∞∑

n=1

(u, en)en(x) ∈ L2(�),

equipped with the norm

‖u‖γ := ‖u‖D(Aγ ) =
( ∞∑

n=1

λ
2γ
n |(u, en)|2

) 1
2

, u ∈ D(Aγ ).

By using the so called Gelfand triple, we denote the duality space of D(Aγ ) by
D(A−γ ). It can be seen that D(A−γ ) is a Hilbert space endowed with the norm

‖u‖γ ∗ := ‖u‖D(A−γ ) =
( ∞∑

n=1

λ
−2γ
n |〈u, en〉−γ,γ |2

) 1
2

, u ∈ D(A−γ ),

under the duality bracket 〈·, ·〉−γ,γ . Furthermore, we notice that

〈u, v〉−γ,γ = (u, v), for u ∈ L2(�), v ∈ D(Aγ ).
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Specially, one has D(Aγ ) ⊂ H2γ (�) for γ > 0, D(A0) = L2(�), D(A
1
2 ) = H1

0 (�),
see e.g. [26].

3 Linear problems

In this sequel, consider the following linear problem

∂
β
t u(t, x) + ∂αt u(t, x) = �u(t, x) + f (t, x), x ∈ �, t ∈ (0, T ), (3.1)

u(t, x) = 0, x ∈ ∂�, t ∈ (0, T ), (3.2)

u(0, x) = φ(x), ∂t u(0, x) = ψ(x), x ∈ �. (3.3)

Next, a suitable definition ofmild solutions will be introduced to study the above linear
problem, furthermore, the existence and regularity of solutions are discussed.

3.1 Solution representation formula

Let φ ∈ D(Aγ ), ψ ∈ L2(�), with the aid of the spectrum property of operator A,
observe that, the equation

∂
β
t u(t, x) = −Au(t, x) + f (t, x), t > 0, x ∈ �, (3.4)

associated with initial/boundary value conditions (3.2)–(3.3) can be converted into

{
∂
β
t un(t) = −λnun(t) + fn(t),

un(0) = φn, ∂t un(0) = ψn,

where φn = (φ, en), ψn = (ψ, en), fn(t) = ( f (t, ·), en) and the solutions un(t) are
explicitly expressed as follows, (see e.g. [4,16])

un(t) = Eβ,1(−λntβ)φn + t Eβ,2(−λntβ)ψn

+
∫ t

0
(t − s)β−1Eβ,β(−λn(t − s)β) fn(s)ds,

for all t ≥ 0. With the help of the identities in Lemma 2.1, one can derive that the
formulas of first order derivative with respect to t of un(t) is equal to

− λntβ−1Eβ,β(−λntβ)φn + Eβ,1(−λntβ)ψn

+
∫ t

0
(t − s)β−2Eβ,β−1(−λn(t − s)β) fn(s)ds.
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432 Y. Zhou, J. W. He

It is notice that the definition of Caputo’s fractional derivative and (2.1), by changing
the order of integration, one has

∫ t

0
(t − s)β−1Eβ,β(−λn(t − s)β)∂αs un(s)ds

=
∫ t

0
(t − s)β−α Eβ,β+1−α(−λn(t − s)β)∂sun(s)ds.

Therefore, after integration by parts in s, it follows that

∫ t

0
(t − s)β−α Eβ,β+1−α(−λn(t − s)β)∂sun(s)ds

=
∫ t

0
(t − s)β+1−α Eβ,β−α(−λn(t − s)β)un(s)ds

− tβ−α Eβ,β+1−α(−λntβ)un(0). (3.5)

By using the eigenfunction expansions we set the operators

Sβ(t)v =
∞∑

n=1

Eβ,1(−λntβ)(v, en)en, Pβ(t)v =
∞∑

n=1

t Eβ,2(−λntβ)(v, en)en,

and

Tβ(t)v =
∞∑

n=1

tβ−1Eβ,β(−λntβ)(v, en)en,

for all v ∈ L2(�) and t ≥ 0. In order to simple the representation of solution, we just
focus on the dependence of time variable t and sometimes omit the space variable x ,
writing u(t) = u(t, ·), f (t) = f (t, ·), and so on. Following above arguments, (3.4)
associated with (3.2)–(3.3) have an equivalent integral form as follows

u(t) = Sβ(t)φ + Pβ(t)ψ +
∫ t

0
Tβ(t − s) f (s)ds.

Hence, linear problem (3.1)–(3.3) has a representation of formal solution as follows

u(t) = Sβ(t)φ +Rβ(t)φ +Pβ(t)ψ −
∫ t

0
R′

β(t − s)u(s)ds +
∫ t

0
Tβ(t − s) f (s)ds,

(3.6)
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for t ≥ 0, where

Rβ(t)φ =
∞∑

n=1

tβ−α Eβ,β+1−α(−λntβ)(φ, en)en,

R′
β(t)u =

∞∑
n=1

tβ−α−1Eβ,β−α(−λntβ)(u, en)en .

As we saw, the damped term in linear problem can be regarded as a nonlinear term
in nonlinear problem, that will avoid a lot of computations to check the properties
of solution, for instance, when it is converted into a fundamental solution, see an
application below, it is not easy to discuss the existence and regularities of solution, and
especially for considering nonlinear problem (1.1)–(1.3). For this reason, it is worth
to consider that such damped term converts into an integral representation at nonlinear
term. Next, we shall introduce a suitable definition of mild solutions to problem (3.1)–
(3.3) which involves the Mittag–Leffler functions from above arguments.

Definition 3.1 Let T > 0. If a function u ∈ C([0, T ]; L2(�)) satisfies (3.6), then we
say, u is a mild solution of problem (3.1)–(3.3).

3.2 Existence and regularity

In this subsection, we will prove the existence and regularity of linear problem
(3.1)–(3.3). The first result is concerned with the existence of the mild solution, the
regularities of the solution are given in the rest of results.

Theorem 3.1 Let (φ,ψ) ∈ D(Aγ ) × L2(�) for γ ∈ (0, 1) and let f ∈
L1(0, T ; L2(�)). Then there exists a unique mild solution u to problem (3.1)–(3.3).
Moreover,

‖u(t)‖ � ‖φ‖γ + ‖ψ‖ + ‖ f ‖L1(0,T ;L2(�)). (3.7)

The hidden constant, in above inequality, is independent of t , γ but may be dependent
on T .

Proof Let us first denote an operator Q on C([0, T ]; L2(�)) as follows

(Qu)(t) = Sβ(t)φ + Rβ(t)φ + Pβ(t)ψ

−
∫ t

0
R′

β(t − s)u(s)ds +
∫ t

0
Tβ(t − s) f (s)ds.

Clearly, there exists a mild solution of problem (3.1)–(3.3) if and only if operator Q
has a fixed point on C([0, T ]; L2(�)). In what follows, we shall show that operator
Q is well-defined in C([0, T ]; L2(�)). Firstly, for any ε > 0, let 0 ≤ t < t + ε ≤ T ,
we have
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(Qu)(t + ε) − (Qu)(t) =Sβ(t + ε)φ − Sβ(t)φ

+ Rβ(t + ε)φ − Rβ(t)φ + Pβ(t + ε)ψ − Pβ(t)ψ

−
∫ t+ε

0
R′

β(t + ε − s)u(s)ds +
∫ t

0
R′

β(t − s)u(s)ds

+
∫ t+ε

0
Tβ(t + ε − s) f (s)ds −

∫ t

0
Tβ(t − s) f (s)ds.

(3.8)
In view of Lemma 2.1 and (i) in Lemma 2.4, we know that

‖Sβ(t + ε)φ − Sβ(t)φ‖ =
( ∞∑

n=1

∣∣∣∣
∫ t+ε

t
−λnsβ−1Eβ,β(−λnsβ)ds

∣∣∣∣
2

|φn|2
)1/2

=
( ∞∑

n=1

(∫ t+ε

t
λ
1−γ
n sβ−1Eβ,β(−λnsβ)ds

)2

λ
2γ
n |φn|2

)1/2

�
(
(t + ε)βγ − tβγ

)
‖φ‖γ .

From the definition of the fractional power space D(Aγ ) for γ > 0, in view of
the Sobolev embedding D(Aγ ) ⊂ L2(�), it can be checked inequality ‖φ‖ � ‖φ‖γ .
Moreover,

‖Rβ(t + ε)φ − Rβ(t)φ‖ =
( ∞∑

n=1

∣∣∣∣
∫ t+ε

t
sβ−α−1Eβ,β−α(−λnsβ)ds

∣∣∣∣
2

|φn|2
)1/2

�
(
(t + ε)β−α − tβ−α

)
‖φ‖γ .

Lemmas 2.1–2.2 imply

‖Pβ(t + ε)ψ − Pβ(t)ψ‖ =
( ∞∑

n=1

∣∣∣∣
∫ t+ε

t
Eβ,1(−λnsβ)ds

∣∣∣∣
2

|ψn|2
)1/2

� ε ‖ψ‖.

By virtue of Lemma 2.2 again, one obtains

‖Rβ(t)v‖ � tβ−α‖v‖, ‖R′
β(t)v‖ � tβ−α−1‖v‖, v ∈ L2(�). (3.9)

Therefore, it yields

∫ t+ε

t
‖R′

β(t + ε − s)u(s)‖ds � εβ−α ‖u‖C .

Moreover, by (i) in Lemma 2.4 with respect to μ = 1 − 1
β
, we have

∫ t

0
‖(R′

β(t + ε − s) − R′
β(t − s))u(s)‖ds
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=
∫ t

0

( ∞∑
n=1

∣∣∣∣
∫ t+ε−s

t−s
τβ−α−2Eβ,β−α−1(−λnτ

β)dτ

∣∣∣∣
2

(u(s), en)
2

)1/2

ds

�
∫ t

0

∣∣∣∣
∫ t+ε−s

t−s
τ−α−1dτ

∣∣∣∣ ds ‖u‖C

�
(
ε1−α + t1−α − (t + ε)1−α

)
‖u‖C .

Noting that

‖Sβ(t)v‖ � ‖v‖, ‖Pβ(t)v‖ � t ‖v‖, ‖Tβ(t)v‖ � tβ−1‖v‖, (3.10)

for all v ∈ L2(�), and then

∫ t+ε

t
‖Tβ(t + ε − s) f (s)‖ds �

∫ t+ε

t
(t + ε − s)β−1‖ f (s)‖ds

� εβ−1 ‖ f ‖L1(0,T ;L2(�)).

With the aid of Lemma 2.1, we deduce that

∫ t

0
‖(Tβ(t + ε − s) − Tβ(t − s)) f (s)‖ds

�
∫ t

0

(
(t + ε − s)β−1 − (t − s)β−1

)
‖ f (s)‖ds

� εβ−1 ‖ f ‖L1(0,T ;L2(�)),

where we use the following inequality

ξ
μ
1 − ξ

μ
2 ≤ (ξ1 − ξ2)

μ, μ ∈ (0, 1], ξ1, ξ2 ∈ R, and 0 ≤ ξ2 ≤ ξ1, (3.11)

Therefore, together the triangle inequality and the above estimates, we conclude that
‖(Qu)(t + ε) − (Qu)(t)‖ → 0 as ε tends to zero. An analogous argument can show
that ‖(Qu)(t) − (Qu)(t − ε)‖ → 0 as ε tends to zero for 0 ≤ t − ε < t ≤ T .
Consequently, we obtain that Qu ∈ C([0, T ]; L2(�)) for any u ∈ C([0, T ]; L2(�)).

Weclaim thatQhas auniquefixedpoint. Indeed, for anyu1, u2 ∈ C([0, T ]; L2(�)),
by (3.9), we have

‖(Qu1)(t) − (Qu2)(t)‖ �
∫ t

0
‖R′

β(t − s)(u1(s) − u2(s))‖ds

�
∫ t

0
(t − s)β−α−1‖u1(s) − u2(s)‖ds

� 	(β − α)

	(β − α + 1)
tβ−α‖u1 − u2‖C,
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By mathematical induction, it follows that

‖(Q j u1)(t) − (Q j u2)(t)‖ � (	(β − α)) j

	( j(β − α) + 1)
t j(β−α)‖u1 − u2‖C . (3.12)

If j = 1, it have been proved. Assume that (3.12) holds for any j > 1. We will show
that (3.12) also holds for j + 1. For this purpose, by using (3.9) again, one has

‖(Q j+1u1)(t) − (Q j+1u2)(t)‖ �
∫ t

0
‖R′

β(t − τ)((Q j u1)(τ ) − (Q j u2)(τ ))‖dτ

�
∫ t

0
(t − τ)β−α−1‖(Q j u1)(τ ) − (Q j u2)(τ )‖dτ

� (	(β − α)) j

	( j(β − α) + 1)

∫ t

0
(t − τ)β−α−1τ j(β−α)dτ‖u1 − u2‖C

= (	(β − α)) j+1

	(( j + 1)(β − α) + 1)
t ( j+1)(β−α)‖u1 − u2‖C .

Thus, the inequality (3.12) follows for any j + 1 and there exists a constant C > 0
such that

‖(Q j+1u1)(t) − (Q j+1u2)(t)‖ ≤ C(	(β − α)) j+1

	(( j + 1)(β − α) + 1)
t ( j+1)(β−α)‖u1 − u2‖C .

Let us choose j = ĵ large enough so that

ς := C(	(β − α)) ĵ

	( ĵ(β − α) + 1)
T ĵ(β−α) < 1.

Therefore, one has

‖Q ĵ u1 − Q ĵ u2‖C ≤ ς‖u1 − u2‖C .

The contractility of Q ĵ follows, and then Q ĵ has a unique fixed point u∗ on

C([0, T ]; L2(�)). Since QQ ĵ = Q ĵ+1 = Q ĵQ, one can see that Q ĵ (Qu∗) =
Q(Q ĵ u∗) = Qu∗ which deduce that Qu∗ is the fixed point of Q ĵ . By virtue of
the uniqueness, we conclude thatQu∗ = u∗. Consequently, there exists a unique mild
solution.

Let us check (3.7). It follows from (3.9) and (3.10) that ‖Sβ(t)φ‖ � ‖φ‖γ ,
‖Pβ(t)ψ‖ � t ‖ψ‖ and ‖Rβ(t)φ‖ � tβ−α ‖φ‖γ . Hence, one obtains

‖u(t)‖ � ‖φ‖γ + tβ−α ‖φ‖γ + t‖ψ‖ +
∫ t

0
(t − τ)β−α−1‖u(τ )‖dτ

+
∫ t

0
(t − s)β−1‖ f (s)‖ds.
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From the generalizedGronwall’s inequality (see e.g. [31,Corollary 2]) andLemma2.3,
there exists a positive constant C such that

‖u(t)‖ ≤ �(t) exp

((
C	(β − α)

) 1
β−α t

)
,

where
�(t) � ‖φ‖γ + tβ−α‖φ‖γ + t‖ψ‖ + tβ−1‖ f ‖L1(0,T ;L2(�)).

Thus, the main conclusion is obtained. We have completed this proof. �

In what follows, we are in position to show the regularity of solution.

Theorem 3.2 Let (φ,ψ) ∈ D(Aγ ) × L2(�) for γ ∈ (0, 1) and let β − 1 > α,
f ∈ L p(0, T ; L2(�)) for p > 1

β−1 . Then, the solution u of problem (3.1)–(3.3)
satisfies

‖∂t u(t)‖ �
{ ‖φ‖γ + ‖ψ‖ + ‖ f ‖L p(0,T ;L2(�)), βγ ≥ 1,

tβγ−1 (‖φ‖γ + ‖ψ‖ + ‖ f ‖L p(0,T ;L2(�))

)
, βγ < 1.

(3.13)

Proof Theorem 3.1 ensures a mild solution of problem (3.1)–(3.3). Hence, it remains
to check (3.13). For any v ∈ L2(�), let

S ′
β(t)v =

∞∑
n=1

−λntβ−1Eβ,β(−λntβ)(v, en)en,

T ′
β(t)v =

∞∑
n=1

tβ−2Eβ,β−1(−λntβ)(v, en)en,

and

R′′
β(t)v =

∞∑
n=1

tβ−α−2Eβ,β−α−1(−λntβ)(v, en)en .

It is not difficult to check that ‖S ′
β(t)φ‖ � tβγ−1‖φ‖γ and ‖T ′

β(t) f (·)‖ �
tβ−2‖ f (·)‖, respectively. It follows from (3.10) that ‖Sβ(t)ψ‖ � ‖ψ‖. As the
same argument, Lemma 2.2 shows that ‖R′′

β(t)u(·)‖ � tβ−α−2‖u(·)‖. In view of
Lemma 2.1, we have

∂t u(t) = S ′
β(t)φ +R′

β(t)φ +Sβ(t)ψ −
∫ t

0
R′′

β(t − s)u(s)ds +
∫ t

0
T ′
β(t − s) f (s)ds,

(3.14)
Therefore, it follows that
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‖∂t u(t)‖ � tβγ−1‖φ‖γ + tβ−α−1‖φ‖γ + ‖ψ‖
+

∫ t

0
(t − s)β−α−2‖u(s)‖ds + tβ−1− 1

p ‖ f ‖L p(0,T ;L2(�)).

Substituting (3.7) into the above inequality, we thus obtain the desired result. �
Theorem 3.3 Let (φ,ψ) ∈ D(Aγ ) × L2(�) for γ ∈ (0, 1) satisfying 1

β
≤ γ <

β−α
β

and let f ∈ L p(0, T ; L2(�)) for p > 1
β−βγ

. Then the solution u belongs to

C((0, T ]; H2γ (�)) and satisfies

‖u(t)‖H2γ (�) � t−(βγ−1) (‖φ‖γ + ‖ψ‖ + ‖ f ‖L p(0,T ;L2(�))

)
. (3.15)

Proof To begin with this theorem, from the assumption of 1 ≤ βγ ≤ β − α, one can
see that there exists a mild solution u such that u(t), ∂t u(t) ∈ L2(�) for t ∈ [0, T ] by
Theorems 3.1–3.2. Consequently, by virtue of (3.5) and transposition of term we have

∫ t

0
R′

β(t − s)u(s)ds = Rβ(t)φ +
∫ t

0
Rβ(t − s)∂su(s)ds. (3.16)

Hence, we only need to consider u ∈ C((0, T ]; H2γ (�)) and further it satisfies
(3.15). Initially, the Sobolev embedding D(Aγ ) ⊂ H2γ (�) for γ > 0 implies that
if u belongs to D(Aγ ) then one has u belonging to H2γ (�). Repeating the existence
proof process of Theorem 3.1, we can verify u ∈ C((0, T ]; D(Aγ )). It means u ∈
C((0, T ]; H2γ (�)). Thus, it is sufficient to check the estimate (3.15). Now, from the
definition of fractional power operators, it follows that

Aγ Tβ(t)v = tβ−1
∞∑

n=1

λ
γ
n Eβ,β(−λntβ)(v, en)en, t ≥ 0,

for any v ∈ L2(�) and γ ∈ (0, 1). By Lemma 2.4, we have

‖Aγ Tβ(t)v‖ � tβ−βγ−1‖v‖, t > 0. (3.17)

For t ∈ (0, T ], we set

χ(t) =
∫ t

0
AγRβ(t − s)∂su(s)ds, ϕ(t) =

∫ t

0
Aγ Tβ(t − s) f (s)ds.

Applying (3.6) and (3.16), we conclude that

Aγ u(t) = AγSβ(t)φ + AγPβ(t)ψ − χ(t) + ϕ(t), t ∈ (0, T ].

On the other hand, Sobolev embedding theorem shows that ‖u(t)‖H2γ (�) � ‖u(t)‖γ .
Thus, it is sufficient to estimate these terms ‖Sβ(t)φ‖γ , ‖Pβ(t)ψ‖γ , ‖χ(t)‖ and
‖ϕ(t)‖.
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Lemma 2.2 implies

‖Sβ(t)φ‖γ =
( ∞∑

n=1

|Eβ,1(−λntβ)|2λ2γn |φn|2
)1/2

� ‖φ‖γ . (3.18)

With the help of (i) in Lemma 2.4, we get

‖Pβ(t)ψ‖γ ≤
( ∞∑

n=1

∣∣λγ
n t Eβ,2(−λntβ)

∣∣2 |ψn|2
)1/2

� t−(βγ−1)‖ψ‖. (3.19)

For the fourth term containing ϕ, by applying (3.17), we have the estimate

‖ϕ(t)‖ �
∫ t

0
(t − s)β−βγ−1‖ f (s)‖ds � tβ−βγ− 1

p ‖ f ‖L p(0,T ;L2(�)). (3.20)

Therefore, it remains to verify the third term containing χ . Obviously, we get the
inequality

‖AγR′
β(t)v‖ � tβ−βγ−α−1‖v‖, v ∈ L2(�).

Therefore, one can see

‖χ(t)‖ �
∫ t

0
(t − s)β−βγ−α−1‖∂su(s)‖ds.

By virtue of (3.13) and βγ ≥ 1, the following estimate is established

‖χ(t)‖ � tβ−βγ−α
(‖φ‖γ + ‖ψ‖ + ‖ f ‖L p(0,T ;L2(�))

)
. (3.21)

Together (3.18) to (3.21), the proof is completed. �
Using a similar argument as in Theorems 3.1–3.2, we can deduce the following

conclusion.

Theorem 3.4 Let (φ,ψ) ∈ D(Aγ ) × L2(�) for γ ∈ (0, 1) satisfying γ ≤ β−1
2β and

let f ∈ L∞(0, T ; D(A−γ )). Then the solution u of problem (3.1)–(3.3) belongs to
L∞(0, T ; H2γ (�)). Moreover

‖u‖L∞(0,T ;H2γ (�)) � ‖φ‖γ + ‖ψ‖ + ‖ f ‖L∞(0,T ;D(A−γ )). (3.22)

Proof Indeed noting that, in view of the assumption 2βγ ≤ β − 1, we get 0 < βγ <

1/2, β − βγ − 1 > 0 and

‖Tβ(t)v‖ ≤
( ∞∑

n=1

∣∣∣λγ
n tβ−1Eβ,β(−λntβ)

∣∣∣2 λ−2γ
n |(v, en)|2

)1/2

123



440 Y. Zhou, J. W. He

� tβ−βγ−1‖v‖γ ∗, v ∈ D(A−γ ).

From the assumption of f , by applying an analogous method of existence proof in
Theorem 3.1, one can easily check that there exists a unique mild solution u, which
satisfies

‖u(t)‖ � ‖φ‖γ + ‖ψ‖ + ‖ f ‖L∞(0,T ;D(A−γ )). (3.23)

On the other hand, by virtue of Lemma 2.2, we see that

‖Aγ Tβ(t) f (·)‖ � tβ−2βγ−1‖ f (·)‖γ ∗.

Therefore, one has

∥∥AγSβ(t)φ + AγPβ(t)ψ + ϕ(t)
∥∥ � ‖φ‖γ + t1−βγ ‖ψ‖

+tβ−2βγ ‖ f ‖L∞(0,T ;D(A−γ )),

where ϕ is defined in Theorem 3.3. Hence, it remains to estimate

AγRβ(t)φ −
∫ t

0
AγR′

β(t − s)u(s)ds. (3.24)

It is easy to estimate ‖AγRβ(t)φ‖ � tβ−α‖φ‖γ . Now, we estimate another term of
(3.24). Indeed, by (ii) in Lemma 2.4, we have

∫ t

0
‖AγR′

β(t − s)u(s)‖ds =
∫ t

0

( ∞∑
n=1

|λγ
n (t − s)β−α−1Eβ,β−α(−λn(t − s)β)|2|un(s)|2

) 1
2

ds

�
∫ t

0
(t − s)β−βγ−α−1‖u(s)‖ds.

Noting that the assumption 2βγ ≤ β − 1 and α ∈ (0, 1], by substituting (3.23) to the
above inequality, we thus immediately conclude that the assertion of (3.22) is satisfied.
This completes the proof. �

In [26], the authors considered a fractional diffusion-wave problem, and further
they obtained that the regularity property in time is of infinity order which means that
u ∈ C∞ for t > 0. In [24], the authors derived some time regularity estimates for a
weak solution of fractional wave equations, they also corrected some papers including
numerical technique, which ignores the situation that the solution will blow up at
point t = 0 for the time regularity u ∈ C3. Inspired by these works, we establish the
following regularity results for time fractional damped wave equations.

Theorem 3.5 Let (φ,ψ) ∈ D(Aγ ) × L2(�) for γ ∈ (0, 1) satisfying 1
β

≤ γ and

let β − 1 > α. Assume that f (0) ∈ L2(�) is finite and f ∈ W 1,p(0, T ; L2(�)) for
p > 1

β−1 . Then the mild solution u of problem (3.1)–(3.3) satisfies

∥∥∥∂2t u(t)
∥∥∥ � t−1 (‖φ‖γ + ‖ψ‖ + ‖ f ‖W 1,p(0,T ;L2(�)) + ‖ f (0)‖) .
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Proof By Theorems 3.1–3.2, the mild solution belongs to C1([0, T ]; L2(�)). Hence,
we can find an u satisfying (3.14). Invoking the initial value conditions u(0) = φ and
∂t u(0) = ψ , by changing of variable and taking the derivative with respect to t in
(3.14), we conclude that for t > 0

∂2t u(t) =S ′′
β(t)φ + S ′

β(t)ψ −
∫ t

0
R′′

β(s)∂t u(t − s)ds + T ′
β(t) f (0)

+
∫ t

0
T ′
β(s)∂t f (t − s)ds.

On the other hand, Lemma 2.2 shows that

‖S ′′
β(t)φ‖ ≤ tβ−2

( ∞∑
n=1

(
λ
1−γ
n Eβ,β−1(−λntβ)

)2
λ
2γ
n |φn|2

)1/2

� tβ−2‖φ‖γ .

For t > 0, we have the following inequalities

‖S ′′
β(t)ψ‖ � t−1‖ψ‖, ‖R′′

β(t)v‖ � tβ−α−2‖v‖, ‖T ′
β(t)v‖ � tβ−2‖v‖,

for v ∈ L2(�). Hence, we obtain the estimate

∥∥∂2t u(t)
∥∥ � tβ−2‖φ‖γ + t−1‖ψ‖ +

∫ t

0
sβ−α−2‖∂t u(t − s)‖ds

+ tβ−2‖ f (0)‖ +
∫ t

0
sβ−2‖∂t f (t − s)‖ds,

which implies from (3.13) that the desired result. The proof is completed. �
Remark 3.1 Let us mention that the time regularity of mild solutions in the present
problem just achieve the second time derivative under the assumptions of Theorem 3.5.
This is difference between the previous papers [24,26] where they could establish
more higher time regularity of solutions. Nevertheless, if we alter the initial value
of ψ belonging to D(Aγ ), f ∈ W 2,p(0, T ; L2(�)) such that ∂t f (0) ∈ L2(�), by
the Sobolev embedding relationship D(Aγ ) ⊂ L2(�) for γ ∈ (0, 1), based on the
existing assumptions in Theorem 3.5, we also establish a unique mild solution on
C1([0, T ]; L2(�)), the solution will possess the third time derivative

∥∥∥∂3t u(t)
∥∥∥ � tβ−α−3 (‖φ‖γ + ‖ψ‖γ + ‖ f ‖W 2,p(0,T ;L2(�)) + ‖ f (0)‖ + ‖∂t f (0)‖) .

4 Nonlinear problems

In this section, we will take account of the nonlinear problem for fractional wave
equation with damping. Initially, as before, we introduce a suitable definition of mild
solutions to the nonlinear problem.

123



442 Y. Zhou, J. W. He

Definition 4.1 Let T > 0. A function u ∈ C([0, T ]; L2(�)) is said to be a mild
solution of problem (1.1)–(1.3), if u satisfies the following equation

u(t) =Sβ(t)φ + Rβ(t)φ + Pβ(t)ψ −
∫ t

0
R′

β(t − s)u(s)ds

+
∫ t

0
Tβ(t − s) f (u(s))ds.

4.1 Well-posedness of problem

In this subsection, we shall infer that the present problem is well-posed. In general,
the constant C in Lemma 2.2 is not easy to check, in order to overcome this difficulty,
we will show some more exact estimates of Mittag–Leffler functions. In what follows,
let us first state some properties of a function Mυ(·) which is also called Mainardi’s
Wright-type function. This function is a special case of the Wright function that plays
an important role in different areas of fractional calculus and it is introduced by
Mainardi to characterize the solution of initial value problem for fractional diffusion-
wave equations. More precisely, the function Mυ(·) : C → C is defined by

Mυ(z) =
∞∑

n=0

(−z)n

n!	(1 − υ(n + 1))
, υ ∈ (0, 1), z ∈ C.

Clearly, it is an entire function. For θ > 0, Mainardi’s Wright-type function has the
properties

Mυ(θ) ≥ 0,
∫ ∞

0
θδMυ(θ)dθ = 	(1 + δ)

	(1 + υδ)
, f or − 1 < δ < ∞. (4.1)

Lemma 4.1 Let β ∈ (1, 2). Then for z ∈ C, there are important formulas between
Mittag–Leffler functions, Mainardi’s Wright-type functions and sine/cosine functions
given by

Eβ,1(−z2) =
∫ ∞

0
Mβ/2(θ) cos(zθ)dθ, Eβ,β(−z2) = β

2z

∫ ∞

0
θMβ/2(θ) sin(zθ)dθ.

Proof The first identity was proved in [22, p. 252]. Hence, it is sufficient to verify the
second identity. Indeed, by developing the sine function in series, we get

1

z

∫ ∞

0
θMβ/2(θ) sin(zθ)dθ =

∞∑
k=0

(−1)k z2k

(2k + 1)!
∫ ∞

0
θ2k+2Mβ/2(θ)dθ, for z ∈ C.

Applying the formula in (4.1), it is easily seen that

1

z

∫ ∞

0
θMβ/2(θ) sin(zθ)dθ =

∞∑
k=0

(−1)k z2k(2k + 2)

	(1 + (n + 1)β)
= 2

β
Eβ,β(−z2).
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Consequently, we get the desired formulas. �

It is interesting to notice that the Mittag–Leffer function has a strong connection
with the sine/cosine functions as well as the exponential function exp(z) (see e.g.
[17,33]) such as

Eα,1(z) =
∫ ∞

0
Mα(θ) exp(zθ)dθ,

Eα,α(z) = α

∫ ∞

0
θMα(θ) exp(zθ)dθ, z ∈ C, α ∈ (0, 1).

This means that Mainardi’ Wright type function acts as a bridge between the classical
and fractional differential equations.

Lemma 4.2 Let β ∈ (1, 2], α ∈ (0, 1] and λ > 0. Then the following estimates hold
for t ≥ 0:

|Eβ,β ′(−λtβ)| ≤ 1

	(β ′)
, for β ′ = 1, 2, β; |Eβ,β−α(−λtβ)| ≤ 1

(β − 1)	(β − α)
.

Proof By properties of Mittag–Leffler function in series, the case of t = 0 is obvious.
Hence, for any t > 0, z ∈ R

+, from the fact E2,1(−z2) = cos(z) and zE2,2(−z2) =
sin(z), by using the inequalities | cos(z)| ≤ 1 and sin(z) ≤ z, it is easy to check the first
inequality for β = 2, β ′ = 1, 2. By Lemma 4.1, it yields from (4.1) and | cos(z)| ≤ 1
that |Eβ,1(−λtβ)| ≤ 1. Lemma 2.1 checks d

dt (t Eβ,2(−λtβ)) = Eβ,1(−λtβ), hence
|Eβ,2(−λtβ)| ≤ 1 follows. Lemma 4.1 implies

tβ−1Eβ,β(−λtβ) = 1√
λ

β

2
t
β
2 −1

∫ ∞

0
θMβ/2(θ) sin

(√
λt

β
2 θ

)
dθ. (4.2)

We notice that the left side of above equation tends to zero when t → 0 as well as
the right-hand side of (4.2), because of the fact limz→0

sin(z)
z = 1. Consequently, by

using sin(z) ≤ z for z ∈ R
+ and (4.1), we get

|Eβ,β(−λtβ)| ≤ β

2

∫ ∞

0
θ2Mβ/2(θ)dθ = 1

	(β)
.

Taking the derivative with respect to t in (4.2), noting that

d

dt

(
tβ−1Eβ,β(−λtβ)

)
= tβ−2 β

2

4

∫ ∞

0
θ2Mβ/2(θ) cos

(√
λt

β
2 θ

)
dθ

− t
β
2 −2 1√

λ

β

2

(
1 − β

2

) ∫ ∞

0
θMβ/2(θ) sin

(√
λt

β
2 θ

)
dθ,

(4.3)
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in view of (2.1) and Lemma 2.1, we find

tβ−α−1Eβ,β−α(−λtβ) = 1

	(1 − α)

∫ t

0
(t − s)−α d

ds

(
sβ−1Eβ,β(−λsβ)

)
ds.

Substituting (4.3) into (4.2) implies

|tβ−α−1Eβ,β−α(−λtβ)| ≤ 1

(β − 1)	(β − α)
tβ−α−1, t > 0.

Hence, it remains to check the case of β = 2, α ∈ (0, 1). Indeed, noting that

t1−α E2,2−α(−λt2) = 1

	(1 − α)

∫ t

0
(t − s)−α E2,1(−λs2)ds,

which is easy to deduce that |E2,2−α(−λt2)| ≤ 1/	(2 − α). Thus, we obtain the
desired results. �

On the basis of above arguments, we now show that the problem (1.1)–(1.3) is
well-posed.

Theorem 4.1 Let γ ∈ (0, 1). Assume that there exist two positive constants a, b such
that the nonlinear function f ∈ L1(R; L2(�)) satisfies the following conditions

‖ f (u) − f (v)‖ ≤ a
(‖u‖ϑ−1 + ‖v‖ϑ−1)‖u − v‖,

‖ f (u)‖ ≤ b
(
1 + ‖u‖ϑ)

,

for each u, v ∈ L2(�), where ϑ ≥ 1 is a constant. Then for φ ∈ D(Aγ ), ψ ∈ L2(�),
problem (1.1)–(1.3) possesses a unique mild solution on C([0, T0], L2(�)) for some
T0 ∈ (0, T ]. Moreover, the solutions u, ũ depend continuously on the initial functions
φ̃ and ψ̃ which correspond to the mild solution ũ in the sense that

‖u(t) − ũ(t)‖ � ‖φ − φ̃‖γ + ‖ψ − ψ̃‖. (4.4)

Proof For fixed r > 0, let us introduce a metric space

Br (φ,ψ) = {
u ∈ C([0, T ]; L2(�)) : ρT

(
u,Sβ(t)φ + Rβ(t)φ + Pβ(t)ψ

) ≤ r
}
,

where

ρT (u1, u2) = sup
t∈[0,T ]

‖u1(t) − u2(t)‖.

It is not difficult to check that Br (φ,ψ) is a complete metric space with the above
metric.
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Let us consider an operator Q given by

(Qu)(t) =Sβ(t)φ + Pβ(t)ψ + Rβ(t)φ −
∫ t

0
R′

β(t − s)u(s)ds

+
∫ t

0
Tβ(t − s) f (u(s))ds,

(4.5)

for any u ∈ Br (φ,ψ). Clearly, Q is well-defined in C([0, T ]; L2(�)), as it follows
from the assumptions of f . Next, we are planing to show the existence and uniqueness.
It is sufficient to verify that Q has a unique fixed point in Br (φ,ψ).

In view of Lemma 4.2, for t ∈ [0, T ], we get some exact upper bounds

‖Sβ(t)v‖ ≤ ‖v‖, ‖Pβ(t)v‖ ≤ t ‖v‖, ‖Tβ(t)v‖ ≤ tβ−1

	(β)
‖v‖, (4.6)

and ‖R′
β(t)v‖ ≤ σ tβ−α−1‖v‖, ‖Rβ(t)v‖ ≤ � tβ−α‖v‖ for any v ∈ L2(�), where

σ := 1/((β − 1)	(β − α)), � = σ/(β − α). In view of the Sobolev embedding
D(Aγ ) ⊂ L2(�), γ ∈ (0, 1), one find that ‖φ‖ ≤ λ

−γ
1 ‖φ‖γ , where λ1 is the first

eigenvalue of operator A. Hence, taking

Lr := r + (1 + �T β−α)λ
−γ
1 ‖φ‖γ + T ‖ψ‖, (4.7)

the following estimate is established

‖u(t)‖ ≤ ∥∥u(t) − Sβ(t)φ − Rβ(t)φ − Pβ(t)ψ
∥∥ + ‖Sβ(t)φ‖

+ ‖Rβ(t)φ‖ + ‖Pβ(t)ψ‖ ≤ Lr .

Choose T0 ∈ (0, T ] such that

� Lr T β−α
0 + b

	(β + 1)

(
1 + Lϑ−1

r

)
T β
0 ≤ r , (4.8)

and

�T β−α
0 + 2a

	(β + 1)
Lϑ−1

r T β
0 ≤ 1

2
. (4.9)

Therefore, from (4.8) we get

‖(Qu)(t) − Sβ(t)φ − Rβ(t)φ − Pβ(t)ψ‖
≤

∫ t

0
‖R′

β(t − s)u(s)‖ds +
∫ t

0
‖Tβ(t − s) f (u(s))‖ds

≤ σ

∫ t

0
(t − s)β−α−1‖u(s)‖ds + b

	(β)

∫ t

0
(t − s)β−1(1 + ‖u(s)‖ρ)ds

≤ �Lr T β−α
0 + b

	(β + 1)

(
1 + Lϑ−1

r

)
T β
0 ≤ r .
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This implies that Q maps Br (φ,ψ) into itself. In addition, for any u, v ∈ Br (φ,ψ),
by the assumption of f , we have

‖(Qu)(t) − (Qv)(t)‖ ≤
∥∥∥∥
∫ t

0
R′

β(t − s)
(
u(s) − v(s)

)
ds

∥∥∥∥
+

∥∥∥∥
∫ t

0
Tβ(t − s)( f (u(s)) − f (v(s)))ds

∥∥∥∥
≤ σ

∫ t

0
(t − s)β−α−1 ‖u(s) − v(s)‖ ds

+ a

	(β)

∫ t

0
(t − s)β−1 (‖u(s)‖ϑ−1 + ‖v(s)‖ϑ−1) ‖u(s) − v(s)‖ds

≤ �tβ−αρt (u, v) + 2a

	(β + 1)
Lϑ−1

r tβρt (u, v)

≤
(
�T β−α

0 + 2a

	(β + 1)
Lϑ−1

r T β
0

)
ρT0 (u, v).

Hence, in view of (4.9), we conclude that Q is a contraction on Br (φ,ψ). Thus,
according to Banach’s fixed point theorem, the operator Q has a unique fixed point
that is the mild solution of problem (1.1)–(1.3) on [0, T0].

We next show the continuous dependence of the mild solution on the initial data.
Let (u, ũ) be two mild solutions of problem (1.1)–(1.3) associated with the initial
conditions (φ, φ̃) and (ψ, ψ̃). Then, one obtains

‖u(t) − ũ(t)‖ ≤‖Sβ(t)φ − Sβ(t)φ̃‖ + ‖Rβ(t)φ − Rβ(t)φ̃‖ + ‖Pβ(t)ψ − Pβ(t)ψ̃‖
+

∫ t

0

∥∥∥R′
β(t − s)

(
u(s) − ũ(s)

)∥∥∥ ds

+
∫ t

0

∥∥Tβ(t − s)( f (u(s)) − f (̃u(s)))
∥∥ ds

≤ ζ(t) ‖φ − φ̃‖γ + t ‖ψ − ψ̃‖ + σ

∫ t

0
(t − s)β−α−1 ‖u(s) − ũ(s)‖ ds

+ a

	(β)

∫ t

0
(t − s)β−1

(
‖u(s)‖ϑ−1 + ‖ũ(s)‖ϑ−1

)
‖u(s) − ũ(s)‖ds

≤�(t) + �r (t)
∫ t

0
‖u(s) − ũ(s)‖ds,

where ζ(t) = λ
−γ
1

(
1 + �tβ−α

)
and

�(t) = ζ(t) ‖φ − φ̃‖γ + t ‖ψ − ψ̃‖, �r (t) =
(
σ + 2a

	(β)
Lϑ−1

r tα
)
.

Thus, the generalized Gronwall’s inequality imply that

‖u(t) − ũ(t)‖ � �(t) exp

((
�r (t)	(β − α)

) 1
β−α t

)
,
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which means that the solution is continuous dependence on the initial conditions for
any positive real number r . We thus have proved this theorem. �
Remark 4.1 Noting that, if the assumptions of nonlinear function f is replaced by
another local Lipshitz condition: there exists a nondecreasing function L f (·) ∈
L∞(R+) such that the nonlinearmapping f is continuouswith respect to t and satisfies
the condition

‖ f (u) − f (v)‖ ≤ L f (r)‖u − v‖, r > 0,

for each u, v ∈ L2(�) satisfying ‖u‖, ‖v‖ ≤ r . Then, for some T0 ∈ (0, T ), we get
an analogous result of Theorem 4.1 on the following Banach space:

Br (T0, φ) =
{

u ∈ C([0, T0]; L2(�)) : sup
t∈[0,T0]

‖u‖ ≤ r

}
,

is that, forφ ∈ D(Aγ ),ψ ∈ L2(�),γ ∈ (0, 1), problem (1.1)–(1.3) possesses a unique
mild solution on C([0, T0], L2(�)). Moreover, solutions u, ũ depend continuously on
the initial conditions φ̃ and ψ̃ which correspond to the mild solution ũ in the sense of
(4.4).

4.2 Continuation and blow-up alternative

Given a mild solution u ∈ C([0, T0]; L2(�)) of problem (1.1)–(1.3), we say that
ū : [0, T0] → L2(�) is a continuation of ū in [0, T1] with T1 > T0 if ū is a mild
solution, and u(t) = ū(t) whenever t ∈ [0, T0].
Theorem 4.2 Let the assumptions of Theorem 4.1 hold and u be a mild solution of
problem (1.1)–(1.3) on [0, T0]. Then u can be uniquely continued up a time T1.

Proof Fix R > 0. Take T1 > T0 such that for t ∈ [T0, T1], we denote a metric space

BR = {
v ∈ C([0, T1]; L2(�)) : ρT1 (v, u(T0)) ≤ R, and v(t) = u(t), t ∈ [0, T0]

}
,

equipped with the metric

ρT1 (v, u) = sup
t∈[0,T1]

‖v(t) − u(t)‖.

It is not difficult to check that BR is a complete metric space. Let us define G : BR →
BR by

(Gv)(t) = (G1v)(t) + (G2v)(t),

where

(G1v)(t) = Sβ(t)φ + Rβ(t)φ + Pβ(t)ψ,
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(G2v)(t) = −
∫ t

0
R′

β(t − s)v(s)ds +
∫ t

0
Tβ(t − s) f (v(s))ds.

If v ∈ Br , it is clear to obtain that Gv(t) = u(t) for any t ∈ [0, T0]. Let t ∈ [T0, T1],
for any v ∈ Br , by some simple computations, we get

‖(Gv)(t) − u(T0)‖ ≤ ‖(G1v)(t) − (G1v)(T0)‖

+
∫ T0

0
‖(R′

β(t − s) − R′
β(T0 − s))u(s)‖ds

+
∫ T0

0
‖(Tβ(t − s) − Tβ(T0 − s)) f (u(s))‖ds

+
∫ t

T0
‖R′

β(t − s)v(s)‖ds +
∫ t

T0
‖Tβ(t − s) f (v(s))‖ds.

Since the mappings t �→ Sβ(t)φ, t �→ Rβ(t)φ and t �→ Pβ(t)ψ belong to
C([0, T ]; L2(�)) for every t ∈ [0, T ] with T > T1, it means that we can pick
Ta ∈ [T0, T ) such that for t ∈ [T0, Ta]

‖(G1v)(t) − (G1v)(T0)‖ ≤ R

3
.

Processing as the proof of Theorem 3.1, one see that for t ∈ [T0, T ), Lemma 2.2 and
by (i) in Lemmas 2.4 with respect to μ = 1 − 1

β
, we have

∫ T0

0
‖(R′

β(t − s) − R′
β(T0 − s))u(s)‖ds +

∫ T0

0
‖(Tβ(t − s) − Tβ(T0 − s)) f (u(s))‖ds

�
∫ T0

0

∣∣∣∣
∫ t−s

T0−s
τ−α−1dτ

∣∣∣∣ ‖u(s)‖ds +
∫ T0

0

∣∣∣∣
∫ t−s

T0−s
τβ−2dτ

∣∣∣∣ ‖ f (u(s))‖ds

� r
(

T 1−α
0 + (t − T0)

1−α − t1−α
)

+ (t − T0)
β Lϑ

r

→ 0, as t → T0,

where r is picked as in Theorem 4.1 and Lr is defined in (4.7). Therefore, we can
choose Tb ∈ [T0, T ) such that for t ∈ [T0, Tb]

∫ T0

0
‖(R′

β(t − s) − R′
β(T0 − s))u(s)‖ds

+
∫ T0

0
‖(Tβ(t − s) − Tβ(T0 − s)) f (u(s))‖ds ≤ R

3
.

On the other hand, it is easy to see that

∫ t

T0
‖R′

β(t − s)v(s)‖ds +
∫ t

T0
‖Tβ(t − s) f (v(s))‖ds
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≤ σ

∫ t

T0
(t − s)β−α−1‖v(s)‖ds + 1

	(β)

∫ t

T0
(t − s)β−1‖ f (v(s))‖ds

≤ �(t − T0)
β−α(R + Lr ) + b

	(β)
(t − T0)

β(1 + Lϑ
r ).

where we use the fact ‖u(T0)‖ ≤ Lr . With the same argument, one can choose
Tc ∈ [T0, T ) such that for t ∈ [T0, Tc]

∫ t

T0
‖R′

β(t − s)v(s)‖ds +
∫ t

T0
‖Tβ(t − s) f (v(s))‖ds ≤ R

3
.

Consequently, let T1 := min{Ta, Tb, Tc} and then

‖(Gv)(t) − u(T0)‖ ≤ R.

We thus prove that G maps BR into itself. Now, for any v,w ∈ BR , one has

‖(Gv)(t) − (Gw)(t)‖ = ‖(G2v)(t) − (G2w)(t)‖
=

∫ t

0
‖R′

β(t − s)(v(s) − w(s))‖ds

+
∫ t

0
‖Tβ(t − s)( f (v(s)) − f (w(s))‖ds.

By the uniqueness, clearly for t ∈ [0, T0], G is contractive on BR . Let t ∈ [T0, T1],
from the assumption of f , we have

‖(Gv)(t) − (Gw)(t)‖ ≤σ

∫ t

T0
(t − s)β−α−1‖v(s) − w(s)‖ds

+ a

	(β)

∫ t

T0
(t − s)β−1(‖v(s)‖ϑ + ‖w(s)‖ϑ)‖v(s) − w(s)‖ds

≤ �(t − T0)
β−αρT1(v,w) + 2a

	(β)
(t − T0)

β(R + Lr )
ϑρT1(v,w).

Therefore, choosing T1 such that

�(t − T0)
β−α + 2a

	(β)
(t − T0)

β(R + Lr )
ϑ < 1,

we thus conclude that G is a contraction map on BR . This implies that G has a unique
fixed point v on BR . We have finished this proof. �
Theorem 4.3 Let the assumptions of Theorem 4.1 hold and u ∈ C([0, Tmax ); L2(�))

be a mild solution of problem (1.1)–(1.3) with the existence of maximal time Tmax .
Then Tmax = +∞ or limt→T −

max
‖u(t)‖ = ∞ if Tmax < ∞.
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Proof Let

Tmax = sup{T ∈ [0,∞) : ∃ unique local solution u to problem (1.1)–(1.3)in (0, T )}.

Suppose that Tmax < ∞ and there exists a positive constant M < ∞ such that
‖u(t)‖ ≤ M for any t ∈ [0, Tmax ). Let {ti }i∈N be a sequence of [0, Tmax ) such that
ti → T −

max as i → ∞, we now consider the sequence {u(ti )} ∈ L2(�) and we will
check that it is a Cauchy sequence in the space L2(�). Setting ti > t j , we get

u(ti ) − u(t j ) =Sβ(ti )φ − Sβ(t j )φ + Rβ(ti )φ − Rβ(t j )φ + Pβ(ti )ψ − Pβ(t j )ψ

−
∫ ti

t j

R′
β(ti − s)u(s)ds −

∫ t j

0
(R′

β(ti − s) − R′
β(t j − s))u(s)ds

+
∫ ti

t j

Tβ(ti − s) f (u(s))ds +
∫ t j

0
(Tβ(ti − s) − Tβ(t j − s)) f (u(s))ds.

Therefore, the same reasoning used as (3.8) in Theorem 3.1 and the similar proof in
Theorem 4.2 ensure that

‖u(ti ) − u(t j )‖ → 0, as i, j → ∞.

Hence, {u(ti )}i∈N is a Cauchy sequence and then there exists the limit

lim
i→∞ u(ti ) =: u(Tmax ) ∈ L2(�).

For above reasons, we may extend u over a large interval [0, Tmax ]. This shows a
contradiction with the maximality of Tmax . The proof is completed. �

4.3 Compactness method

In the sequel, we remove the Lipschitz condition or higher smoothness assumption of
f ∈ C1(R), we also consider a more general condition. For this purpose, we need the
following lemma.

Lemma 4.3 [30] Let X be a Banach space and let R(Q) be the range of operator Q.
Assume that Q : X → X is linear.

(i) If the dimension of R(Q) is finite, then Q is compact.
(ii) If {Qn}n∈N are a sequence of compact operators in B(X) that converge uniformly

to Q, then Q is compact.

Definition 4.2 Let X be a Banach space. An operator valued function T (·) defined on
R+ is said to be

(i) Uniformly continuous. If the map t �→ T (t)x fromR+ to B(X) is continuous with
respect to the operator topology;

(ii) Strongly continuous. If the map t �→ T (t)x from R+ to X is continuous for every
x ∈ X .
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We get the following result which will be useful through this subsection.

Lemma 4.4 Operator Tβ(t) is compact for every t ≥ 0 and is uniformly continuous
on L2(�) for all t ≥ 0.

Proof It is clear that Tβ(0) is a zero operator, which is trivial involving with the com-
pactness result. Let t > 0 be fixed, and let �N = span{e1(x), . . . , eN (x)}, for every
N ∈ N. It is easy to see that L2(�) can be expressed by span{e1(x), . . . , eN (x), . . .}.
Obviously, �N is a finite dimensional subspace of L2(�). For all N ∈ N, we denote
operators T N

β (t)· : L2(�) → �N by

T N
β (t)v =

N∑
n=1

tβ−1Eβ,β(−λntβ)(v, en)en(x).

Clearly, T N
β (t) also is a linear finite dimensional operator. Applying (i) in Lemma 2.4

with respect to μ = 1 − 1
β
, we have

‖T N
β (t)v‖ =

(
N∑

n=1

λ−μ
n

(
λμ

n tβ−1Eβ,β(−λntβ)
)2

(v, en)
2

)1/2

� ‖v‖.

This yields that T N
β (t) is well-defined in B(L2(�)). Thus, R(T N

β (t)) is finite, we

conclude from (i) in Lemma 4.1 that the operator T N
β (t) is a compact operator for

every N ∈ N.
Now, we shall prove that T N

β (t) converges uniformly to Tβ(t)whenever N tends to
infinite. By applying the above argument, it is notice that from the asymptotic property
of the eigenvalues λn → ∞ as n → ∞, we have when N → ∞,

‖Tβ(t)v − T N
β (t)v‖ ≤

( ∞∑
n=N+1

(
tβ−1Eβ,β(−λntβ)

)2
(v, en)

2

)1/2

� λ
−μ
N+1‖v‖ → 0.

It means from (ii) in Lemma 4.1 that the operator Tβ(t) is a compact operator on
B(L2(�)) for every t ≥ 0.

In addition, in view of Lemma 2.1 and (3.11), for any v ∈ L2(�), for t1, t2 ∈ R+
with t1 < t2, we find

‖Tβ(t2)v − Tβ(t1)v‖ � (t2 − t1)
β−1 ‖v‖ → 0 as t2 → t1.

Therefore, we conclude that Tβ(t)v is strong continuous for all t ≥ 0. Combined with
the compactness of Tβ(t), this implies the desired result. The proof is completed. �
Remark 4.2 It is notice that, by using the method of finite dimensional approxima-
tion and the compact results Lemma 4.1, one easily prove that operators Sβ(t),
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Pβ(t) and Rβ(t) are compact for every t ≥ 0 and are uniformly continuous for all
t ≥ 0. Additionally,R′

β(t) is also compact for every t > 0 since it may be unbounded

at time t = 0 on B(L2(�)) for β − α < 1 and is uniformly continuous for all t > 0.

Theorem 4.4 Let (φ,ψ) ∈ D(Aγ )×L2(�) for γ ∈ (0, 1). Assume that f is Lebesgue
measurable with respect to t and is continuous with respect to u, and there exists a
nonnegative nondecreasing function W (·) : R+ → R

+ such that

‖ f (u(t))‖ ≤ W (‖u(t)‖).

Assume further that

lim inf
r→∞

W (r)

r
= � < ∞,

and the following inequality

T β−α

(β − 1)	(β − α + 1)
+ �T β

	(β + 1)
≤ 1. (4.10)

Then problem (1.1)–(1.3) possesses at least one mild solution on C([0, T ]; L2(�)).

Proof For each r > 0, let us set

Br = {u ∈ C([0, T ]; L2(�)) : ‖u‖C ≤ r}.

Then Br is a bounded closed and convex subset of C([0, T ]; L2(�)). Consequently,
we need to show that the operator equation u = Qu has a solution whereQ is defined
in Theorem 4.1.

Let us first check that operatorQmaps Br into itself. In fact, if this is not true, then
for each r > 0, there exists ur ∈ Br such that ‖(Qur )(t∗)‖ > r for some t∗ ∈ [0, T ].
In view of Lemma 4.2 and (4.6), one finds

r < ‖(Qur )(t∗)‖ ≤ ‖Sβ(t∗)φ‖ + ‖R′
β(t∗)φ‖ + ‖Pβ(t∗)ψ‖

+
∫ t∗

0
‖R′

β(t∗ − s)ur (s)‖ds +
∫ t∗

0
‖Tβ(t∗ − s) f (ur (s))‖ds

≤ λ
−γ
1 ‖φ‖γ + t∗‖ψ‖ + σ (‖φ‖ + r)

tβ−α∗
β − α

+ 1

	(β)

∫ t∗

0
(t − s)β−1W (‖ur (s)‖)ds

≤ λ
−γ
1 ‖φ‖γ + T ‖ψ‖ + σ

(
λ

−γ
1 ‖φ‖γ + r

) T β−α

β − α

+ T β

	(β + 1)
W (r),
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where σ = 1/((β − 1)	(β − α)). Dividing both sides by r and taking the lower limit
as r → ∞, we obtain that

1 <
σ

β − α
T β−α + �

	(β + 1)
T β,

which contradicts (4.10). Therefore, one can selected r such that ‖Qu‖C ≤ r . This
implies that Q(Br ) ⊆ Br .

We claim that operatorQ is completely continuous. To prove this property, we will
divide the proof into three steps. Firstly, we show that the set � = {Qu, u ∈ Br } is
equicontinuous. Indeed, for 0 ≤ t1 < t2 ≤ T , we have

‖(Qu)(t2) − (Qu)(t1)‖
≤ ‖Sβ(t2)φ − Sβ(t1)φ‖ + ‖Rβ(t2)φ − Rβ(t1)φ‖ + ‖Pβ(t2)ψ − Pβ(t1)ψ‖

+
∥∥∥∥
∫ t2

0
R′

β(t2 − s)u(s)ds −
∫ t1

0
R′

β(t1 − s)u(s)ds

∥∥∥∥
+

∥∥∥∥
∫ t2

0
Tβ(t2 − s) f (u(s))ds −

∫ t1

0
Tβ(t1 − s) f (u(s))ds

∥∥∥∥
:= J1 + J2 + J3.

Observe that, from Remark 4.2, we get

J1 =‖Sβ(t2)φ − Sβ(t1)φ‖ + ‖Rβ(t2)φ − Rβ(t1)φ‖
+ ‖Pβ(t2)ψ − Pβ(t1)ψ‖ → 0, as t2 → t1.

As for J2, for any ε > 0, we estimate

J2 ≤
∫ t1−ε

0

∥∥∥
(
R′

β(t2 − s) − R′
β(t1 − s)

)
u(s)

∥∥∥ ds

+
∫ t1

t1−ε

∥∥∥
(
R′

β(t2 − s) − R′
β(t1 − s)

)
u(s)

∥∥∥ ds +
∫ t2

t1

∥∥∥R′
β(t2 − s)u(s)

∥∥∥ ds

≤
∫ t1−ε

0
‖u(s)‖ ds sup

s∈[0,t1−ε]

∥∥∥R′
β(t2 − s) − R′

β(t1 − s)
∥∥∥B(L2(�))

+ σ

∫ t2

t1−ε

(t2 − s)β−α−1‖u(s)‖ds + σ

∫ t1

t1−ε

(t1 − s)β−α−1‖u(s)‖ds

� r sup
s∈[0,t1−ε]

∥∥∥R′
β(t2 − s) − R′

β(t1 − s)
∥∥∥B(L2(�))

+ (‖φ‖ + r)((t2 − t1 + ε)β−α + εβ−α)

→0, as t2 → t1, ε → 0.

Next, we estimate J3. In fact, Lemma 4.2 shows that

J3 ≤
∫ t1

0
W (‖u(s)‖)ds sup

s∈[0,t1]
∥∥Tβ(t2 − s) − Tβ(t1 − s)

∥∥B(L2(�))

+ 1

	(β)

∫ t2

t1
(t2 − s)β−1W (‖u(s)‖)ds
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� W (r) sup
s∈[0,t1]

∥∥Tβ(t2 − s) − Tβ(t1 − s)
∥∥B(L2(�))

+ W (r)(t2 − t1)
β

→ 0, as t2 → t1.

Hence, it follows that ‖(Qu)(t2)− (Qu)(t1)‖ tends to zero as t2− t1 → 0 independent
of u ∈ Br . Thus, we conclude that the set � is equicontinuous.

Secondly, we show that Q is continuous. For any {um}∞m=1 ⊂ Br , u ∈ Br with
um → u as m → ∞. In view of the assumptions of f , one has

lim
m→∞ f (um(t)) = f (u(t)).

On the other hand, one has the inequalities

(t − s)β−α−1‖um(s) − u(s)‖ ≤ 2(t − s)β−α−1r ,

and

(t − s)β−1‖ f (um(s)) − f (u(s))‖ ≤ 2(t − s)β−1W (r),

are integrable with respect to a.e. s ∈ [0, t] and t ∈ [0, T ]. Therefore, Lebesgue’s
dominated convergence theorem implies

∫ t

0
(t − s)β−1‖um(s) − u(s)‖ds → 0,

∫ t

0
(t − s)β−1‖ f (um(s)) − f (u(s))‖ds → 0,

as m → ∞. Consequently, we get

‖(Qum)(t) − (Qu)(t)‖ ≤ σ

∫ t

0
(t − s)β−α−1‖um(s) − u(s)‖ds

+ 1

	(β)

∫ t

0
(t − s)β−1‖ f (um(s)) − f (u(s))‖ds → 0, as m → ∞.

This proves that Qum → Qu pointwise on [0, T ] as m → ∞, which follows from
the equicontinuity of� thatQum → Qu uniformly on [0, T ] as m → ∞. Thus,Q is
continuous.

Finally, we show that operator Q is compact. It is sufficient to prove that for any
t ∈ [0, T ], �(t) is relatively compact in L2(�). Obviously, for the case t = 0, it
is easy to see that �(0) is relatively compact. Let t ∈ (0, T ] be fixed, since R′

β(t)
and Tβ(t) are compact for every t > 0 in view of Lemma 4.2 and Remark 4.2, we
can structure a family of finite dimensional compact operators as the same way in
Lemma 4.2 by

(QN u)(t) =Sβ(t)φ + Rβ(t)φ + Pβ(t)ψ −
∫ t

0
R′N

β (t − s)u(s)ds

+
∫ t

0
T N
β (t − s) f (u(s))ds,
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for every N ∈ N, in which T N
β (·) is defined as in Lemma 4.2 and

R′N
β (t)u =

N∑
n=1

tβ−α−1Eβ,β−α(−λntβ)(u, en)en .

Obviously, one can repeat the proof process above that the relatively compactness of
set �N = {QN u : u ∈ Br } follows. On the other hand, by virtue of Lemma 2.2 and
(i) in Lemma 2.4 with respect to μ ∈ (

0, β−α
β

)
, it yields

‖(Qu)(t) − (QN u)(t)‖ ≤
∫ t

0
‖(R′

β(t − s) − R′N
β (t − s))u(s)‖ds

+
∫ t

0
‖(Tβ(t − s) − T N

β (t − s)) f (u(s))‖ds

� λ
−μ
N+1

∫ t

0
(t − s)β(1−μ)−α−1‖u(s)‖ds

+ λ
−μ
N+1

∫ t

0
(t − s)β(1−μ)−1‖ f (u(s))‖ds.

Hence, it is easy to show that

‖(Qu)(t) − (QN u)(t)‖ → 0, as N → ∞.

This means that there are relatively compact sets arbitrarily close to the set �(t).
Therefore, �(t) is relatively compact in L2(�), and we derive that Q is a compact
operator.

Now, let’s finish this proof. By above arguments and Ascoli-Arzelà theorem, we
know that Q is completely continuous. Therefore, Schauder’s fixed point theorem
implies that Q has at least one fixed point, which means that there exists least one
mild solution to problem (1.1)–(1.3). The proof is completed. �
Remark 4.3 Concerning the well-posedness in Theorem 4.1, it is indeed a local result
corresponding existence interval (0, T0) sufficiently small such that (4.8) and (4.9)
must satisfy. Despite all of this, it is a new result to some special nonlinear functions,
such as f (u) = |u|ϑ−1u, ϑ ≥ 1. Besides, the existence interval of Theorem 4.4 is
not needed to make sufficiently small since we can get the exact interval of time from
the exact upper bounds of Mittag–Leffler functions by (4.10) and Lemma 4.2, and it
means that there may appear multiple solutions. Thus this conclusion extends certain
results in literatures.

5 An application

Let us take account of the following time fractional telegraph equation

∂2αt u(t, x) + ∂αt u(t, x) = uxx (t, x) + f (u(t, x)), 0 < x < 1, t > 0,
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where ∂2αt and ∂αt are fractional derivatives in the sense of Caputo type with respect
to t of order 1/2 < α ≤ 1. Specially, the case α = 1 is related to the well-known
telegraph process, which describes the propagation process of electron in telegraph
cable, and it can be regarded as an integral order wave equation with damped term
∂t u.

In the sequel, let us consider the boundary conditions u(0, t) = u(1, t) = 0 and
let λn = n2π2 and en = sin(nπx), n ∈ N, � = [0, 1], obviously, {−λn, en}∞n=1 is

the eigensystem in L2(�) associated with operator A = ∂2

∂x2
. If φ(x) = cos (xπ/2),

ψ(x) = x and linear function f (t, x) = t2 sin(xπ/2), then it is easy to check that
φ ∈ D(Aγ ) for 0 < γ < 1, ψ ∈ L2(�) and f ∈ L1(0, T ; L2(�)), then from [7], one
can find a solution given by

u(t, x) =
∞∑

n=1

( ∫ t

0
τ 2α−1E(α,2α),2α

(
−τα,−λnτ

2α
)

fn(t − τ)dτ

+ A1n(0)B1(t) + A2n(0)B2(t)

)
en(x),

where fn(t) = 2
∫ 1
0 f (t, x)en(x)dx, A1n(0) = 2

∫ 1
0 φ(x)en(x)dx, A2n(0) =

2
∫ 1
0 ψ(x)en(x)dx ,

B1(t) = 1 − λnt2α E(α,2α),2α+1

(
−tα,−λnt2α

)
,

B2(t) = t − tα+1E(α,2α),2α+2

(
−τα,−λnτ

2α
)

− λnt2α+1E(α,2α),2α+2

(
−tα,−λnt2α

)
,

and for b > 0, ai > 0, |zi | < ∞, i = 1, 2, the multivariate Mittag–Leffler function is
defined as

E(·),b(·) = E(a1,a2),b (z1, z2) =
∞∑

k=0

∑
l1+l2=k

l1≥0,l2≥0

k!
l1! × l2!

zl1
1 zl2

2

	(b + a1l1 + a2l2)
.

This ensures that the above solution also belongs to C([0, T ]; L2(�)) according to
Theorem 3.1 and further the solution will satisfy (3.7). Nevertheless, if nonlinear
function f (u) = |u|ϑ−1u for ϑ ≥ 1 or f (u) = sin(u), then we cannot use the method
of [7] to establish the existence of solution while there will exist a solution to the
current problem by Theorem 4.1 as well as Theorem 4.4. Consequently, this extends
the results in [7] and we will get a more general existence result for the case from the
exponent β = 2α to β ∈ (1, 2], α ∈ (0, 1].
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