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Abstract

The mathematical model of the Antarctic Circumpolar Current with integral boundary
conditions is established and the explicit expression of green’s function is obtained.
The existence and uniqueness of solutions are proved by using the mixed monotone
operator theory. The sufficient conditions for the existence of positive solutions of
the model are given and the existence of positive solutions with integral boundary is
proved by using the fixed point technique in cone.
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1 Introduction

The mathematical study of ocean circulation is very important for predicting the char-
acteristics of large-scale natural phenomena in the ocean. The combined forces of
gravity and Coriolis forces (due to the earth’s rotation), triggered by wind stress, drive
circulating ocean currents, known as gyres. In the gyres, the horizontal velocity is 0.01
m/s, which is about 10* times the vertical velocity in [1,2]. Considering global ocean
circulation and global climate, the Antarctic Circumpolar Current (ACC) is probably
the most important current of this type. ACC is the most powerful ocean current on
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earth in [3], which separates Antarctica from the warm subtropical waters. ACC flows
clockwise from west to east around the South Pole between about 40°S and 60°S,
where there is no large area of land to break down this continuous water. ACC is the
only tidal current that completely circles the earth, and its eastward flow is caused by a
combination of very strong westerly winds and Coriolis forces. ACC is strongly con-
strained by the terrain at the bottom, and observed time changes, such as the Antarctic
circumpolar wave [4—13]. ACC carries about 140 million cubic meters of water per
second, more than 100 times more than all the world’s rivers combined, and travels
about 24,000 km. Nevertheless, ACC is one of the least representative components
of global climate models in [14]. Although there are a lot of observations about ACC
flow, the pursuit of models that show a high degree of real structure is still the main
direction of current research.

The geophysical study of fluid flows involves complex interacting systems from
which we attempt to extract the essence of specific physical phenomena. Starting
from the inviscid Euler equation and the equation of conservation of mass and energy,
a flow function is introduced to encode the horizontal flow component by ignoring
the movement in the vertical direction, and the ocean cyclotron flow is modeled as
the shallow water on the rotating sphere in [1]. The spherical coordinate model is
transformed into an equivalent semilinear plane ellipse boundary value problem by
using the stereoscopic projection from the Arctic to the equatorial plane in [1]. Under
the ignorance of azimuth angle change of the horizontal velocity that mathematical
models of gyres flows with boundary conditions have been studied in the Southern and
Northern Hemispheres in [15-25]. Since the projection of ACC flows from the Arctic
to the equatorial plane is represented as a circular region on the equatorial plane, we
established a new mathematical model of ACC flows, assuming that the circulation
boundary is a streamline, which is just represented as the known Riemann-Stieltjes
integral — ttlz u(t)dé(t) and fttf u(t)dn(t), and the negative sign indicates that the
outer normal direction is opposite to the positive direction selected. This has not been
studied in the existing literature, and we try to solve this problem mathematically.

2 Preliminaries

Consider spherical coordinates, 6 € [0, ) is polar angle with & = 0 corresponding to
the North Pole, and ¢ € [0, 2m) represents the angle of longitude in Fig. 1. In terms of
the stereographic projection from the North Pole, which azimuthal and polar velocity
components of ACC flows as

1
sin 6

Yg and — vy,

In terms of the stream function W associated with the vorticity of the motion of the
ocean, and W is not driven by the Earth’s rotation, defining

V0, 9p) =—wcosh + V0, ), (1)
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Fig. 1 Azimuthal and polar angular spherical coordinates ¢ and 6 of a point P on the spherical surface of
the earth, with & = 0 correspond to the North Pole. Severally, while 6 = % represents the Equator

the governing equation for ACC flows can be given by

1
m\yw—l—\llg cotl + Wgy = F(V — wcosB), 2)

where F(W — wcos®) is the form of the ACC flows of the vortex that defines the
property of the ocean vorticity function. F (W — w cos 6) is similar to the concept of
angular momentum, which is a method of measuring the local spin of a fluid element in
[26]. While w > 0 is the non-dimensional Coriolis parameter and 2w cos 6 represents
the spin vorticity. Ocean vorticity is shown in the form of tidal wave fluctuations,
which is mainly due to the influence of wind and the gravitational forces generated
by the relative motion of the Earth, the Sun and the Moon. Ebb and tide respectively
refer to the horizontal unidirectional movement of water and the vertical movement of
water. The oceanic vorticity of the wind-driven current, the vorticity of water current,
and the interaction of geophysical wave current can be expressed by non-zero constant
in [27,28]. It is noteworthy that the circulation exists at almost all latitudes except near
the Equator and acts as a waveguide, facilitating the flow of current from east to west,
driven by Coriolis forces in [29,30]. Although wave-current interactions in nonzero
vorticity flows are a very interesting topic in [31-33], we will only discuss the effects
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S

Fig.2 The stereographic projection of the unit sphere (center at origin) from the North Pole to the equatorial
plane,the point P in the antarctic region, the straight line connecting it to the North Pole intersects the
equatorial plane in a point P’ belonging to the interior of the circular region delimited by the Equator. The
ACC is mapped into a annular region within the equatorial plane

of the ACC at large scales. The governing equation (2) is valid in a region where the
boundary appears as a streamline.

The stereographic projection is used from the North Pole to the equatorial plane on
a unit sphere centered at the origin in Fig. 2. The model (2) in spherical coordinates
can be transformed into an equivalent semilinear elliptic partial differential equation
[1]. Let

S:re’d’ with r = cot Q =ﬂ, 3)
2 1 —cos6

where (r, ¢) represents the polar coordinates on the equatorial plane, and  is a function
of 6. After several cancellations by using (3), the Eq. (2) can be simplified as

v - P —oEE-D/EE+ 1)

= 4
5 (1 + £E)2 @
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Taking the partial derivative of (1), we have

20E 2 4wkE
Ve = + —— Ve =Y+ — — —. 5
SVt e e TR T e Gty ©
By combining (5) and (4), we obtain
1 —&& F(y)

42 —— — — =0, 6
VET N T e ©

using Cartesian coordinates (x, y), Eq. (6) is transformed by

) 2

AY 480 YD AFW) ™)

(I4+x2+y2)3  (I4x2+y2)?2

where A = 8)% + 83 is the Laplace operator, expressed in accordance with the Cartesian
coordinates on the equatorial plane, in which the unknown function ¥ (x, y) represents
the stream function. The ACC flows is bounded on the surface of the ocean by the
level sets of flow functions, while in spherical projection coordinates, the solution of
the ACC flows model (7) in the plane region is determined by these horizontal sets.
Let

0 ad
;= xz_,_yz’_r: X x or y Y

ax /xz_,_yz:;’@_ rty2 1

therefore, ¥, = 2/ (r), ¥, = 2¢’(r), and

2

x2 7 l X / y2 1 l y2 /
Vex = 9" + ( —) V), Yy =Y+ (- - —3) Vi),
r r r r

PR
and so
1 1 /
Ay =y (r) + ;llf (r),
hence, Eq. (7) is transformed into

L—r2  4F((r)
(I+r23 (14722

1
v (r) + ;W(r) + 8w ®)

Note ACC flows corresponds to the radial symmetric solution of problem (8) with no
variations in the azimuthal direction. We introduce

vr)y=u(t), <t <t,
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where
r=e? for 0 <ty =—2In(ry) <t = —2In(r_),
with 0 < r_ < ry < 1. We obtain
W(1) = 2eb Y (eh) = Sryl ()
2 2
and
W (1) = ieﬁ’(e%) - ie’w’%e%) = irw’(r) + ;erl//”(r).

As aresult, itis convenient to transform (8) equivalently into the second-order ordinary
differential equation

" (1) 420D )
u = — ,u w—s, <t <b,
(1+e)? (I+e)y ! ?
with we associate integral boundary conditions
n
u(ty) —au'(ty) = —/ u()dg(t), on r =r_, (10)
4
and
5]
u(tr) — pu'(12) :/ u(t)dn(t), on r =ry, (11
51

meaning the fact that r = r4 for ACC as gyre flow are streamlines with ¥ = u(#;)
onr =r_and ¢y = u()onr =ry, 0 < r— < rp < 1. ACC flows each
particle is always confined within the boundary because ACC flows are stable. In
this paper, we assume that ACC flows behavior is a simplified circular region, whose
streamline form at the boundary and the linear combination of its velocity are just
the Riemann-Stieltjes integral of the streamline with known cyclic boundary, which
is mathematically reasonable. Although there have been many good results on the
ACC flows boundary value problem, the boundary value problem considering that the
circular boundary is the Riemann-Stieltjes integral of the known streamline has not
been studied. We obtain sufficient conditions for the existence of positive solutions of
such problems by using fixed point technique and mixed monotone operator theory in
cone.

Linking (9), (10) and (11), we established the following mathematical model of
ACC flows:

W' () =a®)F(t,u(t))+b(), t) <t <ty
u(h) —au' (1) = — [2 u()dg(0), (12)
u(ty) — Bu' () = [ u(t)dn(),
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wherea(-), b(-) : [t;, t] — R arecontinuous, F (-, -) : [t1, ] x R — Riscontinuous,
and

e’ 2wel (e — 1)

o) =g PO ==

a and B are nonnegative real parameters, £(-) and n(-) are nondecreasing, right con-
tinuous on [f{, f»), left continuous at t = 1, fttlz u(t)dé&(t) and fttlz u(t)dn(t) denote
the Riemann-Stieltjes integrals of # with respect to & and 7.

3 Main result
We assume the following condition.
(Hl) h—t1+a>pB>n.

Lemma 3.1 Assume that (H 1) holds, thenforanyy € C([t1, t2], (0, +00)), the bound-
ary value problem

'@ =y@), HhH<t<n
u(t) —au' (1) = — [2 u(dg (), (13)
u(tz) — Bu' (1) = ;> u()dn(),

has a unique solution given by

e e €1(0) 2
u(t) =/ G(LS)y(S)dSJer(t)/ M(t)dé(l)+—/ u(t)dn(1),
I3 I3 t2_t1+a_:3 1
(14)
where
_ ki@ kals), n <t <s =<t
Gt ) = {m(s)-xzm, h<s<t<n, 15
kKi(t) =t +a —t and kr(t) = tzt_J;IﬁT_Jz_ﬂ G (t, s) is the Green’s function.
Proof 1t is easy to see by integration of (13) that
1
u' () =u' (1) +/ y(s)ds. (16)
31
Integrating again, we have
t
u(t) = u(ty) +u'(t)(t — 1) +/ (t —s)y(s)ds. 17
n
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Letting t = £, in (16) and (17), combining this with the boundary conditions in (13),
we obtain

n
u(t) — Bu'(12) = u(ty) + (1) (12 — 11) + / (12 — )y(s)ds
a1

%) 15
—ﬂu/(h)—ﬂ/ y(S)dS=/ u(r)dn(t). (18)
1 1
Since

19}
u(ry) —au' (1) = —/ u()d(t), (19)
1
thus, it follows from (18) and (19) that
1 %) 4]
w'(n) = ——— U u(t)dn(t) +/ u(t)d& ()

h—th+a—pBLJ f

n 1
iy’ / V(s)ds — / (tz—S)y(S)dS:|,
t 1

1

and

o 15 %) 153
u(ty) = m |:/t1 u(t)dn(t) "',B/t1 y(s)ds _/n (2 —S)y(S)dSi|

n—t—p 2

_m ; u(t)dé(t).

Therefore, BVP (13) has a unique solution

t
u(t) = u(ty) +u' (1)t — 11) +/ (@t —s5)y(s)ds
1

t+B—1n /"2 t+a—1 /‘fz
=7 = u)dg(t) + ——— | u(®)dn(t)
Hh—ti+a—p f Hh—ti+a—p 1
t+a—mn)p [~ t+a—n n
P EE— y(s)ds — 7/ (ty — s)y(s)ds
h—fh+a—BJy n—t1+a—BJy

t
—I—/ (t —s)y(s)ds

n

_ t+B-n 2 t+o—1 &
- 7&_”“_5[1 u(t)dg(t)—'—itz—tl—ka—ﬂ/;l w(n)dn ()
"st+a-—n)+p-1n) /’2 (t+a—1)s+B-1n)
d d
+/;1 h—f1+a—p y(s)s + t Hh—t+a—p y(s)ds
k(1)

) 5] n
= /cz(t)/ u(t)dé(t) + ; 5 / u(t)dn(t) +/ G(t,s)y(s)ds.
1 - 1

2 — 11+ 1
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The proof is complete.

Letting

I Y O
=1 /tl/cz(t)dg(t), yz—/tl tz—t1+a—ﬂd§(t)’

n f
& =/ Ko (Ddn(t), ya=1 _/ Kk1(7)
n

———dn(1).
n h—t+a—p 1

Let’s assume that y; (i = 1, 2, 3, 4) satisfies the following conditions:

(H2) y1>0,y4>0,y =viya — y2v3 > 0.

Lemma 3.2 Assume that (H2) holds, then (14) can be expressed in the form

I
u(t) =f2H(t,s)y(s)ds,
1

where

1 I
Ht,s) = G(t, 5) + ko1 (1) f * Gt 9)dE (D) + koo 1) / "G s)dn(),
1 4

and

_ - 3
ko1 (t) =y <V4K2(t) + p— ﬂKl(t)),

- i
ko2 () =y (7/2162(!) + Pr— 'B’(l(t)>-

Proof Multiply (14) by d&(t) and integrate both sides at [#1, 2], we have

I 23 %) 4]
/ u(O)dE(r) = / / G (t, $)y(s)dsde(D) + (1 — 1) / w(O)dE (1)
1 1 I3 1

4]
T / u(O)dn (o),
1

similarly,

2] n 2
/ w()dn(t) = / / G(z, $)y(s)dsdn(t) + y3 f u(O)dE 1)
f noJn I

n
+ —m)/ u(r)dn(t),
1
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hence, we can obtain

1) H
v / W(OdED) — 1 / u()dn (1)

1 3|

%) %)
:/ / G(t, 5)y(s)dsd& (1),
n 11

n n
—Vs/ M(t)dé(t)+7/4/ u(t)dn(r)

n n

1% 1%)
= / / G(t,s)y(s)dsdn(t).
31 11

Solving the two equations, we obtain

n n 15
/ u(t)dé(t)=y_1[)/4 / / Gt $)y(s)dsdE(T)
1 n

1

%) 15
+sz / G(T,S)y(S)dsdn(f)}, (20)
51 1
and

n n h
f u(r)dn(t)=y‘l[y3 / f Gz, $)y(s)dsd& ()
1 I3l

1

15) %)
+ )/1/ / G(t, s)y(s)dsdr/(t)]. 21
11 1

Linking (20), (21) and (14), we have

K1(1) 2

t t
u(t) = ft Gt )y()ds + ka0 ft s + 10— [ uwan

%) 4] 5]
_ / G(t, $)y(s)ds + 2Dy ya / / G(r. $)y(s)dsdé(r)
131 n 4l

K1 (1) )/_1
h—t1+a—f

14 b4 —1 b4 b5
fZ/ZG(r, s)y(s)dsdé(r)—l—M/z/zG(r, $)y(s)dsdn(z)
1 1 t2_tl+a_:3 1 1

n %)
+a®y ' / / G (x, $)y(s)dsdn(z) + vs
131 1

5]
= / H(t,s)y(s)ds.
1

This completes the proof. O

Lemma 3.3 There exists continuous function a(-), b(-) : [t1, 2] — (0, +00) such that

a(t)G(s,s) < G(t,s) <b()G(s,s), Vt,s € [t1, 1r]. (22)
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Futhermore, a, = min _a(t), bp = max b(t).
telty,n] telt,1]
Proof Let
00 = maxlit |, Il = max § oo — 1y 400, —L— 1
Hh—t1+a—p
= min(ler ], o1} = min {o, 1P =2
Qb_ 11 2 - ’[2—[1+(x—‘3 .
Define
1 . 1
a(t) = m]n{Kl(t)a Kz(t)}’ b(t) = - maX{Kl(t), KZ(I)}, (23)
Qa Ob
then if ¢+ < s, we have
k1(t)
a()G (s, s) = K1 (s)ea(s)alt) < k1 (s)ea(s) =
Qa
K1(s)
= K1 (t)k2(s) <ki1(DKa(s) = G, 5)
a
t
<0102 = 532D < b(1)G 5. 9),
if s < r, we also can obtain
K2 (1)
a(t)G (s, s) = k1(s)a(s)at) < k1(s)ka(s)
a
K2(s)
= Kk1(s)k2 (1) < ki1($)k2(t) = G, 5)
a
t
<1002 = 460 2L <1066, ).
which shows that (22) is correct. m]

Lemma 3.4 There exists a constant og € (0, 1), such that a(t) > oob(t) for all

1 €n, n]

Proof Since a and b can be given by (23), obviously, a and b are continuous and

positive on [#1, t2], the conclusion is easy to prove.

We give the following assumptions conditions:

m}

(H3) Let F(t,u) = ¢(t)(g(u) + h(u)), where ¢(-) : [t1, 2] — [0, 4+00) is con-
tinuous, g(-) : (0,+00) — [0, 400) is increasing and continuous, A(-) :

(0, +00) — [0, 400) is decreasing and continuous;
(H4) There exists A € (0, 1) such that

gu) > vig@), h(v~'u) > vVhu).

(24)
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912 W. Zhang et al.

Let Py, the real Banach space E be partially ordered by a cone Py, of E (see [34]),
and it is defined by

Pr,={ueClti,n]: C"'Li(t) <u(t) < CLi(t) on [11, 1]},

1 —1
where the constant C > max {1, (M), (M200) T }, and the positive constant M|,
M> and the function L (¢) can be seen in the proof of Theorem 3.5.

Theorem 3.5 Assume that (H1)—(H4) hold, then the integral boundary value problem
(12) has a unique solution u(t) in P, and u(t) > 0 for allt € [t1, 12].

Proof For any u, v € Pr,, we define the operator A : P, x P, — E as following:

n
Au, v)(1) =/ H{(t, )[a(s) (¢ (s)(g(s)) + h(v(s)))) + b(s)lds
3|
n
=f G(t,9)[a(s) (¢ (s)(gu(s)) + h(v(s)))) + b(s)lds
1

+ ko1 (1) /ttz [2 G(z, 9)[a(s)(E(s)(g(u(s)) + h(v(s))))
+ b(S)]dsaéé(f;
+ Kk02(1) /ttz /ltz G(z, 9)[a(s)(E(s)(gu(s)) + h(v(s))))
+ b(S)]dsc;n(fl).

We can prove A is a mixed monotone.

In fact, for any (u1, v1) € Pr, x Pr,, (u2,v2) € P, x Pr,,letuy <up,vi > vg,
since g is increasing and & is decreasing on (0, +00), then

Alur, v1)(0) = /jz H(t, 9)la(s) () (g1 (5))
B + be)lds
< / " H a6 6) @) + hs(s)
+ 119(S)]ds = A(uz, 12)(1),

which implies that A is a mixed monotone.
We show that A : Pp, x Pr, — Pp, is well-defined, for any (4, v) € Pr, x Pp,
and t € [t1, ], we have
5]
A(u, v)(1) < bo/ G (s, 9)[a(s)(E(s)(g(u(s)) + h(v(s)))) + b(s)lds

3|

%) 5]
+I<01(t)/ b(f)d%‘(f)/ G (s, $)[a(s)(E(s)(guls))
11 n

@ Springer



Positive solutions to integral boundary value problems... 913

+ h(v(s)))) + b(s)lds
1) %)
+x02(t) [ b(v)dn(r) / G (s, $)[als)(&(s)(guls))
1 1

+ h(v(5)))) + b(s)lds

n
= Ll(t)/ G(s, )lals)(§(s)(gu(s)) + h(v(s)))) + b(s)lds,
1
where
t n
Li(1) = bo + xo1 (t)f b(7)dé(T) +Koz(t)/ b()dn(z).
1 1

Analogously, we also have

n
Au,v)(1) = ao/ G (s, s)la(s)(C(s)(gu(s)) + h(v(s)))) + b(s)lds
1

n

n
+ o1 (?) u(r)df(r)/ G (s, s)la(s)(&(s)(g(u(s))
1

n

+h(v(s)))) + b(s)lds
15} 5]
+xo2(t) [ a(r)dn(r) / G (s, s)la(s)(E(s)(g(uls))
151 51

+ h(v(s)))) + b(s)lds

19}
= Lz(l)/ G (s, 9)a(s)(&(s)(guls)) + h(v(s)))) + bls)lds
1

5]
> L1(t)00/ G(s, s)la(s)(&(s)(gu(s)) + h(v(s)))) + b(s)lds,

n

where
123 5]
La(t) = a0 + k01 (1) / a(1)dE(T) + Koo (1) f a(t)dn (7).
11 n

Letting v = %, u > 1, we can obtain to by using (24) that
gu) <utg(),u>1, gw)=v'g(l),ve (1), (25)
and
hw™h = v*r(1),v € (0, 1), h(v) <v*h(1),v e 0,1). (26)
Hence, for any ¢ € [t1, #2], by using (25) and (26), we have

gu(®) < g(C - Li(1)) < (Li(1)* - C*-g(1), 27)
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914 W. Zhang et al.

@) > g(C L) = g(C™H =C*g(D), (28)
and

h(u(t)) < h(C™"- Li(t)) < h(C™") < C* - h(1), (29)

h((t)) > h(C - L1(t)) = (L1(1))™* - C™* - h(1), (30)

from (27) and (29), we have
5]
Au, v)(1) < Ll(t)/ G(s, 9)a(s)(&(s)(guls)) + h(v(s)))) + b(s)lds
131

n
SLI(I)‘CA'/ G(s, )as)(C () ((L1(s)*g(1) + h(1)) + b(s)]ds
1

= M C*L;(t) < CL(1), (€29)

where

5]
M, 2/ G (s, 9)[a(s)(€(s)((L1(s)*g(1) + h(1))) + b(s)]ds,

1

from (28) and (30), we also have
[5)
Au,v)(1) = L1(t)00/ G (s, s)la(s)(C(s)(gu(s)) + h(v(s)))) + b(s)lds
1

19}
ZLl(t)-ao-C’A-/ G (s, s)la(s)(&(s)(g(1)

1
+ (L1(s))"*h(1))) + b(s)]ds
= MyC*ooL(1) > CT'Ly (1), (32)

where

4]
M2=/ G (s, 9)a(s)(C(s)(g(1) + (L1(5))"*h(1))) + b(s)1ds,

n

thus, (31) and (32) show that A(Pr, x Pr,) € Pr,. Letting (u,v) € Pr, x Pr,,
v € (0, 1), we have

5]
AQu, v ) (@) =/ H(t, $)[a(s)(C () (g(u(s)) +h(w™ v(s)))) + b(s)lds
4]
5]
2/ H(t, $)[a(s) () (v gu(s)) + v*h(v(s)))) + b(s)]ds
15l

n
> vl/ H(t, s)la(s)(&(s)(g(u(s)) + h(v(s)))) + b(s)lds
1
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= v A®u, v)(@).

Therefore, we have illuminated that all assumptions of the Lemma 3.4 from [35] are
satisfied, consequently, there exists a unique u € P, such that A(u,u) = u, the
integral boundary value problem (12) has a unique solution u(¢) > 0 on ¢ € [f, 12]
by using Lemma 3.3 from [35]. The proof is complete. O

We define a cone P is a subset of the Banach space E = C[t1, 1] by
P={ueCln,nl:ul)=01¢c,nl],
set

K = {u e P :u(t) is concave and minu(t) > 8lull, t € [t +n~' 1o —n7'],
Vn e N*},

l .
where § = ﬁ, [y = minse[yy,1p1 L1(2), the norm lu|| = max;e, 1 [(t)], and for

any 0 < ro < Ry < 00, we have ?ro,Ro C K C P, where fro,Ro = {u € K :
ro < llull < Ro},and let K,y = {u € K : |lull < ro}, 0K,y = {u € K : |Ju| = ro}.
We give the following lemma:

Lemma 3.6 [36] Let E is a real Banach space, K is a positive cone in E, for arbitrary
0 < r9 < Ry < +o00, define the operator T : K,y g, — K is a completely continuous
operator, if

@ NTull < llull, u € 9Ky,;
(ii) EIfe&Klsuchthatu7éT_u+;L0f,u€8KRO.
Then T has a fixed point in K g,.

We assume that the following condition is satisfied:
(HS5) LetQ(n) =[t, 1 —i—rll]U[tz— ,ll r],n € N*,andforany 0 < rog < Ry < 400,
letting

lim  sup G(s,s)a(s)F(s,u(s)) + b(s)lds = 0.

n—oo -
uekyg Ry Q(n)

The operator T : K, g, — P be defined by

5

(Tu)(t) = / 2 H(t,s)a(s)F (s, u(s)) + b(s)lds
4]
15

= f ’ G(t,s)[a(s)F(s,u(s)) +b(s)lds

! %) 15
+ ko1 () / / G(z,5)la(s)F(s, u(s)) + b(s)ldsdé(r)
51 11
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o pt
+ K2 (t) f ’ f ’ G(t,s)la(s)F (s, u(s)) + b(s)ldsdn(z). (33)
1 11

Lemma 3.7 T is a completely continuous operator.

Proof Since (22) and the define from (33) about 7', we have

5}

(Tw)(t) < bo/ G(s,)[a(s)F(s,u(s)) + b(s)lds

a1
14 I
+ 01 (1) f T b(0)dE() / "G5, )a(s) F s, u(s)) + b(s)lds
131 1
t I
T / " b(0)dn() / " G5, 9)als)F (s, u(s)) + b(s)lds
11 131
5]
< ||L1||/ G(s,s)a(s)F(t,u(s)) + b(s)lds. (34)
4]

Since (H5), forV rog > 0,3 ny € N* such that

sup / G(s,s)a(s)F(s,u(s)) + b(s)lds < 1,
uEGK,O Q(ny)

for Y u € 0K,,, setting u(ty) = r{lax] lu(t)| = ro, it follows from the concavity of
telt1,n
u(t) on [t1, ] that

u(to)(t—11) ro(t—=1)
, N =t=<1 , =t =<1
u(t) = Wiy >\ rolnon) ’ (35)
: h—tg * =1=10 hon > W=1=Dn

<u(t) <rg,and

thus, since (35), for V¢t € [t + %, tH — 1 ] we obtain m <

n
sup |IL1I|/ G(s, 9)a(s)F (s, u(s)) + b(s)lds
1

ueaKrO

< sup |ILq]| G(s,s)la(s)F (s, u(s))
ueBKrO Q(ny)

1

tz n
+b(s)lds + sup L] " G (s, $)la(s)F (s, u(s) + b(s)lds < Ms,
uedky, ntan

where

Ms = L1l + (2 =L < tt:;a_)é[

e F w(5+3«/§):|
1+e)? 274153
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and

1 1
F| = max {F(l,u) 1 (t,u) € |:t1 + —, 1 — —] X [r—o,ro]},
n n ni(t —t)

which shows that 7 : D € K, g, — P is uniformly bounded.
Weprovethat T : K, r, — P isequicontinuous. ForVe > 0, thereexistsny € N*,
such that

sup / G(s,s)[a(s)F(s,u(s)) +b(s)lds < L
uek g, gy 2012) SIIL1ll

since kg1 (t), ko2 () and G (¢, s) is continuous on [#1, 1], thus, ko1 (¢), ko2 () and G (¢, )

is uniformly continuous on [¢1, 1], i.e., for Ve > 0, there exists § > 0, when [t' —t"| <
8 forany ¢',t” € [11, ], we have

153 -1
ko1 (1) — ko1 (1")| < (4M4/ b(f)d5(1)> &,
n

%) -1
|Koz<r’>—xoz<r”)|<<4M4 f b(r)dn(r)) e,
1

|G, s) — G(t",5)| < 4M4) "' G (s, 9)e,

where

(th—t1 +a)B [ e, w(5+3f3)]

My =(r) —t +
4= =) e Al U e T 153

and

1 1 ro
Fzzmax{F(t,u):(t,u)e |:t1+n—,t2——] X [— i“
2

’rO
ny na(t2 — 1)

Hence, when |t/ —t”| < § forany ¢/, t” € [t1, t2], we can obtain

|(Tu)(t") — (Tu)(t")| < 2by sup / G (s, )[a(s)F (s, u(s)) + b(s)lds
uek g ry ¥ 2(12)
1

fZ—E
+ sup |G(', s)

”GF’O’RO n+as

—G(t", 9)|la(s)F (s, u(s)) + b(s)lds

n
1 2llkon / b(1)dE(z)  sup
13|

ue ro,Ro
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/ G(s,)[a(s)F(s,u(s)) + b(s)lds
Q(n)

2_i

+ ko1 (1) — K01(l")|/ b()d&(7)

t1+f
G(s,)[a(s)F(s,u(s)) + b(s)lds

5]
+ 2kl [ bodnm sup
1

MeKrO.RO

/ G(s,s)[a(s)F(s,u(s)) + b(s)lds
Q(n2)

5}
+ ko2 (1) —Koz(t”)I/ b(t)dn(t)
1 tl+@
G(s,)[a(s)F(s,u(s)) + b(s)lds
<2|Li| sup

MEK70~RO

/ G (s, $)[a(s)F (s, u(s)) + b(s)lds

Q(n2)
5]

+ [|K01(l/) - K01(t”)|/ b(1)dE () + |koa (1))
1

5]
—Koz(t")I/ b(z)dn(7)
n

1

. sup
4M4 72 tl+L

u€K g Ry s
G(s,s)[a(s)F(s,u(s)) + b(s)lds

<&,

which implies that T is equicontinuous on ?ro Ro-

By using Arzela-Ascoli theorem, we can prove 7T is compact on K, Ky, Ry-

We prove that T : K r0,Ry — P 1s continuous. Assume u,, ug € K, g, and when
n — 0o, we have ||u,, — ug|| — 0, then rg < ||u,ll, |luoll < Ro.
Given a fixed ¢ > 0, since (H5), there exists n3 € N* such that

sup / G(s,)[a@s)F(s,u(s)) + b(s)lds < L, (36)
uek, Qn3) 4Ll

ro.Ro

since F(r,u) : [ + %, fh — %] x [m, Ro] — R is uniformly continuous
and a(?) : [t1, 2] — R is continuous, by using the Lebesgue dominated convergence
theorem, we have
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o
/2 1 ’ G(s,8)a(s)|F(s, un(s)) — F(s,uo(s))|ds — 0, n — oo,
t

1+E

i.e., there exists N € N*, whenn > N, we have

1

D=5y
fz ’ G (s, )a(s)|F (s, un(s)) — F(s, uo(s))|ds <
t

&
S ()
L 2IL1]

by using (36) and (37), we obtain

|(Tun)(t) = (Tuo)()| < 2| L1ll  sup /Q( )G(s,S)[a(S)F(s,u(S))+b(S)]ds
n3

MEKV(),R()

1

h—=
HiLl [ * G(s,9)a()|F (s, un(s)) — F(s, uo(s))|ds
fl*‘r@

< &.
Therefore, we have

ITun — Tuoll < e.

Thus, the operator T is continuous.
As aresult, T is a completely continuous operator. O

Lemma3.8 T (K, r,) C K.
Proof Letu € f,o, Ry since (22) and (33), we have

4]

(Tu)(t) = a, / G(s,)[a(s)F(s,u(s)) + b(s)lds
! n n
T ko (1) / a()dE(r) / G5, $)[a()F (s, u(s)) + b(s)lds
1 1
%) 4]
+ Koz(t)/ a(f)dn(f)/ G(s,s)a(s)F(s,u(s)) + b(s)lds
131 11
t
> l100 / ’ G(s,)[a(s)F(t,u(s)) + b(s)lds. (38)
n
Linking (34) and (38), for ¢ € [t] + %, th — %], n € N*, we obtain

min  (Tw)(®) > min (Tu)(t) > §||Tull,
reln+i.n-1] teln,n]

which shows that T(?ro, Ry) € K. O
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Theorem 3.9 Assume that (H1), (H2) and (H5) hold, further we assume that the
following condition are satisfied:

(HO6) there exists positive number F 0 and Fuo such that
F(t,u) F(t,u)

FO = lim sup max , Foo = lim inf min .
u—0 te(t,n] u u—0oo f€[T|+l tzfl] u
n n

Then the integral boundary value problem (12) has at least one positive solution on
the interval [t1, t2].

Proof Given a fixed € > 0, since (H®6), there exists ro > 0 such that
F(t,u) < (F'+eu, Yt eln.nl, 0<u<r, (39)

and

(th—t1+a—PBro

0 _ _ (e ®(543+/3)
(FO4+ et —t)t2—t1 +a)p ((1+er?)2+ 27+15ﬁ)

L1l = (40)

For arbitrary u € dK,,, by using (39) and (40), we have

4]

(Tu)(®)| = bo/ G(s, )la(s)(F® + e)u(s) + b(s)lds

1

1 b5

T 01 (1) / T b(0)dE() / "G, 9)als)(FO + eus) + b(s)lds
151 11
14 b4

T k02(0) f " b(r)dn() / "G5, 9)a(s) (FO + uls) + b(s)ds
n 1

15
< IL1II(F® + €) / ’ G (s, s)la(s)u(s) + b(s)lds
3]
= 1o,

which implies that ||Tu| < ||u|.
On the other hand, since (H6), there exists R(/) > 0 such that

1 1
F(t,u) > (Fx —€)u, Vte [n 4+ -t — —}, u>R), neN* 41)
n n

and

(1+e?)2(t—t; +a—p)
~ opae2(t + B — )ty —11)(Fso — €)

(42)

Define the function f(t) = 1,V ¢t € [t1, 2], let Ry = max{S’]Ré, 2rp}, then we
have f(t) € 9K and Ry > ro. we prove u # Tu + u f(¢) for arbitrary u € 0Kg,,
otherwise, there exists ug € 0Kg,, ;o > 0, such that ug = Tug + uo f(1).
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Fort € [t; + ,ll, th — %],n € N*, we have

lug(M] = min  Juo(t)| = ug = Sllull = Ry,
telti+y.—y1

by using (41) and (42), for ¢ € [t] + %, th — %], we obtain

r
wo(t) = ae / "G5, 9)a(s) (Fo — uo(s) + b(s)lds
1
15 n
+ K01 (0) / a(r)dE () / G (s. $)[a(s)(Fao — uo(s) + b(s)lds
1 1

t %]
+ Koz(t)/ a(f)dn(f)/ G (s, s)la(s)(Foo — €)uo(s) + b(s)lds
51 131

+ o f (1)

1

h—y
> 1160/ G(s, s)la(s)(Foo — €)uo(s) + b(s)lds + po
f+1

> up + fo > up,
which implies that ué > u(";, this is a contradiction, thus, u 7 Tu+puo f(¢),u € 0Kg,.

The assumptions of the Lemma 3.6 are satisfied, hence, T has a fixed point u* in K
with rg < ||u®|| < Ro.i.e.,u®* > 0,1 € [t1, 1], we obtain

1 1
reln+tn-1 n n

and since the concavity of u*, we also have

w*(ty + 1y —ur )

u™(t) > ; (t — 1) +u(tr)
h+;—n
(t+ 2 —nurt) ¢ —tut + D
z 1 + 1

n n

1
>0, tetn +;],

and

1
u*(t) —u*(ty — )
n—i+;

t— (- u*n) (—du*n-1
> +

n

(t—n)+u*(n)

u(r) >

S
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>0, r€ [tz—%,tz],

thus, u™(¢) > 0, ¢ € [t1, 2], as a result, the integral boundary value problem (12) has
at least one positive solution. O

Theorem 3.10 Assume that (H1), (H2) and (HS5) hold, further we assume that the
following condition are satisfied:

(H7) there exists positive number F°° and Fy such that

. F(t,u) L . F(t,u
F* = lim sup max ( , Fo = lim inf min ).
u—~+00 tet,n] u u—0 tE[t1+,,l,t2—%] u

Then the integral boundary value problem (12) has at least one positive solution on
the interval [t1, t>].

Proof Given a fixed €; > 0, since (H7), there exists R > 0 such that (1 +e")?(t, —
i +a —BILIB( — e (o —f + )] — € > 0, and

(I+e"2(t—t1 +a—p)
L1 Bt — t1)et (12 — 11 + o)

F(t,u) < |:

—61]% u> Ry, t €l nl,

setting

[5)
Ms = sup ||L1||/ G(s,s)la(s)F(s,u(s)) + b(s)lds,
n

MEBKR(/)/

BolL1|I(5+3+/3)(ta — 1) (12 — 11 + )
Q7+5V3) 2 —t1 +a — B)

Me = Ms +

b

and
Rf > max (R, M(1+¢")2(y — 11 + o — B)ler IL111B(t — 1) ( — 11 + )] 1.
For any u € 3KR;;, let
Qu) ={r e[n,nl:ue[Rf, +00)},

which implies that R} < u < |lu| = R, if u1(r) = min{u(r), R}, then u; € K gy
Hence, for arbitrary u € 0K RE» We obtain

(Tu)(t)y < 1Lyl /Q( )G(s,S)[a(S)F(t,u(S)) + b(s)lds

+ L1l G(s,s)a(s)F(t,u(s)) + b(s)lds
[t1,02]/ 2 ()
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(I+eM2(ty—t1 +a—p) ¥ 2
< |:||L1||,3(tz Py 611|R0||L1 Il /t] G(s, s)a(s)ds
4] n
+ Lyl / G(s, s)b(s)ds + ||L1|l / G(s,9)a(s)F(t,ui(s)) + b(s)lds
131 141

I+t —t1 +a—p)
T L1t — t)elt(tr — t + )

5]
RIILL| / Gs. )a(s)ds
n
15}
G RILy| / Ges. s)als)ds + M
n
< RS = Jull

which shows that ||Tu|| < ||u|| foru e 3KR3-
Given a fixed €» > 0, since (H7), there exists 0 < r(/) < R(*)‘ such that

(1+e?)2(t—t +a—p)
liopa(tr — t1)e2(t1 + B — 1)

F(t,u) > |: +62i|u,

p 1 1
O<u=<ryte|ti+—,10——|,
n n

let f(t) = 1, then f € 0K, we prove u # Tu + u f, otherwise, 3 u(’) € BK,(/) and
ug >0 sucl} that uy = Tug + ug f -
Setting u;* = min {u6(t) ten+ % th — %]}, we have

lzfl

up(r) = lldof In G (s, $)[a(s)F (s, ug(s)) + b(s)lds + puo f ()
tl+;
1

I
+ éz]llaouo* / 1 G(s,s)a(s)ds + /L6
t1+;

> [ (1+e2) (0~ +a—p)
lioga(ty — t)e2(t + B — 1)
[2—l

’ ’ n !/
ug + 621100140*/ 1 G(s, s)a(s)ds + gy > ug,
t|+,7

v

which implies that ué)* > u;)*, this is a contradiction, thus, u # Tu+u f(t),u € 8K,6.

The assumptions of the Lemma 3.6 are satisfied, hence, T has a fixed point u*in K
with 7 < [lu*|| < R{. The conclusion is that the integral boundary value problem
(12) has at least one positive solution. m|
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