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Abstract
The mathematical model of the Antarctic Circumpolar Current with integral boundary
conditions is established and the explicit expression of green’s function is obtained.
The existence and uniqueness of solutions are proved by using the mixed monotone
operator theory. The sufficient conditions for the existence of positive solutions of
the model are given and the existence of positive solutions with integral boundary is
proved by using the fixed point technique in cone.
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1 Introduction

The mathematical study of ocean circulation is very important for predicting the char-
acteristics of large-scale natural phenomena in the ocean. The combined forces of
gravity and Coriolis forces (due to the earth’s rotation), triggered by wind stress, drive
circulating ocean currents, known as gyres. In the gyres, the horizontal velocity is 0.01
m/s, which is about 104 times the vertical velocity in [1,2]. Considering global ocean
circulation and global climate, the Antarctic Circumpolar Current (ACC) is probably
the most important current of this type. ACC is the most powerful ocean current on
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earth in [3], which separates Antarctica from the warm subtropical waters. ACC flows
clockwise from west to east around the South Pole between about 40◦S and 60◦S,
where there is no large area of land to break down this continuous water. ACC is the
only tidal current that completely circles the earth, and its eastward flow is caused by a
combination of very strong westerly winds and Coriolis forces. ACC is strongly con-
strained by the terrain at the bottom, and observed time changes, such as the Antarctic
circumpolar wave [4–13]. ACC carries about 140 million cubic meters of water per
second, more than 100 times more than all the world’s rivers combined, and travels
about 24,000 km. Nevertheless, ACC is one of the least representative components
of global climate models in [14]. Although there are a lot of observations about ACC
flow, the pursuit of models that show a high degree of real structure is still the main
direction of current research.

The geophysical study of fluid flows involves complex interacting systems from
which we attempt to extract the essence of specific physical phenomena. Starting
from the inviscid Euler equation and the equation of conservation of mass and energy,
a flow function is introduced to encode the horizontal flow component by ignoring
the movement in the vertical direction, and the ocean cyclotron flow is modeled as
the shallow water on the rotating sphere in [1]. The spherical coordinate model is
transformed into an equivalent semilinear plane ellipse boundary value problem by
using the stereoscopic projection from the Arctic to the equatorial plane in [1]. Under
the ignorance of azimuth angle change of the horizontal velocity that mathematical
models of gyres flows with boundary conditions have been studied in the Southern and
Northern Hemispheres in [15–25]. Since the projection of ACC flows from the Arctic
to the equatorial plane is represented as a circular region on the equatorial plane, we
established a new mathematical model of ACC flows, assuming that the circulation
boundary is a streamline, which is just represented as the known Riemann-Stieltjes
integral − ∫ t2

t1
u(t)dξ(t) and

∫ t2
t1

u(t)dη(t), and the negative sign indicates that the
outer normal direction is opposite to the positive direction selected. This has not been
studied in the existing literature, and we try to solve this problem mathematically.

2 Preliminaries

Consider spherical coordinates, θ ∈ [0, π) is polar angle with θ = 0 corresponding to
the North Pole, and ϕ ∈ [0, 2π) represents the angle of longitude in Fig. 1. In terms of
the stereographic projection from the North Pole, which azimuthal and polar velocity
components of ACC flows as

1

sin θ
ψφ and − ψθ,

In terms of the stream function 	 associated with the vorticity of the motion of the
ocean, and 	 is not driven by the Earth’s rotation, defining

ψ(θ, ϕ) = −ω cos θ + 	(θ, ϕ), (1)
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Fig. 1 Azimuthal and polar angular spherical coordinates ϕ and θ of a point P on the spherical surface of
the earth, with θ = 0 correspond to the North Pole. Severally, while θ = π

2 represents the Equator

the governing equation for ACC flows can be given by

1

sin2 θ
	ϕϕ + 	θ cot θ + 	θθ = F(	 − ω cos θ), (2)

where F(	 − ω cos θ) is the form of the ACC flows of the vortex that defines the
property of the ocean vorticity function. F(	 − ω cos θ) is similar to the concept of
angular momentum, which is amethod ofmeasuring the local spin of a fluid element in
[26]. While ω > 0 is the non-dimensional Coriolis parameter and 2ω cos θ represents
the spin vorticity. Ocean vorticity is shown in the form of tidal wave fluctuations,
which is mainly due to the influence of wind and the gravitational forces generated
by the relative motion of the Earth, the Sun and the Moon. Ebb and tide respectively
refer to the horizontal unidirectional movement of water and the vertical movement of
water. The oceanic vorticity of the wind-driven current, the vorticity of water current,
and the interaction of geophysical wave current can be expressed by non-zero constant
in [27,28]. It is noteworthy that the circulation exists at almost all latitudes except near
the Equator and acts as a waveguide, facilitating the flow of current from east to west,
driven by Coriolis forces in [29,30]. Although wave-current interactions in nonzero
vorticity flows are a very interesting topic in [31–33], we will only discuss the effects
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Fig. 2 The stereographic projection of the unit sphere (center at origin) from the North Pole to the equatorial
plane,the point P in the antarctic region, the straight line connecting it to the North Pole intersects the
equatorial plane in a point P ′ belonging to the interior of the circular region delimited by the Equator. The
ACC is mapped into a annular region within the equatorial plane

of the ACC at large scales. The governing equation (2) is valid in a region where the
boundary appears as a streamline.

The stereographic projection is used from the North Pole to the equatorial plane on
a unit sphere centered at the origin in Fig. 2. The model (2) in spherical coordinates
can be transformed into an equivalent semilinear elliptic partial differential equation
[1]. Let

ξ = reiφ with r = cot

(
θ

2

)

= sin θ

1 − cos θ
, (3)

where (r , φ) represents the polar coordinates on the equatorial plane, and r is a function
of θ . After several cancellations by using (3), the Eq. (2) can be simplified as

	ξξ = F(	 − ω((ξξ − 1)/(ξξ + 1)))

(1 + ξξ)2
. (4)

123



Positive solutions to integral boundary value problems… 905

Taking the partial derivative of (1), we have

	ξ = ψξ + 2ωξ

(1 + ξξ)2
, 	ξξ = ψξξ + 2μ

(1 + ξξ)2
− 4ωξξ

(1 + ξξ)3
. (5)

By combining (5) and (4), we obtain

ψξξ + 2ω
1 − ξξ

(1 + ξξ)3
− F(ψ)

(1 + ξξ))2
= 0, (6)

using Cartesian coordinates (x, y), Eq. (6) is transformed by

�ψ + 8ω
1 − (x2 + y2)

(1 + x2 + y2)3
− 4F(ψ)

(1 + x2 + y2)2
= 0, (7)

where� = ∂2x +∂2y is the Laplace operator, expressed in accordancewith the Cartesian
coordinates on the equatorial plane, in which the unknown functionψ(x, y) represents
the stream function. The ACC flows is bounded on the surface of the ocean by the
level sets of flow functions, while in spherical projection coordinates, the solution of
the ACC flows model (7) in the plane region is determined by these horizontal sets.
Let

r =
√

x2 + y2,
∂r

∂x
= x

√
x2 + y2

= x

r
,

∂r

∂ y
= y

√
x2 + y2

= y

r
,

therefore, ψx = x
r ψ ′(r), ψy = y

r ψ ′(r), and

ψxx = x2

r2
ψ ′′(r) +

(
1

r
− x2

r3

)

ψ ′(r), ψyy = y2

r2
ψ ′′(r) +

(
1

r
− y2

r3

)

ψ ′(r),

and so

�ψ = ψ ′′(r) + 1

r
ψ ′(r),

hence, Eq. (7) is transformed into

ψ ′′(r) + 1

r
ψ ′(r) + 8ω

1 − r2

(1 + r2)3
− 4F(ψ(r))

(1 + r2)2
= 0. (8)

Note ACC flows corresponds to the radial symmetric solution of problem (8) with no
variations in the azimuthal direction. We introduce

ψ(r) = u(t), t1 < t < t2,
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where

r = e
t
2 for 0 < t1 = −2 ln(r+) < t2 = −2 ln(r−),

with 0 < r− < r+ < 1. We obtain

u′(t) = 1

2
e

t
2 ψ ′(e

t
2 ) = 1

2
rψ ′(r)

and

u′′(t) = 1

4
e

t
2 ψ ′(e

t
2 ) + 1

4
etψ ′′(e

t
2 ) = 1

4
rψ ′(r) + 1

4
r2ψ ′′(r).

As a result, it is convenient to transform (8) equivalently into the second-order ordinary
differential equation

u′′(t) = et

(1 + et )2
F(t, u(t)) + 2ω

et (et − 1)

(1 + et )3
, t1 < t < t2, (9)

with we associate integral boundary conditions

u(t1) − αu′(t1) = −
∫ t2

t1
u(t)dξ(t), on r = r−, (10)

and

u(t2) − βu′(t2) =
∫ t2

t1
u(t)dη(t), on r = r+, (11)

meaning the fact that r = r± for ACC as gyre flow are streamlines with ψ = u(t1)
on r = r− and ψ = u(t2) on r = r+, 0 < r− < r+ < 1. ACC flows each
particle is always confined within the boundary because ACC flows are stable. In
this paper, we assume that ACC flows behavior is a simplified circular region, whose
streamline form at the boundary and the linear combination of its velocity are just
the Riemann-Stieltjes integral of the streamline with known cyclic boundary, which
is mathematically reasonable. Although there have been many good results on the
ACC flows boundary value problem, the boundary value problem considering that the
circular boundary is the Riemann-Stieltjes integral of the known streamline has not
been studied. We obtain sufficient conditions for the existence of positive solutions of
such problems by using fixed point technique and mixed monotone operator theory in
cone.

Linking (9), (10) and (11), we established the following mathematical model of
ACC flows:

⎧
⎨

⎩

u′′(t) = a(t)F(t, u(t)) + b(t), t1 < t < t2,
u(t1) − αu′(t1) = − ∫ t2

t1
u(t)dξ(t),

u(t2) − βu′(t2) = ∫ t2
t1

u(t)dη(t),
(12)
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wherea(·), b(·) : [t1, t2] → R are continuous, F(·, ·) : [t1, t2]×R → R is continuous,
and

a(t) = et

(1 + et )2
, b(t) = 2ωet (et − 1)

(1 + et )3
,

α and β are nonnegative real parameters, ξ(·) and η(·) are nondecreasing, right con-
tinuous on [t1, t2), left continuous at t = t2,

∫ t2
t1

u(t)dξ(t) and
∫ t2

t1
u(t)dη(t) denote

the Riemann-Stieltjes integrals of u with respect to ξ and η.

3 Main result

We assume the following condition.

(H1) t2 − t1 + α > β > t2.

Lemma 3.1 Assume that (H1)holds, then for any y ∈ C([t1, t2], (0,+∞)), the bound-
ary value problem

⎧
⎨

⎩

u′′(t) = y(t), t1 < t < t2
u(t1) − αu′(t1) = − ∫ t2

t1
u(t)dξ(t),

u(t2) − βu′(t2) = ∫ t2
t1

u(t)dη(t),
(13)

has a unique solution given by

u(t) =
∫ t2

t1
G(t, s)y(s)ds + κ2(t)

∫ t2

t1
u(t)dξ(t) + κ1(t)

t2 − t1 + α − β

∫ t2

t1
u(t)dη(t),

(14)

where

G(t, s) =
{

κ1(t) · κ2(s), t1 ≤ t ≤ s ≤ t2,
κ1(s) · κ2(t), t1 ≤ s ≤ t ≤ t2,

(15)

κ1(t) = t + α − t1 and κ2(t) = t+β−t2
t2−t1+α−β

, G(t, s) is the Green’s function.

Proof It is easy to see by integration of (13) that

u′(t) = u′(t1) +
∫ t

t1
y(s)ds. (16)

Integrating again, we have

u(t) = u(t1) + u′(t1)(t − t1) +
∫ t

t1
(t − s)y(s)ds. (17)
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Letting t = t2 in (16) and (17), combining this with the boundary conditions in (13),
we obtain

u(t2) − βu′(t2) = u(t1) + u′(t1)(t2 − t1) +
∫ t2

t1
(t2 − s)y(s)ds

− βu′(t1) − β

∫ t2

t1
y(s)ds =

∫ t2

t1
u(t)dη(t). (18)

Since

u(t1) − αu′(t1) = −
∫ t2

t1
u(t)dξ(t), (19)

thus, it follows from (18) and (19) that

u′(t1) = 1

t2 − t1 + α − β

[∫ t2

t1
u(t)dη(t) +

∫ t2

t1
u(t)dξ(t)

+β

∫ t2

t1
y(s)ds −

∫ t2

t1
(t2 − s)y(s)ds

]

,

and

u(t1) = α

t2 − t1 + α − β

[∫ t2

t1
u(t)dη(t) + β

∫ t2

t1
y(s)ds −

∫ t2

t1
(t2 − s)y(s)ds

]

− t2 − t1 − β

t2 − t1 + α − β

∫ t2

t1
u(t)dξ(t).

Therefore, BVP (13) has a unique solution

u(t) = u(t1) + u′(t1)(t − t1) +
∫ t

t1
(t − s)y(s)ds

= t + β − t2
t2 − t1 + α − β

∫ t2

t1
u(t)dξ(t) + t + α − t1

t2 − t1 + α − β

∫ t2

t1
u(t)dη(t)

+ (t + α − t1)β

t2 − t1 + α − β

∫ t2

t1
y(s)ds − t + α − t1

t2 − t1 + α − β

∫ t2

t1
(t2 − s)y(s)ds

+
∫ t

t1
(t − s)y(s)ds

= t + β − t2
t2 − t1 + α − β

∫ t2

t1
u(t)dξ(t) + t + α − t1

t2 − t1 + α − β

∫ t2

t1
u(t)dη(t)

+
∫ t

t1

(s + α − t1)(t + β − t2)

t2 − t1 + α − β
y(s)ds +

∫ t2

t

(t + α − t1)(s + β − t2)

t2 − t1 + α − β
y(s)ds

= κ2(t)
∫ t2

t1
u(t)dξ(t) + κ1(t)

t2 − t1 + α − β

∫ t2

t1
u(t)dη(t) +

∫ t2

t1
G(t, s)y(s)ds.
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The proof is complete. �	
Letting

γ1 = 1 −
∫ t2

t1
κ2(t)dξ(t), γ2 =

∫ t2

t1

κ1(t)

t2 − t1 + α − β
dξ(t),

γ3 =
∫ t2

t1
κ2(t)dη(t), γ4 = 1 −

∫ t2

t1

κ1(t)

t2 − t1 + α − β
dη(t).

Let’s assume that γi (i = 1, 2, 3, 4) satisfies the following conditions:

(H2) γ1 > 0, γ4 > 0, γ = γ1γ4 − γ2γ3 > 0.

Lemma 3.2 Assume that (H2) holds, then (14) can be expressed in the form

u(t) =
∫ t2

t1
H(t, s)y(s)ds,

where

H(t, s) = G(t, s) + κ01(t)
∫ t2

t1
G(τ, s)dξ(τ ) + κ02(t)

∫ t2

t1
G(τ, s)dη(τ),

and

κ01(t) = γ −1
(

γ4κ2(t) + γ3

t2 − t1 + α − β
κ1(t)

)

,

κ02(t) = γ −1
(

γ2κ2(t) + γ1

t2 − t1 + α − β
κ1(t)

)

.

Proof Multiply (14) by dξ(t) and integrate both sides at [t1, t2], we have
∫ t2

t1
u(t)dξ(t) =

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdξ(τ ) + (1 − γ1)

∫ t2

t1
u(t)dξ(t)

+ γ2

∫ t2

t1
u(t)dη(t),

similarly,

∫ t2

t1
u(t)dη(t) =

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdη(τ) + γ3

∫ t2

t1
u(t)dξ(t)

+ (1 − γ4)

∫ t2

t1
u(t)dη(t),
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hence, we can obtain

γ1

∫ t2

t1
u(t)dξ(t) − γ2

∫ t2

t1
u(t)dη(t)

=
∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdξ(τ ),

− γ3

∫ t2

t1
u(t)dξ(t) + γ4

∫ t2

t1
u(t)dη(t)

=
∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdη(τ).

Solving the two equations, we obtain

∫ t2

t1
u(t)dξ(t) = γ −1

[

γ4

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdξ(τ )

+ γ2

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdη(τ)

]

, (20)

and

∫ t2

t1
u(t)dη(t) = γ −1

[

γ3

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdξ(τ )

+ γ1

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdη(τ)

]

. (21)

Linking (20), (21) and (14), we have

u(t) =
∫ t2

t1
G(t, s)y(s)ds + κ2(t)

∫ t2

t1
u(t)dξ(t) + κ1(t)

t2 − t1 + α − β

∫ t2

t1
u(t)dη(t)

=
∫ t2

t1
G(t, s)y(s)ds + κ2(t)γ

−1γ4

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdξ(τ )

+ κ2(t)γ
−1γ2

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdη(τ) + κ1(t)

t2 − t1 + α − β
γ −1γ3

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdξ(τ ) + κ1(t)γ −1γ1

t2 − t1 + α − β

∫ t2

t1

∫ t2

t1
G(τ, s)y(s)dsdη(τ)

=
∫ t2

t1
H(t, s)y(s)ds.

This completes the proof. �	
Lemma 3.3 There exists continuous function a(·), b(·) : [t1, t2] → (0,+∞) such that

a(t)G(s, s) ≤ G(t, s) ≤ b(t)G(s, s), ∀t, s ∈ [t1, t2]. (22)
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Futhermore, a0 = min
t∈[t1,t2]

a(t), b0 = max
t∈[t1,t2]

b(t).

Proof Let

�a = max{‖κ1‖, ‖κ2‖} = max

{

t2 − t1 + α,
β

t2 − t1 + α − β

}

,

�b = min{‖κ1‖, ‖κ2‖} = min

{

α,
t1 + β − t2

t2 − t1 + α − β

}

.

Define

a(t) = 1

�a
· min{κ1(t), κ2(t)}, b(t) = 1

�b
· max{κ1(t), κ2(t)}, (23)

then if t ≤ s, we have

a(t)G(s, s) = κ1(s)κ2(s)a(t) ≤ κ1(s)κ2(s)
κ1(t)

�a

= κ1(t)κ2(s)
κ1(s)

�a
≤ κ1(t)κ2(s) = G(t, s)

≤ κ1(t)κ2(s)
κ1(s)

�b
= κ1(s)κ2(s)

κ1(t)

�b
≤ b(t)G(s, s),

if s ≤ t , we also can obtain

a(t)G(s, s) = κ1(s)κ2(s)a(t) ≤ κ1(s)κ2(s)
κ2(t)

�a

= κ1(s)κ2(t)
κ2(s)

�a
≤ κ1(s)κ2(t) = G(t, s)

≤ κ1(s)κ2(t)
κ2(s)

�b
= κ1(s)κ2(s)

κ2(t)

�b
≤ b(t)G(s, s),

which shows that (22) is correct. �	
Lemma 3.4 There exists a constant σ0 ∈ (0, 1), such that a(t) ≥ σ0b(t) for all
t ∈ [t1, t2].
Proof Since a and b can be given by (23), obviously, a and b are continuous and
positive on [t1, t2], the conclusion is easy to prove. �	
We give the following assumptions conditions:

(H3) Let F(t, u) = ζ(t)(g(u) + h(u)), where ζ(·) : [t1, t2] → [0,+∞) is con-
tinuous, g(·) : (0,+∞) → [0,+∞) is increasing and continuous, h(·) :
(0,+∞) → [0,+∞) is decreasing and continuous;

(H4) There exists λ ∈ (0, 1) such that

g(νu) ≥ νλg(u), h(ν−1u) ≥ νλh(u). (24)
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Let PL1 the real Banach space E be partially ordered by a cone PL1 of E (see [34]),
and it is defined by

PL1 = {u ∈ C[t1, t2] : C−1L1(t) ≤ u(t) ≤ C L1(t) on [t1, t2]},

where the constant C ≥ max
{
1, (M1)

1
1−λ , (M2σ0)

−1
1−λ

}
, and the positive constant M1,

M2 and the function L1(t) can be seen in the proof of Theorem 3.5.

Theorem 3.5 Assume that (H1)−(H4)hold, then the integral boundary value problem
(12) has a unique solution u(t) in PL1 and u(t) > 0 for all t ∈ [t1, t2].
Proof For any u, v ∈ PL1 , we define the operator A : PL1 × PL1 → E as following:

A(u, v)(t) =
∫ t2

t1
H(t, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds

=
∫ t2

t1
G(t, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds

+ κ01(t)
∫ t2

t1

∫ t2

t1
G(τ, s)[a(s)(ζ(s)(g(u(s)) + h(v(s))))

+ b(s)]dsdξ(τ )

+ κ02(t)
∫ t2

t1

∫ t2

t1
G(τ, s)[a(s)(ζ(s)(g(u(s)) + h(v(s))))

+ b(s)]dsdη(τ).

We can prove A is a mixed monotone.
In fact, for any (u1, v1) ∈ PL1 × PL1 , (u2, v2) ∈ PL1 × PL1 , let u1 ≤ u2, v1 ≥ v2,

since g is increasing and h is decreasing on (0,+∞), then

A(u1, v1)(t) =
∫ t2

t1
H(t, s)[a(s)(ζ(s)(g(u1(s))

+ h(v1(s)))) + b(s)]ds

≤
∫ t2

t1
H(t, s)[a(s)(ζ(s)(g(u2(s)) + h(v2(s))))

+ b(s)]ds = A(u2, v2)(t),

which implies that A is a mixed monotone.
We show that A : PL1 × PL1 → PL1 is well-defined, for any (u, v) ∈ PL1 × PL1

and t ∈ [t1, t2], we have

A(u, v)(t) ≤ b0

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds

+ κ01(t)
∫ t2

t1
b(τ )dξ(τ )

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s))
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+ h(v(s)))) + b(s)]ds

+ κ02(t)
∫ t2

t1
b(τ )dη(τ)

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s))

+ h(v(s)))) + b(s)]ds

= L1(t)
∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds,

where

L1(t) = b0 + κ01(t)
∫ t2

t1
b(τ )dξ(τ ) + κ02(t)

∫ t2

t1
b(τ )dη(τ).

Analogously, we also have

A(u, v)(t) ≥ a0

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds

+ κ01(t)
∫ t2

t1
a(τ )dξ(τ )

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s))

+ h(v(s)))) + b(s)]ds

+ κ02(t)
∫ t2

t1
a(τ )dη(τ)

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s))

+ h(v(s)))) + b(s)]ds

= L2(t)
∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds

≥ L1(t)σ0

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds,

where

L2(t) = a0 + κ01(t)
∫ t2

t1
a(τ )dξ(τ ) + κ02(t)

∫ t2

t1
a(τ )dη(τ).

Letting ν = 1
u , u ≥ 1, we can obtain to by using (24) that

g(u) ≤ uλg(1), u ≥ 1, g(ν) ≥ νλg(1), ν ∈ (0, 1), (25)

and

h(ν−1) ≥ νλh(1), ν ∈ (0, 1), h(ν) ≤ ν−λh(1), ν ∈ (0, 1). (26)

Hence, for any t ∈ [t1, t2], by using (25) and (26), we have

g(u(t)) ≤ g(C · L1(t)) ≤ (L1(t))
λ · Cλ · g(1), (27)
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914 W. Zhang et al.

g(u(t)) ≥ g(C−1 · L1(t)) ≥ g(C−1) ≥ C−λ · g(1), (28)

and

h(v(t)) ≤ h(C−1 · L1(t)) ≤ h(C−1) ≤ Cλ · h(1), (29)

h(v(t)) ≥ h(C · L1(t)) ≥ (L1(t))
−λ · C−λ · h(1), (30)

from (27) and (29), we have

A(u, v)(t) ≤ L1(t)
∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds

≤ L1(t) · Cλ ·
∫ t2

t1
G(s, s)[a(s)(ζ(s)((L1(s))

λg(1) + h(1))) + b(s)]ds

= M1CλL1(t) ≤ C L1(t), (31)

where

M1 =
∫ t2

t1
G(s, s)[a(s)(ζ(s)((L1(s))

λg(1) + h(1))) + b(s)]ds,

from (28) and (30), we also have

A(u, v)(t) ≥ L1(t)σ0

∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds

≥ L1(t) · σ0 · C−λ ·
∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(1)

+ (L1(s))
−λh(1))) + b(s)]ds

= M2C−λσ0L1(t) ≥ C−1L1(t), (32)

where

M2 =
∫ t2

t1
G(s, s)[a(s)(ζ(s)(g(1) + (L1(s))

−λh(1))) + b(s)]ds,

thus, (31) and (32) show that A(PL1 × PL1) ⊆ PL1 . Letting (u, v) ∈ PL1 × PL1 ,
ν ∈ (0, 1), we have

A(νu, ν−1v)(t) =
∫ t2

t1
H(t, s)[a(s)(ζ(s)(g(νu(s)) + h(ν−1v(s)))) + b(s)]ds

≥
∫ t2

t1
H(t, s)[a(s)(ζ(s)(νλg(u(s)) + νλh(v(s)))) + b(s)]ds

≥ νλ

∫ t2

t1
H(t, s)[a(s)(ζ(s)(g(u(s)) + h(v(s)))) + b(s)]ds
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= νλ A(u, v)(t).

Therefore, we have illuminated that all assumptions of the Lemma 3.4 from [35] are
satisfied, consequently, there exists a unique u ∈ PL1 such that A(u, u) = u, the
integral boundary value problem (12) has a unique solution u(t) > 0 on t ∈ [t1, t2]
by using Lemma 3.3 from [35]. The proof is complete. �	
We define a cone P is a subset of the Banach space E = C[t1, t2] by

P = {
u ∈ C[t1, t2] : u(t) ≥ 0, t ∈ [t1, t2]

}
,

set

K = {
u ∈ P : u(t) is concave and min u(t) ≥ δ‖u‖, t ∈ [

t1 + n−1, t2 − n−1],

∀n ∈ N∗},

where δ = l1σ0‖L1‖ , l1 = mint∈[t1,t2] L1(t), the norm ‖u‖ = maxt∈[t1,t2] |u(t)|, and for

any 0 < r0 < R0 < +∞, we have K r0,R0 ⊆ K ⊆ P , where K r0,R0 = {
u ∈ K :

r0 ≤ ‖u‖ ≤ R0
}
, and let Kr0 = {u ∈ K : ‖u‖ ≤ r0}, ∂Kr0 = {u ∈ K : ‖u‖ = r0}.

We give the following lemma:

Lemma 3.6 [36] Let E is a real Banach space, K is a positive cone in E, for arbitrary
0 < r0 < R0 < +∞, define the operator T : K r0,R0 → K is a completely continuous
operator, if

(i) ‖T u‖ ≤ ‖u‖, u ∈ ∂Kr0 ;
(i i) ∃ f ∈ ∂K1 such that u �= T u + μ0 f , u ∈ ∂K R0 .

Then T has a fixed point in K r0,R0 .

We assume that the following condition is satisfied:

(H5) Let�(n) = [t1, t1+ 1
n ]∪[t2− 1

n , t2], n ∈ N∗, and for any 0 < r0 < R0 < +∞,
letting

lim
n→∞ sup

u∈K r0,R0

∫

�(n)

G(s, s)[a(s)F(s, u(s)) + b(s)]ds = 0.

The operator T : K r0,R0 → P be defined by

(T u)(t) =
∫ t2

t1
H(t, s)[a(s)F(s, u(s)) + b(s)]ds

=
∫ t2

t1
G(t, s)[a(s)F(s, u(s)) + b(s)]ds

+ κ01(t)
∫ t2

t1

∫ t2

t1
G(τ, s)[a(s)F(s, u(s)) + b(s)]dsdξ(τ )
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916 W. Zhang et al.

+ κ02(t)
∫ t2

t1

∫ t2

t1
G(τ, s)[a(s)F(s, u(s)) + b(s)]dsdη(τ). (33)

Lemma 3.7 T is a completely continuous operator.

Proof Since (22) and the define from (33) about T , we have

(T u)(t) ≤ b0

∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ κ01(t)
∫ t2

t1
b(τ )dξ(τ )

∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ κ02(t)
∫ t2

t1
b(τ )dη(τ)

∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

≤ ‖L1‖
∫ t2

t1
G(s, s)[a(s)F(t, u(s)) + b(s)]ds. (34)

Since (H5), for ∀ r0 > 0, ∃ n1 ∈ N∗ such that

sup
u∈∂Kr0

∫

�(n1)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds < 1,

for ∀ u ∈ ∂Kr0 , setting u(t0) = max
t∈[t1,t2]

|u(t)| = r0, it follows from the concavity of

u(t) on [t1, t2] that

u(t) ≥
{

u(t0)(t−t1)
t0−t1

, t1 ≤ t ≤ t0
u(t0)(t2−t)

t2−t0
, t0 ≤ t ≤ t2

≥
{

r0(t−t1)
t2−t1

, t1 ≤ t ≤ t0
r0(t2−t)

t2−t1
, t0 ≤ t ≤ t2

, (35)

thus, since (35), for ∀ t ∈ [t1 + 1
n1

, t2 − 1
n1

], we obtain r0
n1(t2−t1)

≤ u(t) ≤ r0, and

sup
u∈∂Kr0

‖L1‖
∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

≤ sup
u∈∂Kr0

‖L1‖
∫

�(n1)
G(s, s)[a(s)F(s, u(s))

+ b(s)]ds + sup
u∈∂Kr0

‖L1‖
∫ t2− 1

n1

t1+ 1
n1

G(s, s)[a(s)F(s, u(s)) + b(s)]ds ≤ M3,

where

M3 = ‖L1‖ + (t2 − t1)‖L1‖ (t2 − t1 + α)β

t2 − t1 + α − β

[
et1 F1

(1 + et1)2
+ ω(5 + 3

√
3)

27 + 15
√
3

]

,
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and

F1 = max

{

F(t, u) : (t, u) ∈
[

t1 + 1

n1
, t2 − 1

n1

]

×
[

r0
n1(t2 − t1)

, r0

]}

,

which shows that T : D ⊆ K r0,R0 → P is uniformly bounded.
Weprove that T : K r0,R0 → P is equicontinuous. For∀ε > 0, there existsn2 ∈ N∗,

such that

sup
u∈K r0,R0

∫

�(n2)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds <

ε

8‖L1‖ ,

since κ01(t), κ02(t) and G(t, s) is continuous on [t1, t2], thus, κ01(t), κ02(t) and G(t, s)
is uniformly continuous on [t1, t2], i.e., for ∀ε > 0, there exists δ > 0, when |t ′− t ′′| <

δ for any t ′, t ′′ ∈ [t1, t2], we have

∣
∣κ01(t

′) − κ01(t
′′)

∣
∣ <

(

4M4

∫ t2

t1
b(τ )dξ(τ )

)−1

ε,

∣
∣κ02(t

′) − κ02(t
′′)

∣
∣ <

(

4M4

∫ t2

t1
b(τ )dη(τ)

)−1

ε,

∣
∣G(t ′, s) − G(t ′′, s)

∣
∣ < (4M4)

−1G(s, s)ε,

where

M4 = (t2 − t1)
(t2 − t1 + α)β

t2 − t1 + α − β

[
et1 F2

(1 + et1)2
+ ω(5 + 3

√
3)

27 + 15
√
3

]

and

F2 = max

{

F(t, u) : (t, u) ∈
[

t1 + 1

n2
, t2 − 1

n2

]

×
[

r0
n2(t2 − t1)

, r0

]}

.

Hence, when |t ′ − t ′′| < δ for any t ′, t ′′ ∈ [t1, t2], we can obtain

|(T u)(t ′) − (T u)(t ′′)| ≤ 2b0 sup
u∈K r0,R0

∫

�(n2)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ sup
u∈K r0,R0

∫ t2− 1
n2

t1+ 1
n2

∣
∣G(t ′, s)

− G(t ′′, s)
∣
∣[a(s)F(s, u(s)) + b(s)]ds

+ 2‖κ01‖
∫ t2

t1
b(τ )dξ(τ ) sup

u∈K r0,R0
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918 W. Zhang et al.

∫

�(n2)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ |κ01(t ′) − κ01(t
′′)|

∫ t2

t1
b(τ )dξ(τ )

∫ t2− 1
n2

t1+ 1
n2

G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ 2‖κ02‖
∫ t2

t1
b(τ )dη(τ) sup

u∈K r0,R0∫

�(n2)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ |κ02(t ′) − κ02(t
′′)|

∫ t2

t1
b(τ )dη(τ)

∫ t2− 1
n2

t1+ 1
n2

G(s, s)[a(s)F(s, u(s)) + b(s)]ds

≤ 2‖L1‖ sup
u∈K r0,R0∫

�(n2)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+
[

|κ01(t ′) − κ01(t
′′)|

∫ t2

t1
b(τ )dξ(τ ) + |κ02(t ′)

− κ02(t
′′)|

∫ t2

t1
b(τ )dη(τ)

+ ε

4M4

]

· sup
u∈K r0,R0

∫ t2− 1
n2

t1+ 1
n2

G(s, s)[a(s)F(s, u(s)) + b(s)]ds

< ε,

which implies that T is equicontinuous on K r0,R0 .
By using Arzela-Ascoli theorem, we can prove T is compact on K r0,R0 .
We prove that T : K r0,R0 → P is continuous. Assume un, u0 ∈ K r0,R0 and when

n → ∞, we have ‖un − u0‖ → 0, then r0 < ‖un‖, ‖u0‖ < R0.
Given a fixed ε > 0, since (H5), there exists n3 ∈ N∗ such that

sup
u∈K r0,R0

∫

�(n3)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds <

ε

4‖L1‖ , (36)

since F(t, u) : [
t1 + 1

n3
, t2 − 1

n3

] × [ r0
n3(t2−t1)

, R0
] → R is uniformly continuous

and a(t) : [t1, t2] → R is continuous, by using the Lebesgue dominated convergence
theorem, we have
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∫ t2− 1
n3

t1+ 1
n3

G(s, s)a(s)
∣
∣F(s, un(s)) − F(s, u0(s))

∣
∣ds → 0, n → ∞,

i .e., there exists N ∈ N∗, when n > N , we have

∫ t2− 1
n3

t1+ 1
n3

G(s, s)a(s)
∣
∣F(s, un(s)) − F(s, u0(s))

∣
∣ds <

ε

2‖L1‖ , (37)

by using (36) and (37), we obtain

|(T un)(t) − (T u0)(t)| ≤ 2‖L1‖ sup
u∈K r0,R0

∫

�(n3)
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ ‖L1‖
∫ t2− 1

n3

t1+ 1
n3

G(s, s)a(s)
∣
∣F(s, un(s)) − F(s, u0(s))

∣
∣ds

< ε.

Therefore, we have

‖T un − T u0‖ ≤ ε.

Thus, the operator T is continuous.
As a result, T is a completely continuous operator. �	
Lemma 3.8 T (K r0,R0) ⊆ K .

Proof Let u ∈ K r0,R0 , since (22) and (33), we have

(T u)(t) ≥ a0

∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ κ01(t)
∫ t2

t1
a(τ )dξ(τ )

∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

+ κ02(t)
∫ t2

t1
a(τ )dη(τ)

∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds

≥ l1σ0

∫ t2

t1
G(s, s)[a(s)F(t, u(s)) + b(s)]ds. (38)

Linking (34) and (38), for t ∈ [t1 + 1
n , t2 − 1

n ], n ∈ N∗, we obtain

min
t∈[t1+ 1

n ,t2− 1
n ]

(T u)(t) ≥ min
t∈[t1,t2]

(T u)(t) ≥ δ‖T u‖,

which shows that T (K r0,R0) ⊆ K . �	
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920 W. Zhang et al.

Theorem 3.9 Assume that (H1), (H2) and (H5) hold, further we assume that the
following condition are satisfied:

(H6) there exists positive number F0 and F∞ such that

F0 = lim
u→0

sup max
t∈[t1,t2]

F(t, u)

u
, F∞ = lim

u→∞ inf min
t∈[t1+ 1

n ,t2− 1
n ]

F(t, u)

u
.

Then the integral boundary value problem (12) has at least one positive solution on
the interval [t1, t2].
Proof Given a fixed ε > 0, since (H6), there exists r0 > 0 such that

F(t, u) ≤ (F0 + ε)u, ∀t ∈ [t1, t2], 0 < u < r0, (39)

and

‖L1‖ ≤ (t2 − t1 + α − β)r0

(F0 + ε)(t2 − t1)(t2 − t1 + α)β · ( et1r0
(1+et1 )2

+ ω(5+3
√
3)

27+15
√
3

) (40)

For arbitrary u ∈ ∂Kr0 , by using (39) and (40), we have

|(T u)(t)| ≤ b0

∫ t2

t1
G(s, s)[a(s)(F0 + ε)u(s) + b(s)]ds

+ κ01(t)
∫ t2

t1
b(τ )dξ(τ )

∫ t2

t1
G(s, s)[a(s)(F0 + ε)u(s) + b(s)]ds

+ κ02(t)
∫ t2

t1
b(τ )dη(τ)

∫ t2

t1
G(s, s)[a(s)(F0 + ε)u(s) + b(s)]ds

≤ ‖L1‖(F0 + ε)

∫ t2

t1
G(s, s)[a(s)u(s) + b(s)]ds

≤ r0,

which implies that ‖T u‖ ≤ ‖u‖.
On the other hand, since (H6), there exists R′

0 > 0 such that

F(t, u) ≥ (F∞ − ε)u, ∀t ∈
[

t1 + 1

n
, t2 − 1

n

]

, u ≥ R′
0, n ∈ N∗. (41)

and

l1 ≥ (1 + et2)2(t2 − t1 + α − β)

σ0αet2(t1 + β − t2)(t2 − t1)(F∞ − ε)
. (42)

Define the function f (t) ≡ 1, ∀ t ∈ [t1, t2], let R0 = max{δ−1R′
0, 2r0}, then we

have f (t) ∈ ∂K1 and R0 > r0. we prove u �= T u + μ f (t) for arbitrary u ∈ ∂K R0 ,
otherwise, there exists u0 ∈ ∂K R0 , μ0 > 0, such that u0 = T u0 + μ0 f (t).
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For t ∈ [t1 + 1
n , t2 − 1

n ], n ∈ N∗, we have

|u0(t)| ≥ min
t∈[t1+ 1

n ,t2− 1
n ]

|u0(t)| = u∗
0 ≥ δ‖u‖ ≥ R′

0,

by using (41) and (42), for t ∈ [t1 + 1
n , t2 − 1

n ], we obtain

u0(t) ≥ a0

∫ t2

t1
G(s, s)[a(s)(F∞ − ε)u0(s) + b(s)]ds

+ κ01(t)
∫ t2

t1
a(τ )dξ(τ )

∫ t2

t1
G(s, s)[a(s)(F∞ − ε)u0(s) + b(s)]ds

+ κ02(t)
∫ t2

t1
a(τ )dη(τ)

∫ t2

t1
G(s, s)[a(s)(F∞ − ε)u0(s) + b(s)]ds

+ μ0 f (t)

≥ l1σ0

∫ t2− 1
n

t1+ 1
n

G(s, s)[a(s)(F∞ − ε)u0(s) + b(s)]ds + μ0

≥ u∗
0 + μ0 > u∗

0,

which implies that u∗
0 > u∗

0, this is a contradiction, thus, u �= T u+μ0 f (t), u ∈ ∂K R0 .
The assumptions of the Lemma 3.6 are satisfied, hence, T has a fixed point u∗ in K
with r0 < ‖u∗‖ < R0. i .e., u∗ ≥ 0, t ∈ [t1, t2], we obtain

u∗(t) ≥ min
t∈[t1+ 1

n ,t2− 1
n ]

u∗(t) ≥ δ‖u‖ ≥ 0, t ∈
[

t1 + 1

n
, t2 − 1

n

]

,

and since the concavity of u∗, we also have

u∗(t) ≥ u∗(t1 + 1
n ) − u∗(t1)

t1 + 1
n − t1

(t − t1) + u∗(t1)

≥ (t1 + 1
n − t)u∗(t1)

1
n

+ (t − t1)u∗(t1 + 1
n )

1
n

> 0, t ∈ [
t1, t1 + 1

n

]
,

and

u∗(t) ≥ u∗(t2) − u∗(t2 − 1
n )

t2 − t2 + 1
n

(t − t2) + u∗(t2)

≥ (t − (t2 − 1
n ))u∗(t2)

1
n

+ (t2 − t)u∗(t2 − 1
n )

1
n
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922 W. Zhang et al.

> 0, t ∈ [
t2 − 1

n
, t2

]
,

thus, u∗(t) > 0, t ∈ [t1, t2], as a result, the integral boundary value problem (12) has
at least one positive solution. �	
Theorem 3.10 Assume that (H1), (H2) and (H5) hold, further we assume that the
following condition are satisfied:

(H7) there exists positive number F∞ and F0 such that

F∞ = lim
u→+∞ sup max

t∈[t1,t2]
F(t, u)

u
, F0 = lim

u→0
inf min

t∈[t1+ 1
n ,t2− 1

n ]
F(t, u)

u
.

Then the integral boundary value problem (12) has at least one positive solution on
the interval [t1, t2].
Proof Given a fixed ε1 > 0, since (H7), there exists R′′

0 > 0 such that (1+ et1)2(t2 −
t1 + α − β)[‖L1‖β(t2 − t1)et1(t2 − t1 + α)]−1 − ε1 > 0, and

F(t, u) ≤
[

(1 + et1)2(t2 − t1 + α − β)

‖L1‖β(t2 − t1)et1(t2 − t1 + α)
− ε1

]

u, u ≥ R′′
0 , t ∈ [t1, t2],

setting

M5 = sup
u∈∂K R′′

0

‖L1‖
∫ t2

t1
G(s, s)[a(s)F(s, u(s)) + b(s)]ds,

M6 = M5 + βω‖L1‖(5 + 3
√
3)(t2 − t1)(t2 − t1 + α)

(27 + 5
√
3)(t2 − t1 + α − β)

,

and

R∗
0 > max

{
R′′
0 , M6(1 + et1)2(t2 − t1 + α − β)[ε1‖L1‖β(t2 − t1)e

t1(t2 − t1 + α)]−1}.

For any u ∈ ∂K R∗
0
, let

�(u) = {
t ∈ [t1, t2] : u ∈ [R′′

0 ,+∞)
}
,

which implies that R′′
0 ≤ u ≤ ‖u‖ = R∗

0 , if u1(t) = min{u(t), R′′
0 }, then u1 ∈ ∂K R′′

0
.

Hence, for arbitrary u ∈ ∂K R∗
0
, we obtain

(T u)(t) ≤ ‖L1‖
∫

�(u)

G(s, s)[a(s)F(t, u(s)) + b(s)]ds

+ ‖L1‖
∫

[t1,t2]/�(u)

G(s, s)[a(s)F(t, u(s)) + b(s)]ds
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≤
[

(1 + et1)2(t2 − t1 + α − β)

‖L1‖β(t2 − t1)et1(t2 − t1 + α)
− ε1

]

R∗
0‖L1‖

∫ t2

t1
G(s, s)a(s)ds

+ ‖L1‖
∫ t2

t1
G(s, s)b(s)ds + ‖L1‖

∫ t2

t1
G(s, s)[a(s)F(t, u1(s)) + b(s)]ds

≤ (1 + et1)2(t2 − t1 + α − β)

‖L1‖β(t2 − t1)et1(t2 − t1 + α)
R∗
0‖L1‖

∫ t2

t1
G(s, s)a(s)ds

− ε1R∗
0‖L1‖

∫ t2

t1
G(s, s)a(s)ds + M6

≤ R∗
0 = ‖u‖,

which shows that ‖T u‖ ≤ ‖u‖ for u ∈ ∂K R∗
0
.

Given a fixed ε2 > 0, since (H7), there exists 0 < r ′
0 < R∗

0 such that

F(t, u) ≥
[

(1 + et2)2(t2 − t1 + α − β)

l1σ0α(t2 − t1)et2(t1 + β − t2)
+ ε2

]

u,

0 < u ≤ r ′
0, t ∈

[

t1 + 1

n
, t2 − 1

n

]

,

let f (t) ≡ 1, then f ∈ ∂K1, we prove u �= T u + μ f , otherwise, ∃ u′
0 ∈ ∂Kr ′

0
and

μ′
0 > 0 such that u′

0 = T u′
0 + μ′

0 f .
Setting u

′∗
0 = min

{
u′
0(t) : t ∈ [t1 + 1

n , t2 − 1
n ]}, we have

u′
0(t) ≥ l1σ0

∫ t2− 1
n

t1+ 1
n

G(s, s)[a(s)F(s, u′
0(s)) + b(s)]ds + μ′

0 f (t)

≥
[

(1 + et2)2(t2 − t1 + α − β)

l1σ0α(t2 − t1)et2(t1 + β − t2)
+ ε2

]

l1σ0u
′∗
0

∫ t2− 1
n

t1+ 1
n

G(s, s)a(s)ds + μ′
0

≥ u
′∗
0 + ε2l1σ0u

′∗
0

∫ t2− 1
n

t1+ 1
n

G(s, s)a(s)ds + μ′
0 > u

′∗
0 ,

which implies that u
′∗
0 > u

′∗
0 , this is a contradiction, thus, u �= T u +μ f (t), u ∈ ∂Kr ′

0
.

The assumptions of the Lemma 3.6 are satisfied, hence, T has a fixed point u
′∗ in K

with r ′
0 < ‖u

′∗‖ < R∗
0 . The conclusion is that the integral boundary value problem

(12) has at least one positive solution. �	
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Michal.Feckan@fmph.uniba.sk

1 Department of Mathematics, Guizhou University, Guiyang 550025, Guizhou, China

2 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics,
Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava,
Slovakia

3 Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava,
Slovakia

4 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China

5 School of Mathematics and Computer Science, Liupanshui Normal University, Liupanshui
553004, Guizhou, China

123

http://orcid.org/0000-0002-6642-1946

	Positive solutions to integral boundary value problems from geophysical fluid flows
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main result
	References




