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Abstract
In this paper, we study the existence of positive periodic solutions for a class of non-
autonomous second-order ordinary differential equations

x ′′ + αx ′ + a(t)xn − b(t)xn+1 + c(t)xn+2 = 0,

where α ∈ R is a constant, n is a finite positive integer, and a(t), b(t), c(t) are
continuous periodic functions. By using Mawhin’s continuation theorem, we prove
the existence and multiplicity of positive periodic solutions for these equations.

Keywords Second-order ordinary differential equations · Positive periodic
solutions · Mawhin’s continuation theorem

Mathematics Subject Classification 34B18 · 34K13 · 34C25

1 Introduction andmain results

In the past few years, scholars have become more and more interested in the study of
differential equations in some mathematical models that arise in Biology and Physics,
such as the equations

x ′′ + a(t)x − b(t)x2 + c(t)x3 = 0, (1.1)

Communicated by Adrian Constantin.

Foundation term: This work is sponsored by the NNSF of China (No. 11561063).

B Hujun Yang
982047468@qq.com

1 Department of Mathematics, Northwest Normal University, Lanzhou 730070,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-020-01465-w&domain=pdf


830 X. Han, H. Yang

where a(t), b(t), c(t) are positive continuous periodic functions. Eq. (1.1) comes from
abiomathematicsmodel andwas suggested byCronin in [1] andAustin in [2]. Equation
(1.1) description of some of the properties of an aneurysm of the circle ofWillis, where
x is the velocity of blood flow in the aneurysm, a(t), b(t), c(t) are coefficient functions
related to aneurysm. For more equations related to the model, see [3–5].

Equation (1.1) have been studied by several authors, see [6–8]. The main tools used
by these authors for obtaining their results are variational method and coincidence
degree theories. At the same time, the existence of periodic solutions of nonlinear
differential equations has been studied, see for instance the papers [9–17].

In this paper, our purpose is to establish the existence and multiplicity of positive
periodic solutions of the non-autonomous second-order nonlinear ordinary differential
equations

x ′′ + αx ′ + a(t)xn − b(t)xn+1 + c(t)xn+2 = 0, (1.2)

where n is a positive integer, α ∈ R is a constant, and a(t), b(t), c(t) are continuous
T -periodic functions on R, subject to the constraints 0 < a ≤ a(t) ≤ A, 0 < b ≤
b(t) ≤ B, 0 < c ≤ c(t) ≤ C , or −A ≤ a(t) ≤ −a < 0, −B ≤ b(t) ≤ −b <

0, −C ≤ c(t) ≤ −c < 0.
We also consider the following particular case of Eq. (1.2)

x ′′ + αx ′ + a(t)xn − b(t)xn+1 = 0, (1.3)

namely, coefficient function c(t) ≡ 0 of Eq. (1.2).
We will use coincidence degree theories to prove the existence of at least two

positive periodic solutions for Eq. (1.2) and at least one positive periodic solution for
Eq. (1.3), under some specific assumptions on a, A, b, B, c,C, n, T to be given later,
and we will calculate the exact interval of the existence of the solutions and one of
the least upper bound of the period T . It is worth noting that when α = 0, n = 1 and
0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B, 0 < c ≤ c(t) ≤ C , Eq. (1.2) reduce to Eq.
(1.1).

Our main results are as following theorems.

Theorem 1.1 Let a(t), b(t), c(t) be continuous T -periodic functions with

0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B, 0 < c ≤ c(t) ≤ C, (1.4)

or

−A ≤ a(t) ≤ −a < 0, −B ≤ b(t) ≤ −b < 0, −C ≤ c(t) ≤ −c < 0,

where a, A, b, B, c,C be positive constants such that

b2 − 4AC > 0, (1.5)

B − √
b2 − 4AC

2c
<

b + √
b2 − 4AC

2C
. (1.6)
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If the period T satisfies

0 < T ≤ 1

β2(ANn−1
1 + BNn

1 + CNn+1
1 + 1)

,

where β is the constant immersion of H1(0, T ) in C([0, T ]), N1 = B+√
B2−4ac
2c +1/2,

and n is a finite positive integer. Then Eq. (1.2) has at least two positive T -periodic
solutions.

In Theorem 1.1, we assume that the coefficient functions a(t), b(t) and c(t) have
no zero and have same sign, if one of them is identical to zero, Theorem 1.1 will not
hold. In the following Theorem, we give the case when c(t) ≡ 0.

Theorem 1.2 When c(t) ≡ 0, let a(t), b(t) be continuous T -periodic functions with

0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B (1.7)

or

−A ≤ a(t) ≤ −a < 0, −B ≤ b(t) ≤ −b < 0,

where a, A, b, B are positive constants. If the period T satisfies

0 < T ≤ 1

β2(AFn−1 + BFn + 1)
,

where β is the constant immersion of H1(0, T ) in C([0, T ]), F = A
b + ε > 0, where

ε > 0 small enough such that a
B − ε > 0, and n is a finite positive integer. Then Eq.

(1.3) has at least one positive T -periodic solution.

Remark 1.3 In this case, we can only get the existence of one positive periodic solution.

Remark 1.4 Theorem 1.2 also holds in the case of the coefficient function a(t) ≡ 0 of
Eq. (1.2).

Remark 1.5 There is no result when b(t) ≡ 0 of Eq. (1.2).

2 Preliminaries

In this section, we given some notations and preliminary results which paly important
roles in the prove of our main result. For more details see [18].

Definition 2.1 Let X ,Y be real Banach spaces, L : Dom L ⊂ X → Y be a linear
mapping. The mapping L is said to be a Fredholm mapping of index zero if

(a) Im L is closed in Y ;
(b) dimKer L = codim Im L < +∞.
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832 X. Han, H. Yang

If L is a Fredholm mapping of index zero, then there exist continuous projectors
P : X → X and Q : Y → Y such that

Im P = Ker L,

Ker Q = Im L = Im(I − Q).

It follows that the restriction LP of L to Dom L ∩ Ker P : (I − P)X → Im L is
invertible. We denote the inverse of LP by KP .

Definition 2.2 If � is a bounded open subset of X , N is called L−compact on � if
QN (�) is bounded and KP (I − Q)N : � → X is compact.

Lemma 2.3 (Mawhin’s Continuation Theorem). Let L be aFredholmmapping of index
zero,� ⊂ X is an open bounded set and let N is L−compact on�. If all the following
conditions hold:

(1) Lx �= λNx for all x ∈ ∂� ∩ Dom L, and all λ ∈ (0, 1);
(2) QNx �= 0, for all x ∈ ∂� ∩ Ker L;
(3) deg{J QN ,� ∩ Ker L, 0} �= 0, where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has at least one solution in Dom L ∩ �.
Consider the following Banach spaces

X = Y = {x |x ∈ C(R,R), x(t + T ) = x(t),∀t ∈ R}

with the norm ‖x‖X = |x |∞ and ‖x‖Y = |x |∞, where |x |∞ = max
t∈[0,T ]|x(t)|.

Define a linear operator L : Dom L ⊂ X → Y by setting

Lx = x ′′ + αx ′, x ∈ Dom L,

where

Dom L = {x |x ∈ X , x ′′ ∈ C(R,R), x ′(t + T ) = x ′(t)}.

It is immediate to prove that Ker L = R and

Im L =
{
x | x ∈ Y ,

∫ T

0
x(s)ds = 0

}
.

It is not difficult to see that Im L is a closed set in Y and

dimKer L = codim Im L = 1.

Thus the operator L is a Fredholm operator with index zero.
Define a nonlinear operator N : X → Y by setting

Nx = −a(t)xn + b(t)xn+1 − c(t)xn+2.
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Now we define the projector P : X → Ker L and the projector Q : Y → Y by setting

Px(t) = 1

T

∫ T

0
x(s)ds

and

Qx(t) = 1

T

∫ T

0
x(s)ds.

Hence, Im P = Ker L, Ker Q = Im L.

Lemma 2.4 Let L and N be as before and assume that a(t), b(t), c(t) satisfy the
assumptions of Theorem 1.1. Then N is L−compact on � with any open bounded
subset � ⊂ X.

Proof Clearly, operator QN : X → Y by setting

QNx = 1

T

∫ T

0
[−a(s)xn(s) + b(s)xn+1(s) − c(s)xn+2(s)]ds.

Obviously, QN (�) is bounded. It is readily seen that when a(t) ≡ 0 or c(t) ≡ 0,
QN (�) also is bounded.

Let G(t, s) be the Green’s function of

x ′′(t) + αx ′(t) = 0, t ∈ [0, T ],∫ T

0
x(t)dt = 0, x (i)(0) = x (i)(T ), i = 0, 1.

When α = 0, we obtain that

G(s, t) =

⎧⎪⎨
⎪⎩

− (T − t)s

T
, 0 ≤ s ≤ t ≤ T ,

− (T − s)t

T
, 0 ≤ t ≤ s ≤ T .

When α �= 0, we obtain that

G(s, t) =

⎧⎪⎪⎨
⎪⎪⎩

1

α
(1 − eα(s−t)) − eα(s−t)

α(eTα − 1)
, 0 ≤ s ≤ t ≤ T ,

− eα(s−t)

α(eTα − 1)
, 0 ≤ t ≤ s ≤ T .

Then KP : Im L → Dom L ∩ Ker P can be given by

(KP y)(t) =
∫ T

0
G(t, s)y(s)ds.
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It is immediate to prove that KP (I − Q)N : � → X is compact. Furthermore, N is
L−compact on � with any open bounded subset � ⊂ X .

3 Proof of themain result

Proof of Theorem 1.1. In the preceding assumption, we assume that the coefficient
functions a(t), b(t) and c(t) have the same sign, which include both positive and both
negative cases.

Case 1: 0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B, 0 < c ≤ c(t) ≤ C .
In this case, Eq. (1.2) is equivalent to equation

x ′′ + αx ′ + a(t)xn − b(t)xn+1 + c(t)xn+2 = 0, (3.1)

where 0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B, 0 < c ≤ c(t) ≤ C .
Let

�1 := {x ∈ X | M < x(t) < N1}, (3.2)

which is an open set in X , where

N1 := N + 1/2, N := B + √
B2 − 4ac

2c
> 0,

M := B − √
b2 − 4AC

4c
+ b + √

b2 − 4AC

4C
> 0.

By (1.4), M and N are well defined.
By (1.5) and (1.6), we obtain

M <
b + √

b2 − 4AC

2C
≤b(t) + √

b(t)2 − 4a(t)c(t)

2c(t)
≤ B + √

B2 − 4ac

2c
< N1

(3.3)

and

0 <
2ac

C(B + √
B2 − 4ac)

≤b(t) − √
b(t)2 − 4a(t)c(t)

2c(t)

≤ B − √
b2 − 4AC

2c
< M (3.4)

uniformly in t .
Let 0 < λ < 1 and x be such that

x ′′ + αx ′ + λa(t)xn − λb(t)xn+1 + λc(t)xn+2 = 0.
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Multiplying by x and the integrating from 0 to T , we have that

∫ T

0
[(x ′)2 − λa(t)xn+1 + λb(t)xn+2 − λc(t)xn+3]dt = 0.

By (3.2), if x ∈ ∂�1, we have M ≤ |x |∞ ≤ N1. Then

0 =
∫ T

0
[(x ′)2 − λa(t)xn+1 + λb(t)xn+2 − λc(t)xn+3]dt

>

∫ T

0
(x ′)2dt −

∫ T

0
[a(t)xn+1 + b(t)xn+2 + c(t)xn+3]dt

=
∫ T

0
[(x ′)2 + x2]dt −

∫ T

0
[a(t)xn+1 + b(t)xn+2 + c(t)xn+3]dt −

∫ T

0
x2dt

≥‖x‖2H1(0,T )
−

∫ T

0
x2(A|x |n−1∞ + B|x |n∞ + C |x |n+1∞ + 1)dt

≥ ‖x‖2H1(0,T )
−

∫ T

0
x2(ANn−1

1 + BNn
1 + CNn+1

1 + 1)dt

≥|x |2∞
β2 − T |x |2∞(ANn−1

1 + BNn
1 + CNn+1

1 + 1)

=
[
1

β2 − T (ANn−1
1 + BNn

1 + CNn+1
1 + 1)

]
|x |2∞

≥ 0,

where β is the immersion constant of H1(0, T ) in C([0, T ]), but this is contradiction.
So

x ′′ + αx ′ + λa(t)xn − λb(t)xn+1 + λc(t)xn+2 �= 0 for x ∈ ∂�1 and λ ∈ (0, 1).

Therefore condition (1) of Lemma 2.3 holds for �1.
By (3.3) and (3.4), we have that

− a(t) + b(t)N1 − c(t)N 2
1

= −c(t)

(
N1 − b(t) + √

b(t)2 − 4a(t)c(t)

2c(t)

) (
N1 − b(t) − √

b(t)2 − 4a(t)c(t)

2c(t)

)

≤ −1

2
c(t)

(
N1 − b(t) − √

b(t)2 − 4a(t)c(t)

2c(t)

)

< 0.

− a(t) + b(t)M − c(t)M2
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836 X. Han, H. Yang

= −c(t)

(
M − b(t) + √

b(t)2 − 4a(t)c(t)

2c(t)

) (
M − b(t) − √

b(t)2 − 4a(t)c(t)

2c(t)

)

> 0.

That is

− a(t) + b(t)N1 − c(t)N 2
1 < 0 (3.5)

and

− a(t) + b(t)M − c(t)M2 > 0 (3.6)

uniformly in t .
Take x ∈ ∂�1 ∩ Ker L, we have x = M or x = N1. By (3.5) and (3.6), we know

that for ∀x ∈ ∂�1 ∩ Ker L, we have that

QNx = 1

T

∫ T

0
xn(−a(t) + b(t)x − c(t)x2)dt �= 0.

Therefore condition (2) of Lemma 2.3 holds for �1.
Nowwe consider M+N1

2 , the arithmetic mean of M and N1. We define a continuous
function

H(x, μ) = −(1 − μ)

(
x − M + N1

2

)

+μ
1

T

∫ T

0
xn(−a(t) + b(t)x − c(t)x2)dt, μ ∈ [0, 1].

Obviously, we obtain

H(x, μ) �= 0, ∀x ∈ ∂�1 ∩ Ker L.

By using the homotopy invariance theorem, we find that

deg(QN ,�1 ∩ Ker L, 0) = deg (H(x, 1),�1 ∩ Ker L, 0)

= deg (H(x, 0),�1 ∩ Ker L, 0)

= − 1 �= 0.

Therefore condition (3) of Lemma 2.3 holds for �1.
In view of all the discussion above, we conclude from Lemma 2.3 that Eq. (3.1)

has a solution in �1.
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Now, we will prove the existence of the second solution for Eq. (3.1). By (3.4),
there exists an ε > 0 small enough that

0 < H := 2ac

C(B + √
B2 − 4ac)

− ε <
b(t) −

√
b(t)2 − 4a(t)c(t)

2c(t)

≤ B − √
b2 − 4AC

2c
< M

uniformly in t .
Let

�2 := {x ∈ X | H < x(t) < M}, (3.7)

which is an open set in X .
Let 0 < λ < 1 and x be such that

x ′′ + αx ′ + λa(t)xn − λb(t)xn+1 + λc(t)xn+2 = 0.

Multiplying by x and the integrating from 0 to T , we have

∫ T

0
[(x ′)2 − λa(t)xn+1 + λb(t)xn+2 − λc(t)xn+3]dt = 0.

By (3.7), if x ∈ ∂�2, we have H ≤ |x |∞ ≤ M . Then

0 =
∫ T

0
(x ′)2dt +

∫ T

0
[−λa(t)xn+1 + λb(t)xn+2 − λc(t)xn+3]dt

>

∫ T

0
[(x ′)2 + x2]dt −

∫ T

0
[a(t)xn+1 + b(t)xn+2 + c(t)xn+3]dt −

∫ T

0
x2dt

≥ ‖x‖2H1(0,T )
−

∫ T

0
x2(A|x |n−1∞ + B|x |n∞ + C |x |n+1∞ + 1)dt

≥ ‖x‖2H1(0,T )
−

∫ T

0
x2(AMn−1 + BMn + CMn+1 + 1)dt

> ‖x‖2H1(0,T )
−

∫ T

0
x2(ANn−1

1 + BNn
1 + CNn+1

1 + 1)dt

≥
[
1

β2 − T (ANn−1
1 + BNn

1 + CNn+1
1 + 1)

]
|x |2∞

≥ 0,

where β is the immersion constant of H1(0, T ) in C([0, T ]), but this is contradiction.
Therefore condition (1) of Lemma 2.3 holds for �2.
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It may easily be shown that

− a(t) + b(t)H − c(t)H2 < 0 (3.8)

uniformly in t . By (3.6), we have

− a(t) + b(t)M − c(t)M2 > 0 (3.9)

uniformly in t .
Take x ∈ ∂�2 ∩ Ker L, we have x = H or x = M . By (3.8) and (3.9), we know

that for ∀x ∈ ∂�2 ∩ Ker L , we have that

QNx = 1

T

∫ T

0
xn(−a(t) + b(t)x − c(t)x2)dt �= 0.

Therefore condition (2) of Lemma 2.3 holds for �2.
Now we consider H+M

2 , the arithmetic mean of M and H . We define a continuous
function

H(x, μ) = (1 − μ)

(
x − H + M

2

)

+μ
1

T

∫ T

0
xn(−a(t) + b(t)x − c(t)x2)dt, μ∈[0, 1].

Obviously, we obtain

H(x, μ) �= 0, ∀x ∈ ∂�2 ∩ Ker L.

By using the homotopy invariance theorem, we find that

deg(QN ,�2 ∩ Ker L, 0) = deg (H(x, 1),�2 ∩ Ker L, 0)

= deg (H(x, 0),�2 ∩ Ker L, 0)

=1 �= 0.

Therefore condition (3) of Lemma 2.3 holds for �2.
In view of all the discussion above, we conclude from Lemma 2.3 that Eq. (3.1)

has a solution in �2.

Since �1∩�2 = {x = M}, and by (3.9), we know that M does not satisfy Eq.
(3.1), namely, Eq. (3.1) has at least two T -periodic solutions.

Case 2: 0 < −A ≤ a(t) ≤ −a ≤ 0,−B ≤ b(t) ≤ −b ≤ 0,−C ≤ c(t) ≤ −c ≤ 0.
Let a′(t) = −a(t), b′(t) = −b(t), c′(t) = −c(t), then

0 < a ≤ a′(t) ≤ A, 0 < b ≤ b′(t) ≤ B, 0 < c ≤ c′(t) ≤ C . (3.10)
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In this case, Eq. (1.2) is equivalent to equation

x ′′ + αx ′ − a′(t)xn + b′(t)xn+1 − c′(t)xn+2 = 0. (3.11)

Let 0 < λ < 1 and x be such that

x ′′ + αx ′ − λa′(t)xn + λb′(t)xn+1 − λc′(t)xn+2 = 0.

Multiplying by x and the integrating from 0 to T , we have that

∫ T

0
[(x ′)2 + λa′(t)xn+1 − λb′(t)xn+2 + λc′(t)xn+3]dt = 0.

By (3.2), if x ∈ ∂�1, we have M ≤ |x |∞ ≤ N1. Then

0 =
∫ T

0
[(x ′)2 + λa′(t)xn+1 − λb′(t)xn+2 + λc′(t)xn+3]dt

>

∫ T

0
[(x ′)2 + x2]dt −

∫ T

0
[a′(t)xn+1 + b′(t)xn+2 + c′(t)xn+3]dt −

∫ T

0
x2dt

≥ ‖x‖2H1(0,T )
−

∫ T

0
x2(A|x |n−1∞ + B|x |n∞ + C |x |n+1∞ + 1)dt

≥ ‖x‖2H1(0,T )
−

∫ T

0
x2(ANn−1

1 + BNn
1 + CNn+1

1 + 1)dt

≥ 0,

where β is the immersion constant of H1(0, T ) in C([0, T ]), but this is contradiction.
Therefore condition (1) of Lemma 2.3 holds for �1.

It is readily seen that

a′(t) − b′(t)N1 + c′(t)N 2
1 > 0

and

a′(t) − b′(t)M + c′(t)M2 < 0 (3.12)

uniformly in t .
The remaining proof is similar to the proof of case 1, and so we omit it.
In view of all the discussion above, we conclude from Lemma 2.3 that Eq. (3.11)

has a solution in �1.

Now, we will prove the existence of a second solution for Eq. (3.11).
Let 0 < λ < 1 and x be such that

x ′′ + αx ′ − λa′(t)xn + λb′(t)xn+1 − λc′(t)xn+2 = 0.
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Multiplying by x and the integrating from 0 to T , we have

∫ T

0
[(x ′)2 + λa′(t)xn+1 − λb′(t)xn+2 + λc′(t)xn+3]dt = 0.

By (3.7), if x ∈ ∂�2, we have H ≤ |x |∞ ≤ M . Then

0 =
∫ T

0
[(x ′)2 + λa′(t)xn+1 − λb′(t)xn+2 + λc′(t)xn+3]dt

>

∫ T

0
[(x ′)2 + x2]dt −

∫ T

0
[a′(t)xn+1 + b′(t)xn+2 + c′(t)xn+3]dt −

∫ T

0
x2dt

≥ ‖x‖2H1(0,T )
−

∫ T

0
x2(AMn−1 + BMn + CMn+1 + 1)dt

> ‖x‖2H1(0,T )
−

∫ T

0
x2(ANn−1

1 + BNn
1 + CNn+1

1 + 1)dt

≥ |x |2∞
β2 − T |x |2∞(ANn−1

1 + BNn
1 + CNn+1

1 + 1)

≥ 0,

where β is the immersion constant of H1(0, T ) in C([0, T ]), but this is contradiction.
Therefore condition (1) of Lemma 2.3 holds for �2.

It may easily be shown that

a′(t) − b′(t)H + c′(t)H2 > 0

and

a′(t) − b′(t)M + c′(t)M2 < 0

uniformly in t .
The remaining proof is similar to the proof of case 1, and so we omit it.
In view of all the discussion above, we conclude from Lemma 2.3 that Eq. (3.11)

has a solution in �2.

Since �1∩�2 = {x = M}, and by (3.12), we know that M does not satisfy Eq.
(3.11). Then Eq. (3.11) has at least two T−periodic solutions.

In view of all the discussion above, Eq. (1.2) has at least two T -periodic solutions.
Theorem 1.1 is proved.

Proof of Theorem 1.2. The coefficient functions a(t) and b(t) have the same sign,
which include both positive and negative cases.

Case 1: When c(t) ≡ 0, 0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B.
In this case, Eq. (1.3) is equivalent to equation

x ′′ + αx ′ + a(t)xn − b(t)xn+1 = 0, (3.13)
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where 0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B.
Let

�3 := {x ∈ X | E < x(t) < F}, (3.14)

which is an open set in X , where

E = a

B
− ε, (3.15)

F = A

b
+ ε, (3.16)

where ε > 0 small enough such that a
B − ε > 0. By (1.7), E and F are well defined.

By (3.15), (3.16) and (1.7), we have that

a(t) − b(t)E > 0

and

a(t) − b(t)F < 0

uniformly in t .
The remaining proof is similar to the proof of Theorem 1.1, and so we omit it.
In view of all the discussion above, we conclude from Lemma 2.3 that Eq. (3.13)

has a solution in �3.

Case 2: When c(t) ≡ 0, −A ≤ a(t) ≤ −a < 0 ≤ B, −B ≤ b(t) ≤ −b < 0.
Let a′(t) = −a(t), b′(t) = −b(t), then

0 < a ≤ a′(t) ≤ A, 0 < b ≤ b′(t) ≤ B.

In this case, Eq. (1.3) is equivalent to equation

x ′′ + αx ′ − a′(t)xn + b′(t)xn+1 = 0, (3.17)

where 0 < a ≤ a′(t) ≤ A, 0 < b ≤ b′(t) ≤ B.
Similarly, we can prove Eq. (3.17) has at least one positive T -periodic solutions in

�3.

In view of all the discussion above, we conclude from Lemma 2.3 that Eq. (1.3)
has a solution in �3. Theorem 1.2 is proved.

4 Example

Example 4.1 Consider Eq. (1.2) with a(t) = cos( 2π tT ) + 3, b(t) = sin( 2π tT ) + 11 and
c(t) = |cos( 2π tT )| + 3. Define a = 2, A = 4, b = 10, B = 12, c = 3,C = 4, n = 1
and ε = 1

12+2
√
30
. We have that
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b2 − 4AC = 100 − 64 = 36 > 0,

B − √
b2 − 4AC

2c
= 12 − 6

6
<

10 + 6

8
= b + √

b2 − 4AC

2C
,

and

0 < T ≤ 3

β2(220 + 32
√
30)

.

Theorem 1.1 guarantees that the equations

x ′′ + αx ′ +
(
cos

(
2π t

T

)
+ 3

)
x −

(
sin

(
2π t

T

)
+ 11

)
x2

+
(∣∣∣∣cos

(
2π t

T

)∣∣∣∣ + 3

)
x3 = 0

has at least two positive T -periodic solutions in �1 ∪ �2, where �1 = {x(t) ∈ X |
3
2 < x(t) < 15+2

√
30

6 } and �2 = {x(t) ∈ X | 2
12+2

√
30

< x(t) < 3
2 }.

Example 4.2 Consider Eq. (1.3) with a(t) = cos( 2π tT ) + 6 and b(t) = sin( 2π tT ) + 9.
Define a = 5, A = 7, b = 8, B = 10, n = 1 and ε = 1

8 . We have E = 3
8 , F = 1,

and

0 < T ≤ 1

18β2 .

Theorem 1.2 guarantees that the equations

x ′′ + αx ′ +
(
cos

(
2π t

T

)
+ 6

)
x −

(
sin

(
2π t

T

)
+ 9

)
x2 = 0

has at least one positive T -periodic solution in �3, where �3 = {x(t) ∈ X | 3
8 <

x(t) < 1}.
Example 4.3 Consider Eq. (1.3) with a(t) = − (

cos( 2π tT ) + 7
)
, and b(t) =

− (
sin( 2π tT ) + 10

)
.

Define a = −6, A = −8, b = −10, B = −12, n = 2 and ε = 1
5 . We have

E = 3
10 , F = 1, and

0 < T ≤ 1

21β2 .

Theorem 1.2 guarantees that the equations

x ′′ + αx ′ −
(
cos

(
2π t

T

)
+ 7

)
x2 +

(
sin

(
2π t

T

)
+ 10

)
x3 = 0
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has at least one positive T -periodic solution in �4, where �4 = {x(t) ∈ X | 3
10 <

x(t) < 1}.
It is worth noting that the case of Eq. (1.2) when a(t) = 0.
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