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Abstract
Some global solvability criteria for the scalar Riccati equations are used to establish
new reducibility criteria for systems of two linear first-order ordinary differential
equations. Some examples are presented.
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1 Introduction

Let a(t), b(t), c(t) and d(t) be real valued continuous and bounded functions on
[t0,+∞). Consider the linear system of ordinary differential equations

⎧
⎨

⎩

φ′ = a(t)φ + b(t)ψ,

ψ ′ = c(t)φ + d(t)ψ, t ≥ t0.
(1.1)

Introduce new unknowns by equalities

⎧
⎨

⎩

φ1 = z11(t)φ + z12(t)ψ,

ψ1 = z21(t)φ + z22(t)ψ,

(1.2)
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where φ1, ψ1 are new unknowns, z jk(t), j, k = 1, 2 are the coefficients of a transfor-
mation. For φ1 and φ2 from (1.1) and (1.2) we obtain a new linear system of equations

⎧
⎨

⎩

φ′
1 = a1(t)φ1 + b1(t)ψ1,

ψ ′
1 = c1(t)φ1 + d1(t)ψ1, t ≥ t0.

(1.3)

Definition 1.1 The system (1.1) is called reducible if there exists a bounded matrix
function Z(t) ≡ (z jk(t))2j,k=1 of transformation (1.2) for the system (1.1) such

that Z ′(t), Z−1(t) exist and are bounded with det Z−1(t) and the coefficients
a1(t), b1(t), c1(t) and d1(t) of the system (1.3) are constants.

Study the reducibility behavior of systems of linear ordinary differential equation,
in particular of the system (1.1), is an important problem of qualitative theory of
differential equations and many works are devoted to it (see [1–6], and cited works
therein) The reducible systems (see [7]) play an important role in the study of stability
of solutions of nonlinear systems, for which the first approximation contains the time.
They play also an important role in the ’.... study of stability of quasi-periodic motion
and preservation of invariant tori in Hamiltonian mechanics (where the reducibility of
linear equations with quasi-periodic coefficients play an important role)” (see [1]). In
this paper some new reducibility criteria for the system (1.1) are obtained.

2 Auxiliary propositions

Let f (t), g(t), h(t) be real valued continuous functions on [t0,+∞). Consider the
Riccati equation

y′ + f (t)y2 + g(t)y + h(t) = 0, t ≥ t0. (2.1)

In this section we represent some global existence criteria for Eq. (2.1) proved in [8]
and [9]. They will be used in the Sect. 3 to obtain new reducibility criteria for the
system (1.1).

Theorem 2.1 Let fi (t) and hi (t) be continuously differentiable functions on [t0,+∞)

such that (−1)i fi (t) > 0, (−1)i hi (t) > 0, t ≥ t0, i = 1, 2. If f1(t) ≤ f (t) ≤
f2(t), h1(t) ≤ h(t) ≤ h2(t), g(t) ≥ 1

2

(
f ′
i (t)
fi (t)

− h′
i (t)

hi (t)

)

+ 2(−1)i
√

fi (t)hi (t), i =

1, 2, t ≥ t0, then for every y(0) ∈
[

−
√

h2(t0)
f2(t0)

,

√
h1(t0)
f1(t0)

]

Eq. (2.1) has a solution y(t)

on [t0,+∞) with y(t0) = y(0) and

−
√
h2(t)

f2(t)
≤ y(t) ≤

√
h1(t)

f1(t)
, t ≥ t0. (2.2)

See the proof in [8].
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Theorem 2.2 Let fi (t) and hi (t) be continuously differentiable functions on [t0,+∞)

such that (−1)i fi (t) > 0, (−1)i hi (t) > 0, t ≥ t0, i = 1, 2. If f1(t) ≤ f (t) ≤
f2(t), h1(t) ≤ h(t) ≤ h2(t), g(t) ≤ 1

2

(
f ′
i (t)
fi (t)

− h′
i (t)

hi (t)

)

− 2(−1)i
√

fi (t)hi (t), i =
1, 2, t ≥ t0, then Eq. (2.1) has a solution y(t) on [t0,+∞) and

−
√
h1(t)

f1(t)
≤ y(t) ≤

√
h2(t)

f2(t)
, t ≥ t0.

Proof In Eq. (2.1) substitute y = y(t) = z(−t), t ≥ t0. We come to the equation

z′ + f̃ (t)z2 + g̃(t)z + h̃(t) = 0, t ≤ −t0, (2.3)

where f̃ (t) ≡ − f (−t), g̃(t) ≡ −g(−t), h̃(t) ≡ −h(−t), t ≤ −t0. Set: f̃i (t) ≡
− fi (−t), h̃i (t) ≡ −hi (−t), t ≤ −t0, i = 1, 2. From the condition of the theorem it
follows

(−1)i f̃i (t) < 0, (−1)i h̃i (t) < 0, i = 1, 2,

f̃2(t) ≤ f (t) ≤ f̃1(t), h̃2(t) ≤ h(t) ≤ h̃1(t),

g̃(t) ≥ 1

2

[
f̃ ′
i (t)

f̃i (t)
− h̃′

i (t)

h̃i (t)

]

+ 2(−1)i
√

f̃i (t )̃hi (t), i = 1, 2, t ≤ −t0.

Then by Theorem 2.1 for evwry T > t0 and for every z(0) ∈
[√

h̃1(−T )

f̃1(−T )
,

√
h̃2(−T )

f̃2(−T )

]

Eq. (3.3) has a solution z0(t) on [−T ,−t0] with z0(−T ) = z(0) and

√

h̃1(−t)

f̃1(−t)
≤ z0(t) ≤

√

h̃2(−t)

f̃2(−t)
, t ∈ [−T ,−t0].

Denote by IT the set of that values z(−t0) of of the solutions z(t) of Eq. (2.3) for
which

z(−T ) ∈
[√

h̃1(−T )

f̃1(−T )
,

√

h̃2(−T )

f̃2(−T )

]

.

Obviously IT is a finite and close interval and if T1 > T2 > t0 then

IT1 ⊂ IT2 . (2.4)

Let t0 < T1 < T2 < .... < Tn < ... be a infinitely large sequence. By (2.4) we have

I ≡
+∞⋂

n=1

TTn 
= ∅.
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Take y(0) ∈ I . Then (by already proven) for every n = 1, 2, ... Eq. (2.2) has a solution
zn(t) on [−Tn,−t0] with zn(−t0) = y(0) and

√

h̃1(−t)

f̃1(−t)
≤ zn(t) ≤

√

h̃2(−t)

f̃2(−t)
, t ∈ [−Tn,−t0], n = 1, 2, ....

Therefore yn(t) ≡ zn(−t) is a solution of Eq. (2.1) on [t0, Tn] with yn(t0) = y(0) and

√

h̃1(t)

f̃1(t)
≤ yn(t) ≤

√

h̃2(t)

f̃2(t)
, t ∈ [t0, Tn], n = 1, 2, ....

By virtue of the uniqueness theorem from here it follows that Eq. (2.1) has a solution
y0(t) on [t0,+∞) and (2.2) is valid. The theorem is proved. �
Theorem 2.3 Let f1(t) and h1(t) be continuously differentiable functions on [t0,+∞)

such that f1(t) > 0, h1(t) > 0, t ≥ t0. If 0 ≤ f (t) ≤ f1(t), h(t) ≤ h1(t), g(t) ≤
1
2

[
f ′
1(t)
f1(t)

− h′
1(t)

h1(t)

]

− 2
√

f1(t)h1(t), t ≥ t0 then for every y(0) ≥
√

h1(t0)
f1(t0)

Eq. (2.1) has

a solution y(t) on [t0,+∞) with y(t0) = y(0) and

y(t) ≥
√
h1(t)

f1(t)
, t ≥ t0.

See the proof in [9].

Theorem 2.4 Let f1(t) and h1(t) be the same as in Theorem 2.2. If 0 ≤ f (t) ≤
f1(t), h(t) ≤ h1(t), g(t) ≥ 1

2

[
f ′
1(t)
f1(t)

− h′
1(t)

h1(t)

]

+ 2
√

f1(t)h1(t), f (t) f1(t) +

2 f1(t)h1(t) + h1(t)h(t) ≥ 0, t ≥ t0, then for every y(0) ∈
[

−
√

h1(t0)
f1(t0)

,

√
h1(t0)
f1(t0)

]

Eq. (2.1) has a solution y(t) on [t0,+∞) with y(t0) = y(0) and

−
√
h1(t)

f1(t)
≤ y(t) ≤

√
h1(t)

f1(t)
, t ≥ t0.

See the proof in [9].

Theorem 2.5 Let f1(t), g1(t) and h1(t) be real valued continuous functions such
that f1(t) > 0, g1(t)

f1(t)
is continuously differentiable on [t0,+∞). If 0 ≤ f (t) ≤

f1(t), λ(g(t)−g1(t))g1(t) ≥ 0, h(t) ≤ λ

[(
g1(t)
f1(t)

)

+ (1−λ)
g21(t)
f1(t)

]

, λ = const, t ≥
t0, then for every y(0) ≥ −λ

g1(t0)
f1(t0)

Eq. (2.1) has a solution y(t) on [t0,+∞) with
y(t0) = t(0) and

y(t) ≥ −λ
g1(t)

f1(t)
, t ≥ t0.
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See the proof in [9].

Theorem 2.6 Let f1(t) and h1(t) be continuous functions on [t0,+∞). If 0 ≤
f (t) ≤ f1(t),

[

λ + ∫

t0
th1(τ )dτ

](

f1(t)

[

λ + ∫

t0
th1(τ )dτ

]

− g(t)

)

≤ 0, h(t) ≤
h1(t), λ = const, t ≥ t0, then for every y(0) ≥ −λ Eq. (2.1) has a solution y(t)
with y(t0) = y(0) and

y(t) ≥ −λ −
t∫

t0

h1(τ )dτ, t ≥ t0.

If in addition for some μ ≤ λ the inequality

[

μ + ∫

t0
th1(τ )dτ

](

f1(t)

[

μ +
∫

t0
th1(τ )dτ

]

− g(t)

)

≥ 0, t ≥ t0 is satisfied and y(0) ≤ −μ, then

y(t) ≤ −μ −
t∫

t0

h1(τ )dτ, t ≥ t0.

See the proof in [9].

Theorem 2.7 Let for some λ ∈ R and continuous on [t0,+∞) functions g1(t) and
h1(t) the following conditions be satisfied.

f (t) ≥ 0,
∫

t0
t exp

{
∫

t0
τ
[
f (s)

(
η0(s) + η1(s)

)
+ g(s)

]
ds

}[

f (τ )η21(τ ) + (g(τ ) −

g1(τ ))η1(τ ) + h(τ ) − h1(τ )

]

dτ ≤ 0, t ≥ t0, where

η0(t) ≡ λ exp

{

−
t∫

t0

g(τ )dτ

}

−
t∫

t0

exp

{

−
t∫

τ

g(s)ds

}

h(τ )dτ,

η1(t) ≡ λ exp

{

−
t∫

t0

g1(τ )dτ

}

−
t∫

t0

exp

{

−
t∫

τ

g1(s)ds

}

h1(τ )dτ.

Then for every y(0) ≥ λ Eq. (2.1) has a solution y0(t) on [t0,+∞) with y0(t0) = y(0)
and y0(t) ≥ η1(t), t ≥ t0.

See the proof in [9].
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3 Reducibility criteria for the system (1.1)

Consider the Riccati equation

y′ + b(t)y2 + E(t)y − c(t) = 0, t ≥ t0, (3.1)

where E(t) ≡ a(t) − d(t), t ≥ t0. In [2] it was established that the system (1.1) is
reducible provided:
α) Eq. (3.1) has a bounded solution on [t0,+∞)

or
β) Eq. (3.1) has a solution y(t) on [t0,+∞) such that limt→+∞ y(t) = ∞.
We will use this fact with the theorems from Sect. 2 to prove reducibility criteria for
the system (1.1).

Theorem 3.1 Let bi (t) and ci (t) be continuously differentiable functions on [t0,+∞)

such that (−1)i bi (t) > 0, (−1)i ci (t) > 0, t ≥ t0, i = 1, 2. If b1(t) ≤ b(t) ≤
b2(t), c1(t) ≤ −c(t) ≤ c2(t), E(t) ≥ 1

2

(
b′
i (t)
bi (t)

− c′
i (t)
ci (t)

)

+ 2(−1)i
√
bi (t)ci (t), i =

1, 2, t ≥ t0,
A1)

ci (t)
bi (t)

is bounded on [t0,+∞), i = 1, 2,
then the system (1.1) is reducible.

Proof By virtue of Theorem 2.1 from the conditions of the theorem it follows that Eq.
(3.1) has a solution y(t) on [t0,+∞) such that

−
√
c2(t)

b2(t)
≤ y(t) ≤

√
c1(t)

b1(t)
, t ≥ t0.

From here and from the condition A1) it follows that y(t) is bounded. Then by α) the
system (1.1) is reducible. The theorem is proved. �
Example 3.1 Let ν(t) be a continuous and bounded function on [t0,+∞). Consider
the system

⎧
⎨

⎩

φ′ = (2 + ν(t))φ + sin t4ψ,

ψ ′ = cos etφ + (ν(t) − sin2 t)ψ, t ≥ t0.

It is not difficult to verify that for bi (t) = ci (t) = (−1)i , i = 1, 2, t ≥ t0 the
conditions of Theorem 3.1 for this system are satisfied.

By analogy using Theorem 2.2 in place of Theorem 2.1 can be proved

Theorem 3.2 Let bi (t) and ci (t) be continuously differentiable functions on [t0,+∞)

such that (−1)i bi (t) > 0, (−1)i ci (t) > 0, t ≥ t0, i = 1, 2. If b1(t) ≤ b(t) ≤
b2(t), c1(t) ≤ −c(t) ≤ c2(t), E(t) ≤ 1

2

(
b′
i (t)
bi (t)

− c′
i (t)
ci (t)

)

− 2(−1)i
√
bi (t)ci (t), i =

123



On the reducibility systems of two linear first-order… 519

1, 2, t ≥ t0, the function ci (t)
bi (t)

is bounded on [t0,+∞), i = 1, 2, then the system
(1.1) is reducible.

Example 3.2 Let ν(t) be the same as in Example 3.1. Consider the system

⎧
⎨

⎩

φ′ = (ν(t) − 2)φ + cos 1√
1+t2

ψ,

ψ ′ = sin etφ + (ν(t) + cos2 t7)ψ, t ≥ t0.

One can readily check that for bi (t) = ci (t) = (−1)i , i = 1, 2, t ≥ t0 the conditions
of Theorem 3.2 for this system are satisfied.

Theorem 3.3 Let b1(t) and c1(t) be continuously differentiable functions on [t0,+∞)

such that b1(t) > 0, c1(t) > 0, t ≥ t0. If 0 ≤ b(t) ≤ b1(t),−c(t) ≤ c1(t), E(t) ≤
1
2

(
b′
1(t)

b1(t)
− c′

1(t)
c1(t)

)

− 2
√
b1(t)c1(t), t ≥ t0.

A2) limt→+∞ c1(t)
b1(t)

= +∞,
then the system (1.1) is reducible.

Proof In virtue of Theorem 2.3 from the conditions of the thorem it follows that Eq.
(3.1) has a solution y(t) on [t0,+∞) such that

y(t) ≥
√
c1(t)

b1(t)
, t ≥ t0.

From here and from A2) it follows that

lim
t→+∞ y(t) = +∞,

By β) from here it follows the reducibility of the system (1.1). The theorem is proved.
�

Example 3.3 Let ν(t) be the same as in Example 3.1. Consider the system

⎧
⎪⎨

⎪⎩

φ′ = (ν(t) − 1
2t )φ + |cos3t |

t ψ,

ψ ′ = − sin4 1
t φ + (ν(t) + 2√

t
)ψ, t ≥ 1.

One can readily check that for b1(t) = 1
t , c1(t) = 1, t ≥ 1 the conditions of Theo-

rem 3.3 for this system are satisfied.

Theorem 3.4 Let b1(t) and c1(t) be the same as in Theorem 3.3. If 0 ≤ b(t) ≤
b1(t),−c(t) ≤ c1(t), E(t) ≥ 1

2

(
b′
1(t)

b1(t)
− c′

1(t)
c1(t)

)

+ 2
√
b1(t)c1(t), b(t)b1(t) +

2b1(t)c1(t) − c1(t)c(t) ≥ 0, t ≥ t0,
A3)

c1(t)
b1(t)

is bounded on [t0,+∞),
then the system (1.1) is reducible.
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Proof By Theorem 2.4 from the conditions of the theorem it follows that Eq. (3.1) has
a solution y(t) on [t0,+∞) such that

−
√
c1(t)

b1(t)
≤ y(t) ≤

√
c1(t)

b1(t)
, t ≥ t0.

From here and from A3) it follows that y(t) is bounded on [t0,+∞). Then by α) the
system (1.1) is reducible. The theorem is proved. �
Example 3.4 Consider the system

⎧
⎨

⎩

φ′ = [3 + ν(t)]φ + esin 2tψ,

ψ ′ = e− sin 2tφ + [ν(t) − 3 cos 2t]ψ, t ≥ t0,
(3.2)

where ν(t) is the same as in Example 3.1. It is not difficult to verify that for b1(t) =
esin 2t , c1(t) = e− sin 2t , t ≥ t0 the conditions of Theorem 3.4 for this system are
fulfilled. Hence this system is reducible.

Remark 3.1 The reducibility of the system (3.2) in the case when ν(t) ≡ 0 is evident.

Theorem 3.5 Let b1(t) and E1(t) be continuous functions on [t0,+∞) such that
b1(t) > 0, t ≥ t0,

E1(t)
b1(t)

is continuously differentiable on [t0,+∞). If 0 ≤ b(t) ≤
b1(t), λ(E(t) − E1(t))E1(t) ≥ 0,−c(t) ≤ λ

[(
E1(t)
b1(t)

)′
+ (1 − λ)

E2
1 (t)

b1(t)

]

, λ =
const, t ≥ t0,
A4) limt→+∞ −λ

E1(t)
b1(t)

= +∞,

then the system (1.1) is reducible.

Proof In virtue of Theorem 2.5 from the conditions of the theorem it follows that Eq.
(3.1) has a solution y(t) on [t0,+∞) such that y(t) ≥ −λ

E1(t)
b1(t)

, t ≥ t0. From here
and from the condition A4) it follows that

lim
t→+∞ y(t) = +∞.

Consequently by β) the system (1.1) is reducible. The theorem is proved. �
Example 3.5 Let ν(t) be the same as in Example 3.1. Consider the system

⎧
⎨

⎩

φ′ = [ν(t) + 5arctan(t5 sin t)]φ + 100 sin2 et
t ψ,

ψ ′ = 5 cos t5φ + [ν(t) + sin t10]ψ, t ≥ 5.

It is not difficult to verify that for b1(t) = 100
t , E1(t) = 10, λ = −1 the conditions of

Theorem 3.5 for this system are satisfied.

123



On the reducibility systems of two linear first-order… 521

Theorem 3.6 Let b1(t) and c1(t) be continuous functions on [t0,+∞) such that
∫

t0
tc1(τ )dτ, t ≥ t0, is bounded on [t0,+∞). If 0 ≤ b(t) ≤ b1(t),

[

λ +
∫

t0
tc1(τ )dτ

](

b1(t)

[

λ + ∫

t0
tc1(τ )dτ

]

− E(t)

)

≤ 0,−c(t) ≤ c1(t),

[

μ +
∫

t0
tc(τ )dτ

](

b(t)

[

μ + ∫

t0
tc(τ )dτ

]

− E(t)

)

≥ 0, λ = const, μ = const, μ ≤
λ, t ≥ t0, then the system (1.1) is reducible.

Proof By Theorem 2.6 from the conditions of the theorem it follows that Eq. (3.1) has
a solution y(t) such that

−λ −
t∫

t0

c1(τ )dτ ≤ y(t) ≤ μ −
t∫

t0

c1(τ )dτ, t ≥ t0.

Then since
∫

t0
tc1(τ )dτ is bounded y(t) is also bounded. Therefore according to α)

the system (1.1) is reducible. The theorem is proved. �
Example 3.6 Let ν(t) be the same as in Example 3.1. Consider the system

⎧
⎨

⎩

φ′ = [sint + ν(t)]φ + |sint2|ψ,

ψ ′ = −2 cos tφ + [ν(t) − sin t]ψ, t ≥ t0.

One can readily check that for c1(t) = 2 cos t, b1(t) ≡ 1, λ = sin t0 the conditions of
Theorem 3.6 for this system are satisfied.

Theorem 3.7 Let for some λ ∈ R and continuous functions E1(t) and c1(t) the fol-
lowing conditions be satisfied
b(t) ≥ 0,

t∫

t0

exp

{ τ∫

t0

[
b(s)

(
χ0(s) + χ1(s)

)
+ E(s)

]
ds

}[

b(τ )χ2
1 (τ ) +

+(E(τ ) − E1(τ ))χ1(τ ) + c1(τ ) − c(τ )

]

dτ ≤ 0, t ≥ t0, (3.3)

limt→+∞ χ1(t) = +∞, where

χ0(t) ≡ λ exp

{

−
t∫

t0

E(τ )dτ

}

+
t∫

t0

exp

{

−
t∫

τ

E(s)ds

}

c(τ )dτ,

χ1(t) ≡ λ exp

{

−
t∫

t0

E1(τ )dτ

}

+
t∫

t0

exp

{

−
t∫

τ

E1(s)ds

}

c1(τ )dτ.
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Then the system (1.1) is reducible.

Proof By virtue of Theorem 2.7. from the conditions of the theorem it follows that
Eq. (2.1) has a solution y0(t) on [t0,+∞) such that limt→+∞ y0(t) = +∞. By β)

from here it follows the reducibility of the system (1.1). The theorem is proved. �
Remark 3.2 The condition (3.3) of Theorem 3.7 is satisfied if in particular λ = 0 and

b(t)I 2E1,c1(t) + (E(t) − E1(t))IE1,c1(t) + c1(t) − c(t) ≤ 0, t ≥ t0,

where IE1,c1(t) ≡ ∫

t0
t exp

{

− ∫

τ
t E1(s)ds

}

c1(τ )dτ, t ≥ t0.

Example 3.7 Let ν(t) be the same as in Example 3.1. Consider the system

⎧
⎨

⎩

φ′ = [ν(t) − sin2 t4]φ + sin2 et
t ψ,

ψ ′ = [1 + cos4
√
t]φ + [ν(t) − 1]ψ, t ≥ 1.

Using Remark 3.2 one can readily check that for c1(t) ≡ 1, E1(t) ≡ 0, λ = 0 the
conditions of Theorem 3.7 for this system are satisfied.
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