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Abstract
In this paper, we first establish five versions of Landau-type theorems for five classes
of bounded biharmonic mappings F(z) = |z|2G(z) + H(z) on the unit disk D with
G(0) = H(0) = JF (0) − 1 = 0, which improve the related results of earlier authors.
In particular, two versions of those Landau-type theorems are sharp. Then we derive
five bi-Lipschitz theorems for these classes of bounded and normalized biharmonic
mappings.
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1 Introduction

Let D={z ∈ C : |z| < 1} denote the unit disk with center at the origin and radius 1.
For r > 0, let Dr = {z ∈ C : |z| < r}. A function f (z) = u(z) + iv(z), z = x + iy
is a harmonic mapping on the unit disk D if and only if F is twice continuously
differentiable and satisfies the Laplacian equation

� f = 4 fzz̄ = ∂2 f

∂x2
+ ∂2 f

∂ y2
= 0
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for z ∈ D, where the formal derivatives of f are defined by

fz = 1

2

(
fx − i fy

)
, fz̄ = 1

2

(
fx + i fy

)
.

A function F(z) = U (z) + iV (z) is a biharmonic mapping on D if and only
if F is four times continuously differentiable and satisfies the biharmonic equation
�(�F) = 0 for z ∈ D. In other words, F(z) is biharmonic on D if and only if �F is
harmonic on D.

It is known [1] that a mapping F is biharmonic on D if and only if F can be
represented as follow:

F(z) = |z|2G(z) + H(z), z ∈ D, (1.1)

where G(z) and H(z) are complex-valued harmonic mappings on D.
In [15], it’s known that a harmonic mapping f (z) is locally univalent on D if and

only if its Jacobian J f (z) = | fz |2 − | fz |2 �= 0 for any z ∈ D. Since D is simply
connected, f (z) can be written as f = h + g with f (0) = h(0), h and g are analytic
on D. Thus, we have

J f (z) = |h′(z)|2 − |g′(z)|2.

For such function f , we define

� f (z) = max
0≤θ≤2π

|eiθ fz(z) + e−iθ fz(z)| = | fz(z)| + | fz(z)|,

and

λ f (z) = min
0≤θ≤2π

|eiθ fz(z) + e−iθ fz(z)| = || fz(z)| − | fz(z)||.

Recall that a mapping ω : D → 	 is said to be L1-Lipschitz (L1 > 0) (l1-co-
Lipschitz (l1 > 0)) if

|ω(z1) − ω(z2)| ≤ L1|z1 − z2|, z1, z2 ∈ D, (1.2)

(|ω(z1) − ω(z2)| ≥ l1|z1 − z2|, z1, z2 ∈ D). (1.3)

A mapping ω is bi-Lipschitz if it is Lipschitz and co-Lipschitz (see [14]). In [13],
the Lipschitz character of q.c. harmonic self-mappings of the unit disk was established
with respect to the hyperbolic metric and this was generalized to an arbitrary domain
in [25].

Harmonic mappings techniques have been used to study and solve fluid flow
problems (see [4,11]). For example, in 2012, Aleman and Constantin [4] developed
ingenious technique to solve the incompressible two dimensional Euler equations in
terms of univalent harmonicmappings.More precisely, the problem of finding all solu-
tions which in Lagrangian variables describing the particle paths of the flow present a
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labelling by harmonic mappings is reduced to solve an explicit nonlinear differential
system in C

n (please refer to [11]).
The classical Landau’s theorem states that if f is an analytic function on the unit

disk D with f (0) = f ′(0) − 1 = 0 and | f (z)| < M for z ∈ D, then f is univalent
in the disk Dr0 with r0 = 1

M+√
M2−1

and f (Dr0) contains a disk |w| < R0 with

R0 = Mr20 . This result is sharp, with the extremal function f0(z) = Mz 1−Mz
M−z . The

Bloch theorem asserts the existence of a positive constant number b such that if f is
an analytic function on the unit disk D with f ′(0) = 1, then f (D) contains a schlicht
disk of radius b, that is, a disk of radius b which is the univalent image of some region
on D. The supremum of all such constants b is called the Bloch constant (see [6,12]).

For harmonic mappings on D, under suitable restriction, Chen, Gauthier and Hen-
gartner [6] obtained two versions of Landau’s theorems. In 2008, Abdulhadi and
Muhanna proved the following Landau-type theorem of certain bounded biharmonic
mappings in [2].

Theorem A (Abdulhadi andMuhanna [2]) Let f (z) = |z|2g(z)+h(z) be a biharmonic
mapping of the unit disk D, as in (1.1), with f (0) = h(0) = J f (0) − 1 = 0 and
|g(z)| ≤ M, |h(z)| ≤ M for z ∈ D. Then there is a constant 0 < r1 < 1 so that f is
univalent in the disk Dr1 . In specific r1 satisfies the following equation

π

4M
− 2r1M − 2Mr21

(1 − r1)2
− 2M · 2r1 − r21

(1 − r1)2
= 0, (1.4)

and f (Dr1) contains a schlicht disk DR1 with

R1 = π

4M
r1 − 2M

r31 + r21
1 − r1

. (1.5)

From that on, many authors considered the Landau-type theorems for certain
bounded biharmonic mappings (see [5,7–9,16,18–23,26]). Liu et al. improved Theo-
rem A by establishing the following theorem.

Theorem B (Liu [16]) Let F(z) = |z|2g(z)+h(z) be a biharmonicmapping of the unit
diskD, as in (1.1), with F(0) = h(0) = JF (0)−1 = 0 and |g(z)| ≤ M1, |h(z)| ≤ M2
for z ∈ D. Then, F is univalent in the disk Dr2 , and F(Dr2) contains a schlicht disk
DR2 , where r2 is the minimum positive root of the following equation

λ0(M2) − 2rM1 − 2M1r2

(1 − r)2
−
√
2M2

2 − 2 · 2r − r2

(1 − r)2
= 0, (1.6)

and

R2 = λ0(M2)r2 − 2M1 · r32
1 − r2

−
√
2M2

2 − 2 · r22
1 − r2

, (1.7)
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where λ0(M) is defined by

λ0(M) =

⎧
⎪⎨

⎪⎩

√
2√

M2−1+√
M2+1

if 1 ≤ M ≤ M0 = π

2 4√2π2−16
,

π
4M if M > M0 = π

2 4√2π2−16
≈ 1.1296 .

(1.8)

Chen et al. established the following theorem, which improved Theorems A and B
for the case M1 = M2 = M .

Theorem C (Chen et al. [8]) Let F(z) = |z|2g(z) + h(z) be a biharmonic mapping
of the unit disk D, as in (1.1), with F(0) = h(0) = JF (0) − 1 = 0 and |g(z)| ≤
M1, |h(z)| ≤ M2 for z ∈ D. Then, F is univalent in the diskDr3 , and F(Dr3) contains
a schlicht disk DR3 , where r3 is the minimum positive root of the following equation

π

4M2
− 2rM1 − 4M1r2

π(1 − r)2
−
√
2M2

2 − 2 · 2r − r2

(1 − r)2
= 0, (1.9)

and

R3 = π

4M2
r3 −

r23 (4M1r3 + π

√
2M2

2 − 2)

π(1 − r3)
, (1.10)

Zhu et al. improved Theorems A, B and C by establishing the following theorem:

Theorem D (Zhu and Liu [26]) Suppose that F(z) = |z|2g(z) + h(z) is a biharmonic
mapping in the unit disk D such that |g(z)| ≤ M1 and |h(z)| ≤ M2 for z ∈ D with
|JF (0)| = 1.

(i) If M2 > 1 or M2 = 1 and M1 > 0, then F is univalent in the disk Dr4 , and
F(Dr4) contains a schlicht disk DR4(F(0)), where r4 = r4(M1, M2) is the minimum
positive root of the following equation:

λ0(M2) − 2M1r − 4M1r2

π(1 − r2)
− λ0(M2)

√
M4

2 − 1 · r
√
4 − 3r2 + r4

(1 − r2)3/2
= 0, (1.11)

and

R4 = λ0(M2)r4 − M1r
2
4 − λ0(M2)

√
M4

2 − 1 · r24
(1 − r24 )1/2

, (1.12)

where λ0(M) is given by (1.8).
(ii) If M2 = 1 and M1 = 0, then F is univalent in D and F(D) = D.

For the biharmonic mappings with λF (0) = 1, many versions of Landau-type theo-
rems, even sharp results have been found. In 2019, Liu and Luo proved the following
sharp results.
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Theorem E (Liu and Luo [20]) Suppose that �1 ≥ 0 and �2 > 1. Let F(z) =
|z|2G(z) + H(z) be a biharmonic mapping of the unit disk D, where G(z) and H(z)
are harmonic in D, satisfying G(0) = H(0) = 0, λF (0) = 1,�G(z) ≤ �1 and
�H (z) < �2 for all z ∈ D. Then F(z) is univalent on the disk Dr5 and F

(
Dr5

)

contains a Schlicht disk DR5 , where r5 is the unique root in (0, 1) of the equation

�2
1 − �2r

�2 − r
− 3�1r

2 = 0, (1.13)

and

R5 = �2
2r5 +

(
�3

2 − �2

)
ln

(
1 − r5

�2

)
− �1r

3
5 . (1.14)

This result is sharp, with an extremal function given by

F0(z) = �2

∫

[0,z]
1 − �2z

�2 − z
dz − �1|z|2z

= �2
2z − �1|z|2z +

(
�3

2 − �2

)
ln

(
1 − z

�2

)
, z ∈ D. (1.15)

Theorem F (Liu and Luo [20]) Suppose that � ≥ 0. Let F(z) = |z|2G(z) + H(z)
be a biharmonic mapping of D, where G(z), H(z) are harmonic in D, satisfying
G(0) = H(0) = 0, λF (0) = 1,�G(z) ≤ �, and �H (z) ≤ 1 or |H(z)| < 1 for all
z ∈ D. Then F is univalent on the disk Dρ1 , and F

(
Dρ1

)
contains a schlicht disk Dσ1 ,

where

ρ1 =
{
1 if 0 ≤ � ≤ 1

3 ,
1√
3�

if � > 1
3 ,

(1.16)

and

σ1 = ρ1 − �ρ3
1 =

{
1 − �, if 0 ≤ � ≤ 1

3 ,
2

3
√
3�

, if � > 1
3 .

(1.17)

This result is sharp.

It is natural raise the following.

Problem 1 If λF (0) = 1 is replaced by JF (0) = 1 in TheoremsE and F, can we obtain
sharp versions of Landau-type theorems for such bounded and normalized biharmonic
mappings?

Problem 2 Can we improve Theorem D?
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In this paper, we first establish several new lemmas (see Lemmas 2.1, 2.2, 2.4, 2.5
and 2.9). Then, using these estimates, we prove several new versions of Landau-type
theorems of bounded biharmonic mappings F(z) with JF (0) = 1. In particular, the
results of Theorems 3.1 and 3.2 are sharp, which gives part of affirmative answer
to the first question, Theorem 3.5 improves Theorems A, B, C and D, which gives
an affirmative answer to the second question. Moreover, we can verify that these
biharmonic mappings F(z) are bi-Lipschitz on the univalent disks without changing
the hypothesis of the theorems in Sect. 3.

2 Preliminaries

In this section, we establish some lemmas needed in the proof of the main results.

Lemma 2.1 Suppose � > 1. Let H(z) be a harmonic mapping of the unit disk
D with JH (0) = 1 and �H (z) < � for all z ∈ D. Then for all z1, z2 ∈
Dr (0 < r < 1, z1 �= z2) , we have

|H(z2) − H(z1)| =
∣∣∣∣

∫

z1z2
Hz(z)dz + Hz̄(z)dz̄

∣∣∣∣ ≥ �
λH (0) − �r

� − λH (0)r
|z1 − z2| . (2.1)

Proof Following the idea from [17] (see also [20, Proof of Lemma 2.2]), let θ0 =
arg (z2 − z1). Since H(z) is a harmonic mapping in the unit disk D, H(z) can be
written as H(z) = H1(z) + H2(z) for z ∈ D, where H1 and H2 are analytic in D.
Since JH (0) = |H ′

1(0)|2 − |H ′
2(0)|2 = 1, we have |H ′

1(0)| > |H ′
2(0)|, and

�0≤θ≤2π arg
{
H ′
1(0)e

i(θ0+θ) + H ′
2(0)e

i(θ0−θ)
}

= �0≤θ≤2π arg
{
H ′
1(0)e

i(θ0+θ)
}

= 2π,

where�0≤θ≤2π denotes the increment of the succeeding function as θ increasing from
0 to 2 π. Thus there exists a θ1 ∈ [0, 2π ] such that

H ′
1(0)e

i(θ0+θ1) + H ′
2(0)e

i(θ0−θ1) > 0.

Since �H (0) < �, we have

λH (0) = JH (0)

�H (0)
>

1

�
> 0.

For z ∈ D, let

ω(z) = H ′
1(z)e

i(θ0+θ1) + H ′
2(z)e

i(θ0−θ1)

�
.
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Then ω(z) is analytic with |ω(z)| ≤ �H (z)/� < 1 for z ∈ D and

α := ω(0) = H ′
1(0)e

i(θ0+θ1) + H ′
2(0)e

i(θ0−θ1)

�
≥ λH (0)

�
.

Using Schwarz–Pick Lemma, we have

Reω(z) ≥ α − r

1 − αr
≥

λH (0)
�

− r

1 − λH (0)r
�

= λH (0) − �r

� − λH (0)r
, z ∈ Dr .

Then
∣∣∣∣

∫

z1z2
Hz(z)dz + Hz(z)dz̄

∣∣∣∣ =
∣∣∣∣

∫

z1z2

(
H ′
1(z)e

i(θ0+θ1) + H ′
2(z)e

−i(θ0−θ1)
)

|dz|
∣∣∣∣

≥
∫

z1z2
Re
{
H ′
1(z)e

i(θ0+θ1) + H ′
2(z)e

−i(θ0−θ1)
}

|dz|

=
∫

z1z2
Re
{
H ′
1(z)e

i(θ0+θ1) + H ′
2(z)e

i(θ0−θ1)
}

|dz|

≥
∫

z1z2
�

λH (0) − �r

� − λH (0)r
|dz| = �

λH (0) − �r

� − λH (0)r
|z1 − z2| .


�
Applying the analogous proof of Lemma 2.3 in [20], we have the following lemma.

Lemma 2.2 Suppose � > 1. Let H(z) be a harmonic mapping of the unit disk D

with JH (0) = 1 and �H (z) < � for all z ∈ D. Set γ = H−1(ow′) with w′ ∈
H (∂Dr ) (0 < r ≤ 1) and ow′ denotes the closed line segment joining the origin and
w′, then

∣∣∣∣

∫

γ

Hζ (ζ )dζ + Hζ̄ (ζ )d ζ̄

∣∣∣∣ ≥ �

∫ r

0

λH (0) − �t

� − λH (0)t
dt . (2.2)

Lemma 2.3 [16] Suppose that f (z) = h(z) + g(z) is a harmonic mapping of the unit
disk D with | f (z)| ≤ 1. If J f (0) = 1, then f (z) = αz, where |α| = 1.

Lemma 2.4 Suppose that f (z) = h(z) + g(z) is a harmonic mapping of the unit disk
Dwith J f (0) = 1. Then | f (z)| ≤ 1 for all z ∈ D if and only if� f (z) ≤ 1 for all z ∈ D.

Proof If | f (z)| ≤ 1 for all z ∈ D, it follows from Lemma 2.3 that f (z) = αz, where
|α| = 1. Hence

� f (z) = | fz(z)| + | fz(z)| = |α| = 1 ≤ 1
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790 S.-F. Chen, M.-S. Liu

for all z ∈ D. Conversely, if � f (z) ≤ 1 for all z ∈ D, then for each z ∈ D, we have

| f (z)| =
∣∣∣
∣

∫

[0,z]
fz(z)dz + fz̄(z)dz̄

∣∣∣
∣ ≤

∫

[0,z]
∣∣� f (z)

∣∣ |dz| ≤ |z| ≤ 1. 
�

Because of its independent interest, we establish the following estimates of coef-
ficients of harmonic mapping f with f (0) = J f (0) − 1 = 0 and � f (z) ≤ � for all
z ∈ D.

Lemma 2.5 Suppose that f (z) = h(z)+g(z) is a harmonicmapping onDwith h(z) =∑∞
n=1 anz

n and g(z) = ∑∞
n=1 bnz

n are analytic on D, and f (0) = J f (0) − 1 = 0,
� f (z) ≤ � for all z ∈ D, then � ≥ 1, |a1| + |b1| ≤ �, and

|an| + |bn| ≤ �4 − 1

n�3 , n = 2, 3, . . . . (2.3)

and

1

�
≤ λ f (0) ≤ 1. (2.4)

When � = 1, then f (z) = a1z with |a1| = 1.

Proof Since J f (0) = (|a1| + |b1|)(|a1| − |b1|) = 1 and � f (z) ≤ � for all z ∈ D, we
have

0 <
1

|a1| + |b1| = |a1| − |b1| ≤ |a1| + |b1| = � f (0) ≤ �.

which implies that � ≥ 1,

λ f (0) = ||a1| − |b1|| = 1

|a1| + |b1| ≥ 1

�
. (2.5)

and

λ f (0) = ||a1| − |b1|| ≤ |a1| + |b1| = 1

||a1| − |b1|| 
⇒ λ f (0) = ||a1| − |b1|| ≤ 1.

(2.6)

Fixed n ∈ N−{1} = {2, 3, . . .}, we choose a real number α such that |an+eiαbn| =
|an| + |bn|, and set

F(z) = 1

�
[h′(z) + eiαg′(z)] = a1 + eiαb1

�
+

∞∑

n=2

k(ak + eiαbk)

�
zk−1.
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Since g(z) and h(z) are analytic and � f (z) = |h′(z)| + |g′(z)| ≤ � on D, we get

F(z) is analytic and |F(z)| ≤ |h′(z)|+|g′(z)|
�

≤ 1 onD. By Lemma 1.3 in [16] and (2.5),
we have

∣∣∣
k(ak + eiαbk)

�

∣∣∣ ≤ 1 −
∣∣∣
a1 + eiαb1

�

∣∣∣
2 ≤ 1 − ||a1| − |b1||2

�2 ≤ 1 − 1

�4

for k = 2, 3, . . . . In particular, we have

n(|an| + |bn|) = n|an + eiαbn| ≤ �(1 − 1

�4 ) = �4 − 1

�3 ,

which implies that

|an| + |bn| ≤ �4 − 1

n�3 , n = 2, 3, . . . .

When � = 1, we have |an| + |bn| ≤ �4−1
n�3 = 0 for n = 2, 3, . . . , which implies

an = bn = 0 for n = 2, 3, . . ..
Since 0 ≤ |a1|− |b1| ≤ |a1|+ |b1| ≤ 1 and J f (0) = (|a1|− |b1|)(|a1|+ |b1|) = 1,

we have |a1| − |b1| = |a1| + |b1| = 1. Hence |a1| = 1, b1 = 0, and f (z) = a1z with
|a1| = 1. 
�

Lemma 2.6 [3,16,26] Let f (z) = h(z) + g(z) = ∑∞
n=1 anz

n + ∑∞
n=1 bnz

n be a
harmonic mapping on the unit disk D.

(i) If | f (z)| < M, then

∞∑

n=1

(|an| + |bn|)2 ≤ 2M2.

(ii) If J f (0) = 1 and | f (z)| < M, then

√√√√
∞∑

n=2

(|an| + |bn|)2 ≤
√
M4 − 1 · λ f (0),

and λ f (0) ≥ λ0(M), where λ0(M) is given by (1.8).

Applying the analogous proof of Lemma 2.5 in [20], we have the following lemma.

Lemma 2.7 Suppose � ≥ 0. Let F(z) = a�|z|2z + bz be a biharmonic mapping
of the unit disk D with |a| = |b| = 1. Then F is univalent on the disk Dρ1 , and
F
(
Dρ1

)
contains a Schlicht disk Dσ1 , where ρ1 and σ1 are given by (1.16) and (1.17)

respectively. This result is sharp.
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792 S.-F. Chen, M.-S. Liu

Lemma 2.8 [20] Let F(z) = |z|2G(z) + H(z) be a biharmonic mapping of the unit
disk D with G(0) = H(0) = 0 and �G(z) ≤ � for all z ∈ D, where G(z) =
G1(z)+G2(z) = ∑∞

n=1 anz
n +∑∞

n=1 bn z̄
n, H(z) = H1(z)+ H2(z) =∑∞

n=1 cnz
n +∑∞

n=1 dn z̄
n are harmonic mappings on D. Then for all z1, z2 ∈ Dr (0 < r < 1) with

z1 �= z2, we have

|F (z1) − F (z2)| ≥ |z1 − z2|
[

‖c1| − |d1‖ −
∞∑

n=2

(|cn| + |dn|) nrn−1 − 3�r2
]

.

(2.7)

Lemma 2.9 Let F(z) = |z|2G(z) + H(z) be a biharmonic mapping of the unit
disk D with G(0) = H(0) = 0 and �G(z) ≤ � for all z ∈ D, where
G(z) = G1(z) + G2(z) = ∑∞

n=1 anz
n + ∑∞

n=1 bn z̄
n, H(z) = H1(z) + H2(z) =∑∞

n=1 cnz
n + ∑∞

n=1 dn z̄
n are harmonic mappings on D. Then for all z1, z2 ∈

Dr (0 < r < 1) with z1 �= z2, we have

|F (z1) − F (z2)| ≤ |z1 − z2|
(
�H (z) + 3�r2

)
. (2.8)

Proof For any z1, z2 ∈ Dr (0 < r < 1, z1 �= z2) , we have

|G(z)| =
∣∣∣∣

∫

[0,z]
Gz(z)dz + Gz̄(z)dz̄

∣∣∣∣ ≤
∫

[0,z]
|�G(z)‖dz| ≤ � |z|, (2.9)

and

|F (z1) − F (z2)| =
∣∣∣∣

∫

z1,z2
Fz(z)dz + Fz̄(z)dz̄

∣∣∣∣

=
∣∣∣∣

∫

z1,z2
(z̄G(z) + |z|2G ′

1(z)

+Hz(z))dz + (zG(z) + |z|2G ′
2(z) + Hz̄(z))dz̄

∣∣∣

≤
∣∣∣
∣

∫

z1,z2
Hz(z)dz + Hz(z)dz̄

∣∣∣
∣

+
∣∣
∣∣

∫

z1,z2

(
z̄G(z) + |z|2G ′

1(z)
)
dz + (zG(z) + |z|2G ′

2(z))dz̄

∣∣
∣∣

≤
∫

z1,z2
(|Hz(z)| + |Hz̄(z)|)|dz|

+
∫

z1,z2
(2|z||G(z)| + |z|2|G ′

1| + |z|2|G ′
2|)|dz|

≤ |z1 − z2|
(
�H (z) + 3�r2

)
.

This completes the proof of the lemma. 
�
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Lemma 2.10 [24] Let G(z) be a harmonic mapping of the unit disk D with G(0) = 0
and |G(z)| ≤ M. Then for all z1, z2 ∈ Dr (0 < r < 1) with z1 �= z2, we have

||z2|2G(z2) − |z1|2G(z1)| ≤ 4M(3r2 − 2r4)

π(1 − r2)
|z1 − z2|.

Lemma 2.11 [6] Let G be a harmonic mapping of the unit disk D with G(0) = 0 and
G(D) ⊂ D. Then

|G(z)| ≤ 4

π
arctan |z| ≤ 4

π
|z|, for z ∈ D.

Lemma 2.12 [10] Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping with
f1(z) = ∑∞

n=0 anz
n and f2(z) = ∑∞

n=1 bnz
n being analytic in D. If | f (z)| ≤ M for

all z ∈ D, then

� f (z) ≤ 4M

π(1 − |z|2) . (2.10)

3 Landau-type theorems of biharmonic mappings

We first prove a new version of Landau-type theorem for biharmonic mappings F(z)
under the assumptions G(0) = H(0) = JF (0) − 1 = 0,�G(z) ≤ �1 and �H (z) <

�2 for all z ∈ D, which is one of the main results in this paper.

Theorem 3.1 Suppose that �1 ≥ 0 and �2 > 1. Let F(z) = |z|2G(z) + H(z) be a
biharmonic mapping of the unit disk D, where G(z) and H(z) are harmonic on D,

satisfying G(0) = H(0) = JF (0) − 1 = 0,�G(z) ≤ �1 and �H (z) < �2 for all
z ∈ D. Then 1

�2
< λF (0) ≤ 1, F(z) is univalent on the diskDρ0 and F

(
Dρ0

)
contains

a schlicht disk Dσ0 , where ρ0 is the unique root in (0, 1) of the equation

�2
λH (0) − �2r

�2 − λH (0)r
− 3�1r

2 = 0, (3.1)

and

σ0 = �2
2

λH (0)
ρ0 +

(
�3

2

λ2H (0)
− �2

)

ln

(
1 − λH (0)ρ0

�2

)
− �1ρ

3
0 . (3.2)

This result is sharp for the biharmonic mapping given by (1.15).

Proof Wefirst prove that F is univalent in the diskDρ0 . Indeed, for all z1, z2 ∈ Dr (0 <

r < ρ0) with z1 �= z2, note that JH (0) = JF (0) = 1 and �H (z) < �2 for all z ∈ D,
we obtain from (2.4), (2.9) and Lemma 2.1 that

0 <
1

�2
< λF (0) = λH (0) ≤ 1, (3.3)
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and

|F (z2) − F (z1)| =
∣∣∣∣

∫

z1z2
Fz(z)dz + Fz̄(z)dz̄

∣∣∣∣

=
∣∣∣∣

∫

z1z2

(
z̄G(z) + |z|2Gz(z) + Hz(z)

)
dz

+
(
zG(z) + |z|2Gz̄(z) + Hz̄(z)

)
dz̄
∣∣∣

≥
∣∣∣
∣

∫

z1z2
Hz(z)dz + Hz̄(z)dz̄

∣∣∣
∣−

∫

z1z2
3�1r

2|dz|

≥ |z1 − z2|
(

�2
λH (0) − �2r

�2 − λH (0)r
− 3�1r

2
)

. (3.4)

It is easy to verify that the function

g0(r) := �2
λH (0) − �2r

�2 − λH (0)r
− 3�1r

2

is continuous and strictly decreasing on [0, 1], g0(0) = λH (0) > 1
�2

> 0, and

g0(1) = − (�2 + 3�1) < 0.

Therefore, by the mean value theorem, there is a unique real ρ0 ∈ (0, 1) such that
g0 (ρ0) = 0. Then, for any z1, z2 ∈ Dr (0 < r < ρ0) with z1 �= z2, we obtain that

|F (z2) − F (z1)| ≥ |z1 − z2|
(

�2
λH (0) − �2r

�2 − λH (0)r
− 3�1r

2
)

> |z1 − z2| g0 (ρ0) = 0.

This implies F (z1) �= F (z2) , which proves the univalence of F in the disk Dρ0 .

Next, we prove that σ0 > 0 and F
(
Dρ0

) ⊇ Dσ0 .
In fact, considering the real differentiable function

h(x) = �2
2

λH (0)
x +

(
�3

2

λ2H (0)
− �2

)

ln

(
1 − λH (0)x

�2

)
− �1x

3, x ∈ [0, 1]. (3.5)

Since the continuous function

h′(x) = �2
2

λH (0)
− 3�1x

2 + �2λH (0)2 − �3
2

λH (0)(�2 − λ2H (0)x)
(3.6)

is strictly decreasing on [0, 1] and h′(ρ0) = g0(ρ0) = 0, we see that h′(x) = 0 for
x ∈ [0, 1] if and only if x = ρ0. Thus h(x) is strictly increasing on [0, ρ0] and strictly
decreasing on [ρ0, 1]. Since h(0) = 0, we have
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σ0 = �2
2

λH (0)
ρ0 +

(
�3

2

λ2H (0)
− �2

)

ln

(
1 − λH (0)ρ0

�2

)
− �1ρ

3
0 = h(ρ0) > h(0) = 0. (3.7)

In addition, note that F(0) = 0, for any z ∈ ∂Dρ0 , taking z0 = ρ0eiθ ∈ ∂Dρ0 with
w0 = F (z0) ∈ F

(
∂Dρ0

)
and |w0| = min

{|w| : w ∈ F
(
∂Dρ0

)}
. Let γ = F−1(ow),

by Lemma 2.2 and (2.9), we have

|F(z) − F(0)| ≥ |w0| = ||ρ0eiθ |2G(ρ0e
iθ ) + H(ρ0e

iθ )| ≥ |H(ρ0e
iθ )| − �1ρ

3
0

=
∣∣∣∣

∫

γ

Hζ (ζ )dζ + Hζ̄ (ζ )d ζ̄

∣∣∣∣− �1ρ
3
0

≥ �2

∫ ρ0

0

λH (0) − �2t

�2 − λH (0)t
dt − �1ρ

3
0

= �2
2

λH (0)
ρ0 +

(
�3

2

λ2H (0)
− �2

)

ln

(
1 − λH (0)ρ0

�2

)
− �1ρ

3
0 = σ0.

which implies that F
(
Dρ0

) ⊇ Dσ0 .
Now, we prove the sharpness of ρ0 and σ0 for the biharmonic mapping F0(z) given

by (1.15). In fact, it is easy to verify that F0(z) satisfies the hypothesis of Theorem 3.1,
and thus, we have that F0(z) is univalent in the disk Dρ0 , and F0(Dρ0) ⊇ Dσ0 .

Note that for the biharmonic mapping F0(z), λH (0) = λF (0) = JF (0) = 1, the
Eqs. (3.1), (3.2) reduce to (1.13) and (1.14) respectively. Thus we obtain ρ0 = r5 and
σ0 = R5. By Theorem E, we conclude that ρ0 and σ0 are sharp. This completes the
proof. 
�

Now we give an example to show that for each a value α ∈ (1/�2, 1), there exits a
biharmonic mapping F satisfying the hypothesis of Theorem 3.1 such that λF (0) = α.

Example 3.1 Suppose that �1 ≥ 0, �2 > 1 and α ∈ (1/�2, 1). Let |a| = 1, |b| =
1
2 (1/α − α), and

|c| =
√|b|2 + 1

|b| = 1 + α2

1 − α2 .

Consider the biharmonic mapping

F(z) = a�1|z|2z + b(cz + z), z ∈ D.

Then F(z) satisfies the hypothesis of Theorem 3.1, λF (0) = α, F(z) is univalent on
Dρ′′

0
, and F(Dρ′′

0
) contains a Schlicht disk Dσ ′′

0
, where

ρ′′
0 =

{
1, if �1 ≤ α

3 ,√
α

3�1
, if �1 > α

3 ,
(3.8)
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and

σ ′′
0 =

{
α − �1, if �1 ≤ α

3 ,
2α
3

√
α

3�1
, if �1 > α

3 ,
(3.9)

and when arg c = π − arg b
a , this result is sharp.

Proof Set G(z) = a�1|z|2z, H(z) = b(cz + z). Direct computation yields

G(0) = H(0) = 0,�G(z) = |a�1| = �1 ≤ �1,

�H (z) = |bc| + |c| = |b|(|c| + 1) = 1/α < �2,

and JF (0) = |b|2(|c|2 − 1) = 1, thus F(z) satisfies the hypothesis of Theorem 3.1,
and

λF (0) = |b|(|c| − 1) = α.

Applying the analogous proof of Lemma 2.5 in [20] (please also refer to example
2.1 in [3]), we may verify that if �1 ≤ α

3 , then F(z) is univalent on D, and F(D)

contains a Schlicht disk Dσ ′′
0
, where

σ ′′
0 = α − �1.

If �1 > α
3 , then F(z) is univalent on Dρ′′

0
, and F(Dρ′′

0
) contains a Schlicht disk Dσ ′′

0
,,

where

ρ′′
0 =

√
α

3�1
, σ ′′

0 = 2α

3

√
α

3�1
,

and when arg c = π − arg b
a , the radii ρ

′′
0 and σ ′′

0 are sharp. 
�
Remark 3.1 For the biharmonic mapping F(z) of the unit disk D with JF (0) = 1
and �H (z) ≤ �2, it follows from Lemma 2.5 that �2 ≥ 1. Theorem 3.1 provides a
sharp version of Landau-type theorem of biharmonic mappings for the case JF (0) =
1,�1 ≥ 0 and�2 > 1. If JF (0) = 1,�1 ≥ 0 and�2 = 1, thenwe prove Theorem 3.2
using Lemmas 2.3, 2.4 and 2.7, which is the sharp version of Landau-type theorem of
biharmonic mappings and is also one of the main results in this paper.

Theorem 3.2 Suppose that � ≥ 0. Let F(z) = |z|2G(z) + H(z) be a biharmonic
mapping of D, where G(z), H(z) are harmonic on D, satisfying G(0) = H(0) =
JF (0) − 1 = 0, �G(z) ≤ � and �H (z) ≤ 1 or |H(z)| ≤ 1 for all z ∈ D. Then F is
univalent on the disk Dρ1 , and F

(
Dρ1

)
contains a Schlicht disk Dσ1 , where ρ1 and σ1

are given by (1.16) and (1.17) respectively. This result is sharp.

Proof Because F(z) = |z|2G(z) + H(z) satisfies the hypothesis of Theorem 3.2,
where G(z) = G1(z) + G2(z) and H(z) = H1(z) + H2(z) with G1(z) =
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∑∞
n=1 anz

n,G2(z) = ∑∞
n=1 bnz

n and H1(z) = ∑∞
n=1 cnz

n, H2(z) = ∑∞
n=1 dnz

n

are analytic on D. Then

JH (0) = JF (0) = |c1|2 − |d1|2 = 1.

By the hypothesis of Theorem 3.2 and Lemmas 2.3 and 2.4, we have

H(z) = c1z, |c1| = 1.

Now we prove that F is univalent in the disk Dρ1 , where

ρ1 =
{
1 if 0 ≤ � ≤ 1

3 ,
1√
3�

if � > 1
3 .

To this end, for any z1, z2 ∈ Dr (0 < r < ρ1) with z1 �= z2, by (3.4), we have

|F (z1) − F (z2)| ≥
∣∣
∣∣

∫

z1z2
Hz(z)dz + Hz̄(z)dz̄

∣∣
∣∣−

∫

z1z2
3�1r

2|dz|

= |z1 − z2|
(
|c1| − 3�r2

)

= |z1 − z2|
(
1 − 3�r2

)
> 0.

Then, we have F (z1) �= F (z2) , which proves the univalence of F in the disk Dρ1 .
Noting that F(0) = 0, for any z = ρ1eiθ ∈ ∂Dρ1 , we have

|F(z) − F(0)| = ||z|2 G(z) + H(z)| ≥ |H(z)| − ρ2
1 |G(z)|

= ρ1|c1| − �ρ3
1 = ρ1 − �ρ3

1 = σ1.

Hence, F
(
Dρ1

)
contains a schlicht disk Dσ1 .

Finally, for F(z) = a1�|z|2z + c1z with |a1| = |c1| = 1, we have G(z) =
a1�z, H(z) = c1z. Direct computation yields

G(0) = H(0) = 0, JF (0) = |c1| = 1,�G(z) = |a1�| ≤ �.

and |H(z)| = |c1z| ≤ 1 for all z ∈ D. Applying Lemma 2.7, we obtain that the radii
ρ1 and σ1 are sharp. This completes the proof. 
�

Next, we establish another new version of Landau-type theorem for biharmonic
mappings F(z) under the assumptions G(0) = H(0) = JF (0) − 1 = 0,�G(z) ≤ �

and |H(z)| ≤ M, (M > 1) for all z ∈ D.

Theorem 3.3 Suppose that � ≥ 0, M > 1. Let F(z) = |z|2G(z) + H(z) be a
biharmonic mapping of D, where G(z), H(z) are harmonic on D, satisfying G(0) =
H(0) = JF (0) − 1 = 0, �G(z) ≤ � and |H(z)| ≤ M for all z ∈ D. Then F
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is univalent on the disk Dρ2 , where ρ2 is the minimum positive root in (0, 1) of the
equation

λ0(M) − λ0(M)
√
M4 − 1

√√
√√4r2 − 3r4 + r6

(
1 − r2

)3 − 3�r2 = 0, (3.10)

and F
(
Dρ2

)
contains a Schlicht disk Dσ2 , where

σ2 = λ0(M)ρ2 − λ0(M)
√
M4 − 1

ρ2
2√

1 − ρ2
2

− ρ3
2�, (3.11)

where λ0(M) is given by (1.8).

Proof By the hypothesis of Theorem 3.3, we can assume that

H(z) =
∞∑

n=1

cnz
n +

∞∑

n=1

dnzn, z ∈ D.

Since JH (0) = JF (0) = 1 and |H(z)| ≤ M , by Lemma 2.6, we have

√√√
√

∞∑

n=2

(|cn| + |dn|)2 ≤
√
M4 − 1 · λH (0),

and λH (0) ≥ λ0(M), where λ0(M) is given by (1.8).
Now we prove that F is univalent in the diskDρ2 . For all z1, z2 ∈Dr (0 < r < ρ2,

z1 �= z2) , we obtain from Lemmas 2.8 and 2.6 that

|F (z1) − F (z2)|

≥ |z1 − z2|
[

‖c1| − |d1‖ −
∞∑

n=2

(|cn| + |dn|) nrn−1 − 3�r2
]

≥ |z1 − z2|
⎡

⎣λH (0) −
( ∞∑

n=2

(|cn| + |dn|)2
)1/2 ( ∞∑

n=2

n2r2n−2

)1/2

− 3�r2

⎤

⎦

≥ |z1 − z2|
⎛

⎝λH (0) − λH (0)
√
M4 − 1

√√√
√4r2 − 3r4 + r6

(
1 − r2

)3 − 3�r2

⎞

⎠

≥ |z1 − z2|
⎛

⎝λ0(M) − λ0(M)
√
M4 − 1

√√√
√4r2 − 3r4 + r6

(
1 − r2

)3 − 3�r2

⎞

⎠ > 0.

Then, we have F (z1) �= F (z2) , which proves the univalence of F in the disk Dρ2 .
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Noting that F(0) = 0, for any z = ρ2eiθ ∈ ∂Dρ2 , by (2.9), we have

|F(z)| = ||z|2 G(z) + H(z)| ≥ |H(z)| − ρ2
2 |G(z)|

≥ ‖c1| − |d1‖ ρ2 −
∞∑

n=2

(|cn| + |dn|) ρn
2 − ρ3

2�

≥ λH (0)ρ2 −
( ∞∑

n=2

(|cn| + |dn|)2
) 1

2
( ∞∑

n=2

ρ2n
2

) 1
2

− ρ3
2�

≥ λH (0)ρ2 − λH (0)
√
M4 − 1

ρ2
2√

1 − ρ2
2

− ρ3
2�

≥ λ0(M)ρ2 − λ0(M)
√
M4 − 1

ρ2
2√

1 − ρ2
2

− ρ3
2� = σ2.

Hence, F
(
Dρ2

)
contains a schlicht disk Dσ2 . This completes the proof (Table 1). 
�

Now,wewill consider theLandau-type theorem for the case |G(z)| ≤ M, �H (z) <

�.

Theorem 3.4 Suppose that M ≥ 0,� ≥ 1, F(z) = |z|2G(z) + H(z) is a biharmonic
mapping on the unit diskD, where G(z), H(z) are harmonicmappings onD, satisfying
G(0) = H(0) = JF (0) − 1 = 0 and |G(z)| ≤ M, �H (z) < � for z ∈ D.

(i) If M ≥ 0,� > 1 or M > 0,� = 1, then F(z) is univalent on Dρ3 , where ρ3 is
the minimum positive root in (0, 1) of the equation

�(1 − �2r)

�2 − r
− 4M

π

3r2 − 2r4

1 − r2
= 0, (3.12)

and F(Dρ3) contains a Schlicht disk Dσ3 , where

σ3 = �3ρ3 +
(
�5 − �

)
ln
(
1 − ρ3

�2

)
− 4M

π
ρ3
3 . (3.13)

(ii) If M = 0,� = 1, then F(z) is univalent on D and F(D) = D.

Proof (i) Note that JH (0) = JF (0) = 1, we split into two case to prove.

Table 1 The values of ρ2, σ2 are in Theorem 3.3

(�, M) (0, 1.1) (0.1, 1.1) (0.5, 1.3) (1, 1.6) (1, 2) (1.8, 2.3) (2.5, 3.2) (3, 3)

ρ2 0.5128 0.4847 0.2735 0.1693 0.1145 0.0847 0.0458 0.0508

σ2 0.2845 0.2650 0.1217 0.0612 0.0334 0.0214 0.0084 0.0099
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Case 1. When M ≥ 0,� > 1. We first prove that F is univalent on the disk Dρ3 .
To this end, for all z1, z2 ∈ Dr (0 < r < ρ3, z1 �= z2), we obtain from Lemmas 2.1
and 2.10 that

|F(z2) − F(z1)| = |(|z2|2G(z2) + H(z2)) − (|z1|2G(z1) + H(z1))|
≥ |H(z2) − H(z1)| − ||z2|2G(z2) − |z1|2G(z1)|

≥ |z2 − z1|
(

�
λH (0) − �r

� − λH (0)r
− 4M

π

3r2 − 2r4

1 − r2

)
.

Since �
λH (0)−�r
�−λH (0)r is continuous and increasing about λH (0) and by (3.3), we have

|F(z2) − F(z1)| ≥ |z2 − z1|
(

�
λH (0) − �r

� − λH (0)r
− 4M

π

3r2 − 2r4

1 − r2

)

>
�(1 − �2r)

�2 − r
− 4M

π

3r2 − 2r4

1 − r2
> 0.

This shows that F is univalent on the disk Dρ3 .
Next, we prove F(Dρ3) ⊃ Dσ3 . For z = ρ3eiθ ∈ ∂Dρ3 , by Lemmas 2.2 and 2.11,

we have

|F(z)| ≥ �

∫ ρ3

0

λH (0) − �t

� − λH (0)t
dt − 4M

π
ρ3
3

≥ �

∫ ρ3

0

1 − �2t

�2 − t
dt − 4M

π
ρ3
3

= �3ρ3 +
(
�5 − �

)
ln
(
1 − ρ3

�2

)
− 4M

π
ρ3
3 = σ3.

Case 2. When M > 0,� = 1. Using Lemma 2.5, we have

H(z) = c1z, |c1| = 1.

Similarly, we first prove that F is univalent on the disk Dρ3 . In fact, for all z1, z2 ∈
Dr (0 < r < ρ3, z1 �= z2), we have

|F(z2) − F(z1)| ≥ |H(z2) − H(z1)| − ||z2|2G(z2) − |z1|2G(z1)|

≥ |z2 − z1|
(
1 − 4M

π

3r2 − 2r4

1 − r2

)
> 0.

This shows that F is univalent on the disk Dρ3 .
Next, we prove F(Dρ3) ⊃ Dσ3 . For z = ρ3eiθ ∈ ∂Dρ3 , by Lemma 2.11, we have

|F(z)| ≥ |H(z)| − ρ2
3 |G(z)| = ρ3 − 4M

π
ρ3
3 = σ3.
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Table 2 The values of ρ3, σ3 are in Theorem 3.4

(M, �) (0.3, 1) (0, 1.1) (0.1, 1.1) (0.5, 1.3) (1, 1.6) (1, 2) (1.8, 2.3) (2.5, 3.2) (3, 3)

ρ3 0.7680 0.8264 0.7260 0.4005 0.2514 0.1861 0.1353 0.0791 0.0842

σ3 0.5950 0.6535 0.4498 0.1864 0.0910 0.0513 0.0325 0.0132 0.0152

Hence, F
(
Dρ3

)
contains a Schlicht disk Dσ3 .

Now we prove (ii). If M = 0,� = 1, by Lemma 2.5, we have

F(z) = c1z, |c1| = 1.

It’s easy to verify that F(z) is univalent on the unit disk D, and F(D) = D. This
completes the proof (Table 2). 
�

Finally, we improve Theorem D as follows.

Theorem 3.5 Suppose that M1 ≥ 0, M2 ≥ 1, F(z) = |z|2G(z)+H(z) is a biharmonic
mapping on the unit diskD, where G(z), H(z) are harmonicmappings onD, satisfying
G(0) = H(0) = JF (0) − 1 = 0 and |G(z)| ≤ M1, |H(z)| ≤ M2 for z ∈ D.

(i) If M1 ≥ 0, M2 > 1 or M1 > 0, M2 = 1, then F(z) is univalent on Dρ4 , where ρ4
is the minimum positive root in (0, 1) of the equation

λ0(M2) − λ0(M2)

√
M4

2 − 1

√√√√4r2 − 3r4 + r6
(
1 − r2

)3 − 4M1

π

3r2 − 2r4

1 − r2
= 0, (3.14)

and F
(
Dρ4

)
contains a Schlicht disk Dσ4 , where

σ4 = λ0(M2)ρ4 − λ0(M2)

√
M4

2 − 1
ρ2
4√

1 − ρ2
4

− 4M1

π
ρ3
4 , (3.15)

where λ0(M) is given by (1.8).
(ii) If M1 = 0, M2 = 1, then F(z) is univalent on D and F(D) = D.

Proof By the hypothesis of Theorem 3.5, we can assume that

H(z) =
∞∑

n=1

cnz
n +

∞∑

n=1

dnzn, z ∈ D.

Since |H(z)| ≤ M2 and JH (0) = JF (0) = 1, by Lemma 2.6, we have

√√√√
∞∑

n=2

(|cn| + |dn|)2 ≤
√
M4

2 − 1 · λH (0),
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and λH (0) ≥ λ0(M2), where λ0(M2) is given by (1.8).
Now we prove that F is univalent in the diskDρ4 . For all z1, z2 ∈Dr (0 < r < ρ4,

z1 �= z2), by Lemma 2.10, we have

|F (z1) − F (z2)|
≥ |H(z2) − H(z1)| − ||z2|2G(z2) − |z1|2G(z1)|
≥
∣∣∣
∣

∫

z1,z2
Hz(0)dz + Hz(0)dz̄

∣∣∣
∣−

∣∣∣
∣

∫

z1,z2
(Hz(z) − Hz(0))dz + (Hz(z) − Hz(0))dz̄

∣∣∣
∣

−
∣∣
∣|z2|2G(z2) − |z1|2G(z1)

∣∣
∣

≥ |z1 − z2|
[

‖c1| − |d1‖ −
∞∑

n=2

(|cn| + |dn|) nrn−1

]

−
∣∣∣|z2|2G(z2) − |z1|2G(z1)

∣∣∣

≥ |z1 − z2|
⎡

⎣λH (0) −
( ∞∑

n=2

(|cn| + |dn|)2
)1/2 ( ∞∑

n=2

n2r2n−2

)1/2
⎤

⎦

−
∣∣∣|z2|2G(z2) − |z1|2G(z1)

∣∣∣

≥ |z1 − z2|
⎛

⎝λH (0) − λH (0)
√
M4

2 − 1

√√√
√4r2 − 3r4 + r6

(
1 − r2

)3 − 4M1

π

3r2 − 2r4

1 − r2

⎞

⎠

≥ |z1 − z2|
⎛

⎝λ0(M2) − λ0(M2)

√
M4

2 − 1

√√√
√4r2 − 3r4 + r6

(
1 − r2

)3 − 4M1

π

3r2 − 2r4

1 − r2

⎞

⎠

> 0.

Then, we have F (z1) �= F (z2) , which proves the univalence of F in the disk Dρ4 .
Noting that F(0) = 0, for any z = ρ4eiθ ∈ ∂Dρ4 , by Lemmas 2.6 and 2.11, we

have

|F(z)| = ||z|2 G(z) + H(z)| ≥ |H(z)| − ρ2
5 |G(z)|

≥ ‖c1| − |d1‖ ρ4 −
∞∑

n=2

(|cn| + |dn|) ρn
4 − 4M1

π
ρ3
4

≥ λH (0)ρ4 −
( ∞∑

n=2

(|cn| + |dn|)2
) 1

2
( ∞∑

n=2

ρ2n
4

) 1
2

− 4M1

π
ρ3
4

≥ λH (0)ρ4 − λH (0)
√
M4

2 − 1
ρ2
4√

1 − ρ2
4

− 4M1

π
ρ3
4

≥ λ0(M2)ρ4 − λ0(M2)

√
M4

2 − 1
ρ2
4√

1 − ρ2
4

− 4M1

π
ρ3
4 = σ4.
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Hence, F
(
Dρ4

)
contains a schlicht disk Dσ4 .

Finally, if M1 = 0, M2 = 1, then by Lemma 2.3, we have

F(z) = c1z, |c1| = 1.

It is evident that F(z) is univalent on D, and F(D) = D. This completes the proof.

�

Remark 3.2 Note that for r = ρ4, we have

4M1

π

3r2 − 2r4

1 − r2
= 4M1r2

π(1 − r2)
+ 8M1r2

π
<

4M1r2

π(1 − r2)
+ 2M1r ,

it is easy to verify that ρ4 > r4, σ4 > R4, where r4, R4 are given in Theorem D,
please also see Table 3.

The Computer Algebra SystemMathematica has calculated the numerical solutions
to Eqs. (1.11) and (3.14). From Table 3 as follow, it is easy to see that the result of
Theorem 3.5 is better than that of Theorem D. From Table 1, Table 2 and Table 3, it is
easy to see that both of the result of Theorem 3.3 and that of Theorem 3.4 are better
than that of Theorem 3.5.

4 The bi-Lipschitz theorems of biharmonic mappings

In this section, we will establish the Lipschitz characters of certain biharmonic map-
pings in their univalent disks.

Theorem 4.1 Suppose F(z) satisfies the hypothesis of Theorem 3.1. Then for each
r0 ∈ (0, ρ0), the biharmonic mapping F(z) is bi-Lipschitz on Dr0 , where ρ0 is given
by (3.1).

Proof Fixed r0 ∈ (0, ρ0), set

l0 = �2
λH (0) − �2r0
�2 − λH (0)r0

− 3�1r
2
0 .

Table 3 The values of r4, R4 and ρ4, σ4 are in Theorems D and 3.5 respectively

(M1, M2) (0.3, 1) (0, 1.1) (0.1, 1.1) (0.5, 1.3) (1, 1.6) (1, 2) (1.8, 2.3) (2.5, 3.2) (3, 3)

r4 0.7655 0.5128 0.4600 0.2103 0.1094 0.0761 0.0470 0.0243 0.0243

ρ4 0.7680 0.5128 0.4744 0.2627 0.1629 0.1118 0.0824 0.0451 0.0497

R4 0.5897 0.2845 0.2468 0.0895 0.0347 0.0197 0.0101 0.0038 0.0039

σ4 0.5950 0.2845 0.2594 0.1167 0.0587 0.0325 0.0208 0.0082 0.0096
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Then, for any z1, z2 ∈ Dr0 , it follows from the proof of Theorem 3.1 and Lemma 2.9
that l0 > g0(ρ0) = 0, and

l0 |z1 − z2| =
(
�2

λH (0) − �2r0
�2 − λH (0)r0

− 3�1r
2
0

)
|z1 − z2|

≤ |F (z1) − F (z2)|
≤
(
�H (z) + 3�1r

2
0

)
|z1 − z2|

≤
(
�2 + 3�1r

2
0

)
|z1 − z2| .

Hence f is bi-Lipschitz on Dr0 . 
�
By means of Theorems 3.2–3.5 and Lemmas 2.9 and 2.12, using the analogous

proof of Theorem 4.1, we have the following four theorems.

Theorem 4.2 Suppose F(z) satisfies the hypothesis of Theorem 3.2. Then for each
r1 ∈ (0, ρ1), the biharmonic mapping F(z) is bi-Lipschitz onDr1 , i.e. for any z1, z2 ∈
Dr1 , there exists l1 = 1 − 3�r21 > 0 such that

l1 |z1 − z2| ≤ |F (z1) − F (z2)| ≤
(

4

π(1 − r21 )
+ 3�r21

)

|z1 − z2| ,

where ρ1 is given by (1.16).

Theorem 4.3 Suppose F(z) satisfies the hypothesis of Theorem 3.3. Then for each
r2 ∈ (0, ρ2), the biharmonic mapping F(z) is bi-Lipschitz onDr2 , i.e. for any z1, z2 ∈
Dr2 , there exists

l2 = λ0(M) − λ0(M)
√
M4 − 1

√√√√4r22 − 3r42 + r62(
1 − r22

)3 − 3�r22 > 0

such that

l2 |z1 − z2| ≤ |F (z1) − F (z2)| ≤
(

4M

π(1 − r22 )
+ 3�r22

)

|z1 − z2| ,

where ρ2 is given by (3.10) and λ0(M) is given by (1.8).

Theorem 4.4 Suppose F(z) satisfies the hypothesis of Theorem 3.4. Then for each
r3 ∈ (0, ρ3), the biharmonic mapping F(z) is bi-Lipschitz onDr3 , i.e. for any z1, z2 ∈
Dr3 , there exists

l3 = �(1 − �2r3)

�2 − r3
− 4M

π

3r23 − 2r43
1 − r23

> 0
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such that

l3 |z1 − z2| ≤ |F (z1) − F (z2)| ≤
(

� + 12M

π(1 − r23 )
r23

)

|z1 − z2| ,

where ρ3 is given by (3.12).

Theorem 4.5 Suppose F(z) satisfies the hypothesis of Theorem 3.5. Then for each
r4 ∈ (0, ρ4), the biharmonic mapping F(z) is bi-Lipschitz onDr4 , i.e. for any z1, z2 ∈
Dr4 , there exists

l4 = λ0(M2) − λ0(M2)

√
M4

2 − 1

√√√
√4r24 − 3r44 + r64(

1 − r24
)3 − 4M1

π

3r24 − 2r44
1 − r24

> 0

such that

l4 |z1 − z2| ≤ |F (z1) − F (z2)| ≤
(

4M2

π(1 − r24 )
+ 12M1

π(1 − r24 )
r24

)

|z1 − z2| ,

where ρ4 is given by (3.14) and λ0(M2) is given by (1.8).
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