Inclusion modulo nonstationary

Gabriel Fernandes¹ · Miguel Moreno1 · Assaf Rinot¹

Received: 21 June 2019 / Accepted: 20 May 2020 / Published online: 31 May 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020

Abstract

A classical theorem of Hechler asserts that the structure (ω^{ω} , \lt^*) is universal in the sense that for any σ -directed poset $\mathbb P$ with no maximal element, there is a *ccc* forcing extension in which (ω^{ω} , <*) contains a cofinal order-isomorphic copy of \mathbb{P} . In this paper, we prove the following consistency result concerning the universality of the higher analogue $(\kappa^{\kappa}, \leq^{S})$: assuming GCH, for every regular uncountable cardinal κ , there is a cofinality-preserving GCH-preserving forcing extension in which for every analytic quasi-order \mathbb{O} over κ^k and every stationary subset *S* of κ , there is a Lipschitz map reducing \mathbb{O} to (κ^k, \leq^S) .

Keywords Universal order · Nonstationary ideal · Diamond sharp · Local club condensation · Higher Baire space

Mathematics Subject Classification Primary 03E35; Secondary 03E45 · 54H05

1 Introduction

Recall that a *quasi-order* is a binary relation which is reflexive and transitive. A wellstudied quasi-order over the Baire space $\mathbb{N}^{\mathbb{N}}$ is the binary relation \lt^* which is defined by letting, for any two elements $\eta : \mathbb{N} \to \mathbb{N}$ and $\xi : \mathbb{N} \to \mathbb{N}$,

Communicated by Adrian Constantin.

 \boxtimes Assaf Rinot rinotas@math.biu.ac.il http://www.assafrinot.com

> Gabriel Fernandes gzfernandes@pm.me http://u.math.biu.ac.il/˜zanettg

Miguel Moreno mfmimo@gmail.com http://miguelmath.com

¹ Department of Mathematics, Bar-Ilan University, 5290002 Ramat-Gan, Israel

$$
\eta \leq^* \xi \text{ iff } \{n \in \mathbb{N} \mid \eta(n) > \xi(n)\} \text{ is finite.}
$$

This quasi-order is behind the definitions of cardinal invariants ϕ and δ (see [\[2,](#page-23-0) §2]), and serves as a key to the analysis of *oscillation of real numbers* which is known to have prolific applications to topology, graph theory, and forcing axioms (see $[26]$). By a classical theorem of Hechler [\[13\]](#page-24-1), the structure ($\mathbb{N}^{\mathbb{N}}, \leq^*$) is universal in that sense that for any σ -directed poset $\mathbb P$ with no maximal element, there is a *ccc* forcing extension in which ($\mathbb{N}^{\mathbb{N}}$, <*) contains a cofinal order-isomorphic copy of \mathbb{P} .

In this paper, we consider (a refinement of) the higher analogue of the relation \leq^* to the realm of the generalized Baire space κ^k (sometimes refered as the higher Baire space), where κ is a regular uncountable cardinal. This is done by simply replacing the ideal of finite sets with the ideal of nonstationary sets, as follows.¹

Definition 1.1 Given a stationary subset $S \subseteq \kappa$, we define a quasi-order \leq^{S} over κ^{κ} by letting, for any two elements $\eta : \kappa \to \kappa$ and $\xi : \kappa \to \kappa$,

$$
\eta \leq^{S} \xi \text{ iff } \{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\} \text{ is nonstationary.}
$$

Note that since the nonstationary ideal over *S* is σ -closed, the quasi-order $\langle S \rangle$ is well-founded, meaning that we can assign a *rank* value $\|\eta\|$ to each element η of κ^k . The utility of this approach is demonstrated in the celebrated work of Galvin and Hajnal [\[11\]](#page-23-1) concerning the behavior of the power function over the singular cardinals, and, of course, plays an important role in Shelah's *pcf theory* (see [\[1,](#page-23-2) §4]). It was also demonstrated to be useful in the study of partition relations of singular cardinals of uncountable cofinality [\[24](#page-24-2)].

In this paper, we first address the question of how \leq^{S} compares with $\leq^{S'}$ for various subsets *S* and *S* . It is proved:

Theorem A *Suppose that* κ *is a regular uncountable cardinal and* GCH *holds. Then there exists a cofinality-preserving* GCH*-preserving forcing extension in which for all stationary subsets S, S' of* κ *, there exists a map* $f : \kappa^{\leq \kappa} \to 2^{\leq \kappa}$ *such that, for all* $\eta, \xi \in \kappa^{\leq \kappa},$

- dom $(f(\eta)) = \text{dom}(\eta)$;
- *if* $\eta \subseteq \xi$ *, then* $f(\eta) \subseteq f(\xi)$ *;*
- *if* dom(η) = dom(ξ) = κ , then $\eta \leq^{S} \xi$ iff $f(\eta) \leq^{S'} f(\xi)$.

Note that as $\text{Im}(f \upharpoonright \kappa^k) \subseteq 2^k$, the above assertion is non-trivial even in the case $S = S' = \kappa$, and forms a contribution to the study of lossless encoding of substructures of $(\kappa^{\leq \kappa}, \ldots)$ as substructures of $(2^{\leq \kappa}, \ldots)$ (see, e.g., [\[3,](#page-23-3) Appendix]).

To formulate our next result—an optimal strengthening of Theorem A—let us recall a few basic notions from generalized descriptive set theory. *The generalized Baire space* is the set κ^k endowed with the *bounded topology*, in which a basic open set takes the form $[\zeta] := \{ \eta \in \kappa^{\kappa} \mid \zeta \subset \eta \}$, with ζ , an element of $\kappa^{\leq \kappa}$. A subset *F* \subseteq κ^k is *closed* iff its complement is open iff there exists a tree *T* \subseteq $\kappa^{< k}$ such that

¹ A comparison of the generalization considered here with the one obtained by replacing the ideal of finite sets with the ideal of bounded sets may be found in [\[4,](#page-23-4) §8].

 $[T] := \{ \eta \in \kappa^{\kappa} \mid \forall \alpha < \kappa (\eta \mid \alpha \in T) \}$ is equal to *F*. A subset $A \subseteq \kappa^{\kappa}$ is *analytic* iff there is a closed subset *F* of the product space $\kappa^k \times \kappa^k$ such that its projection $pr(F) := \{ \eta \in \kappa^K \mid \exists \xi \in \kappa^K \ (\eta, \xi) \in F \}$ is equal to A. The generalized Cantor space is the subspace 2^k of κ^k endowed with the induced topology. The notions of open, closed and analytic subsets of 2^k , $2^k \times 2^k$ and $\kappa^k \times \kappa^k$ are then defined in the obvious way.

Definition 1.2 The restriction of the quasi-order \leq^{S} to 2^k is denoted by \subseteq^{S} .

For all $\eta, \xi \in \kappa^k$, denote $\Delta(\eta, \xi) := \min(\{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cup \{\kappa\}).$

Definition 1.3 Let R_1 and R_2 be binary relations over $X_1, X_2 \in \{2^k, \kappa^k\}$, respectively. A function $f: X_1 \to X_2$ is said to be:

(a) a *reduction of* R_1 *to* R_2 iff, for all $\eta, \xi \in X_1$,

$$
\eta R_1 \xi \text{ iff } f(\eta) R_2 f(\xi).
$$

(b) *1-Lipschitz* iff for all $\eta, \xi \in X_1$,

$$
\Delta(\eta,\xi) \le \Delta(f(\eta),f(\xi)).
$$

The existence of a function *f* satisfying (a) and (b) is denoted by $R_1 \hookrightarrow_1 R_2$.

In the above language, Theorem A provides a model in which, for all stationary subsets *S*, *S'* of κ , \leq ^S \hookrightarrow 1 \subseteq ^{S'}. As \leq ^S is an analytic quasi-order over κ^{κ} , it is natural to ask whether a stronger universality result is possible, namely, whether it is forceable that *any* analytic quasi-order over κ^k admits a 1-Lipschitz reduction to $\subseteq S'$ for some (or maybe even for all) stationary $S' \subseteq \kappa$. The answer turns out to be affirmative, hence the choice of the title of this paper.

Theorem B *Suppose that* κ *is a regular uncountable cardinal and* GCH *holds. Then there exists a cofinality-preserving* GCH*-preserving forcing extension in which, for every analytic quasi-order Q over* κ^{κ} *and every stationary* $S \subseteq \kappa$, $Q \hookrightarrow_1 \subseteq^S$.

Remark The universality statement under consideration is optimal, as $Q \hookrightarrow_1 \subseteq S$ implies that *Q* is analytic.

The proof of the preceding goes through a new diamond-type principle for reflecting second-order formulas, introduced here and denoted by $DI_S^*(\Pi_2^1)$. This principle is a strengthening of Jensen's \diamondsuit_S and a weakening of Devlin's \diamondsuit_S^{\sharp} . For κ a successor cardinal, we have $DI_S^*(\Pi_2^1) \Rightarrow \diamondsuit_S^*$ but not $\diamondsuit_S^* \Rightarrow DI_S^*(\Pi_2^1)$ (see Remark [4.3](#page-23-5) below). Another crucial difference between the two is that, unlike \diamondsuit_S^* , the principle $DI_S^*(\Pi_2^1)$ is compatible with the set *S* being ineffable.

In Sect. [2,](#page-3-0) we establish the consistency of the new principle, in fact, proving that it follows from an abstract condensation principle that was introduced and studied in [\[9,](#page-23-6) [14\]](#page-24-3). It thus follows that it is possible to force $DI_S^*(\Pi_2^1)$ to hold over all stationary subsets *S* of a prescribed regular uncountable cardinal κ . It also follows that, in canonical

models for Set Theory (including any $L[E]$ model with Jensen's λ -indexing which is sufficiently iterable and has no subcompact cardinals), $DI^*_{S}(\Pi_2^1)$ holds for every stationary subset *S* of every regular uncountable (including ineffable) cardinal κ.

Then, in Sect. [3,](#page-16-0) the core combinatorial component of our result is proved:

Theorem C *Suppose S is a stationary subset of a regular uncountable cardinal* κ*. If* $\text{DI}_{\mathcal{S}}^*(\Pi_2^1)$ *holds, then, for every analytic quasi-order Q over* κ^{κ} *, Q* \hookrightarrow ₁ \subseteq ^S.

2 A Diamond reflecting second-order formulas

Devlin [\[5\]](#page-23-7) introduced a strong form of the Jensen-Kunen principle \diamondsuit^+_k , which he denoted by \diamondsuit_k^{\sharp} , and proved:

Fact 2.1 *(Devlin* [\[5](#page-23-7), Theorem 5]*) In L, for every regular uncountable cardinal* κ *that* is not ineffable, $\diamondsuit^\sharp_\kappa$ holds.

Remark 2.2 A subset *S* of a regular uncountable cardinal κ is said to be *ineffable* iff, for every sequence $\langle Z_\alpha | \alpha \in S \rangle$, there exists a subset $Z \subseteq \kappa$, for which $\{\alpha \in S \mid S \cap S \}$ $Z \cap \alpha = Z_\alpha \cap \alpha$ is stationary. Note that the collection of non-ineffable subsets of κ forms a normal ideal that contains $\{\alpha < \kappa \mid cf(\alpha) < \alpha\}$ as an element. Also note that if κ is ineffable, then κ is strongly inaccessible. Finally, we mention that by a theorem of Jensen and Kunen, for any ineffable set *S*, \diamondsuit_S holds and \diamondsuit_S^* fails.

As said before, in this paper, we consider a variation of Devlin's principle compatible with κ being ineffable. Devlin's principle as well as its variation provide us with Π_2^1 -reflection over structures of the form $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle$. We now describe the relevant logic in detail.

A Π_2^1 -sentence ϕ is a formula of the form $\forall X \exists Y \varphi$ where φ is a first-order sentence over a relational language *L* as follows:

- $\mathcal L$ has a predicate symbol ϵ of arity 2;
- $\mathcal L$ has a predicate symbol $\mathbb X$ of arity $m(\mathbb X)$;
- $\mathcal L$ has a predicate symbol $\mathbb Y$ of arity $m(\mathbb Y)$;
- *L* has infinitely many predicate symbols $(A_n)_{n \in \omega}$, each A_n is of arity $m(A_n)$.

Definition 2.3 For sets *N* and *x*, we say that *N sees x* iff *N* is transitive, p.r.-closed, and $x \cup \{x\} \subseteq N$.

Suppose that a set *N* sees an ordinal α , and that $\phi = \forall X \exists Y \varphi$ is a Π_2^1 -sentence, where φ is a first-order sentence in the above-mentioned language \mathcal{L} . For every sequence $(A_n)_{n \in \omega}$ such that, for all $n \in \omega$, $A_n \subseteq \alpha^{m(\mathbb{A}_n)}$, we write

$$
\langle \alpha, \in, (A_n)_{n \in \omega} \rangle \models_N \phi
$$

to express that the two hold:

(1)
$$
(A_n)_{n \in \omega} \in N
$$
;
(2) $\langle N, \in \rangle \models (\forall X \subseteq \alpha^{m(\mathbb{X})})(\exists Y \subseteq \alpha^{m(\mathbb{Y})})[\langle \alpha, \in, X, Y, (A_n)_{n \in \omega} \rangle \models \varphi]$, where:

- ϵ is the interpretation of ϵ ;
- X is the interpretation of X ;
- *Y* is the interpretation of \mathbb{Y} , and
- for all $n \in \omega$, A_n is the interpretation of A_n .

Convention 2.4 We write α^+ for $|\alpha|^+$, and write $\langle \alpha, \in, (A_n)_{n \in \omega} \rangle \models \phi$ for

$$
\langle \alpha, \in, (A_n)_{n \in \omega} \rangle \models_{H_{\alpha^+}} \phi.
$$

Definition 2.5 (*Devlin* [\[5](#page-23-7)]) Let κ be a regular and uncountable cardinal.

 $\Diamond_{\kappa}^{\sharp}$ asserts the existence of a sequence $\vec{N} = \langle N_{\alpha} \mid \alpha < \kappa \rangle$ satisfying the following:

- (1) for every infinite $\alpha < \kappa$, N_{α} is a set of cardinality $|\alpha|$ that sees α ;
- (2) for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C$, $C \cap \alpha$, $X \cap \alpha \in C$ *N*α;
- (3) whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models \phi$, with ϕ a Π_2^1 -sentence, there are stationarily many $\alpha < \kappa$ such that $\langle \alpha, \in, (A_n \cap (\alpha^{m(\mathbb{A}_n)}))_{n \in \omega} \rangle \models_{N_\alpha} \phi$.

Consider the following variation:

Definition 2.6 Let κ be a regular and uncountable cardinal, and $S \subseteq \kappa$ stationary.

 $D\mathcal{L}_{S}^{*}(\Pi_{2}^{1})$ asserts the existence of a sequence $\bar{N} = \langle N_{\alpha} \mid \alpha \in S \rangle$ satisfying the following:

- (1) for every $\alpha \in S$, N_{α} is a set of cardinality $\lt \kappa$ that sees α ;
- (2) for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $X \cap \alpha \in N_\alpha$;
- (3) whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models \phi$, with ϕ a Π_2^1 -sentence, there are stationarily many $\alpha \in S$ such that $|N_{\alpha}|=|\alpha|$ and $\langle \alpha, \in, (\tilde{A}_n \cap (\alpha^{m(\mathbb{A}_n)}))_{n \in \omega} \rangle \models_{N_{\alpha}} \phi$.

Remark 2.7 The choice of notation for the above principle is motivated by [\[23](#page-24-4), Definition 2.10] and [\[25,](#page-24-5) Definition 45].

The goal of this section is to derive $DI_S^*(\Pi_2^1)$ from an abstract principle which is both forceable and a consequence of $V = L[E]$, for $L[E]$ an iterable extender model with Jensen λ -indexing without a subcompact cardinal (see [\[20](#page-24-6)[,21\]](#page-24-7)). Note that this covers all *L*[*E*] models that can be built so far.

Convention 2.8 The class of ordinals is denoted by OR. The class of ordinals of cofinality μ is denoted by cof(μ), and the class of ordinals of cofinality greater than μ is denoted by cof($>\mu$). For a set of ordinals a, we write acc(a) := { $\alpha \in \alpha$ | $\sup(a \cap \alpha) = \alpha > 0$. ZF⁻ denotes ZF without the power-set axiom. The transitive closure of a set *X* is denoted by trcl(*X*), and the Mostowski collapse of a structure \mathfrak{B} is denoted by $cips(\mathfrak{B})$.

Definition 2.9 Suppose *N* is a transitive set. For a limit ordinal λ , we say that $M =$ $\langle M_\beta | \beta < \lambda \rangle$ is a *nice filtration* of *N* iff all of the following hold:

$$
(1) \bigcup_{\beta < \lambda} M_{\beta} = N;
$$

- (2) *M* is \in -increasing, that is, $\alpha < \beta < \lambda \implies M_\alpha \in M_\beta;$
- (3) *M* is continuous, that is, for every $\beta \in \text{acc}(\lambda)$, $M_{\beta} = \bigcup_{\alpha < \beta} M_{\alpha}$;
- (4) for all $\beta < \lambda$, M_β is a transitive set with $M_\beta \cap \text{OR} = \beta$ and $|M_\beta| \leq |\beta| + \aleph_0$.

Convention 2.10 Whenever λ is a limit ordinal, and $\overline{M} = \langle M_\beta | \beta \langle \lambda \rangle$ is a \subseteq increasing, continuous sequence of sets, we denote its limit $\bigcup_{\beta < \lambda} M_{\beta}$ by M_{λ} .

Definition 2.11 (*Holy et al.* [\[14\]](#page-24-3)) Let $\eta < \zeta$ be ordinals. We say that *local club condensation holds in* (η, ζ) , and denote this by $LCC(\eta, \zeta)$, iff there exist a limit ordinal $\lambda \ge \zeta$ and a sequence $\dot{M} = \langle M_\beta | \beta \langle \lambda \rangle$ such that all of the following hold:

- (1) *M* is *nice filtration* of M_{λ} ;
- (2) $\langle M_{\lambda}, \in \rangle \models$ ZF⁻;
- (3) For every ordinal α in the open interval (η, ζ) and every sequence $\vec{\mathcal{F}} = \langle (F_n, k_n) |$ $n \in \omega$ in M_λ such that, for all $n \in \omega$, $k_n \in \omega$ and $F_n \subseteq (M_\alpha)^{k_n}$, there is a sequence $\mathfrak{B} = \langle \mathfrak{B}_{\beta} | \beta \langle |\alpha| \rangle$ in M_{λ} having the following properties:
	- (a) for all $\beta < |\alpha|$, \mathfrak{B}_{β} is of the form

$$
\langle B_{\beta}, \in, \vec{M} \restriction (B_{\beta} \cap \mathrm{OR}), (F_n \cap (B_{\beta})^{k_n})_{n \in \omega} \rangle;
$$

- (b) for all $\beta < |\alpha|$, $\mathfrak{B}_{\beta} < \langle M_{\alpha}, \in, \vec{M} \restriction \alpha, (F_n)_{n \in \omega} \rangle;$
- (c) for all $\beta < |\alpha|$, $\beta \subseteq B_\beta$ and $|B_\beta| < |\alpha|$;
- (d) for all $\beta < |\alpha|$, there exists $\overline{\beta} < \lambda$ such that

$$
\mathrm{cips}(\langle B_{\beta}, \in, \langle B_{\delta} | \delta \in B_{\beta} \cap \mathrm{OR} \rangle) = \langle M_{\bar{\beta}}, \in, M \restriction \bar{\beta} \rangle;
$$

(e) $\langle B_\beta | \beta \langle |\alpha| \rangle$ is \subseteq -increasing, continuous and converging to M_α .

For B as in Clause (3) above we say that B *witnesses* LCC *at* α *with respect to M* and $\tilde{\mathcal{F}}$.

Remark 2.12 There are first-order sentences $\psi_0(\eta, \zeta)$ and $\psi_1(\eta)$ in the language $\mathcal{L}^* :=$ $\{\in, M, \dot{\eta}, \dot{\zeta}\}$ of set theory augmented by a predicate for a nice filtration and two ordinals such that, for all $\eta < \zeta < \lambda$ and $\overline{M} = \langle M_\beta | \beta < \lambda \rangle$:

- $(\langle M_\lambda, \in, \vec{M} \rangle \models \psi_0(\eta, \zeta)) \iff (\vec{M}$ witnesses that LCC(η , ζ) holds), and
- $(\langle M_\lambda, \in, M \rangle \models \psi_1(\eta)) \iff (\hat{M}$ witnesses that LCC(η , λ) holds).

Therefore, we will later make an abuse of notation and write $\langle N, \in, \overline{M} \rangle \models$ LCC(η , ζ) to mean that *M* is a nice filtration of *N* witnessing that $LCC(\eta, \zeta)$ holds.

Fact 2.13 *(Friedman–Holy, implicit in* [\[9](#page-23-6)]*) Assume* GCH*. For every inaccessible cardinal* κ *, there is a set-size cofinality-preserving notion of forcing* $\mathbb P$ *such that, in* $V^{\mathbb P}$ *, the three hold:*

- (1) GCH*;*
- (2) *there is a nice filtration* $\vec{M} = \langle M_\beta | \beta \langle \kappa + \rangle$ *of* H_{κ} + *witnessing that* LCC(ω_1, κ^+) *holds;*

(3) *there is a* Δ_1 *-formula* Θ *and a parameter a* \subseteq κ *such that the relation* \lt_{Θ} *defined by* $(x \leq_{\Theta} y$ *iff* $H_{\kappa} + \models \Theta(x, y, a)$ *is a global well-ordering of* H_{κ} +.

Fact 2.14 *(Holy et al.* [\[14,](#page-24-3) p. 1362 and §4]*) Assume* GCH*. For every regular cardinal* κ*, there is a set-size notion of forcing* P *which is* (<κ)*-directed-closed and has the* κ^+ -cc such that, in $V^{\mathbb{P}}$, the three hold:

- (1) GCH*;*
- (2) *there is a nice filtration* $\vec{M} = \langle M_\beta | \beta \langle \kappa^+ \rangle$ *of* H_{κ^+} *witnessing that* LCC(κ, κ^+) *holds;*
- (3) *there is a* Δ_1 *-formula* Θ *and a parameter a* \subseteq κ *such that the relation* \lt_{Θ} *defined by* $(x <_\Theta y$ *iff* $H_{\kappa^+} \models \Theta(x, y, a)$ *) is a global well-ordering of* H_{κ^+} *.*

The following is a improvement of [\[9,](#page-23-6) Theorem 8].

Fact 2.15 *(Fernandes* [\[7](#page-23-8)]*) Let L*[*E*] *be an extender model with Jensen* λ*-indexing. Suppose that, for every* $\alpha \in OR$ *, the premouse* $L[E] || \alpha$ *is weakly iterable.*^{[2](#page-6-0)} *Then, for every infinite cardinal* κ*, the following are equivalent:*

- (a) $\langle L_{\beta}[E] | \beta \langle \kappa^+ \rangle$ *witneses that* $LCC(\kappa^+, \kappa^{++})$ *holds;*
- (b) $L[E] \models "k]$ *is not a subcompact cardinal*".

In addition, for every infinite limit cardinal κ , $\langle L_\beta[E] | \beta \langle \kappa^+ \rangle$ witnesses that $LCC(\kappa, \kappa^+)$ *holds.*

Lemma 2.16 *Suppose that* λ *is a limit ordinal and that* $\vec{M} = \langle M_\beta | \beta \langle \lambda \rangle$ *is a nice filtration of H*_{λ}. Then, for every infinite cardinal $\theta \leq \lambda$, $M_{\theta} \subseteq H_{\theta}$.

Proof Let $\theta \le \lambda$ be an infinite cardinal. By Clause (4) of Definition [2.9,](#page-4-0) for all $\beta < \theta$, the set M_β is transitive, $M_\beta \cap \text{OR} = \beta$, and $|M_\beta| = |\beta| < \theta$. It thus follows that $M_{\theta} = \bigcup_{\beta < \theta} M_{\beta} \subseteq H_{\theta}.$

Motivated by the property of acceptability that holds in extender models, we define the following property for nice filtrations:

Definition 2.17 Given a nice filtration $\vec{M} = \langle M_\beta | \beta \langle \kappa^+ \rangle$ of H_{κ^+} , we say that \vec{M} is *eventually slow at* κ iff there exists an infinite cardinal $\mu < \kappa$ such that, for every cardinal θ with $\mu < \theta < \kappa$, $M_{\theta} = H_{\theta}$.

Lemma 2.18 *Suppose that* $\vec{M} = \langle M_B | \beta \langle \kappa^+ \rangle$ *is a nice filtration of* H_{κ^+} *that is eventually slow at* κ *. Then, for a tail of* $\alpha < \kappa$ *, for every sequence* $\vec{\mathcal{F}} = \langle (F_n, k_n) |$ $n \in \omega$ *such that, for all* $n \in \omega$, $k_n \in \omega$ *and* $F_n \subseteq (M_{\alpha+})^{k_n}$, *there is* $\tilde{\mathcal{B}}$ *that witnesses* LCC *at* α^+ *with respect to* \overrightarrow{M} *and* \overrightarrow{F} *.*

Proof Fix an infinite cardinal $\mu < \kappa$ such that, for every cardinal θ with $\mu < \theta \leq \kappa$, $M_{\theta} = H_{\theta}$. Let $\alpha \in (\mu, \kappa)$ be arbitrary. Now, given a sequence \mathcal{F} as in the statement of the lemma, build by recursion a \subseteq -increasing and continuous sequence $\langle \mathfrak{A}_{\nu} | \gamma < \alpha^{+} \rangle$ of elementary submodels of $\langle M_{\alpha^+}, \in, M \mid \alpha^+, (F_n)_{n \in \omega} \rangle$, such that:

² Here, $L[E] || \alpha$ stands for $\langle J_{\alpha}^E, \epsilon, E \mid \omega \alpha, E_{\omega \alpha} \rangle$, following the notation from [\[27\]](#page-24-8). For the definition of *weakly iterable*, see [\[27](#page-24-8), p. 311].

- for each $\gamma < \alpha^+$, $|A_{\gamma}| < \alpha^+$, and
- $\bullet\quad \bigcup_{\gamma<\alpha^+} A_{\gamma}=H_{\alpha^+}.$

By a standard argument, $C := \{ \gamma \prec \alpha^+ \mid A_{\gamma} = M_{\gamma} \}$ is a club in α^+ . Let $\{ \gamma_{\beta} \mid$ $\beta < \alpha^+$ } denote the increasing enumeration of *C*. Denote $\mathfrak{B}_{\beta} := \mathfrak{A}_{\gamma_{\beta}}$. Then $\mathfrak{B} =$ $\langle \mathfrak{B}_{\beta} | \beta < \alpha^{+} \rangle$ is an \in -increasing and continuous sequence of elementary submodels of $\langle M_{\alpha^+}, \in, \vec{M} \restriction \alpha^+, (F_n)_{n \in \omega} \rangle$, such that, for all $\beta < \alpha^+$, clps(\mathfrak{B}_{β}) = $\langle M_{\gamma_{\beta}}, \in, \ldots \rangle$. \Box

In the next two lemmas we find sufficient conditions for nice filtrations $\langle M_\beta |$ $\beta < \kappa^+$ to be eventually slow at κ .

Lemma 2.19 *Suppose that* κ *is a successor cardinal and that* $\vec{M} = \langle M_\beta | \beta \langle \kappa^+ \rangle$ *is a nice filtration of H_k+ witnessing that* LCC(κ , κ ⁺) *holds. Then* \vec{M} *is eventually slow at* κ*.*

Proof As κ is a successor cardinal, \overline{M} is eventually slow at κ iff $M_{\kappa} = H_{\kappa}$. Thus, by Lemma [2.16,](#page-6-1) it suffices to verify that $H_k \subseteq M_k$. To this end, let $x \in H_k$, and we will find $\beta < \kappa$ such that $x \in M_\beta$.

Set $\theta := |\text{trcl}\{x\}|$ and fix a witnessing bijection $f : \theta \leftrightarrow \text{trcl}\{x\}$. As $H_{k+} =$ $M_{\kappa^+} = \bigcup_{\alpha < \kappa^+} M_\alpha$, we may fix $\alpha < \kappa^+$ such that $\{f, \theta, \text{trcl}\{x\}\}\subseteq M_\alpha$. Let \mathcal{B} witness LCC(κ , κ^+) at α with respect to \vec{M} and $\vec{\mathcal{F}} := \langle (f, 2) \rangle$. Let $\beta < \kappa^+$ be such that $\text{clps}(\mathfrak{B}_{\theta+1}) = \langle M_\beta, \in, \ldots \rangle$.

Claim 2.19.1 $\theta < \beta < \kappa$.

Proof By Definition [2.11\(](#page-5-0)3)(c), $\theta + 1 \subseteq B_{\theta+1}$, so that, $\theta < \beta$. By Clause (4) of Definition 2.9 and by Definition 2.11(3)(c), $|\beta| = |M_{\beta}| = |B_{\theta+1}| < |\alpha| < \kappa$. Definition [2.9](#page-4-0) and by Definition [2.11\(](#page-5-0)3)(c), $|\beta| = |M_{\beta}| = |B_{\beta+1}| < |\alpha| \leq \kappa$.

Now, as

$$
\mathfrak{B}_{\theta+1} \prec \langle H_{\kappa^+}, \in, \vec{M}, F_0 \rangle \models \exists y (\forall \alpha \forall \delta (F_0(\alpha, \delta) \leftrightarrow (\alpha, \delta) \in y)),
$$

we have $f \in B_{\theta+1}$. Since dom $(f) \subseteq B_{\theta+1}$, Im $(f) \subseteq B_{\theta+1}$. But Im $(f) = \text{trcl}(\lbrace x \rbrace)$ is a transitive set, so that the Mostowski collapsing map $\pi : B_{\theta+1} \to M_\beta$ is the identity over trel($\{x\}$). meaning that $x \in \text{trcl}(\{x\}) \subseteq M_\beta$. over trcl({*x*}), meaning that $x \in \text{trcl}(\lbrace x \rbrace) \subseteq M_\beta$.

Lemma 2.20 *Suppose that* κ *is an inaccessible cardinal,* $\mu < \kappa$ *and* $\overline{M} = \langle M_\beta |$ $\beta < \kappa^+$ *)* witnesses that LCC(μ, κ^+) holds. Then μ witnesses that \overline{M} is eventually *slow at* κ*.*

Proof Suppose not. It follows from Lemma [2.16](#page-6-1) that we may fix an infinite cardinal *θ* with $μ ≤ θ < κ$ along with $x ∈ H_θ + \setminus M_θ +$. Fix a surjection $f : θ → \text{trcl}(\lbrace x \rbrace)$. Let $\alpha < \kappa^+$ be the least ordinal such that $x \in M_\alpha$, so that $\mu < \theta^+ < \alpha < \kappa^+$. Let \mathcal{B} witness LCC(μ , κ^+) at α with respect to \overline{M} and $\overline{\mathcal{F}} := \langle (f, 2) \rangle$. Let $\beta < \kappa^+$ be such that clps($\mathfrak{B}_{\theta+1}$) = $\langle M_{\beta}, \in, \ldots \rangle$.

Claim 2.20.1 $\beta < \alpha$.

Proof By Clause (4) of Definition [2.9](#page-4-0) and by Definition [2.11\(](#page-5-0)3)(c), $|\beta| = |M_{\beta}| = |B_{\beta+1}| < |\alpha|$. and hence $\beta < \alpha$. $|B_{\theta+1}| < |\alpha|$ and hence $\beta < \alpha$.

By the same argument used in the proof of Lemma [2.19,](#page-7-0) $x \in M_\beta$, contradicting the minimality of α .

Question 2.21 Notice that if κ is an inaccessible cardinal and $\overline{M} = \langle M_\beta | \beta \langle \kappa^+ \rangle$ is such that $\langle H_{k+}, \in, \overrightarrow{M} \rangle \models$ LCC(κ, κ^+), then, for club many $\beta < \kappa$, $M_\beta = H_\beta$. We ask: is it consistent that κ is an inaccessible cardinal, $\vec{M} = \langle M_\beta | \beta \langle \kappa^+ \rangle$ is such that $\langle H_{\kappa^+}, \in, \vec{M} \rangle \models \mathsf{LCC}(\kappa, \kappa^+),$ yet, for stationarily many $\beta < \kappa, M_{\beta^+} \subsetneq H_{\beta^+}$?

Lemma 2.22 *Suppose that* $\vec{M} = \langle M_\beta | \beta \langle \kappa \kappa^+ \rangle$ *is a nice filtration of* H_{κ^+} *. Given a sequence* $\vec{\mathcal{F}} = \langle (F_n, k_n) \mid n \in \omega \rangle$ *such that, for all* $n \in \omega$, $k_n \in \omega$ *and* $F_n \subseteq$ $(H_{\kappa} +)^{k_n}$, there are club many $\delta < \kappa^+$ such that $\langle M_\delta, \in, \overrightarrow{M} \restriction \delta, (F_n \cap (M_\delta)^{k_n})_{n \in \omega} \rangle <$ $\langle M_{\kappa^+}, \in, \dot{M}, (F_n)_{n \in \omega} \rangle$.

Proof Build by recursion an \in -increasing continuous sequence $\mathcal{B} = \langle \mathfrak{B}_{\beta} | \beta \langle \kappa^+ \rangle$ of elementary submodels of $\langle M_{\kappa^+}, \in, M, (F_n)_{n \in \omega} \rangle$, such that:

- for each $\beta < \kappa^+$, $|B_\beta| < \kappa^+$, and
- $\bullet\bigcup_{\beta<\kappa^+}B_\beta=H_{\kappa^+}.$

By a standard back-and-forth argument, utilizing the continuity of $\vec{\mathcal{B}}$ and \vec{M} , $\{\delta <$
 $\vdash R_{\delta} = M_{\delta}\}$ is a club in κ^{+} κ^+ | $B_\delta = M_\delta$ } is a club in κ^+ .

Definition 2.23 Suppose $\vec{M} = \langle M_\beta | \beta \langle \lambda \rangle$ is a nice filtration of M_λ for some limit ordinal $\lambda > 0$. Given $\alpha < \lambda$ and $\vec{\mathcal{F}} = \langle (F_n, k_n) \mid n \in \omega \rangle$ in M_λ such that, for each $n \in \omega$, $k_n \in \omega$ and $F_n \subseteq (M_\alpha)^{k_n}$, for every sequence $\vec{\mathcal{B}} = \langle \mathfrak{B}_\beta | \beta < |\alpha| \rangle$ in M_λ and every letter $l \in \{a, b, c, d, e\}$, we let $\psi_l(\vec{\mathfrak{B}}, \vec{\mathcal{F}}, \alpha, \vec{M} \restriction (\alpha + 1))$ be some formula expressing that Clause (3)(1) of Definition [2.11](#page-5-0) holds.

The following forms the main result of this section.

Theorem 2.24 *Suppose that* κ *is a regular uncountable cardinal, and* $\vec{M} = \langle M_B |$ $\beta < \kappa^+$ *) is a nice filtration of H_k+ that is eventually slow at* κ *, and witnesses that* LCC(κ , κ^+) *holds. Suppose further that there is a subset a* \subseteq κ *and a formula* $\Theta \in \Sigma_\omega$ *which defines a well-order* \lt_{Θ} *in* H_{κ} + *via* $x \lt_{\Theta} y$ *iff* H_{κ} + $\models \Theta(x, y, a)$ *. Then, for every stationary* $S \subseteq \kappa$, $\text{DI}_{S}^{*}(\Pi_{2}^{1})$ *holds.*

Proof Let $S' \subseteq \kappa$ be stationary. We shall prove that $DI_{S'}^*(\Pi_2^1)$ holds by adjusting Devlin's proof of Fact [2.1.](#page-3-1)

As a first step, we identify a subset *S* of *S'* of interest.

Claim 2.24.1 *There exists a stationary non-ineffable subset* $S \subseteq S' \setminus \omega$ *such that, for every* $\alpha \in S' \backslash S$, $|H_{\alpha^+}| < \kappa$.

Proof If *S'* is non-ineffable, then let $S := S' \setminus \omega$, so that $H_{\alpha^+} = H_{\omega}$ for all $\alpha \in S' \setminus S$. From now on, suppose that S' is ineffable. In particular, κ is strongly inaccessible and $|H_{\alpha^+}| < \kappa$ for every $\alpha < \kappa$. Let $S := S' \setminus (\omega \cup T)$, where

 $T := {\alpha \in \kappa \cap \text{cof}(\geq \omega) \mid S' \cap \alpha \text{ is stationary in } \alpha}.$

To see that *S* is stationary, let *E* be an arbitrary club in κ .

- \triangleright If *S'* ∩ cof(ω) is stationary, then since *S'* ∩ cof(ω) ⊆ *S*, we infer that *S* ∩ *E* \neq Ø.
- If $S' \cap \text{cof}(\omega)$ is non-stationary, then fix a club $C \subseteq E$ disjoint from $S' \cap \text{cof}(\omega)$, and let $\alpha := \min(\text{acc}(C) \cap S')$. Then cf(α) > ω and $C \cap \alpha$ is a club in α disjoint from *S'*, so that $\alpha \notin T$. Altogether, $\alpha \in S \cap E$.

To see that *S* is non-ineffable, we define a sequence $\langle Z_\alpha | \alpha \in S \rangle$, as follows. For every $\alpha \in S$, fix a closed and cofinal subset Z_α of α with $otp(Z_\alpha) = cf(\alpha)$ such that, if cf(α) > ω , then the club Z_{α} is disjoint from $S' \cap \alpha$. Towards a contradiction, suppose that $Z \subseteq \kappa$ is a set for which $\{\alpha \in S \mid Z \cap \alpha = Z_\alpha\}$ is stationary. Clearly, *Z* is closed and cofinal in κ , so that $Z \cap S'$ is stationary, $otp(Z \cap S') = \kappa$ and hence $D := \{ \alpha < \kappa \mid$ otp(*Z* ∩ *S* ∩ α) = α>ω} is a club. Pick α ∈ *D* ∩ *S* such that *Z* ∩ α = *Z*α. As

$$
cf(\alpha) = \text{otp}(Z_{\alpha}) = \text{otp}(Z \cap \alpha) \ge \text{otp}(Z \cap S' \cap \alpha) = \alpha > \omega,
$$

it must be the case that Z_{α} is a club disjoint from $S' \cap \alpha$, while $Z_{\alpha} = Z \cap \alpha$ and $Z \cap S' \cap \alpha \neq \emptyset$. This is a contradiction. $Z \cap S' \cap \alpha \neq \emptyset$. This is a contradiction.

Let *S* be given by the preceding claim. We shall focus on constructing a sequence $\langle N_{\alpha} | \alpha \in S \rangle$ witnessing $DI_{S}^{*}(H_{2}^{1})$ such that, in addition, $|N_{\alpha}| = |\alpha|$ for every $\alpha \in S$. It will then immediately follow that the sequence $\langle N'_\alpha \rangle \mid \alpha \in S' \rangle$ defined by letting $N'_\alpha := N_\alpha$ for $\alpha \in S$, and $N'_\alpha := H_{\alpha+}$ for $\alpha \in S' \setminus S$ will witness the validity of $\text{DI}_{S'}^*(\Pi_2^1)$. As \vec{M} is eventually slow at κ , we may also assume that, for every $\alpha \in S$, $M_{\alpha^+} = H_{\alpha^+}$ and the conclusion of Lemma [2.18](#page-6-2) holds true.^{[3](#page-9-0)} If κ is a successor cardinal, we may moreover assume that, for every $\alpha \in S$, $M_{\alpha^+} = H_{\kappa}$.

Here we go. As *S* is non-ineffable, fix a sequence $Z = \langle Z_\alpha | \alpha \in S \rangle$ with $Z_\alpha \subseteq \alpha$ for all $\alpha \in S$, such that, for every $Z \subseteq \kappa$, $\{\alpha \in S \mid Z \cap \alpha = Z_\alpha\}$ is nonstationary. In the course of the rest of the proof, we shall occasionally take witnesses to LCC at some ordinal α with respect to *M* and a finite sequence $\mathcal{F} = \langle (F_n, k_n) \mid n \in 4 \rangle$; for this, we introduce the following piece of notation for any positive $m < \omega$, $X \subseteq (\kappa^+)^m$ and $\alpha < \kappa^+$:

$$
\vec{\mathcal{F}}_{X,\alpha} := \langle (X \cap \alpha^m, m), (a \cap \alpha, 1), (S \cap \alpha, 1), (\vec{Z} \restriction \alpha, 2) \rangle.
$$

Next, for each $\alpha \in S$, we define S_{α} to be the set of all $\beta \in \alpha^{+}$ satisfying the following list of conditions:

(i) $\langle M_\beta, \in, \vec{M} \restriction \beta \rangle \models \mathsf{LCC}(\alpha, \beta),^4$ $\langle M_\beta, \in, \vec{M} \restriction \beta \rangle \models \mathsf{LCC}(\alpha, \beta),^4$

(ii) $\langle M_\beta, \in \rangle \models \mathsf{ZF}^- \& \alpha$ is the largest cardinal,^{[5](#page-9-2)}

(iii) $\langle M_\beta, \in \rangle \models \alpha$ is regular & $S \cap \alpha$ is stationary,

- (iv) $\langle M_\beta, \in \rangle \models \Theta(x, y, a \cap \alpha)$ defines a global well-order,
- (v) $Z \restriction (\alpha + 1) \notin M_\beta$.

³ For all the small $\alpha \in S' \setminus S$ such that $M_{\alpha^+} \neq H_{\alpha^+}$, simply let $N'_{\alpha} := N_{\min(S)}$.

⁴ Note that β is not needed to define LCC(α , β) in the structure $\langle M_{\beta}, \in, \vec{M} \restriction \beta \rangle$. Indeed, by LCC(α , β) we mean $\psi_1(\alpha)$ as in Remark [2.12.](#page-5-1)

⁵ In particular, $\langle M_\beta, \in \rangle \models \alpha$ is uncountable.

Then, we consider the set

 $D := \{ \alpha \in S \mid S_{\alpha} \neq \emptyset \& S_{\alpha} \text{ has no largest element} \}.$

Define a function $f : S \to \kappa$ as follow. For every $\alpha \in D$, let $f(\alpha) := \sup(S_{\alpha})$; for every $\alpha \in S \backslash D$, let $f(\alpha)$ be the least $\beta < \kappa$ such that M_β sees α , and $Z \upharpoonright (\alpha+1) \in M_\beta$.

Claim 2.24.2 *f is well-defined. Furthermore, for all* $\alpha \in S$, $\alpha < f(\alpha) < \alpha^+$.

Proof Let $\alpha \in S$ be arbitrary. The analysis splits into two cases:

► Suppose $\alpha \in D$. As $\alpha \in S$, we have $\bigcup_{\beta < \alpha^+} M_{\beta} = M_{\alpha^+} = H_{\alpha^+}$, and hence we may find some $\beta < \alpha^+$ such that $Z \restriction (\alpha + 1) \in M_\beta$. Then, condition (v) in the definition of S_α implies that $\alpha < f(\alpha) < \beta < \alpha^+$.

 \triangleright Suppose $\alpha \notin D$. As $\alpha \in S$, let us fix $\langle \mathfrak{B}_{\beta} | \beta < \alpha^{+} \rangle$ that witnesses LCC at α^+ with respect to \vec{M} and $\vec{\mathcal{F}}_{\emptyset,\alpha^+}$. Set $\beta := \alpha + 2$ and fix $\bar{\beta} < \kappa^+$ such that clps(\mathfrak{B}_{β}) = $\langle M_{\bar{\beta}}, \ldots \rangle$. As $\beta \subseteq B_{\beta}$ and $|B_{\beta}| < \alpha^+$, by Clause (4) of Definition [2.9,](#page-4-0) $\beta \leq \beta < \alpha^+$. In addition, $Z \restriction (\alpha + 1) \in M_{\bar{\beta}}$ and there exists an elementary embedding from $\langle M_{\bar{\beta}}, \in \rangle$ to $\langle H_{\alpha^+}, \in \rangle$, so that $M_{\bar{\beta}}$ sees α . Altogether, $\alpha < f(\alpha) \leq \bar{\beta} < \alpha^+$. \Box

Define $\vec{N} = \langle N_{\alpha} | \alpha \in S \rangle$ by letting $N_{\alpha} := M_{f(\alpha)}$ for all $\alpha \in S$. It follows from Definition [2.9\(](#page-4-0)4) and the preceding claim that $|N_{\alpha}|=|\alpha|$ for all $\alpha \in S$.

Claim 2.24.3 *Let* $X \subseteq \kappa$ *. Then there exists a club* $C \subseteq \kappa$ *such that, for all* $\alpha \in C \cap S$ *,* $X \cap \alpha \in N_{\alpha}$.

Proof By Lemma [2.22,](#page-8-0) we now fix $\delta \leq \kappa^+$ such that κ , $S, a \in M_\delta$ and $\langle M_\delta, \in, \vec{M} \rangle$ $\langle M_{\kappa^+}, \in, \vec{M} \rangle$. Note that $|\delta| = \kappa$. Let $\vec{\mathcal{B}} = \langle \mathfrak{B}_{\alpha} | \alpha < \kappa \rangle$ witness LCC at δ with respect to *M* and $\mathcal{F}_{X,\kappa}$.

Subclaim 2.24.3.1 $C := \{ \alpha < \kappa \mid B_\alpha \cap \kappa = \alpha \}$ is a club in κ .

Proof To see that *C* is closed in κ , fix an arbitrary $\alpha < \kappa$ with sup($C \cap \alpha$) = $\alpha > 0$. As $\langle B_\beta | \beta \langle \kappa \rangle$ is ⊆-increasing and continuous, we have

$$
\alpha = \bigcup_{\beta \in (C \cap \alpha)} \beta = \bigcup_{\beta \in (C \cap \alpha)} (B_{\beta} \cap \kappa) = \bigcup_{\beta < \alpha} (B_{\beta} \cap \kappa) = B_{\alpha} \cap \kappa.
$$

To see that *C* is unbounded in κ , fix an arbitrary $\varepsilon < \kappa$, and we shall find $\alpha \in C$ above *ε*. Recall that, by Clause (3)(c) of Definition [2.11,](#page-5-0) for each $\beta < \kappa$, $\beta \subseteq B_\beta$ and $|B_\beta| < \kappa$. It follows that we may recursively construct an increasing sequence of ordinals $\langle \alpha_n | n \langle \omega \rangle$ such that:

- $\alpha_0 := \sup(B_\varepsilon \cap \kappa)$, and, for all $n < \omega$:
- $\sup(B_{\alpha_n} \cap \kappa) < \alpha_{n+1} < \kappa$.

In particular, $\sup(B_{\alpha_n} \cap \kappa) \in \alpha_{n+1}$ for all $n < \omega$. Consequently, for $\alpha := \sup_{n < \omega} \alpha_n$, we have that $\alpha < \kappa$, and

$$
B_{\alpha} \cap \kappa = \bigcup_{n < \omega} (B_{\alpha_n} \cap \kappa) \leq \bigcup_{n < \omega} \alpha_{n+1} \leq \bigcup_{n < \omega} (B_{\alpha_{n+2}} \cap \kappa) = \alpha,
$$

 \mathcal{L} Springer

so that $\alpha \in C \setminus (\varepsilon + 1)$.

To see that the club *C* is as sought, let $\alpha \in C \cap S$ be arbitrary, and we shall verify that $X \cap \alpha \in N_\alpha$. Let $\beta(\alpha)$ be such that clps(\mathfrak{B}_α) = $\langle M_{\beta(\alpha)}, \epsilon, \ldots \rangle$, and let j_α : $M_{\beta(\alpha)} \to B_{\alpha}$ denote the inverse of the collapsing map. As $\alpha \in C$, $j_{\alpha}(\alpha) = \kappa$, and $j_{\alpha}^{-1}(Y) = Y \cap \alpha$ for all $Y \in B_{\alpha} \cap \mathcal{P}(\kappa)$.

Subclaim 2.24.3.2 For every $\beta < \kappa^+$ such that $Z \restriction (\alpha + 1) \in M_\beta$, $\beta > \beta(\alpha)$.

Proof Suppose not, so that $\vec{Z} \restriction (\alpha + 1) \in M_{\beta(\alpha)}$. As $\langle M_\delta, \in \rangle \prec \langle M_{\kappa^+}, \in \rangle$, we infer that

$$
\langle M_\delta, \in \rangle \models \forall Z \subseteq \kappa \exists E \text{ club in } \kappa \ (\forall \gamma \in E \cap S \to Z \cap \gamma \neq Z_\gamma),
$$

and hence

$$
\langle M_{\beta(\alpha)}, \in \rangle \models \forall Z \subseteq \alpha \exists E \text{ club in } \alpha (\forall \gamma \in E \cap S \rightarrow Z \cap \gamma \neq Z_{\gamma}).
$$

In particular, using $Z := Z_\alpha$, we find some E such that

$$
\langle M_{\beta(\alpha)}, \in \rangle \models (E \text{ is a club in } \alpha) \land (\forall \gamma \in E \cap S \rightarrow Z_{\alpha} \cap \gamma \neq Z_{\gamma}).
$$

Pushing forward with $E^* := j_\alpha(E)$ and $Z^* := j_\alpha(Z_\alpha)$, we infer that

$$
\langle M_\delta, \in \rangle \models (E^* \text{ is a club in } \kappa) \land (\forall \gamma \in E^* \cap S \to Z^* \cap \gamma \neq Z_{\gamma}).
$$

Then $Z^* \cap \alpha = j_\alpha(Z_\alpha) \cap \alpha = Z_\alpha$, and hence $\alpha \notin E^*$ (recall that $\alpha \in S$). Likewise $E^* \cap \alpha = j_\alpha(E) \cap \alpha = E$, and hence $\alpha \in \text{acc}(E^*) \subseteq E^*$. This is a contradiction.

 \Box

Now, since $\vec{\mathcal{B}}$ witnesses LCC at δ with respect to \vec{M} and $\vec{\mathcal{F}}_{X,k}$, for each *Y* in {*X*, *a*, *S*}, we have that

$$
\langle B_{\alpha}, \in, Y \cap B_{\alpha} \rangle \prec \langle M_{\kappa^+}, \in, Y \rangle \models \exists y \forall z ((z \in y) \leftrightarrow (z \in \kappa \land Y(z))),
$$

therefore each of *X*, *a*, *S* is a definable element of \mathfrak{B}_{α} . So, as, for all $Y \in B_{\alpha} \cap \mathcal{P}(\kappa)$, $j_{\alpha}^{-1}(Y) = Y \cap \alpha$, we infer that $X \cap \alpha$, $a \cap \alpha$, and $S \cap \alpha$ are all in $M_{\beta(\alpha)}$. We will show that $\beta(\alpha) < f(\alpha)$, from which it will follow that $X \cap \alpha \in N_\alpha$.

Subclaim 2.24.3.3 $\beta(\alpha) < f(\alpha)$.

Proof Naturally, the analysis splits into two cases:

Suppose $\alpha \notin D$. By definition of $f(\alpha)$ and by Subclaim [2.24.3.2,](#page-11-0) $\beta(\alpha) < f(\alpha)$. ► Suppose $\alpha \in D$. As $\mathfrak{B}_{\alpha} \prec \langle M_{\delta}, \in, \vec{M} \restriction \delta, X, a, S, \vec{Z} \rangle$ and Im(j_{α}) = B_{α} , we infer that $j_\alpha : M_{\beta(\alpha)} \to M_\delta$ forms an elementary embedding from $\langle M_{\beta(\alpha)}, \in, \ldots \rangle$ to $\langle M_\delta, \epsilon, M \rangle \upharpoonright \delta, X, a, S, Z \rangle$ with $j_\alpha(\alpha) = \kappa$. As $\kappa, S, a \in M_\delta$ and $\langle M_\delta, \epsilon, M \rangle \upharpoonright \delta$ $\langle M_K, \in, M \rangle$, we have:

 (I) $\langle M_\delta, \in, \overline{M} \restriction \delta \rangle \models$ **LCC**(κ, δ),

(II) $\langle M_\delta, \epsilon \rangle \models \mathsf{ZF}^- \& \kappa$ is the largest cardinal,

(III) $\langle M_\delta, \in \rangle \models \kappa$ is regular & *S* \cap κ is stationary,

(IV) $\langle M_\delta, \in \rangle \models \Theta(x, y, a \cap \kappa)$ defines a global well-order.

It now follows that $β(α)$ satisfies clauses (i),(ii),(iii) and (iv) of the definition of $S_α$. Together with Subclaim [2.24.3.2,](#page-11-0) then, $\beta(\alpha) \in S_\alpha$. So, by definitions of f and D, $\beta(\alpha) < f(\alpha).$

This completes the proof of Claim [2.24.3.](#page-10-0)

We are left with addressing Clause (3) of Definition [2.6.](#page-4-1)

Claim 2.24.4 *The sequence* $\langle N_{\alpha} | \alpha \in S \rangle$ *reflects* Π_2^1 -sentences.

Proof We need to show that whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models \phi$, with $\phi = \forall X \exists Y \varphi$ a Π_2^1 -sentence, for every club $E \subseteq \kappa$, there is $\alpha \in E \cap S$, such that

$$
\langle \alpha, \in, (A_n \cap (\alpha^{m(A_n)}))_{n \in \omega} \rangle \models_{N_\alpha} \phi.
$$

But by adding *E* to the list $(A_n)_{n \in \omega}$ of predicates, and by slightly extending the firstorder formula φ to also assert that *E* is unbounded, we would get that any ordinal α satisfying the above will also satisfy that α is an accumulation point of the closed set *E*, so that $\alpha \in E$. It follows that if any Π_2^1 -sentence valid in a structure of the form $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle$ reflects to some ordinal $\alpha' \in S$, then any Π_2^1 -sentence valid in a structure of the form $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle$ reflects stationarily often in *S*.

Consider a Π_2^1 -formula $\forall X \exists Y \varphi$, with integers p, q such that X is a p-ary secondorder variable and *Y* is a *q*-ary second-order variable. Suppose $A = (A_n)_{n \in \omega}$ is a sequence of finitary predicates on κ , and $\langle \kappa, \in, A \rangle \models \forall X \exists Y \varphi$. By the reduction established in the proof of Proposition [3.1](#page-16-1) below, we may assume that *A* consists of a single predicate A_0 of arity, say, m_0 . Recalling Convention [2.4](#page-4-2) and since $M_{k+} = H_{k+}$, this altogether means that

$$
\langle \kappa, \in, A_0 \rangle \models_{M_{\kappa^+}} \forall X \exists Y \varphi.
$$

Let γ be the least ordinal such that \hat{Z} , A_0 , $S \in M_{\gamma}$. Note that $\kappa < \gamma < \kappa^+$. Let Δ denote the set of all $\delta \leq \kappa^+$ such that:

- (a) $\langle M_\delta, \in, \vec{M} \rvert \delta \rangle \models \mathsf{LCC}(\kappa, \delta),$ ^{[6](#page-12-0)}
- (b) $\langle M_\delta, \in \rangle \models \mathsf{ZF}^- \& \kappa$ is the largest cardinal,
- (c) $\langle M_\delta, \in \rangle \models \kappa$ is regular & *S* is stationary in κ ,
- (d) $\langle M_\delta, \in \rangle \models \Theta(x, y, a)$ defines a global well-order,
- (e) $\langle \kappa, \in, A_0 \rangle \models_{M_\delta} \forall X \exists Y \varphi,$
- (f) $\langle M_\delta, \in \rangle \models Z$ witness that *S* is not ineffable, and
- (g) $\delta > \gamma$.

⁶ In particular, $\delta > \kappa$.

As $\kappa^+ \in \Delta$, it follows from Lemma [2.22](#page-8-0) and elementarity that $\cot(\Delta \cap \kappa^+) = \kappa^+$. Let $\{\delta_n \mid n < \omega\}$ denote the increasing enumeration of the first ω many elements of Δ.

Definition 2.24.4.1 Let $T(\vec{M}, \kappa, S, a, A_0, \vec{Z}, \gamma)$ denote the theory consisting of the following axioms:

- (A) \tilde{M} witness LCC(κ, κ^+),
- (B) ZF^{-} & κ is the largest cardinal,
- (C) κ is regular & *S* is stationary in κ ,
- (D) $\Theta(x, y, a)$ defines a global well-order,
- (E) $\langle \kappa, \in, A_0 \rangle \models \forall X \exists Y \varphi,$
- (F) *Z* witness that *S* is not ineffable,
- (G) γ is the least ordinal such that $\{\vec{Z}, A_0, S\} \in \vec{M}(\gamma)$.

Let $n < \omega$. Since M_{δ_n} is transitive, standard facts (cf. [\[6](#page-23-9), Chapter 3, §5]) yield the existence of a formula Ψ in the language $\{\vec{M}, \in\}$ which is $\Delta_1^{\mathsf{ZF}^-}$, and for all $\delta \in (\gamma, \delta_n)$,

$$
\langle M_{\delta}, \in, \vec{M} \upharpoonright \delta \rangle \models T(\vec{M} \upharpoonright \delta, \kappa, S, a, A_0, \vec{Z}, \gamma)
$$

\n
$$
\iff
$$

\n
$$
\psi(\vec{M} \upharpoonright \delta, \kappa, S, a, A_0, \vec{Z}, \gamma)
$$

\n
$$
\iff
$$

\n
$$
\langle M_{\delta_n}, \in, \vec{M} \upharpoonright \delta_n \rangle \models \psi(\vec{M} \upharpoonright \delta, \kappa, S, a, A_0, \vec{Z}, \gamma).
$$

\n
$$
\tag{\star_1}
$$

Since $\{\delta_k \mid k < \omega\}$ enumerates the first ω many elements of Δ , M_{δ_n} believes that there are exactly *n* ordinals δ such that Clauses (a)–(g) hold for M_{δ} . In fact,

$$
\langle M_{\delta_n}, \in, \overline{M} \upharpoonright \delta_n \rangle \models \{ \delta \mid \Psi(\overline{M} \upharpoonright \delta, \kappa, S, a, A_0, \overline{Z}, \gamma) \} = \{ \delta_k \mid k < n \}. \tag{42}
$$

Next, for every $n < \omega$, as $\langle M_{\delta_{n+1}}, \epsilon \rangle \models |\delta_n| = \kappa$, we may fix in $M_{\delta_{n+1}}$ a sequence $\mathcal{B}_n = \langle \mathfrak{B}_{n, \alpha} \mid \alpha < \kappa \rangle$ witnessing LCC at δ_n with respect to $\vec{M} \restriction \delta_{n+1}$ and $\vec{\mathcal{F}}_{A_0, \kappa}$ such that, moreover,

 $\langle M_{\delta_{n+1}}, \in, \vec{M} \restriction \delta_{n+1} \rangle \models ``\vec{\mathfrak{B}}_n$ is the $\langle \Theta \cdot \text{least such witness}''$.⁷

For every $n < \omega$, consider the club $C_n := \{ \alpha < \kappa \mid B_{n,\alpha} \cap \kappa = \alpha \}$, and then let

$$
\alpha' := \min\left(\left(\bigcap_{n \in \omega} C_n\right) \cap S\right).
$$

For every $n < \omega$, let β_n be such that clps($\mathfrak{B}_{n,\alpha'}$) = $\langle M_{\beta_n}, \in, \ldots \rangle$, and let j_n : $M_{\beta_n} \to B_{n,\alpha'}$ denote the inverse of the Mostowski collapse.

 $\frac{7}{4}$ Recalling Definition [2.23,](#page-8-1) this means that $\left\langle M_{\delta_{n+1}}, \in \mathcal{M} \right\rangle$ $\langle M_{\delta_{n+1}}, \in, \overrightarrow{M} \quad | \quad \delta_{n+1} \rangle \qquad \models$ \mathfrak{B}_n is the \lt_{Θ} -least $\vec{\mathfrak{B}}$ such that $(\psi_a \wedge \psi_b \wedge \psi_c \wedge \psi_d \wedge \psi_e)(\vec{\mathfrak{B}}, \vec{\mathcal{F}}_{A_0,\kappa}, \delta_n, \vec{M} \upharpoonright (\delta_n + 1))$ ".

Subclaim 2.24.4.1 Let $n \in \omega$. Then $j_n^{-1}(\gamma) = j_0^{-1}(\gamma)$.

Proof Since $j_n^{-1}(\bar{Z}) = \bar{Z} \restriction \alpha', j_n^{-1}(A_0) = A_0 \cap (\alpha')^{m_0}$ and $j_n^{-1}(S) = S \cap \alpha'$, it follows from

$$
\langle M_{\delta_n}, \in, \overline{M} \restriction \delta_n \rangle \models \gamma \text{ is the least ordinal with } \{\overline{Z}, A_0, S\} \subseteq M_{\gamma},
$$

that

 $\langle M_{\beta_n}, \in, \vec{M} \restriction \beta_n \rangle \models j_n^{-1}(\gamma)$ is the least ordinal with $\{\vec{Z} \restriction \alpha', A_0 \cap (\alpha')^{m_0}, S \cap \alpha' \} \subseteq M_{\gamma}$.

Now, let $\bar{\gamma}$ be such that

 $\langle M_{\beta_0}, \in, \vec{M} \restriction \beta_0 \rangle \models \bar{\gamma}$ is the least ordinal such that $\{\vec{Z} \restriction \alpha', A_0 \cap (\alpha')^{m_0}, S \cap \alpha' \} \subseteq M_{\bar{\gamma}}$.

Since *M* is continuous, it follows that $\bar{\gamma}$ is a successor ordinal, that is, $\bar{\gamma} = \sup(\bar{\gamma}) + 1$. So $\langle M_{\beta_0}, \in, M \mid \beta_0 \rangle$ satisfies the conjunction of the two:

- $\{\vec{Z} \restriction \alpha', A_0 \cap (\alpha')^{m_0}, S \cap \alpha'\} \subseteq M_{\vec{\gamma}}$, and
- $\{\vec{Z} \restriction \alpha', A_0 \cap (\alpha')^{m_0}, S \cap \alpha'\} \nsubseteq M_{\text{sup}(\vec{\gamma})}.$

But the two are Δ_0 -formulas in the parameters $\vec{Z} \restriction \alpha', A_0 \cap (\alpha')^{m_0}$, $S \cap \alpha', M_{\vec{Y}}$ and $M_{\text{sup}(\bar{y})}$, which are all elements of M_{β_0} . Therefore,

 $\langle M_{\beta_n}, \in, \vec{M} \restriction \beta_n \rangle \models \bar{\gamma}$ is the least ordinal such that $\{\vec{Z} \restriction \alpha', A_0 \cap (\alpha')^{m_0}, S \cap \alpha' \} \subseteq M_{\gamma}$,

so that $j_n^{-1}(\gamma) = \bar{\gamma} = j_0^{-1}$ $\Box_{0}^{-1}(\gamma)$.

Denote $\bar{\gamma} := j_0^{-1}(\gamma)$. Let Ψ be the same formula used in statement (\star_1). For all $n < \omega$ and $\bar{\beta} \in (\bar{\gamma}, \beta_n)$, setting $\beta := j_n(\bar{\beta})$, by elementarity of j_n :

$$
\langle M_{\beta_n}, \in, \vec{M} \upharpoonright \beta_n \rangle \models \Psi(\vec{M} \upharpoonright \vec{\beta}, \alpha', S \cap \alpha', a \cap \alpha', A_0 \cap (\alpha')^{m_0}, \vec{Z} \upharpoonright \alpha', \vec{\gamma})
$$

$$
\iff \iff
$$

$$
\langle M_{\delta_n}, \in, \vec{M} \upharpoonright \delta_n \rangle \models \Psi(\vec{M} \upharpoonright \beta, \kappa, S, a, A_0, \vec{Z}, \gamma).
$$
 (*)

Hence, for all $n < \omega$, by statements (\star_2) and (\star_3) , it follows that

$$
\langle M_{\beta_n}, \in, \vec{M} \upharpoonright \beta_n \rangle \models \{ \beta \mid \Psi(\vec{M} \upharpoonright \beta, \alpha', S \cap \alpha', a \cap \alpha', A_0 \cap (\alpha')^{m_0}, \vec{Z} \upharpoonright \alpha', \vec{\gamma}) \}
$$

=
$$
\{ j_n^{-1}(\delta_k) \mid k < n \},
$$

and that, for each $k < n$, $j_n(\beta_k) = \delta_k$.

Subclaim 2.24.4.2 $\beta' := \sup_{n \in \omega} \beta_n$ is equal to $\sup(S_{\alpha'})$.

Proof For each $n < \omega$, as clps($\mathfrak{B}_{n,\alpha'}$) = $\langle M_{\beta_n}, \in, \ldots \rangle$, the proof of Subclaim [2.24.3.3,](#page-11-1) establishing that $\beta(\alpha) \in S_\alpha$, makes clear that $\beta_n \in S_{\alpha'}$.

We first argue that $\beta' \notin S_{\alpha'}$ by showing that $\langle M_{\beta'}, \in \rangle \not\models ZF^-,$ and then we will argue that no $\beta > \beta'$ is in $S_{\alpha'}$. Note that $\{\beta_n \mid n < \omega\}$ is a definable subset of $β'$ since it can be defined as the first ω ordinals to satisfy Clauses (a)–(g), replacing $\overline{M} \upharpoonright \delta$, *k*, *S*, *a*, *A*₀, \overline{Z} , *γ* by $\overline{M} \upharpoonright \beta$, α' , *S* ∩ α' , *a* ∩ α' , *A*₀ ∩ $(\alpha')^{m_0}$, $\overline{Z} \upharpoonright \alpha'$, $\overline{\gamma}$, respectively. So if $\langle M_{\beta}, \in \rangle$ were to model ZF⁻, we would have get that $\sup_{n \leq \omega} \beta_n$ is in M_{β} , contradicting the fact that $M_{\beta'} \cap \text{OR} = \beta'$.

Now, towards a contradiction, suppose that there exists $\beta > \beta'$ in $S_{\alpha'}$, and let β be the least such ordinal. In particular, $\langle M_\beta, \in \rangle \models \mathsf{ZF}^-,$ and $\langle \beta_n | n < \omega \rangle \in M_\beta$, so that $\langle M_{\beta_n} \mid n \in \omega \rangle \in M_\beta$. We will reach a contradiction to Clause (iii) of the definition of *S*_{α'}, asserting, in particular, that *S* \cap α' is stationary in $\langle M_\beta, \in \rangle$.

For each $n < \omega$, we have that $\langle M_{\delta_{n+1}}, \in, \overrightarrow{M} \restriction \delta_{n+1} \rangle \models \Phi(C_n, \delta_n, \overrightarrow{\mathfrak{B}}_n, \kappa)$, where $\Phi(C_n, \delta_n, \vec{\mathfrak{B}}_n, \kappa)$ is the conjunction of the following two formulas:

- $C_n = \{ \alpha < \kappa \mid B_{n,\alpha} \cap \kappa = \alpha \},\$ and
- \mathcal{B}_n is the \lt_{Θ} -least witness to LCC at δ_n with respect to $\vec{M} \restriction \delta_{n+1}$ and $\mathcal{F}_{A_0,\kappa}$.

Therefore, for $\overline{C_n} := j_{n+1}^{-1}(C_n)$ and $\overline{\mathfrak{B}_n} := j_{n+1}^{-1}(\overline{\mathfrak{B}}_n)$, we have

$$
\langle M_{\beta_{n+1}}, \in, \vec{M} \restriction \beta_{n+1} \rangle \models \Phi(\overline{C_n}, \beta_n, \overline{\mathfrak{B}_n}, \alpha').
$$

In particular, $\overline{C_n} = j_{n+1}^{-1}(C_n) = C_n \cap \alpha'$. Recalling that $\alpha' = \min((\bigcap_{n \in \omega} C_n) \cap S)$, we infer that $\bigcap_{n<\omega}C_n$ is disjoint from *S*∩α'. Thus, to establish that *S*∩α' is nonstationary, it suffices to verify the two:

- (1) $\langle \overline{C_n} \mid n \langle \omega \rangle$ belongs to M_β , and
- (2) for every $n < \omega$, $\langle M_\beta, \in \rangle \models C_n$ is a club in α' .

As $\langle M_{\beta_n} \mid n \in \omega \rangle \in M_{\beta}$, we can define $\langle \overline{\mathfrak{B}}_n \mid n \in \omega \rangle$ using that, for all $n \in \omega$,

$$
\langle M_{\beta_{n+1}}, \in, \vec{M} \restriction \beta_{n+1} \rangle \models \text{``}\overline{\mathfrak{B}}_n \text{ is the } <_{\Theta} \text{-least witness to}
$$

LCC at $\alpha' \text{ w.r.t. } \vec{M} \restriction \beta_{n+1} \text{ and } \mathcal{F}_{A_0, \alpha'} \text{''}.$

This takes care of Clause (1), and shows that $\langle M_{\beta_{n+1}}, \in \rangle \models C_n$ is a club in α' . Since M_{β} is transitive and the formula expressing that $\overline{C_n}$ is a club is Δ_0 , we have also taken care of Clause (2). \Box

It follows that $\alpha' \in D$ and $f(\alpha') = \sup(S_{\alpha'}) = \beta'$.^{[8](#page-15-0)} Finally, as, for every $n < \omega$, we have

$$
\langle \alpha', \in, A_0 \cap (\alpha')^{m_0} \rangle \models_{M_{\beta_n}} \forall X \exists Y \varphi,
$$

we infer that $N_{\alpha'} = M_{f(\alpha')} = M_{\beta'} = \bigcup_{n \in \omega} M_{\beta_n}$ is such that

$$
\langle \alpha', \in, A_0 \cap (\alpha')^{m_0} \rangle \models_{N_{\alpha'}} \forall X \exists Y \varphi.
$$

Indeed, otherwise there is $X_0 \in [\alpha']^p \cap N_{\alpha'}$ such that, for all $Y \in [\alpha']^q \cap N_{\alpha'}$, $N_{\alpha'} \models [\langle \alpha', \in, A_0 \cap (\alpha')^{m_0} \rangle \models \neg \varphi(X_0, Y)]$. Find a large enough $n < \omega$ such that

⁸ Notice that the argument of this claim also showed that *D* is stationary.

 $X_0 \in M_{\beta_n}$. Now, since " $\langle \alpha', \in, A_0 \cap (\alpha')^{m_0} \rangle \models \neg \varphi(X_0, Y)$ " is a $\Delta_1^{\mathsf{ZF}-}$ formula on the parameters $\langle \alpha', \in, A_0 \cap (\alpha')^{m_0} \rangle$, φ , and since M_{β_n} is transitive subset of $N_{\alpha'}$ it follows that, for all $Y \in [\alpha']^q \cap M_{\beta_n}, M_{\beta_n} \models [\langle \alpha', \in, A_0 \cap (\alpha')^{m_0} \rangle \models \neg \varphi(X_0, Y)]$, which is a contradiction.
This completes the proof of Theorem 2.24.

This completes the proof of Theorem [2.24.](#page-8-2)

As a corollary we have found a strong combinatorial axiom that holds everywhere (including at ineffable sets) in canonical models of Set Theory (including Gödel's constructible universe).

Corollary 2.25 *Suppose that:*

- *L*[*E*] *is an extender model with Jensen* λ*-indexing;*
- $L[E] \models "there are no subcompact cardinals";$
- *for every* $\alpha \in \text{OR}$, the premouse $L[E]$ || α *is weakly iterable.*

Then, in L[*E*]*, for every regular uncountable cardinal* κ *, for every stationary* $S \subseteq \kappa$ *,* $\mathrm{DI}_{\mathrm{S}}^{\ast}(\Pi_{2}^{1})$ *holds.*

Proof Work in $L[E]$. Let κ be any regular and uncountable cardinal. By Fact [2.15,](#page-6-3) $\overline{M} = \langle L_\beta[E] | \beta \langle \kappa^+ \rangle$ witnesses that $LCC(\kappa, \kappa^+)$ holds. Since $L_{\kappa^+}[E]$ is an acceptable *J*-structure,^{[9](#page-16-2)} \vec{M} is a nice filtration of L_{κ} +[*E*] that is eventually slow at κ . In addition (cf. [\[22](#page-24-9), Lemma 1.11]), there is a Σ_1 -formula Θ for which

$$
x <_{\Theta} y \text{ iff } L[E]| \kappa^+ \models \Theta(x, y)
$$

defines a well-ordering of L_{κ} +[*E*]. Finally, acceptability implies that L_{κ} +[*E*] = H_{κ} +.
Now, appeal to Theorem 2.24. Now, appeal to Theorem [2.24.](#page-8-2)

3 Universality of inclusion modulo nonstationary

Throughout this section, κ denotes a regular uncountable cardinal satisfying $\kappa^{<\kappa} = \kappa$. Here, we will be proving Theorems B and C. Before we can do that, we shall need to establish a *transversal lemma*, as well as fix some notation and coding that will be useful when working with structures of the form $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle$.

Proposition 3.1 (Transversal lemma) *Suppose that* $\langle N_{\alpha} | \alpha \in S \rangle$ *is a* $D l_S^*(\Pi_2^1)$ *sequence, for a given stationary* $S \subseteq \kappa$ *. For every* Π_2^1 -sentence ϕ *, there exists a transversal* $\langle \eta_{\alpha} | \alpha \in S \rangle \in \prod_{\alpha \in S} N_{\alpha}$ *satisfying the following.*

For every $\eta \in \kappa^{\kappa}$, whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models \phi$, there are stationarily many α ∈ *S such that*

(i) $\eta_{\alpha} = \eta \upharpoonright \alpha$, and (ii) $\langle \alpha, \in, (A_n \cap (\alpha^{m(\mathbb{A}_n)}))_{n \in \omega} \rangle \models_{N_\alpha} \phi.$

⁹ For the definition of acceptable *J*-structure, see [\[27,](#page-24-8) p. 4].

Proof Let $c : \kappa \times \kappa \leftrightarrow \kappa$ be some primitive-recursive pairing function. For each $\alpha \in S$, fix a surjection $f_{\alpha}: \kappa \to N_{\alpha}$ such that $f_{\alpha}[\alpha] = N_{\alpha}$ whenever $|N_{\alpha}| = |\alpha|$. Then, for all $i < \kappa$, as $f_\alpha(i) \in N_\alpha$, we may define a set η_α^i in N_α by letting

$$
\eta_{\alpha}^{i} := \begin{cases} \{(\beta, \gamma) \in \alpha \times \alpha \mid c(i, c(\beta, \gamma)) \in f_{\alpha}(i)\}, & \text{if } i < \alpha; \\ \emptyset, & \text{otherwise.} \end{cases}
$$

We claim that for every Π_2^1 -sentence ϕ , there exists $i(\phi) < \kappa$ for which $\langle \eta_\alpha^{i(\phi)} | \alpha \in S \rangle$ satisfies the conclusion of our proposition. Before we prove this, let us make a few reductions.

First of all, it is clear that for every Π_2^1 -sentence $\phi = \forall X \exists Y \varphi$, there exists a large enough $n' < \omega$ such that all predicates mentioned in φ are in { ϵ , X, Y, A_n | $n < n'$ }. So the only structures of interest for ϕ are in fact $\langle \alpha, \in, (A_n)_{n \leq n'} \rangle$, where $\alpha \leq \kappa$. Let $m' := \max\{m(\mathbb{A}_n) \mid n < n'\}.$ Then, by a trivial manipulation of φ , we may assume that the only structures of interest for ϕ are in fact $\langle \alpha, \in, A_0 \rangle$, where $\omega \leq \alpha \leq \kappa$ and $m(\mathbb{A}_0) = m' + 1.$

Having the above reductions in hand, we now fix a Π_2^1 -sentence $\phi = \forall X \exists Y \varphi$ and positive integers *m* and *k* such that the only predicates mentioned in φ are in $\{\epsilon, \mathbb{X}, \mathbb{Y}, \mathbb{A}_0\}, m(\mathbb{A}_0) = m$ and $m(\mathbb{Y}) = k$.

Claim 3.1.1 *There exists i* < κ *satisfying the following. For all* $\eta \in \kappa^{\kappa}$ *and* $A \subseteq \kappa^m$ *, whenever* $\langle \kappa, \in, A \rangle \models \phi$, there are stationarily many $\alpha \in S$ such that

(i) $\eta_{\alpha}^{i} = \eta \upharpoonright \alpha$, and (ii) $\langle \alpha, \in, A \cap (\alpha^m) \rangle \models_{N_\alpha} \phi$.

Proof Suppose not. Then, for every $i < \kappa$, we may fix $\eta_i \in \kappa^k$, $A_i \subseteq \kappa^m$ and a club $C_i \subseteq \kappa$ such that $\langle \kappa, \in, A_i \rangle \models \phi$, but, for all $\alpha \in C_i \cap S$, one of the two fails:

(i) $\eta_{\alpha}^{i} = \eta_{i} \upharpoonright \alpha$, or (ii) $\langle \alpha, \in, A_i \cap (\alpha^m) \rangle \models_{N_\alpha} \phi$.

Let

- \bullet *Z* := {*c*(*i*, *c*(β, γ)) | *i* < *κ*, (β, γ) ∈ $η_i$ },
- $A := \{(i, \delta_1, \ldots, \delta_m) \mid i \leq \kappa, (\delta_1, \ldots, \delta_m) \in A_i\}$, and
- $C := \Delta_{i \leq \kappa} \{ \alpha \in C_i \mid \eta_i[\alpha] \subseteq \alpha \}.$

Fix a variable *i* that does not occur in φ . Define a first-order sentence ψ mentioning only the predicates in $\{\epsilon, \mathbb{X}, \mathbb{Y}, \mathbb{A}_1\}$ with $m(\mathbb{A}_1) = 1 + m$ and $m(\mathbb{Y}) = 1 + k$ by replacing all occurrences of the form $\mathbb{A}_0(x_1,\ldots,x_m)$ and $\mathbb{Y}(y_1,\ldots,y_k)$ in φ by $\mathbb{A}_1(i, x_1, \ldots, x_m)$ and $\mathbb{Y}(i, y_1, \ldots, y_k)$, respectively. Then, let $\varphi' := \forall i(\psi)$, and finally let $\phi' := \forall X \exists Y \varphi'$, so that ϕ' is a Π_2^1 -sentence.

A moment reflection makes it clear that $\langle \kappa, \in, A \rangle \models \phi'$. Thus, let *S'* denote the set of all $\alpha \in S$ such that all of the following hold:

(1) $\alpha \in \mathbb{C}$; (2) $c[α \times α] = α;$ (3) $Z \cap \alpha \in N_\alpha$;

(4) $|N_{\alpha}|=|\alpha|;$

(5) $\langle \alpha, \in, A \cap (\alpha^{m+1}) \rangle \models_{N_{\alpha}} \phi'.$

By hypothesis, *S'* is stationary. For all $\alpha \in S'$, by Clauses (3) and (4), we have $Z \cap \alpha \in N_\alpha = f_\alpha[\alpha]$, so, by Fodor's lemma, there exists some $i \lt k$ and a stationary $S'' \subseteq S' \setminus (i + 1)$ such that, for all $\alpha \in S''$:

$$
(3')\ \ Z \cap \alpha = f_{\alpha}(i).
$$

Let $\alpha \in S''$. By Clause (5), we in particular have

(5')
$$
\langle \alpha, \in, A_i \cap (\alpha^m) \rangle \models_{N_\alpha} \phi
$$
.

Also, by Clause (1), we have $\alpha \in C_i$, and so we must conclude that $\eta_i \restriction \alpha \neq \eta'_\alpha$. However, $\eta_i[\alpha] \subseteq \alpha$, and $Z \cap \alpha = f_\alpha(i)$, so that, by Clause (2),

$$
\eta_i \upharpoonright \alpha = \eta_i \cap (\alpha \times \alpha) = \{(\beta, \gamma) \in \alpha \times \alpha \mid c(i, c(\beta, \gamma)) \in f_\alpha(i)\} = \eta_\alpha^i.
$$

This is a contradiction.

This completes the proof of Proposition [3.1.](#page-16-1)

Lemma 3.2 *There is a first-order sentence* ψfnc *in the language with binary predicate symbols* ϵ *and* \mathbb{X} *such that, for every ordinal* α *and every* $X \subseteq \alpha \times \alpha$ *,*

$$
(X \text{ is a function from } \alpha \text{ to } \alpha) \text{ iff } (\langle \alpha, \in, X \rangle \models \psi_{\text{fnc}}).
$$

Proof Let $\psi_{\text{fnc}} := \forall \beta \exists \gamma (\mathbb{X}(\beta, \gamma) \land (\forall \delta(\mathbb{X}(\beta, \delta) \to \delta = \gamma)))$.

Lemma 3.3 *Let* α *be an ordinal. Suppose that* φ *is a* Σ¹ ¹ *-sentence involving a predicate symbol* A *and two binary predicate symbols* \mathbb{X}_0 , \mathbb{X}_1 *. Denote* $R_{\phi} := \{ (X_0, X_1) \mid \phi(x_0) \leq \phi(x_0) \}$ $\langle \alpha, \in, A, X_0, X_1 \rangle \models \phi$. Then there are Π_2^1 -sentences $\psi_{\text{Reflexive}}$ and $\psi_{\text{Transitive}}$ such *that:*

(1) $(R_{\phi} \supseteq \{(\eta, \eta) \mid \eta \in \alpha^{\alpha}\}\)$ *iff* $(\langle \alpha, \in, A \rangle \models \psi_{\text{Reflexive}})$;

(2) $(R_{\phi}$ *is transitive*) *iff* $(\langle \alpha, \in, A \rangle \models \psi_{Transitive})$.

Proof (1) Fix a first-order sentence ψ_{fnc} such that $(X_0 \in \alpha^\alpha)$ iff $(\langle \alpha, \in, X_0 \rangle \models \psi_{\text{fnc}})$. Now, let $\psi_{\text{Reflexive}}$ be $\forall X_0 \forall X_1((\psi_{\text{fnc}} \land (X_1 = X_0)) \rightarrow \phi)$.

(2) Fix a Σ_1^1 -sentence ϕ' involving predicate symbols A, \mathbb{X}_1 , \mathbb{X}_2 and a Σ_1^1 -sentence ϕ'' involving binary symbols A, \mathbb{X}_0 , \mathbb{X}_2 such that

$$
\{(X_1, X_2) \mid \langle \alpha, \in, A, X_1, X_2 \rangle \models \phi' \}
$$

= $R_{\phi} = \{(X_0, X_2) \mid \langle \alpha, \in, A, X_0, X_2 \rangle \models \phi'' \}$

Now, let $\psi_{\text{Transitive}} := \forall X_0 \forall X_1 \forall X_2 ((\phi \land \phi') \rightarrow \phi'').$

 \Box

$$
\sqcup
$$

$$
\Box
$$

Definition 3.4 Denote by Lev₃(κ) the set of level sequences in $\kappa^{\leq \kappa}$ of length 3:

$$
Lev_3(\kappa) := \bigcup_{\tau < \kappa} \kappa^\tau \times \kappa^\tau \times \kappa^\tau.
$$

Fix an injective enumeration $\{\ell_{\delta} \mid \delta < \kappa\}$ of Lev₃(κ). For each $\delta < \kappa$, we denote $\ell_{\delta} = (\ell_{\delta}^{0}, \ell_{\delta}^{1}, \ell_{\delta}^{2})$. We then encode each $T \subseteq \text{Lev}_{3}(\kappa)$ as a subset of κ^{5} via:

$$
T_{\ell} := \{(\delta, \beta, \ell_{\delta}^{0}(\beta), \ell_{\delta}^{1}(\beta), \ell_{\delta}^{2}(\beta)) \mid \delta < \kappa, \ell_{\delta} \in T, \beta \in \text{dom}(\ell_{\delta}^{0})\}.
$$

We now prove Theorem C.

Theorem 3.5 *Suppose* $\mathrm{DI}_{\mathcal{S}}^*(\Pi_2^1)$ *holds for a given stationary* $S \subseteq \kappa$ *.*

For every analytic quasi-order Q over κ^{κ} *, there is a 1-Lipschitz map f* : $\kappa^{\kappa} \to 2^{\kappa}$ *reducing* Q to \subset ^S.

Proof Let *Q* be an analytic quasi-order over κ^k . Fix a tree *T* on $\kappa^{<\kappa} \times \kappa^{<\kappa} \times \kappa^{<\kappa}$ such that $Q = pr([T])$, that is,

$$
(\eta,\xi)\in Q\iff \exists \zeta\in \kappa^{\kappa}\;\forall \tau\lt \kappa\; (\eta\upharpoonright \tau,\xi\upharpoonright \tau,\zeta\upharpoonright \tau)\in T.
$$

We shall be working with a first-order language having a 5-ary predicate symbol $\mathbb A$ and binary predicate symbols \mathbb{X}_0 , \mathbb{X}_1 , \mathbb{X}_2 and ϵ . By Lemma [3.2,](#page-18-0) for each $i < 3$, let us fix a sentence ψ_{fnc}^i concerning the binary predicate symbol \mathbb{X}_i instead of \mathbb{X} , so that

$$
(X_i \in \kappa^{\kappa})
$$
 iff $(\langle \kappa, \in, A, X_0, X_1, X_2 \rangle \models \psi_{\text{fnc}}^i)$.

Define a sentence φ_Q to be the conjunction of four sentences: ψ_{fnc}^0 , ψ_{fnc}^1 , ψ_{fnc}^2 , and

$$
\forall \tau \exists \delta \forall \beta [\epsilon(\beta, \tau) \rightarrow
$$

$$
\exists \gamma_0 \exists \gamma_1 \exists \gamma_2 (\mathbb{X}_0(\beta, \gamma_0) \land \mathbb{X}_1(\beta, \gamma_1) \land \mathbb{X}_2(\beta, \gamma_2) \land \mathbb{A}(\delta, \beta, \gamma_0, \gamma_1, \gamma_2))].
$$

Set $A := T_\ell$ as in Definition [3.4.](#page-18-1) Evidently, for all $\eta, \xi, \zeta \in \mathcal{P}(\kappa \times \kappa)$, we get that

$$
\langle \kappa, \in, A, \eta, \xi, \zeta \rangle \models \varphi_Q
$$

iff the two hold:

(1)
$$
\eta, \xi, \zeta \in \kappa^{\kappa}
$$
, and

(2) for every $\tau < \kappa$, there exists $\delta < \kappa$, such that $\ell_{\delta} = (\eta \restriction \tau, \xi \restriction \tau, \zeta \restriction \tau)$ is in *T*.

Let $\phi_Q := \exists X_2(\varphi_Q)$. Then ϕ_Q is a Σ_1^1 -sentence involving predicate symbols A, \mathbb{X}_0 , \mathbb{X}_1 and ϵ for which the induced binary relation

$$
R_{\phi_Q} := \{ (\eta, \xi) \in (\mathcal{P}(\kappa \times \kappa))^2 \mid \langle \kappa, \in, A, \eta, \xi \rangle \models \phi_Q \}
$$

coincides with the quasi-order *Q*. Now, appeal to Lemma [3.3](#page-18-2) with ϕ_Q to receive the corresponding Π_2^1 -sentences $\psi_{\text{Reflexive}}$ and $\psi_{\text{Transitive}}$. Then, consider the following two Π_2^1 -sentences:

- $\psi_{\mathcal{Q}}^0 := \psi_{\text{Reflexive}} \wedge \psi_{\text{Transitive}} \wedge \phi_{\mathcal{Q}},$ and
- $\psi_Q^1 := \psi_{\text{Reflexive}} \wedge \psi_{\text{Transitive}} \wedge \neg(\phi_Q).$

Let $\tilde{N} = \langle N_{\alpha} \mid \alpha \in S \rangle$ be a $DI_{S}^{*}(\Pi_{2}^{1})$ -sequence. Appeal to Proposition [3.1](#page-16-1) with the *Π*₂⁻ sentence ψ^1_Q to obtain a corresponding transversal $\langle \eta_\alpha | \alpha \in S \rangle$ ∈ $\prod_{\alpha \in S} N_\alpha$. Note that we may assume that, for all $\alpha \in S$, $\eta_{\alpha} \in \alpha$, as this does not harm the key feature of the chosen transversal.^{[10](#page-20-0)}

For each $\eta \in \kappa^k$, let

$$
Z_{\eta} := \{ \alpha \in S \mid A \cap \alpha^5 \text{ and } \eta \restriction \alpha \text{ are in } N_{\alpha} \}.
$$

Claim 3.5.1 *Suppose* $\eta \in \kappa^{\kappa}$ *. Then* $S \setminus Z_{\eta}$ *is nonstationary.*

Proof Fix primitive-recursive bijections $c : \kappa^2 \leftrightarrow \kappa$ and $d : \kappa^5 \leftrightarrow \kappa$. Given $\eta \in \kappa^k$, consider the club D_0 of all $\alpha < \kappa$ such that:

- $\eta[\alpha] \subseteq \alpha;$
- $c[\alpha \times \alpha] = \alpha;$
- \bullet $d[\alpha \times \alpha \times \alpha \times \alpha \times \alpha] = \alpha$.

Now, as $c[\eta]$ is a subset of κ , by the choice \vec{N} , we may find a club $D_1 \subseteq \kappa$ such that, for all $\alpha \in D_1 \cap S$, $c[\eta] \cap \alpha \in N_\alpha$. Likewise, we may find a club $D_2 \subseteq \kappa$ such that, for all $\alpha \in D_2 \cap S$, $d[A] \cap \alpha \in N_\alpha$.

For all $\alpha \in S \cap D_0 \cap D_1 \cap D_2$, we have

- $c[\eta \mid \alpha] = c[\eta \cap (\alpha \times \alpha)] = c[\eta] \cap c[\alpha \times \alpha] = c[\eta] \cap \alpha \in N_\alpha$, and
- $d[A \cap \alpha^5] = d[A] \cap d[\alpha^5] = d[A] \cap \alpha \in N_\alpha$.

As N_{α} is p.r.-closed, it then follows that $\eta \restriction \alpha$ and $A \cap \alpha^5$ are in N_{α} . Thus, we have shown that *S**Z*_η is disjoint from the club $D_0 \cap D_1 \cap D_2$.

For all $\eta \in \kappa^k$ and $\alpha \in Z_n$, let:

$$
\mathcal{P}_{\eta,\alpha} := \{ p \in \alpha^{\alpha} \cap N_{\alpha} \mid \langle \alpha, \in, A \cap \alpha^5, p, \eta \restriction \alpha \rangle \models_{N_{\alpha}} \psi^0_Q \}.
$$

Finally, define a function $f : \kappa^k \to 2^k$ by letting, for all $\eta \in \kappa^k$ and $\alpha < \kappa$,

$$
f(\eta)(\alpha) := \begin{cases} 1, & \text{if } \alpha \in Z_{\eta} \text{ and } \eta_{\alpha} \in \mathcal{P}_{\eta,\alpha}; \\ 0, & \text{otherwise.} \end{cases}
$$

Claim 3.5.2 *f is* 1*-Lipschitz.*

Proof Let η , ξ be two distinct elements of κ^k . Let $\alpha \leq \Delta(\eta, \xi)$ be arbitrary.

As $\eta \restriction \alpha = \xi \restriction \alpha$, we have $\alpha \in Z_{\eta}$ iff $\alpha \in Z_{\xi}$. In addition, as $\eta \restriction \alpha = \xi \restriction \alpha$, $\mathcal{P}_{\eta,\alpha} = \mathcal{P}_{\xi,\alpha}$ whenever $\alpha \in Z_{\eta}$. Thus, altogether, $f(\eta)(\alpha) = 1$ iff $f(\xi)(\alpha) = 1$. \Box

¹⁰ For any α such that η_α is not a function from α to α , simply replace η_α by the constant function from α to {0}.

Claim 3.5.3 *Suppose* $(n, \xi) \in O$ *. Then* $f(n) \subset S$ $f(\xi)$ *.*

Proof As $(\eta, \xi) \in Q$, let us fix $\zeta \in \kappa^k$ such that, for all $\tau \lt \kappa$, $(\eta \mid \tau, \xi \mid \tau, \zeta \mid \tau) \in T$. Define a function $g : \kappa \to \kappa$ by letting, for all $\tau < \kappa$,

$$
g(\tau) := \min\{\delta < \kappa \mid \ell_\delta = (\eta \upharpoonright \tau, \xi \upharpoonright \tau, \zeta \upharpoonright \tau)\}.
$$

As $(S\setminus Z_n)$, $(S\setminus Z_\xi)$ and $(S\setminus Z_\zeta)$ are nonstationary, let us fix a club $C \subseteq \kappa$ such that $C \cap S \subseteq Z_n \cap Z_{\xi} \cap Z_{\zeta}$. Consider the club $D := {\alpha \in C \mid g[\alpha] \subseteq \alpha}$. We shall show that, for every $\alpha \in D \cap S$, if $f(\eta)(\alpha) = 1$ then $f(\xi)(\alpha) = 1$.

Fix an arbitrary $\alpha \in D \cap S$ satisfying $f(\eta)(\alpha) = 1$. In effect, the following three conditions are satisfied:

- (1) $\langle \alpha, \in, A \cap \alpha^5 \rangle \models_{N_\alpha} \psi_{\text{Reflexive}}$,
- (2) $\langle \alpha, \in, A \cap \alpha^5 \rangle \models_{N_{\alpha}} \psi_{Transitive}$, and
- (3) $\langle \alpha, \in, A \cap \alpha^5, \eta_{\alpha}, \eta \restriction \alpha \rangle \models_{N_{\alpha}} \phi_{Q}.$

In addition, since α is a closure point of *g*, by definition of φ _{*O*}, we have

$$
\langle \alpha, \in, A \cap \alpha^5, \eta \restriction \alpha, \xi \restriction \alpha, \zeta \restriction \alpha \rangle \models \varphi_Q.
$$

As $\alpha \in S$ and φ_Q is first-order,^{[11](#page-21-0)}

$$
\langle \alpha, \in, A \cap \alpha^5, \eta \restriction \alpha, \xi \restriction \alpha, \zeta \restriction \alpha \rangle \models_{N_{\alpha}} \varphi_Q,
$$

so that, by definition of ϕ _O,

$$
\langle \alpha, \in, A \cap \alpha^5, \eta \restriction \alpha, \xi \restriction \alpha \rangle \models_{N_{\alpha}} \phi_{Q}.
$$

By combining the preceding with clauses (2) and (3) above, we infer that the following holds, as well:

(4) $\langle \alpha, \in, A \cap \alpha^5, \eta_{\alpha}, \xi \mid \alpha \rangle \models_{N_{\alpha}} \phi_{Q}.$

Altogether, $f(\xi)(\alpha) = 1$, as sought.

Claim 3.5.4 *Suppose* $(\eta, \xi) \in \kappa^k \times \kappa^k \setminus Q$ *. Then* $f(\eta) \not\subseteq^S f(\xi)$ *.*

Proof As $(S\setminus Z_n)$ and $(S\setminus Z_\xi)$ are nonstationary, let us fix a club $C \subseteq \kappa$ such that $C \cap S \subseteq Z_n \cap Z_{\xi}$. As *Q* is a quasi-order and $(\eta, \xi) \notin Q$, we have:

- (1) $\langle \kappa, \in, A \rangle \models \psi_{\text{Reflexive}},$
- (2) $\langle \kappa, \in, A \rangle \models \psi_{Transitive}$, and
- (3) $\langle \kappa, \in, A, \eta, \xi \rangle \models \neg(\phi_O).$

¹¹ N_α is transitive and rud-closed (in fact, p.r.-closed), so that $N_\alpha \models G$ (see [\[18,](#page-24-10) §Other remarks on GJ]). Now, by [\[18](#page-24-10), §The cure in GJ, proposition 10.31], **Sat** is Δ_1^{GJ} .

so that, altogether,

$$
\langle \kappa, \in, A, \eta, \xi \rangle \models \psi_Q^1.
$$

Then, by the choice of the transversal $\langle \eta_{\alpha} | \alpha \in S \rangle$, there is a stationary subset $S' \subseteq S \cap C$ such that, for all $\alpha \in S'$:

(1') $\langle \alpha, \in, A \cap \alpha^5 \rangle \models_{N_\alpha} \psi_{\text{Reflexive}},$ (2') $\langle \alpha, \in, A \cap \alpha^5 \rangle \models N_{\alpha} \psi$ Transitive, (3') $\langle \alpha, \in, A \cap \alpha^5, \eta \mid \alpha, \xi \mid \alpha \rangle \models_{N_\alpha} \neg(\phi_Q)$, and (4') $\eta_{\alpha} = \eta \restriction \alpha$.

By Clauses (3') and (4'), we have that $\eta_{\alpha} \notin \mathcal{P}_{\xi,\alpha}$, so that $f(\xi)(\alpha) = 0$. By Clauses (1'), (2') and (4'), we have that $\eta_{\alpha} \in \mathcal{P}_{\eta,\alpha}$, so that $f(\eta)(\alpha) = 1$. Altogether, $\{\alpha \in S \mid f(\eta)(\alpha) > f(\xi)(\alpha)\}\)$ covers the stationary set *S'*, so that $f(\eta)\not\subset^{\widetilde{S}} f(\xi).$

This completes the proof of Theorem [3.5](#page-19-0) Theorem B now follows as a corollary.

Corollary 3.6 *Suppose that* κ *is a regular uncountable cardinal and* GCH *holds. Then there is a set-size cofinality-preserving* GCH*-preserving notion of forcing* P*, such that, in* $V^{\mathbb{P}}$, for every analytic quasi-order Q over κ^k and every stationary $S \subseteq \kappa$, $Q \hookrightarrow_1$ [⊆]*S.*

Proof This follows from Theorems [2.24](#page-8-2) and [3.5,](#page-19-0) and one of the following:

- If κ is inaccessible, then we use Fact [2.13](#page-5-2) and Lemma [2.20.](#page-7-1)
- If κ is a successor cardinal, then we use Fact [2.14](#page-6-4) and Lemma [2.19.](#page-7-0)^{[12](#page-22-0)}

Remark 3.7 By combining the proof of the preceding with a result of Lücke [\[17,](#page-24-11) Theorem 1.5], we arrive at following conclusion. Suppose that κ is an infinite successor cardinal and GCH holds. For every binary relation *R* over κ^k , there is a set-size GCHpreserving ($\lt k$)-closed, κ^+ -cc notion of forcing \mathbb{P}_R such that, in $V^{\mathbb{P}_R}$, the conclusion of Corollary [3.6](#page-22-1) holds, and, in addition, *R* is analytic.

Remark 3.8 A quasi-order \leq over a space $X \in \{2^k, \kappa^k\}$ is said to be \sum_1^1 -*complete* iff it is analytic and, for every analytic quasi-order Q over X , there exists a κ -Borel function $f: X \to X$ reducing Q to \leq . As Lipschitz \implies continuous \implies κ -Borel, the conclusion of Corollary [3.6](#page-22-1) gives that each \subseteq^S is a Σ^1_1 -complete quasi-order. Such a consistency was previously only known for *S*'s of one of two specific forms, and the witnessing maps were not Lipschitz.

4 Concluding remarks

Remark 4.1 The referee asked whether the conclusions of the main theorems are also known to be false. This is indeed the case, as witnessed by the model of [\[10](#page-23-10), §4], in

¹² Note that in this case, \mathbb{P} is moreover ($\lt \kappa$)-directed-closed and has the κ^+ -cc.

which for any *i*, $j < 2$ with $i + j = 1$ there are no Borel reductions from $\subseteq^{\aleph_2 \cap \text{cof}(\aleph_i)}$ to ⊆ℵ2∩cof(ℵ*j*) . In a recent paper [\[8\]](#page-23-11), we slightly improved this to get no Baire measurable reductions from $\subseteq^{\aleph_2 \cap \mathrm{cof}(\aleph_i)}$ to $\le^{\aleph_2 \cap \mathrm{cof}(\aleph_j)}$.

Remark 4.2 By [\[15,](#page-24-12) Corollary 4.5], in *L*, for every successor cardinal κ and every theory (not necessarily complete) T over a countable relational language, the corresponding equivalence relation \cong_T over 2^k is either Δ_1^1 or Σ_1^1 -complete. This dissatisfying dichotomy suggests that *L* is a singular universe, unsuitable for studying the correspondence between generalized descriptive set theory and model-theoretic complexities. However, using Theorem [3.5,](#page-19-0) it can be verified that the above dichotomy holds as soon as *κ* is a successor of an uncountable cardinal $\lambda = \lambda < \lambda$ in which $D l_S^*(\Pi_2^1)$ holds for both $S := \kappa \cap \text{cof}(\omega)$ and $S := \kappa \cap \text{cof}(\lambda)$. This means that the dichotomy is in fact not limited to *L* and can be forced to hold starting with any ground model.

Remark 4.3 Let $=$ ^S denote the symmetric version of \subseteq ^S. It is well known that, in the special case $S := \kappa \cap \text{cof}(\omega)$, $=^{S}$ is a κ -Borel^{*} equivalence relation [\[19](#page-24-13), §6]. It thus follows from Theorem [3.5](#page-19-0) that if $DI_S^*(\Pi_2^1)$ holds for $S := \kappa \cap \text{cof}(\omega)$, then the class of Σ_1^1 sets coincides with the class of κ -Borel^{*} sets. Now, as the proof of [\[16](#page-24-14), Theorem 3.1] establishes that the failure of the preceding is consistent with, e.g., $\kappa = \aleph_2 = 2^{2^{\aleph_0}}$, which in turn, by [\[12](#page-24-15), Lemma 2.1], implies that \diamondsuit_S^* holds, we infer that the hypothesis $DI_S^*(\Pi_2^1)$ of Theorem [3.5](#page-19-0) cannot be replaced by \diamondsuit_S^* . We thus feel that we have identified the correct combinatorial principle behind a line of results that were previously obtained under the heavy hypothesis of " $V = L$ ".

Acknowledgements This research was partially supported by the European Research Council (Grant Agreement ERC-2018-StG 802756). The third author was also partially supported by the Israel Science Foundation (Grant Agreement 2066/18). The main results of this paper were presented by the second author at the *4th Arctic Set Theory* workshop, Kilpisjärvi, January 2019, by the third author at the *50 Years of Set Theory in Toronto* conference, Toronto, May 2019, and by the first author at the *Berkeley conference on inner model theory*, Berkeley, July 2019. We thank the organizers for the invitations. The authors express their gratitude to the referee for a careful, thoughtful and valuable report.

References

- 1. Abraham, U., Magidor, M.: Cardinal arithmetic. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 1, 2, 3, pp. 1149–1227. Springer, Dordrecht (2010)
- 2. Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 1, 2, 3, pp. 395–489. Springer, Dordrecht (2010)
- 3. Brodsky, A.M., Rinot, A.: Reduced powers of Souslin trees. Forum Math. Sigma **5**, e2–82 (2017)
- 4. Cummings, J., Shelah, S.: Cardinal invariants above the continuum. Ann. Pure Appl. Log. **75**(3), 251–268 (1995)
- 5. Devlin, K.J.: The combinatorial principle \diamondsuit^{\sharp} . J. Symb. Log. 47(4), 888–899 (1982)
- 6. Drake, F.R.: Set theory—an introduction to large cardinals. 76, xii+351 (1974)
- 7. Fernandes, G.: On local club condensation. In preparation (2020)
- 8. Fernandes, G.,Miguel,M., Assaf, R.: Fake reflection (2020). [http://assafrinot.com/paper/40,](http://assafrinot.com/paper/40) Submitted February, 2020
- 9. Friedman, S.-D., Holy, P.: Condensation and large cardinals. Fundam. Math. **215**(2), 133–166 (2011)
- 10. Friedman, S.-D., Hyttinen, T., Kulikov, V.: Generalized Descriptive Set Theory and Classification Theory, vol. 230. American Mathematical Society, Providence (2014)
- 11. Galvin, F., Hajnal, A.: Inequalities for cardinal powers. Ann. Math. **2**(101), 491–498 (1975)
- 12. Gregory, J.: Higher Souslin trees and the generalized continuum hypothesis. J. Symb. Log. **41**(3), 663–671 (1976)
- 13. Hechler, S.H.: On the existence of certain cofinal subsets of ω_{ω} . In: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), pp. 155–173. Amer. Math. Soc., Providence, R.I. (1974)
- 14. Holy, P., Welch, P., Liuzhen, W.: Local club condensation and L-likeness. J. Symb. Log. **80**(4), 1361– 1378 (2015)
- 15. Hyttinen, T., Kulikov, V., Moreno, M.: On Σ_1^1 -completeness of quasi-orders on κ^k . Fundam. Math. (2020). <https://doi.org/10.4064/fm679-1-2020>
- 16. Hyttinen, T., Kulikov, V.: Bore*l* ∗ sets in the generalized baire space and infinitary languages. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game-Theoretical Semantics, pp. 395–412. Springer, Cham (2018)
- 17. Lücke, P.: Σ_1^1 -definability at uncountable regular cardinals. J. Symb. Log. **77**(3), 1011–1046 (2012)
- 18. Mathias, A.R.D.: Weak systems of Gandy, Jensen and Devlin. In: Bagaria, J., Todorcevic, S. (eds.) Set Theory, Trends Math., pp. 149–224. Birkhäuser, Basel (2006)
- 19. Mekler, A., Väänänen, J.: Trees and Π_1^1 -subsets of ω_1 . J. Symb. Log. **58**(3), 1052–1070 (1993)
- 20. Schimmerling, E., Zeman, M.: Square in core models. Bull. Symb. Log. **7**(3), 305–314 (2001)
- 21. Schimmerling, E., Zeman, M.: Characterization of \Box_K in core models. J. Math. Log. 4(1), 1–72 (2004)
- 22. Schindler, R., Zeman, M.: Fine structure. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 1, 2, 3, pp. 605–656. Springer, Dordrecht (2010)
- 23. Shelah, S.: Models with second order properties. IV. A general method and eliminating diamonds. Ann. Pure Appl. Log. **25**, 183–212 (1983)
- 24. Shelah, S.: The Erdos-Rado arrow for singular cardinals. Can. Math. Bull. **52**(1), 127–131 (2009)
- 25. Todorˇcevi´c, S., Väänänen, J.: Trees and Ehrenfeucht-Fraïssé games. Ann. Pure Appl. Log. **100**(1–3), 69–97 (1999)
- 26. Todorčević, S.: Partition Problems in Topology. Contemporary Mathematics, vol. 84. American Mathematical Society, Providence, RI (1989)
- 27. Zeman, M.: Inner Models and Large Cardinals. De Gruyter Series in Logic and its Applications, vol. 5. Walter de Gruyter & Co., Berlin (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.