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Abstract

A classical theorem of Hechler asserts that the structure (w®, <*) is universal in the
sense that for any o -directed poset P with no maximal element, there is a ccc forcing
extension in which (w®, <*) contains a cofinal order-isomorphic copy of P. In this
paper, we prove the following consistency result concerning the universality of the
higher analogue (KK , <5 ): assuming GCH, for every regular uncountable cardinal «,
there is a cofinality-preserving GCH-preserving forcing extension in which for every
analytic quasi-order Q over k* and every stationary subset S of «, there is a Lipschitz
map reducing Q to (¥, <%).

Keywords Universal order - Nonstationary ideal - Diamond sharp - Local club
condensation - Higher Baire space

Mathematics Subject Classification Primary 03E35; Secondary 03E45 - 54H0S

1 Introduction

Recall that a guasi-order is a binary relation which is reflexive and transitive. A well-
studied quasi-order over the Baire space NI\ is the binary relation <* which is defined
by letting, for any two elements  : N — Nand £ : N — N,
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n<*&iff (n e N| n(n) > £(n)) is finite.

This quasi-order is behind the definitions of cardinal invariants b and ? (see [2,
§2]), and serves as a key to the analysis of oscillation of real numbers which is known
to have prolific applications to topology, graph theory, and forcing axioms (see [26]).
By a classical theorem of Hechler [13], the structure (NN, <*) is universal in that
sense that for any o -directed poset IP with no maximal element, there is a ccc forcing
extension in which (N, <*) contains a cofinal order-isomorphic copy of PP.

In this paper, we consider (a refinement of) the higher analogue of the relation <*
to the realm of the generalized Baire space «* (sometimes refered as the higher Baire
space), where « is a regular uncountable cardinal. This is done by simply replacing
the ideal of finite sets with the ideal of nonstationary sets, as follows.!

Definition 1.1 Given a stationary subset S C «, we define a quasi-order <5 over k¥
by letting, for any two elements  : k — k and & : k — «,

n <5 Eiff {o € S| n(o) > &(x)} is nonstationary.

Note that since the nonstationary ideal over S is o-closed, the quasi-order <5 s
well-founded, meaning that we can assign a rank value ||5|| to each element 1 of «*.
The utility of this approach is demonstrated in the celebrated work of Galvin and
Hajnal [11] concerning the behavior of the power function over the singular cardinals,
and, of course, plays an important role in Shelah’s pcftheory (see [1, §4]). It was also
demonstrated to be useful in the study of partition relations of singular cardinals of
uncountable cofinality [24].

In this paper, we first address the question of how <% compares with <3 ' for various
subsets S and §’. It is proved:

Theorem A Suppose that « is a regular uncountable cardinal and GCH holds. Then
there exists a cofinality-preserving GCH-preserving forcing extension in which for all
stationary subsets S, S’ of k, there exists a map f : k=¥ — 2=K such that, for all
n, € € k=X,

e dom(f (1)) = dom(n);
o ifn C& then f(n) C f(§); ,
o ifdom(n) = dom(§) = «, thenn <5 & iff f(n) <5 f(&).

Note that as Im(f [ k) C 2%, the above assertion is non-trivial even in the case
S = §’ = k, and forms a contribution to the study of lossless encoding of substructures
of (xk=K,...) as substructures of (2=¥, ...) (see, e.g., [3, Appendix]).

To formulate our next result—an optimal strengthening of Theorem A—Iet us
recall a few basic notions from generalized descriptive set theory. The generalized
Buaire space is the set k“ endowed with the bounded topology, in which a basic open
set takes the form [¢] := {n € «“ | ¢ C n}, with ¢, an element of x=*. A subset
F C k" is closed iff its complement is open iff there exists a tree 7 C « =* such that

LA comparison of the generalization considered here with the one obtained by replacing the ideal of finite
sets with the ideal of bounded sets may be found in [4, §8].
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[T]:={n e« |VYa <k(n|aeT)}isequal to F. A subset A C «“ is analytic
iff there is a closed subset F of the product space x* x « such that its projection
pr(F) :={n e« |3 €k (n,&) € F}isequal to A. The generalized Cantor space
is the subspace 2“ of «* endowed with the induced topology. The notions of open,
closed and analytic subsets of 2, 2 x 2 and x* x «* are then defined in the obvious
way.

Definition 1.2 The restriction of the quasi-order <5 to 2¥ is denoted by cs,
For all n, & € k*, denote A(n, &) := min({e < k | n(a) # &(x)} U {k}).

Definition 1.3 Let R| and R; be binary relations over X, X, € {2, ¥}, respectively.
A function f : X| — X» is said to be:

(a) areduction of Ry to Ry iff, forall n, & € X1,

n Ry §iff f(n) Ry f(§).

(b) I-Lipschitz iff for all n, & € X,

A, §) < A(f(m), f(5)).
The existence of a function f satisfying (a) and (b) is denoted by R; <> R».

In the above language, Theorem A provides a model in which, for all stationary
subsets S, 8" of k', <5 <> C¥ " As <Sisan analytic quasi-order over «*, it is natural
to ask whether a stronger universality result is possible, namely, whether it is forceable
that any analytic quasi-order over x* admits a 1-Lipschitz reduction to <5 for some
(or maybe even for all) stationary S’ C «. The answer turns out to be affirmative,
hence the choice of the title of this paper.

Theorem B Suppose that «k is a regular uncountable cardinal and GCH holds. Then
there exists a cofinality-preserving GCH-preserving forcing extension in which, for
every analytic quasi-order Q over k' and every stationary S C k, Q <1 C5.

Remark The universality statement under consideration is optimal, as Q <> cS
implies that Q is analytic.

The proof of the preceding goes through a new diamond-type principle for reflecting
second-order formulas, introduced here and denoted by Dlj;(]'[é). This principle is a
strengthening of Jensen’s <g and a weakening of Devlin’s <>§. For « a successor
cardinal, we have DI} (1721) = <% but not &5 = DI (1721) (see Remark 4.3 below).
Another crucial difference between the two is that, unlike <%, the principle DI (1721)
is compatible with the set S being ineffable.

In Sect. 2, we establish the consistency of the new principle, in fact, proving that it
follows from an abstract condensation principle that was introduced and studied in [9,
14]. It thus follows that it is possible to force Dl’g (1'121) tohold over all stationary subsets
S of a prescribed regular uncountable cardinal «. It also follows that, in canonical
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models for Set Theory (including any L[E] model with Jensen’s A-indexing which

is sufficiently iterable and has no subcompact cardinals), Dl’g(]'[zl) holds for every

stationary subset S of every regular uncountable (including ineffable) cardinal «.
Then, in Sect. 3, the core combinatorial component of our result is proved:

Theorem C Suppose S is a stationary subset of a regular uncountable cardinal k. If
DI (1721) holds, then, for every analytic quasi-order Q over k*, Q <1 C5.

2 A Diamond reflecting second-order formulas

Devlin [5] introduced a strong form of the Jensen-Kunen principle <;, which he
denoted by <>,%, and proved:

Fact 2.1 (Devlin [5, Theorem 5]) In L, for every regular uncountable cardinal « that
is not ineffable, <>,E holds.

Remark 2.2 A subset S of a regular uncountable cardinal « is said to be ineffable iff,
for every sequence (Z, | @ € S), there exists a subset Z C «, for which {« € § |
Z Na = Zy, N o} is stationary. Note that the collection of non-ineffable subsets of k
forms a normal ideal that contains {&¢ < k | cf(a) < «} as an element. Also note that
if k is ineffable, then « is strongly inaccessible. Finally, we mention that by a theorem
of Jensen and Kunen, for any ineffable set S, <>5 holds and <>>§ fails.

As said before, in this paper, we consider a variation of Devlin’s principle com-
patible with x being ineffable. Devlin’s principle as well as its variation provide us
with 1721 -reflection over structures of the form (x, €, (A;)new). We now describe the
relevant logic in detail.

A 1721-sentence ¢ is a formula of the form YX3Y ¢ where ¢ is a first-order sentence
over a relational language £ as follows:

L has a predicate symbol € of arity 2;

L has a predicate symbol X of arity m (X);

L has a predicate symbol Y of arity m (Y);

L has infinitely many predicate symbols (A,),cw, €ach A, is of arity m(A,,).

Definition 2.3 For sets N and x, we say that N sees x iff N is transitive, p.r.-closed,
and x U {x} C N.

Suppose thataset N sees an ordinal o, and that¢p = VX3IY ¢ is aHzl—sentence, where
@ is a first-order sentence in the above-mentioned language L. For every sequence
(A)new such that, foralln € w, A, C o) we write

(o, €, (Annew) FEN ¢

to express that the two hold:

() (Apnew € N;
) (N,€) = (VX Cam®)@AY C a™)[(a, €, X, Y, (An)new) | @], where:
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Inclusion modulo nonstationary 831

€ is the interpretation of €;

X is the interpretation of X

Y is the interpretation of Y, and

forall n € w, A, is the interpretation of A,,.

Convention 2.4 We write a™ for |a|T, and write (a, €, (A)new) = ¢ for

(o, €, (Ap)new) '=Ha+ ¢

Definition 2.5 (Devlin [5]) Let « be a regular and uncountable cardinal.
<>,5 asserts the existence of a sequence N = (N, | o < k) satisfying the following:

(1) for every infinite @ < k, Ny is a set of cardinality |«| that sees «;

(2) forevery X C «,thereexistsaclub C C « suchthat, foralla € C,CNa, XNa €
Ny

(3) whenever (k, €, (Ap)new) E ¢, with ¢ a Hzl—sentence, there are stationarily
many o < « such that (@, €, (A, N (@"®)),c) EN, 6.

Consider the following variation:

Definition 2.6 Let « be a regular and uncountable gardinal, and S C « stationary.
Dl*g(ﬂzl) asserts the existence of a sequence N = (N, | o € §) satisfying the
following:

(1) forevery @ € S, Ny is a set of cardinality < « that sees «;

(2) for every X C «, there exists a club C C « such that, forall« € C N S,
XNa € Ny;

(3) whenever (k, €, (Ap)new) E ¢, with ¢ a Hzl—sentence, there are stationarily
many « € S such that |[Ny| = || and (e, €, (A, N (@"A))e0) EN, ¢

Remark 2.7 The choice of notation for the above principle is motivated by [23, Defi-
nition 2.10] and [25, Definition 45].

The goal of this section is to derive Dl“;(Hzl) from an abstract principle which is
both forceable and a consequence of V = L[E], for L[ E] an iterable extender model
with Jensen A-indexing without a subcompact cardinal (see [20,21]). Note that this
covers all L[ E] models that can be built so far.

Convention 2.8 The class of ordinals is denoted by OR. The class of ordinals of
cofinality p is denoted by cof (1), and the class of ordinals of cofinality greater than
wu is denoted by cof (>u). For a set of ordinals a, we write acc(a) := {¢ € a |
sup(a Na) = a > 0}. ZF~ denotes ZF without the power-set axiom. The transitive
closure of a set X is denoted by trcl(X), and the Mostowski collapse of a structure B
is denoted by clps(‘B).

Definition 2.9 Suppose N is a transitive set. For a limit ordinal A, we say that M=
(Mg | B < A)is anice filtration of N iff all of the following hold:

() Ups Mp = N;

@ Springer



832 G. Fernandes et al.

2) M is €-increasing, thatis,o < 8 <A = M, € Mg;
(3) M is continuous, that is, for every € acc(A), Mg = U(Kﬂ M,y;
(4) forall B < A, Mg is a transitive set with Mg N OR = B and |[Mg| < |B] + Ro.

Convention 2.10 Whenever A is a limit ordinal, and M = (Mg | f < A) is a C-
increasing, continuous sequence of sets, we denote its limit | J p<). Mp by M.

Definition 2.11 (Holy et al. [14]) Let n < ¢ be ordinals. We say that local club
condensation holds in (n, ), gnd denote this by LCC(n, ¢), iff there exist a limit
ordinal A > ¢ and a sequence M = (Mg | B < A) such that all of the following hold:

(1) M is nice filtration of M,

() (M, €) | ZF; ]

(3) Forevery ordinal « in the open interval (1, ¢) and every sequence F = ((Fj, kp) |
n e w) in M, suchthat, foralln € w,k, € wand F,, C (Ma)k",thereisasequence
B = (Bg | B < |a|) in M; having the following properties:

(a) forall B < |a|, Bpg is of the form
(Bg. €, M [ (Bg N OR), (F, N (Bp)"neo);

(b) forall B < |af, By < (Ma, €, M [ &, (Fy)new);
(c) forall B < ||, B C Bg and_|B/3| < |af;
(d) forall B < ||, there exists 8 < A such that

clps((Bg. €. (Bs | 6 € By N OR))) = (Mg, €, M | B);

(e) (Bg | B < |a|) is C-increasing, continuous and converging to M.

For B as in Clause (3) above we say that B wimnesses LCC at o with respect to M
and F.

Remark 2.12 There are first-order sentences ¥ (7, ¢) and ¥ (7)) in the language £* :=
{€. M, 1, ¢} of settheory augmented by a predicate for a nice filtration and two ordinals
such that, foralln < ¢ <Aand M = (Mg | B < A):

o ((M,, e, 1\:/}) = vo(n,¢)) ﬁ([\71 witnesses that LCC(n, ¢) holds), and

e ((M),e, M) =1v1(n) < (M witnesses that LCC(#, A) holds).

Therefore, we will later make an abuse of notation and write (N, €, M ) E LCC(n, ¢)
to mean that M is a nice filtration of N witnessing that LCC(#, ¢) holds.

Fact 2.13 (Friedman—Holy, implicit in [9]) Assume GCH. For every inaccessible car-
dinal k, there is a set-size cofinality-preserving notion of forcing P such that, in V¥,
the three hold:

(1) GCH:
(2) thereisanicefiltration M = (Mg | B < k) of H+ wimessing that LCC(w1, k)
holds;
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(3) thereisa Ay-formula ® and a parameter a C k such that the relation <g defined
by (x <¢ yiff H+ = O(x, y,a)) is a global well-ordering of H,+.

Fact2.14 (Holy et al. [14, p. 1362 and §4]) Assume GCH. For every regular cardinal
K, there is a set-size notion of forcing P which is (<«k)-directed-closed and has the
kT -cc such that, in VE, the three hold:

(1) GCH;

(2) there is a nice filtration M= (Mg | B < kT of H,+ witnessing that LCC(k, k™)
holds;

(3) thereisa A-formula ® and a parameter a C k such that the relation < g defined
by (x <¢ yiff H+ = O(x, y,a)) is a global well-ordering of H,+.

The following is a improvement of [9, Theorem 8§].

Fact2.15 (Fernandes [7]) Let LIE] be an extender model with Jensen \-indexing.
Suppose that, for every o € OR, the premouse L[E]||« is weakly iterable.” Then, for
every infinite cardinal k, the following are equivalent:

(@) (LE[E1| B < k) witneses that LCC(k ™, k™) holds;
(b) LIE] k= “k is not a subcompact cardinal”.

In addition, for every infinite limit cardinal «, (Lg[E] | B < kT witnesses that
LCC(k, k) holds.

Lemma 2.16 Suppose that A is a limit ordinal and that M= (Mg | B < A) is anice
filtration of H,. Then, for every infinite cardinal 6 < A, My C Hpy.

Proof Let® < A be an infinite cardinal. By Clause (4) of Definition 2.9, for all 8 < 0,
the set Mg is transitive, Mg N OR = B, and |[Mg| = |B] < 6. It thus follows that
M9=Uﬂ<9M/3§H9. O

Motivated by the property of acceptability that holds in extender models, we define
the following property for nice filtrations:

Definition 2.17 Given a nice filtration M = (Mg | B < kTt of H.+, we say that M
is eventually slow at k iff there exists an infinite cardinal ; < « such that, for every
cardinal 6 with u < 6 <k, Mg = Hp.

Lemma 2.18 Suppose that M = (Mg | B < k™) is a nice filtration of H,+ that is
eventually slow at k. Then, for a tail of o < k, for every sequence .Z_-L = ((Fn, kn) |
n € w) such that, forall n € w, k, fow and F,, C (Ma+)k”, there is B that witnesses
LCC at o+ with respect to M and F.

Proof Fix an infinite cardinal 1 < « such that, for every cardinal 6 with u < 6 < «,
My = Hyp.Leta € (u, k) be arbitrary. Now, given a sequence JF as in the statement of
the lemma, build by recursion a C-increasing and continuous sequence (4, | y < at)
of elementary submodels of (M, +, €, M o™, (Fy)new), such that:

2 Here, L[E]||« stands for (J(f , €, E | wa, Eyq), following the notation from [27]. For the definition of
weakly iterable, see [27, p. 311].
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o foreachy <a™,|A,| <at, and
° Uy<a+ Ay, = Hy+.

By a standard argument, C := {y < a® | A, = M, }isaclubina™. Let {yg |

B < ot} denote the increasing enumeration of C. Denote Bp = 2. Then B =
(Bg | B<a ) is an e-increasing and continuous sequence of elementary submodels
of (My+, €, M | &, (Fy)new), such that, for all B < o, clps(Bp) = (M, €, ...).
O

In the next two lemmas we find sufficient conditions for nice filtrations (Mg |
B < k) to be eventually slow at k.

Lemma 2.19 Suppose that k is a successor cardinal and that M = (Mg | B <«T)is

a nice filtration of H+ witnessing that LCC(k, k™) holds. Then M is eventually slow
ark.

Proof As k is a successor cardinal, M is eventually slow at k iff M, = H,. Thus, by
Lemma 2.16, it suffices to verify that H, € M,.. To this end, let x € H,, and we will
find B < « such that x € Mg.

Set 6 := |trcl{x}| and fix a witnessing bijection f : 6 <« trcl{x}. As H+ =
M+ = Uyp+ Mo, we may fix @ < & such that {f, 0, trcl{x}} € M,. Let B
witness LCC(k, k1) at o with respect to M and F := ((f,2)). Let B < kT be such
that clps(Bg41) = (Mg, €, ...).

Claim 2.19.1 6 < B < «.

Proof By Definition 2.11(3)(c), 8 + 1 € Bgy1, so that, & < B. By Clause (4) of
Definition 2.9 and by Definition 2.11(3)(c), |8] = |[Mg| = |By+1| < la| < k. O

Now, as
Bor1 < (Her, €, M, Fy) = 3y(Va¥s(Fo(a, §) < (@, 8) € y)),

we have f € Bgy1.Sincedom(f) € Bgy1,Im(f) C Byy1. ButIm(f) = trel({x}) is
a transitive set, so that the Mostowski collapsing map 7 : By41 — Mg is the identity
over trcl({x}), meaning that x € trcl({x}) € Mg. O

Lemma 2.20 Suppose that k is an inaccessible cardinal, u < k and M = (Mg |

B < k1) witnesses that LCC(u, k) holds. Then 1 witnesses that M is eventually
slow at k.

Proof Suppose not. It follows from Lemma 2.16 that we may fix an infinite cardinal
6 with u < 6 < « along with x € Hy+\Mg+. Fix a surjection f : 6 — trcl({x}). Let
a < k1 be the least ordinal such that x € M,, so that pu < 0t <o < kt.LetB

witness LCC(u, k™) at  with respect to M and F := ((f,2)).Let B < «™ be such
that clps(Bg4+1) = (Mg, €, ...).

Claim 2.20.1 8 < a.
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Proof By Clause (4) of Definition 2.9 and by Definition 2.11(3)(c), || = |Mg|
|Bg+1| < |a|. and hence B < «.

o |l

By the same argument used in the proof of Lemma 2.19, x € Mg, contradicting
the minimality of «. O

Question 2.21 Notice that if « is an inaccessible cardinal and M = (Mg | B < kT)
is such that (H, .+, €, M) = LCC(k, k™), then, for club many 8 < «, Mg = Hg. We
ask: is it consistent that « is an inaccessible cardinal, M = (Mg | B <« *) is such
that (H,.+, €, M) = LCC(k, k1), yet, for stationarily many 8 < &, Mg+ C Hg+?

Lemma 2.22 Suppose that M = (Mg | B < &™) is a nice filtration of H,+. Given

a sequence F = ((Fpu,ky) | n € a)) such that, for alln € w k, € wand F, C
(H+)kn, there are club many 8 < k™ such that (M, €, M 18, (Fy N (Ms)*) ) <
<MK+1 <, M9 (Fn)new)~

Proof Build by recursion an €-increasing continuous sequence B = (Bp | B <kT)
of elementary submodels of (M, .+, €, M, (F,)new), Such that:

o foreach B < k™, |Bg| <«™,and
° Uﬂ<;<+ Bg = H,+.

By a standard back-and-forth argument, utilizing the continuity of B and M, {6 <
kT | Bs = Ms}isaclubin k™. ]

Definition 2.23 Suppose M= (Mg | B < A) is anice filtration of M} for some limit
ordinal A > 0. Givena < A and F = ((Fn, kn) | n € @) in M; such that, for each
newk, €wandF, C (My)*, for every sequence ° B = (Bg | B < |a]) in M),
and every letter [ € {a, b, c, d, e}, we let 1,01(% }" o, M [ (e 4 1)) be some formula
expressing that Clause (3)(1) of Definition 2.11 holds.

The following forms the main result of this section.

Theorem 2.24 Suppose that « is a regular uncountable cardinal, and M = (Mg |
B < k1) is a nice filtration of H.+ that is eventually slow at k, and witnesses that
LCC(k, k) holds. Suppose further that there is a subseta < k and a formula ® € X,
which defines a well-order <@ in H.+ via x <@ y iff He+ = ©(x,y, a). Then, for
every stationary S C k, Dl§(1721) holds.

Proof Let S’ C « be stationary. We shall prove that Dl*,(Hzl) holds by adjusting
Devlin’s proof of Fact 2.1.
As a first step, we identify a subset S of S’ of interest.

Claim 2.24.1 There exists a stationary non-ineffable subset S C S'\w such that, for
everya € S'\S, |Hy+| < k.

Proof If S’ is non-ineffable, then let S := S"\w, so that H,+ = H,, for alla@ € §'\S.
From now on, suppose that S’ is ineffable. In particular, « is strongly inaccessible and
|Hy+| < K forevery o < k. Let S := S\ (w U T), where

= {a € k Ncof (>w) | §' N« is stationary in a}.
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836 G. Fernandes et al.

To see that S is stationary, let E be an arbitrary club in k.

» If S’ Ncof(w) is stationary, then since " N cof (w) C S, we infer that SN E # @.

» If S’ N cof (w) is non-stationary, then fix a club C C E disjoint from S” N cof (w),
and let o := min(acc(C) N S’). Then cf (@) > w and C N« is a club in « disjoint
from S’, so that o ¢ T. Altogether,« € SN E.

To see that S is non-ineffable, we define a sequence (Z, | « € S), as follows. For
every o € S, fix aclosed and cofinal subset Z, of o with otp(Z,) = cf(«) such that, if
cf (@) > w, then the club Z, is disjoint from S’ N «. Towards a contradiction, suppose
that Z C « is a set for which {a € S | Z N« = Z,} is stationary. Clearly, Z is closed
and cofinal in k, so that Z N S’ is stationary, otp(Z N S") = k and hence D := {a < « |
otp(ZNS Na) =a > w}isaclub. Picka € DN S suchthat ZNa = Z,. As

cf(@) = otp(Zy) =otp(ZNa) >otp(ZNS Na) =a > o,

it must be the case that Z, is a club disjoint from §’ N «, while Z, = Z N« and
Z NS Na # @. This is a contradiction. O

Let S be given by the preceding claim. We shall focus on constructing a sequence
(Ny | @ € S) witnessing Dl’g(ﬂzl) such that, in addition, |N,| = |«| for every @ € S.
It will then immediately follow that the sequence (N, | o € §’) defined by letting

N/ := Ny fora € S, and N/, := H,+ for @ € §'\S will witness the validity of
Dl’g/ (1'121). As M is eventually slow at k, we may also assume that, for every o € S,
My+ = Hy+ and the conclusion of Lemma 2.18 holds true.® If « is a successor

cardinal, we may moreover assume that, for every o € S, M+ = H,.

Here we go. As S is non-ineffable, fix a sequence Z = (Z, | @ € S) with Z, C «
for all ¢ € §, such that, forevery Z C «, {a € S | ZN«a = Z,} is nonstationary. In
the course of the rest of the proof, we shall occasionally take witnesses to LCC at some
ordinal « with respect to M and a finite sequence F = ((Fp, ky) | n € 4); for this,
we introduce the following piece of notation for any positive m < w, X € (x+)"™ and

a <kt

Fxa = (XNa" m),@na, 1), SNa, 1), (Z | a,2).

Next, for each a € S, we define S, to be the set of all B € ot satisfying the
following list of conditions:
() (Mg, €. M | B) = LCC(a, B).*
(ii) (Mg, €) = ZF~ & a is the largest cardinal,’
(iii) (Mg, €) = aisregular & S N« is stationary,
@iv) (Mﬁ, €) = O(x,y,aNa) defines a global well-order,
V) 4 [+ 1) ¢ Mg.

3 For all the small & € §'\S such that M4 # H,+, simply let NJ, := min(S)-

4 Note that B is not needed to define LCC(e, B) in the structure (Mg, €, M [ B). Indeed, by LCC(e, B) we
mean V| (o) as in Remark 2.12.

5 In particular, (Mg, €) |= « is uncountable.
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Then, we consider the set
D :={x eS| Sy #0 & Sy has no largest element}.

Define a function f : S — « as follow. For every o € D, let f (a) := sup(Sq); for
everya € S\D, let f(«) be theleast B < « such that Mg seesa,and Z [ (e +1) € Mpg.

Claim 2.24.2 f is well-defined. Furthermore, foralla € S, a < f(a) < a™.

Proof Let o € S be arbitrary. The analysis splits into two cases:

» Suppose ¢ € D. As o € §, we have Uﬂ<a+ Mg = M,+ = H,+, and hence
we may find some 8 < a™ such that Z [ ( + 1) € Mg. Then, condition (v) in the
definition of S, implies that e < f(a) < B < a™.

> Suppose o ¢ D. Asa € S,letus fix (Bg | B < at) that witnesses LCC
at o™ with respect to M and ]_-L(,;,w. Set B := a + 2 and fix B < «* such that
clps(Bg) = <M5’ ...). As B C Bg and |Bg| < a™, by Clause (4) of Definition 2.9,
B < B < at.Inaddition, Z [(a+1)eM J; and there exists an elementary embedding
from <M5’ €) to (Hy+, €), so that Mg sees a. Altogether, @ < f(a) < B <at. O

Define N = (Ng | a € S) by letting Ny := M sy for all o € S. It follows from
Definition 2.9(4) and the preceding claim that |Ny| = || forall ¢ € S.

Claim 2.24.3 Let X C k. Then there exists a club C C k such that, foralloa € C N S,
X No € Ny.

Proof ByL;emma2.22, we now fix § < « T suchthatk, S, a € Msand (M, €, M [8) <
(M,+, €, M).Note that |§| = k. LetB = (B, | o < k) witness LCC at § with respect
to M and Fx .

Subclaim 2.24.3.1 C :={x <« | By Nk = «a}isaclubink.

Proof To see that C is closed in «, fix an arbitrary o < x with sup(C N«a) = « > 0.
As (Bg | B < k) is C-increasing and continuous, we have

e= |J 8= | Bsnoy={JBsnw)=B.Nx.

Be(CNa) Be(CNa) B<a

To see that C is unbounded in «, fix an arbitrary ¢ < «, and we shall find @ € C
above ¢. Recall that, by Clause (3)(c) of Definition 2.11, for each 8 < «, B € Bg
and |Bg| < «. It follows that we may recursively construct an increasing sequence of
ordinals («;, | n < w) such that:

e oo :=sup(B: Nk),and, foralln < w:
e sup(By, Nk) < oyt <K.

In particular, sup(Bgy, N«&) € op41 for all n < w. Consequently, for o := sup,, _,, ¥,
we have that o < «, and

By Nk = U(Banm’() =< UanJrl = U(Ba,H_Z Nk) =a,

n<w n<w n<w
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sothata € C\(¢ + 1). O

To see that the club C is as sought, let « € C N S be arbitrary, and we shall verify
that X Na € Ny. Let B(a) be such that clps(By) = (Mg, €, ...), and let j, :
Mgy — By denote the inverse of the collapsing map. As o € C, jy(a) = «, and
ja_l(Y) =YNaforalY € B, NP(k).

Subclaim 2.24.3.2 For every 8 < « such that Z [ (4 1) € Mg, B > B(a).

Proof Suppose not, so that 7 (@4 1) € Mp(a). As (M5, €) < (M,+, €), we infer
that

(Ms,e) =VZ Ck3IEclubink Yy e ENS — ZNy # Z,),
and hence
(Mg),€) EVZ CaIFEclubina (Vy e ENS = ZNy #Z,).
In particular, using Z := Z,, we find some E such that
Mgy, €) E(Eisaclubina) A(Vy € ENS — Zy Ny # Zy).
Pushing forward with E* := j,(E) and Z* := j,(Z,), we infer that
(Ms, €) = (E¥isaclubink) A(Yy e EXNS — Z* Ny # Z,).

Then Z*Na = ju(Zy,) N = Z,, and hence o ¢ E™* (recall that o € §). Likewise
E*Na = j,(E)Na = E, and hence @ € acc(E*) C E*. This is a contradiction.
O

Now, since ‘% witnesses LCC at § withrespect to M and ]_:“ ,foreachY in{X, a, S},
we have that

(By, €, YN By) < (M+,€,Y) EWVz((z € ¥) < (z €k ANY(2))),

therefore each of X, a, S is a definable element of B,. So, as, forall Y € B, NP (k),
ja_l (Y) = Y Na, weinfer that X N, a N, and S Na are all in Mg(y). We will show
that 8(«) < f(«), from which it will follow that X N« € Ny.

Subclaim 2.24.3.3 B(a) < f().

Proof Naturally, the analysis splits into two cases:
» Suppose o ¢ D. By definition of f(«) and by Subclaim 2.24.3.2, B(«) < f(@).
» Suppose ¢ € D. As B, < (Ms, €, M [6,X,a,sS, 2) and Im(jy) = By, we
infer that j, : Mg@) — M;s forms an elementary embedding from (Mg, €, ...) to
(My, €, ]\g [6,X,a,S, Z) with jy (@) = k. Ask,S,a € Ms and (Ms, e, M | §) <
(M, €, M), we have:
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() (M5, €, M | §) = LCC(k, 8),
() (Ms, €) = ZF~ & k is the largest cardinal,
(III) (M5, €) = k is regular & S N « is stationary,
V) (Ms, €) = O(x, y,a Nk) defines a global well-order.

It now follows that B(«) satisfies clauses (i),(ii),(iii) and (iv) of the definition of S,.
Together with Subclaim 2.24.3.2, then, () € Sy. So, by definitions of f and D,
Bla) < f(a). a

This completes the proof of Claim 2.24.3. O
We are left with addressing Clause (3) of Definition 2.6.

Claim 2.24.4 The sequence (Ny | o € S) reflects 1721 -sentences.

Proof We need to show that whenever (k, €, (A;)new) E ¢, with ¢ = VX3IY¢ a
1721—sentence, for every club E C «, there is@ € E N S, such that

(@, €, (Ay N (@ *))c0) N, ¢

But by adding E to the list (A;), e Of predicates, and by slightly extending the first-
order formula ¢ to also assert that E is unbounded, we would get that any ordinal
«a satisfying the above will also satisfy that « is an accumulation point of the closed
set E, so that « € E. It follows that if any Hzl—sentence valid in a structure of the
form (k, €, (Ap)neo) reflects to some ordinal &’ € §, then any Hzl-sentence valid in
a structure of the form (k, €, (A;)new) reflects stationarily often in S.

Consider a 1721 -formula VX 3Y ¢, with integers p, g such that X is a p-ary second-
order variable and Y is a g-ary second-order variable. Suppose A= (Anew 18 a
sequence of finitary predicates on «, and (k, €, A) | VX3Y¢. By the reduction
established in the proof of Proposition 3.1 below, we may assume that A consists of a
single predicate A of arity, say, mg. Recalling Convention 2.4 and since M, .+ = H,+,
this altogether means that

(k, €, Ag) Em . YXIY.

Let y be the least ordinal such that Z, Ag, S € M,,. Note thatk < y < kT.Let A
denote the set of all § < « such that:

(a) (Ms, €, M | 8) = LCC(k, 8),°

(b) (Ms, €) = ZF~ & « is the largest cardinal,

(c) (Ms, €) =k isregular & S is stationary in k,

(d) (Ms, €) = O(x, y, a) defines a global well-order,
(e) (k. €, Ao) Em; YXIY g,

(f) (Ms, €) = Z witness that S is not ineffable, and
(&) 8>vy.

6 In particular, § > «.
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As kT € A, it follows from Lemma 2.22 and elementarity that otp(A Nk ™T) = k.
Let {8, | n < w} denote the increasing enumeration of the first w many elements of
A.

Definition 2.24.4.1 Let T(]\71, k,S,a, Ao, Z, y) denote the theory consisting of the
following axioms:

(A) M witness LCC(, k),

(B) ZF~ & « is the largest cardinal,

(C) «k isregular & S is stationary in «,

(D) ©(x, y, a) defines a global well-order,

(E) («, €, Ao) FVXIYe,

3] 7 witness that S is not ineffable,

(G) vy is the least ordinal such that {Z Ag, S} € M(y)

Letn < w. Since M3, is transitive, standard facts (cf. [6, Chapter 3, §5]) yield the
existence of a formula ¥ in the language {]\71, €} whichis A%F_, andforall§ € (y, é,),

(Ms, e, M [8) = T(M |8,x,S,a, Ao, Z,y)
<~
W(M 1|8,k S, a, Ay, Z,y) (*1)
o = R
(Ms,, e, M [ 6,) E¥(M |6,k,S,a, Ao, Z,y).

Since {8k | k < w} enumerates the first ® many elements of A, M;, believes that
there are exactly n ordinals § such that Clauses (a)—(g) hold for M. In fact,

(Ms,, €, M | 8,) ={8 | W(M | 8,1, S,a, A0, Z,¥)} = {8 | k <n}). (%)

Next, for every n < w, as (M €) = |6n] =k, we may | fixin Ms,, a 1 sequence

n+1°
B, = (B« | @ < k) witnessing LCC at §,, with respect to M [ 6n+1 and .7-',40’,( such
that, moreover,

(Ms,.,, €, M [ 8p41) = “B,, is the <g-least such witness”.”

For every n < w, consider the club C;, := {& < « | By« Nk = a}, and then let

o' := min ((ﬂnew Cn> N S) .

For every n < w, let B, be such that clps(®B,, ) = (Mg,, €, ...), and let j, :
Mg, — B, o denote the inverse of the Mostowski collapse.

n

7 Recalling Definition 2.23, this means that (Ms,, S M [ Snt1) =
“B,, is the < -least B such that (Y A ¥p A Ve A g AWe) (B, Fag o dn, M | (a + 1)
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Subclaim 2.24.4.1 Let n € . Then j; ' (y) = jg ' (»).

Proof Since j'(Z) = Z | o/, j'(Ag) = Ao N (&)™ and j '(S) = SN, it
follows from

(Ms,, €, M | 8,) = y is the least ordinal with {Z, Ag, S} € M,),

that
(Mg,, €. M | Bn) = jn ' (y) is the least ordinal with {Z [ &/, A9 N (&))", SNa'} € M,

Now, let y be such that
(Mﬂo,e,M I Bo) k= 7 is the least ordinal such that {Z | o, Ag N (&)™, S Na'} € Mj.

Since M is continuous, it follows that  is a successor ordinal, thatis, y = sup(y) + 1.
So (Mg,, €, M | Bo) satisfies the conjunction of the two:

o {Z]d,AgN (&)™, SNa'} C My, and
o {[Zd,AgN ()™, SNa'} g Msupip) -

But the two are Ap-formulas in the parameters 7 Fa’, Ao N (@)™, SNa’, My and
Mup(j), which are all elements of Mg,. Therefore,

(Mg,, €, M | B,) |= 7 is the least ordinal such that {Z | o/, Ag N (&)™, SNa'} € M,,

sothat j, ' () =7 = jo ' (). o

Denote y := j, ! (7). Let ¥ be the same formula used in statement (x1). For all
n <wand B € (y, Bn), setting B := j,(B), by elementarity of j,:

(Mg, €, M | ) EW (M [ B, o/, SN, ana’, AgN @)™, Z [, 7)
. = . (*3)
<M8n5€7Mr8ﬂ> ':w(MrﬂﬂKasaa7A0727]/)’

Hence, for all n < w, by statements (x>) and (%3), it follows that
(Mg, e, M [ B,) = (BI¥ (M| B,a,SNa,and, AgN (@)™, Z [ o, 7)}
= {jy ') | k <n},
and that, for each k < n, j,(Br) = &k.
Subclaim 2.24.4.2 B’ := sup,,¢,, B is equal to sup(Sy).

Proof Foreachn < w,asclps(®B, ) = (Mg, , €, .. .), the proof of Subclaim 2.24.3.3,
establishing that S(«) € Sy, makes clear that 8, € S,.

We first argue that 8’ ¢ S, by showing that (Mg, €) = ZF~, and then we will
argue that no B > B’ is in Sy. Note that {8, | n < w} is a definable subset of

@ Springer



842 G. Fernandes et al.

,3 since it can be defined as the first @ ordinals to satisfy Clauses (a)—(g), replacing

M6,k,S,a, Ao, Z, y by M [B,a’, SNa’,ana’, AgN(a’)™o, Z lo, 7, respectively.
So if (Mg, €) were to model ZF~, we would have get that sup,_,, B, is in Mg,
contradicting the fact that Mg N OR = g’

Now, towards a contradiction, suppose that there exists 8 > B’ in S/, and let 8 be
the least such ordinal. In particular, (Mg, €) = ZF~, and (B, | n < w) € Mg, so that
(Mg, | n € w) € Mg. We will reach a contradiction to Clause (iii) of the definition of
Sy, asserting, in particular, that S N o' is stationary in (Mg, €).

For each n < w, we have that (M;,_,, €, M [ 8n+1) = @(Cy, by, %n, k), where
D(Cp, by, %}, k) is the conjunction of the following two formulas:

o C) ={ou <k | By Nk =ua},and
e B, is the <g-least witness to LCC at §,, with respect to M [ 8,1 and Fa, «.

Therefore, for C,, := jnjrll(Cn) and %Tn = j,;LII(SBqn), we have

(Mg, .\, € M | Bui1) = D(Cy, B, By, ).

In particular, C,, = jn_—i-ll (Cp) = C,Na’. Recalling that @’ = min(([),,.,, Cn)NS), we
infer that (), _,, Cj, is disjoint from SNe’. Thus, to establish that SN’ is nonstationary,
it suffices to verify the two:

new

(1) (C, | n < w) belongs to Mg, and
(2) foreveryn < w, (Mg, €) = Cyisaclubina’.

As (Mg, | n € w) € Mg, we can define (B, | n € w) using that, for all n € w,

(Mg, €, M [ Bnt1) E “B,, is the <g-least witness to
LCCata’ w.et. M | Byt and Fay o

This takes care of Clause (1), and shows that (Mg, , |, €) = C, isaclub in . Since

Mg is transitive and the formula expressing that C,, is a club is Ao, we have also taken
care of Clause (2). m]

It follows that ' € D and f(a’) = sup(Sy) = A’.8 Finally, as, for every n < o,
we have

(@, e, AgN(@)"™) Epm, YX3IY g,
we infer that Ny = M (o) = Mg = |, c,, M, is such that
(@, e, AN (@)™) =N, VXIY .

Indeed, otherwise there is Xo € [a/]? N N, such that, for all Y € [«/]?9 N Ny,
Ny E [/, €, Ag N (@')™) &= —@(Xop, Y)]. Find a large enough n < w such that

8 Notice that the argument of this claim also showed that D is stationary.
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Xo € Mg,. Now, since “(o’, €, Ag N (a')™0) = =p(Xo, Y)"isa AfF formula on the
parameters (o', €, Ag N (a’)™), ¢, and since M, g, 1s transitive subset of N, it follows
that, forall Y € [/ N Mg,, Mg, = [(o, €, Ag N (@')™) = —¢(Xo, Y)], which is
a contradiction. m|

This completes the proof of Theorem 2.24. O

As a corollary we have found a strong combinatorial axiom that holds everywhere
(including at ineffable sets) in canonical models of Set Theory (including Godel’s
constructible universe).

Corollary 2.25 Suppose that:

e L[E] is an extender model with Jensen \-indexing;
e L[E] = “there are no subcompact cardinals”;
e for every a € OR, the premouse LI E]||c is weakly iterable.

Then, in L[ E], for every regular uncountable cardinal k, for every stationary S C k,
DI (1)) holds.

Pi'oof Work in L[E]. Let « be any regular and uncountable cardinal. By Fact 2.15,
M = (LglE] | B < «) witnesses that LCC(x, k™) holds. Since L, +[E] is an
acceptable J-structure,’ M is a nice filtration of L.+[E] that is eventually slow at «.
In addition (cf. [22, Lemma 1.11]), there is a X'j-formula ® for which

x <@ yiff LIE]|k" = O(x, y)

defines a well-ordering of L+ [ E]. Finally, acceptability implies that L, +[E] = H,.+.
Now, appeal to Theorem 2.24. O

3 Universality of inclusion modulo nonstationary

Throughout this section, x denotes a regular uncountable cardinal satisfying k < = «.
Here, we will be proving Theorems B and C. Before we can do that, we shall need
to establish a transversal lemma, as well as fix some notation and coding that will be
useful when working with structures of the form (k, €, (A;)new)-

Proposition 3.1 (Transversal lemma) Suppose that (N, | « € S) is a Dl”_;(Hzl)-
sequence, for a given stationary S C k. For every H21 -sentence @, there exists a
transversal (ny | @ € S) € [, cg No satisfying the following.

For every n € «k*, whenever (k, €, (Ap)new) = @, there are stationarily many
o € S such that

(i) e =1l and
(i) (o, €, (An N (@"P)),e0) =N, ¢

9 For the definition of acceptable J-structure, see [27, p. 4].
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Proof Let ¢ : k X k <> k be some primitive-recursive pairing function. For each
o € S, fix a surjection f, : k — N, such that fy[o] = Ny whenever |N,| = |o].
Then, for alli < «, as f, (i) € Ny, we may define a set i}, in Ny by letting

n = {{(ﬂ, y)eaxalcli,c(B,y) € fu(D}, ifi <o

“ g, otherwise.

We claim that for every 1'[21 -sentence ¢, there exists i (¢p) < « for which (nfx(‘p) | €8)
satisfies the conclusion of our proposition. Before we prove this, let us make a few
reductions.

First of all, it is clear that for every 1721 -sentence ¢ = VX3Y ¢, there exists a large
enough n’ < w such that all predicates mentioned in ¢ are in {¢, X, Y, A, | n < n’}.
So the only structures of interest for ¢ are in fact (o, €, (A,),<n’), Where o < k. Let
m' := max{m(A,) | n < n’}. Then, by a trivial manipulation of ¢, we may assume
that the only structures of interest for ¢ are in fact (¢, €, Ag), where w < o < k and
m(Ag) =m' + 1.

Having the above reductions in hand, we now fix a H%-sentence ¢ = VX3IYp
and positive integers m and k such that the only predicates mentioned in ¢ are in
{e, X,Y, Ap}, m(Ag) = m and m(Y) = k.

Claim 3.1.1 There exists i < k satisfying the following. For all n € k* and A C k™,
whenever (k, €, A) = ¢, there are stationarily many o € S such that

(i) n\, =nla and
(i) (@, €, AN @) En, ¢

Proof Suppose not. Then, for every i < k, we may fix n; € ¥, A; € «™ and a club
C; C k such that (k, €, A;) &= ¢, but, for all @ € C; N S, one of the two fails:

() ny =ni [ &, or
(i) (e, €, Ai N (@™)) En, ¢.

Let

o Z:={c(i,c(B,¥) i <k, (B,y)€nil},
o Ai=1{G,81,....8n) i <ik,(B1,...,8m) € A;}, and
o C:=ANiyla € C|nila] Ca}.

Fix a variable i that does not occur in ¢. Define a first-order sentence ¥ mention-
ing only the predicates in {€, X, Y, A} with m(A;) = 1l +mand m(Y) = 1+ k
by replacing all occurrences of the form Ag(xy, ..., x,) and Y(yi,..., yx) in @
by Ai(i, x1,...,xn) and Y(i, y1, ..., yx), respectively. Then, let ¢’ := Vi (), and
finally let ¢’ := VX3Y ¢/, so that ¢’ is a IT]-sentence.

A moment reflection makes it clear that (k, €, A) = ¢'. Thus, let S’ denote the set
of all @ € § such that all of the following hold:

(1) a € C;
2) cla x ] = «a;
(3) ZNa € Ngy;

@ Springer



Inclusion modulo nonstationary 845

@) |Ng| = |o;
S {a, €, AN (@) En, ¢

By hypothesis, S’ is stationary. For all @ € §’, by Clauses (3) and (4), we have
ZNa € Ny = fyola], so, by Fodor’s lemma, there exists some i < k and a stationary
S” € §'\(i + 1) such that, forall « € S”:

(3) ZNa = fu).

Let o € S”. By Clause (5), we in particular have

(57) (o, €, Ai N (™)) En, ¢

Also, by Clause (1), we have o € C;, and so we must conclude that n; [ o # 772,-

However, n;i[a] € o, and Z Na = f, (i), so that, by Clause (2),

nila=mnN(@xa)={By)caxalclicpBy) e fu))=n,
This is a contradiction. O
This completes the proof of Proposition 3.1. O

Lemma 3.2 There is a first-order sentence Ve in the language with binary predicate
symbols € and X such that, for every ordinal o and every X C a X «,

(X is a function from « to «) iff ((«, €, X) = ¥ine)-

Proof Let Ve := VAIy (X(B, y) A (V6 (X(B, 8) — § = y))). o

Lemma 3.3 Leta be an ordinal. Suppose that ¢ isa X 11 -sentence involving a predicate
symbol A and two binary predicate symbols Xo, X|. Denote Ry = {(Xo, X1) |
(a, €, A, X0, X1) &= ¢}. Then there are 1721 -sentences YReflexive ANd YTransitive SUCh
that:

(1) (Rp 2{(m,m) | n € ) iff (o, €, A) E YReflexive):
(2) (Rg is transitive) iff ({a, €, A) = YTransitive)-

Proof (1) Fix a first-order sentence Vg, such that (X € o%)iff ({«, €, Xo) &= Yne)-
Now, let Yrefiexive be VX0V X1 (Ve A (X1 = Xo)) — ¢).

(2) Fixa le—sentence ¢’ involving predicate symbols A, X, X; and a 211 -sentence
¢” involving binary symbols A, X, X; such that

{(X1, X2) | (@, €, A, X1, X2) = ¢'}
= Ry = {(X0, X2) | {a, €, A, X0, X2) = ¢}

Now, let Yrransitive := YX0oYX1VX2((¢ A ¢ — ¢").
O
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Definition 3.4 Denote by Levs (k) the set of level sequences in « =* of length 3:

Levs(k) = U k' x Kkt x kT,

<K

Fix an injective enumeration {£s | § < k} of Levs(«). For each § < «k, we denote
Ly = (EO, Eé, 6%). We then encode each T C Levs(x) as a subset of ©> via:

Ty = {8, B, L2(B), L5(B), £3(B)) | 6 <, ls € T, B € dom(£D))}.

We now prove Theorem C.

Theorem 3.5 Suppose Dl”§(1721) holds for a given stationary S C k.
For every analytic quasi-order Q over k*, there is a 1-Lipschitz map f : k* — 2¥
reducing Q to cs,

Proof Let Q be an analytic quasi-order over «*. Fix a tree T on k=¥ X k=¥ x k=¥
such that Q = pr([T]), that is,

n,6eQ < Atex"Vi<k(|t,Et,.C1)eT.

We shall be working with a first-order language having a 5-ary predicate symbol A
and binary predigate symbols Xp, X1, X, and €. By Lemma 3.2, for each i < 3, let us
fix a sentence V¢, . concerning the binary predicate symbol X; instead of X, so that

(X; € ) iff ((k, €, A, Xo, X1, X2) = Vo).
Define a sentence ¢ to be the conjunction of four sentences: wf?’lc’ wflnc, l/ffznc, and

Vt3IsVBe(B, T) —
yoIy132 (KXo (B, y0) A X1 (B, v1) AXa(B, y2) AAG, B, vo, vi, »2)].

Set A := Ty as in Definition 3.4. Evidently, for all n, &, ¢ € P(k x k), we get that

(k,€, A, 1,8, 8) = 9o

iff the two hold:

(1) n,§,¢ €« and
(2) forevery T < «, there exists § < «,suchthatls = (n[t,&[7,{[r)isinT.

Let ¢p = 3IX2(pp). Then ¢p is a Z‘ll-sentence involving predicate symbols
A, Xp, X1 and € for which the induced binary relation

Rpp = {(1.§) € (P(k x ))* | (k. €, A, 0. &) = o}
coincides with the quasi-order Q. Now, appeal to Lemma 3.3 with ¢ to receive the

corresponding Hzl—sentences WReflexive aNd YTransitive- Then, consider the following
two [T, -sentences:
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° wg = YReflexive A VTransitive A @0, and
4 Wb = YReflexive A VTransitive A _'((PQ)~

Let N = (Ny | ¢ € S) bea Dlz(ﬂzl)-sequence. Appeal to Proposition 3.1 with the
Hzl—sentence 1//1Q to obtain a corresponding transversal (ny | @ € S) € [[,cg No-
Note that we may assume that, for all @ € S, 1, € *«, as this does not harm the key
feature of the chosen transversal.!?

For each n € «*, let

Zy = {aeS|Aﬂa5 and n [ « are in Ny }.

Claim 3.5.1 Suppose n € k. Then S\Z, is nonstationary.

2

Proof Fix primitive-recursive bijections ¢ : k> <> k and d : k> <> k. Given n € k*,

consider the club Dg of all @ < « such that:
o no] C o
o cla X a] = «;
edlaxaxXxaxaxdao]=aca.
Now, as c[n] is a subset of «, by the choice ]\7, we may find a club Dy € « such
that, foralla € D1 N S, ¢[n] N € N,. Likewise, we may find a club D, C « such

that, foralla € D, N S, d[A] N € N.
Foralla € SN Dy N Dy N Dy, we have

ecnlal=chN(xxa)l =cp]lNcla x a] =c[n]Na € Ny, and
e d[ANa’] =d[AINd[ae’] =d[A]Na € N,.

As N, is p.r.-closed, it then follows that n [ @ and A N a? are in Ng. Thus, we have
shown that §\ Z,, is disjoint from the club Dy N Dy N D;. O

Forall n € k* and a € Z,, let:

Poa ={p €a* NNo | (@, €, AN, p.y ) En, YO}

Finally, define a function f : k — 2¥ by letting, for all n € ¥ and @ < «,

1, ifa € Z,and ny € Ppo;
0, otherwise.

fm(a) = {

Claim3.5.2 f is 1-Lipschitz.

Proof Let n, & be two distinct elements of . Let « < A(n, &) be arbitrary.
Asnla =& Ta, wehave o € Z, iff « € Zg. In addition, as n [ o = & [ «,
Py« = Pe,o Whenever a € Z,,. Thus, altogether, f(n)(a) = Liff f(§)(@) =1. O

10 For any « such that 5 is not a function from « to «, simply replace ny by the constant function from «
to {0}.
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Claim 3.5.3 Suppose (1, &) € Q. Then f (i) €5 f(£).

Proof As (n,&) € Q,letusfix ¢ € «* suchthat, forallt <«,(nl7,&[7,0 1) €T.
Define a function g : k — « by letting, for all T < «,

g(m):=min{d <« [Ls=m[7,&[7.C D)}

As (S\Z;), (5\Zg) and (S\Z;) are nonstationary, let us fix a club C C « such that
CNSCZ,NZs N Z;. Consider the club D := {a € C | gla] € a}. We shall show
that, forevery« € DN S, if f(n)(«) = 1 then f(&)(x) = 1.

Fix an arbitrary @ € D N § satisfying f(n)(«) = 1. In effect, the following three
conditions are satisfied:

(1) {a,e, AN 055> ':Na YReflexives
(2) {a,e, AN 055> 'ZNQ YTransitive» and
3) (o, e, ANa® ny,n la) En, do.

In addition, since « is a closure point of g, by definition of ¢, we have

(a,e,AﬂotS,n [, & o, ¢ o) =egp.

Asa € Sand ¢g is first-order,!!

(@, e,ANe’, nla&la ¢ la) En, 9o,

so that, by definition of ¢,

(@, e,ANa’, nlatla)=n, do.
By combining the preceding with clauses (2) and (3) above, we infer that the following
holds, as well:
(4) ((X, ea A m asv r}l)la g ra) 'zNa ¢Q
Altogether, f(£)(«w) = 1, as sought. O

Claim 3.5.4 Suppose (1, &) € “ x K\ Q. Then f ()L f (£).

Proof As (S\Z,) and (S\Zg) are nonstationary, let us fix a club C C « such that
CNSCZ,NZs As Qisaquasi-order and (1, §) ¢ O, we have:

(D) {k, €, A) E YReflexives
(2) (x, €, A) = YTransitive, and
(3) (k. €, A,1n,8) E—~(¢g).

1 Ny is transitive and rud-closed (in fact, p.r.-closed), so that Ny = GJ (see [18, §Other remarks on GJ]).
Now, by [18, §The cure in GJ, proposition 10.31], Sat is AIGJ.
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so that, altogether,

(k. €, A, 8) E V).

Then, by the choice of the transversal (ny | @ € S), there is a stationary subset
S” € SN C such that, forall @ € S':

(1) (o, €, AN ) EN, VReflexive:

(2) (o, €, AN&) E=n, Yransitives

(3) (@,e,ANe’, nla &l a) Ey, ~(¢o), and
@) ng=nla.

By Clauses (3’) and (4°), we have that ny ¢ Pt «, so that f(§)(a) = 0.
By Clauses (1°), (2°) and (4’), we have that ny € Py, o, so that f(n)(x) = 1.
Altogether, {& € S | f(n)(a) > f(£)(a)} covers the stationary set S’, so that

FaEL3f ). o

This completes the proof of Theorem 3.5 O
Theorem B now follows as a corollary.

Corollary 3.6 Suppose that k is a regular uncountable cardinal and GCH holds. Then
there is a set-size cofinality-preserving GCH-preserving notion of forcing P, such that,
in VP, for every analytic quasi-order Q over k* and every stationary S C k, Q <>
cS,
Proof This follows from Theorems 2.24 and 3.5, and one of the following:

» If « is inaccessible, then we use Fact 2.13 and Lemma 2.20.

» If « is a successor cardinal, then we use Fact 2.14 and Lemma 2.19.12 |

Remark 3.7 By combining the proof of the preceding with a result of Liicke [17,
Theorem 1.5], we arrive at following conclusion. Suppose that « is an infinite successor
cardinal and GCH holds. For every binary relation R over «“, there is a set-size GCH-
preserving (<i)-closed, ¥ *-cc notion of forcing Px such that, in V%, the conclusion
of Corollary 3.6 holds, and, in addition, R is analytic.

Remark 3.8 A quasi-order < over a space X € {2, k*} is said to be Ef—complete
iff it is analytic and, for every analytic quasi-order Q over X, there exists a k-Borel
function f : X — X reducing Q to <. As Lipschitz = continuous = «-Borel,
the conclusion of Corollary 3.6 gives that each 5 is a Z‘ll -complete quasi-order. Such
a consistency was previously only known for S’s of one of two specific forms, and the
witnessing maps were not Lipschitz.

4 Concluding remarks

Remark 4.1 The referee asked whether the conclusions of the main theorems are also
known to be false. This is indeed the case, as witnessed by the model of [10, §4], in

12 Note that in this case, P is moreover (<k)-directed-closed and has the k -cc.
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which forany i, j < 2 withi+j = 1 there are no Borel reductions from <820t ¢
CMaNeof ;) T a recent paper [8], we slightly improved this to get no Baire measurable
reductions from C®2N¢0f(®i) g <NaNcof(;)

Remark 4.2 By [15, Corollary 4.5], in L, for every successor cardinal « and every
theory (not necessarily complete) T over a countable relational language, the cor-

responding equivalence relation =7 over 2¢ is either A} or X|-complete. This
dissatisfying dichotomy suggests that L is a singular universe, unsuitable for studying
the correspondence between generalized descriptive set theory and model-theoretic
complexities. However, using Theorem 3.5, it can be verified that the above dichotomy
holds as soon as k is a successor of an uncountable cardinal A = A<* in which DI (1721 )
holds for both § := « N cof (w) and S := k N cof (A). This means that the dichotomy

is in fact not limited to L and can be forced to hold starting with any ground model.

Remark 4.3 Let =5 denote the symmetric version of CS. 1t is well known that, in
the special case S := k N cof (w), =3 is a «-Borel* equivalence relation [19, §6].
It thus follows from Theorem 3.5 that if Dl’g(ﬂzl) holds for § := « N cof(w), then
the class of 211 sets coincides with the class of x-Borel* sets. Now, as the proof of
[16, Theorem 3.1] establishes that the failure of the preceding is consistent with, e.g.,
K =Ry = 22%, which in turn, by [12, Lemma 2.1], implies that <>”S‘ holds, we infer
that the hypothesis DI (1721) of Theorem 3.5 cannot be replaced by <>3. We thus feel
that we have identified the correct combinatorial principle behind a line of results that
were previously obtained under the heavy hypothesis of “V = L”.
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