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Abstract
A classical theorem of Hechler asserts that the structure (ωω,≤∗) is universal in the
sense that for any σ -directed poset P with no maximal element, there is a ccc forcing
extension in which (ωω,≤∗) contains a cofinal order-isomorphic copy of P. In this
paper, we prove the following consistency result concerning the universality of the
higher analogue

(
κκ,≤S

)
: assuming GCH, for every regular uncountable cardinal κ ,

there is a cofinality-preserving GCH-preserving forcing extension in which for every
analytic quasi-order Q over κκ and every stationary subset S of κ , there is a Lipschitz
map reducing Q to (κκ ,≤S).

Keywords Universal order · Nonstationary ideal · Diamond sharp · Local club
condensation · Higher Baire space

Mathematics Subject Classification Primary 03E35; Secondary 03E45 · 54H05

1 Introduction

Recall that a quasi-order is a binary relation which is reflexive and transitive. A well-
studied quasi-order over the Baire space N

N is the binary relation≤∗ which is defined
by letting, for any two elements η : N → N and ξ : N → N,
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η ≤∗ ξ iff {n ∈ N | η(n) > ξ(n)} is finite.

This quasi-order is behind the definitions of cardinal invariants b and d (see [2,
§2]), and serves as a key to the analysis of oscillation of real numbers which is known
to have prolific applications to topology, graph theory, and forcing axioms (see [26]).
By a classical theorem of Hechler [13], the structure (NN,≤∗) is universal in that
sense that for any σ -directed poset P with no maximal element, there is a ccc forcing
extension in which (NN,≤∗) contains a cofinal order-isomorphic copy of P.

In this paper, we consider (a refinement of) the higher analogue of the relation ≤∗
to the realm of the generalized Baire space κκ (sometimes refered as the higher Baire
space), where κ is a regular uncountable cardinal. This is done by simply replacing
the ideal of finite sets with the ideal of nonstationary sets, as follows.1

Definition 1.1 Given a stationary subset S ⊆ κ , we define a quasi-order ≤S over κκ

by letting, for any two elements η : κ → κ and ξ : κ → κ ,

η ≤S ξ iff {α ∈ S | η(α) > ξ(α)} is nonstationary.

Note that since the nonstationary ideal over S is σ -closed, the quasi-order ≤S is
well-founded, meaning that we can assign a rank value ‖η‖ to each element η of κκ .
The utility of this approach is demonstrated in the celebrated work of Galvin and
Hajnal [11] concerning the behavior of the power function over the singular cardinals,
and, of course, plays an important role in Shelah’s pcf theory (see [1, §4]). It was also
demonstrated to be useful in the study of partition relations of singular cardinals of
uncountable cofinality [24].

In this paper, we first address the question of how≤S compares with≤S′ for various
subsets S and S′. It is proved:

Theorem A Suppose that κ is a regular uncountable cardinal and GCH holds. Then
there exists a cofinality-preserving GCH-preserving forcing extension in which for all
stationary subsets S, S′ of κ , there exists a map f : κ≤κ → 2≤κ such that, for all
η, ξ ∈ κ≤κ ,

• dom( f (η)) = dom(η);
• if η ⊆ ξ , then f (η) ⊆ f (ξ);
• if dom(η) = dom(ξ) = κ , then η ≤S ξ iff f (η) ≤S′ f (ξ).

Note that as Im( f � κκ) ⊆ 2κ , the above assertion is non-trivial even in the case
S = S′ = κ , and forms a contribution to the study of lossless encoding of substructures
of (κ≤κ , . . .) as substructures of (2≤κ , . . .) (see, e.g., [3, Appendix]).

To formulate our next result—an optimal strengthening of Theorem A—let us
recall a few basic notions from generalized descriptive set theory. The generalized
Baire space is the set κκ endowed with the bounded topology, in which a basic open
set takes the form [ζ ] := {η ∈ κκ | ζ ⊂ η}, with ζ , an element of κ<κ . A subset
F ⊆ κκ is closed iff its complement is open iff there exists a tree T ⊆ κ<κ such that

1 A comparison of the generalization considered here with the one obtained by replacing the ideal of finite
sets with the ideal of bounded sets may be found in [4, §8].
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Inclusion modulo nonstationary 829

[T ] := {η ∈ κκ | ∀α < κ(η � α ∈ T )} is equal to F . A subset A ⊆ κκ is analytic
iff there is a closed subset F of the product space κκ × κκ such that its projection
pr(F) := {η ∈ κκ | ∃ξ ∈ κκ (η, ξ) ∈ F} is equal to A. The generalized Cantor space
is the subspace 2κ of κκ endowed with the induced topology. The notions of open,
closed and analytic subsets of 2κ , 2κ ×2κ and κκ × κκ are then defined in the obvious
way.

Definition 1.2 The restriction of the quasi-order ≤S to 2κ is denoted by ⊆S .

For all η, ξ ∈ κκ , denote Δ(η, ξ) := min({α < κ | η(α) �= ξ(α)} ∪ {κ}).
Definition 1.3 Let R1 and R2 be binary relations over X1, X2 ∈ {2κ , κκ }, respectively.
A function f : X1 → X2 is said to be:

(a) a reduction of R1 to R2 iff, for all η, ξ ∈ X1,

η R1 ξ iff f (η) R2 f (ξ).

(b) 1-Lipschitz iff for all η, ξ ∈ X1,

Δ(η, ξ) ≤ Δ( f (η), f (ξ)).

The existence of a function f satisfying (a) and (b) is denoted by R1 ↪→1 R2.

In the above language, Theorem A provides a model in which, for all stationary
subsets S, S′ of κ ,≤S ↪→1 ⊆S ′. As≤S is an analytic quasi-order over κκ , it is natural
to ask whether a stronger universality result is possible, namely, whether it is forceable
that any analytic quasi-order over κκ admits a 1-Lipschitz reduction to ⊆S′ for some
(or maybe even for all) stationary S′ ⊆ κ . The answer turns out to be affirmative,
hence the choice of the title of this paper.

Theorem B Suppose that κ is a regular uncountable cardinal and GCH holds. Then
there exists a cofinality-preserving GCH-preserving forcing extension in which, for
every analytic quasi-order Q over κκ and every stationary S ⊆ κ , Q ↪→1 ⊆S.

Remark The universality statement under consideration is optimal, as Q ↪→1 ⊆S

implies that Q is analytic.

The proof of the preceding goes through a newdiamond-type principle for reflecting
second-order formulas, introduced here and denoted by Dl∗S(Π1

2 ). This principle is a

strengthening of Jensen’s ♦S and a weakening of Devlin’s ♦�
S . For κ a successor

cardinal, we have Dl∗S(Π1
2 ) ⇒ ♦∗S but not ♦∗S ⇒ Dl∗S(Π1

2 ) (see Remark 4.3 below).
Another crucial difference between the two is that, unlike ♦∗S , the principle Dl∗S(Π1

2 )

is compatible with the set S being ineffable.
In Sect. 2, we establish the consistency of the new principle, in fact, proving that it

follows from an abstract condensation principle that was introduced and studied in [9,
14]. It thus follows that it is possible to forceDl∗S(Π1

2 ) to hold over all stationary subsets
S of a prescribed regular uncountable cardinal κ . It also follows that, in canonical
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models for Set Theory (including any L[E] model with Jensen’s λ-indexing which
is sufficiently iterable and has no subcompact cardinals), Dl∗S(Π1

2 ) holds for every
stationary subset S of every regular uncountable (including ineffable) cardinal κ .

Then, in Sect. 3, the core combinatorial component of our result is proved:

Theorem C Suppose S is a stationary subset of a regular uncountable cardinal κ . If
Dl∗S(Π1

2 ) holds, then, for every analytic quasi-order Q over κκ , Q ↪→1 ⊆S.

2 A Diamond reflecting second-order formulas

Devlin [5] introduced a strong form of the Jensen-Kunen principle ♦+κ , which he
denoted by ♦�

κ , and proved:

Fact 2.1 (Devlin [5, Theorem 5]) In L, for every regular uncountable cardinal κ that
is not ineffable, ♦�

κ holds.

Remark 2.2 A subset S of a regular uncountable cardinal κ is said to be ineffable iff,
for every sequence 〈Zα | α ∈ S〉, there exists a subset Z ⊆ κ , for which {α ∈ S |
Z ∩ α = Zα ∩ α} is stationary. Note that the collection of non-ineffable subsets of κ

forms a normal ideal that contains {α < κ | cf(α) < α} as an element. Also note that
if κ is ineffable, then κ is strongly inaccessible. Finally, we mention that by a theorem
of Jensen and Kunen, for any ineffable set S, ♦S holds and ♦∗S fails.

As said before, in this paper, we consider a variation of Devlin’s principle com-
patible with κ being ineffable. Devlin’s principle as well as its variation provide us
with Π1

2 -reflection over structures of the form 〈κ,∈, (An)n∈ω〉. We now describe the
relevant logic in detail.

A Π1
2 -sentence φ is a formula of the form ∀X∃Yϕ where ϕ is a first-order sentence

over a relational language L as follows:

• L has a predicate symbol ε of arity 2;
• L has a predicate symbol X of arity m(X);
• L has a predicate symbol Y of arity m(Y);
• L has infinitely many predicate symbols (An)n∈ω, each An is of arity m(An).

Definition 2.3 For sets N and x , we say that N sees x iff N is transitive, p.r.-closed,
and x ∪ {x} ⊆ N .

Suppose that a set N sees anordinalα, and thatφ = ∀X∃Yϕ is aΠ1
2 -sentence,where

ϕ is a first-order sentence in the above-mentioned language L. For every sequence
(An)n∈ω such that, for all n ∈ ω, An ⊆ αm(An), we write

〈α,∈, (An)n∈ω〉 |�N φ

to express that the two hold:

(1) (An)n∈ω ∈ N ;
(2) 〈N ,∈〉 |� (∀X ⊆ αm(X))(∃Y ⊆ αm(Y))[〈α,∈, X ,Y , (An)n∈ω〉 |� ϕ], where:
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Inclusion modulo nonstationary 831

• ∈ is the interpretation of ε;
• X is the interpretation of X;
• Y is the interpretation of Y, and
• for all n ∈ ω, An is the interpretation of An .

Convention 2.4 We write α+ for |α|+, and write 〈α,∈, (An)n∈ω〉 |� φ for

〈α,∈, (An)n∈ω〉 |�Hα+ φ.

Definition 2.5 (Devlin [5]) Let κ be a regular and uncountable cardinal.
♦�

κ asserts the existence of a sequence �N = 〈Nα | α < κ〉 satisfying the following:
(1) for every infinite α < κ , Nα is a set of cardinality |α| that sees α;
(2) for every X ⊆ κ , there exists a clubC ⊆ κ such that, for all α ∈ C ,C∩α, X∩α ∈

Nα;
(3) whenever 〈κ,∈, (An)n∈ω〉 |� φ, with φ a Π1

2 -sentence, there are stationarily
many α < κ such that 〈α,∈, (An ∩ (αm(An)))n∈ω〉 |�Nα φ.

Consider the following variation:

Definition 2.6 Let κ be a regular and uncountable cardinal, and S ⊆ κ stationary.
Dl∗S(Π1

2 ) asserts the existence of a sequence �N = 〈Nα | α ∈ S〉 satisfying the
following:

(1) for every α ∈ S, Nα is a set of cardinality < κ that sees α;
(2) for every X ⊆ κ , there exists a club C ⊆ κ such that, for all α ∈ C ∩ S,

X ∩ α ∈ Nα;
(3) whenever 〈κ,∈, (An)n∈ω〉 |� φ, with φ a Π1

2 -sentence, there are stationarily
many α ∈ S such that |Nα| = |α| and 〈α,∈, (An ∩ (αm(An)))n∈ω〉 |�Nα φ.

Remark 2.7 The choice of notation for the above principle is motivated by [23, Defi-
nition 2.10] and [25, Definition 45].

The goal of this section is to derive Dl∗S(Π1
2 ) from an abstract principle which is

both forceable and a consequence of V = L[E], for L[E] an iterable extender model
with Jensen λ-indexing without a subcompact cardinal (see [20,21]). Note that this
covers all L[E] models that can be built so far.

Convention 2.8 The class of ordinals is denoted by OR. The class of ordinals of
cofinality μ is denoted by cof(μ), and the class of ordinals of cofinality greater than
μ is denoted by cof(>μ). For a set of ordinals a, we write acc(a) := {α ∈ a |
sup(a ∩ α) = α > 0}. ZF− denotes ZF without the power-set axiom. The transitive
closure of a set X is denoted by trcl(X), and the Mostowski collapse of a structureB
is denoted by clps(B).

Definition 2.9 Suppose N is a transitive set. For a limit ordinal λ, we say that �M =
〈Mβ | β < λ〉 is a nice filtration of N iff all of the following hold:

(1)
⋃

β<λ Mβ = N ;
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(2) �M is ∈-increasing, that is, α < β < λ �⇒ Mα ∈ Mβ ;
(3) �M is continuous, that is, for every β ∈ acc(λ), Mβ =⋃

α<β Mα;
(4) for all β < λ, Mβ is a transitive set with Mβ ∩ OR = β and |Mβ | ≤ |β| + ℵ0.
Convention 2.10 Whenever λ is a limit ordinal, and �M = 〈Mβ | β < λ〉 is a ⊆-
increasing, continuous sequence of sets, we denote its limit

⋃
β<λ Mβ by Mλ.

Definition 2.11 (Holy et al. [14]) Let η < ζ be ordinals. We say that local club
condensation holds in (η, ζ ), and denote this by LCC(η, ζ ), iff there exist a limit
ordinal λ ≥ ζ and a sequence �M = 〈Mβ | β < λ〉 such that all of the following hold:
(1) �M is nice filtration of Mλ;
(2) 〈Mλ,∈〉 |� ZF−;
(3) For every ordinalα in the open interval (η, ζ ) and every sequence �F = 〈(Fn, kn) |

n ∈ ω〉 inMλ such that, for alln ∈ ω, kn ∈ ω and Fn ⊆ (Mα)kn , there is a sequence
�B = 〈Bβ | β < |α|〉 in Mλ having the following properties:

(a) for all β < |α|,Bβ is of the form

〈Bβ,∈, �M � (Bβ ∩ OR), (Fn ∩ (Bβ)kn )n∈ω〉;

(b) for all β < |α|,Bβ ≺ 〈Mα,∈, �M � α, (Fn)n∈ω〉;
(c) for all β < |α|, β ⊆ Bβ and |Bβ | < |α|;
(d) for all β < |α|, there exists β̄ < λ such that

clps(〈Bβ,∈, 〈Bδ | δ ∈ Bβ ∩ OR〉〉) = 〈Mβ̄ ,∈, �M � β̄〉;

(e) 〈Bβ | β < |α|〉 is ⊆-increasing, continuous and converging to Mα .

For �B as in Clause (3) above we say that �B witnesses LCC at α with respect to �M
and �F .

Remark 2.12 There are first-order sentencesψ0(η̇, ζ̇ ) andψ1(η̇) in the languageL∗ :=
{∈, �M, η̇, ζ̇ }of set theory augmented by apredicate for a nicefiltration and twoordinals
such that, for all η < ζ ≤ λ and �M = 〈Mβ | β < λ〉:
• (〈Mλ,∈, �M〉 |� ψ0(η, ζ )) ⇐⇒ ( �M witnesses that LCC(η, ζ ) holds), and
• (〈Mλ,∈, �M〉 |� ψ1(η)) ⇐⇒ ( �M witnesses that LCC(η, λ) holds).

Therefore, we will later make an abuse of notation and write 〈N ,∈, �M〉 |� LCC(η, ζ )

to mean that �M is a nice filtration of N witnessing that LCC(η, ζ ) holds.

Fact 2.13 (Friedman–Holy, implicit in [9]) Assume GCH. For every inaccessible car-
dinal κ , there is a set-size cofinality-preserving notion of forcing P such that, in V P,
the three hold:

(1) GCH;
(2) there is a nice filtration �M = 〈Mβ | β < κ+〉 of Hκ+ witnessing that LCC(ω1, κ

+)

holds;
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Inclusion modulo nonstationary 833

(3) there is aΔ1-formulaΘ and a parameter a ⊆ κ such that the relation<Θ defined
by (x <Θ y iff Hκ+ |� Θ(x, y, a)) is a global well-ordering of Hκ+ .

Fact 2.14 (Holy et al. [14, p. 1362 and §4]) Assume GCH. For every regular cardinal
κ , there is a set-size notion of forcing P which is (<κ)-directed-closed and has the
κ+-cc such that, in V P, the three hold:

(1) GCH;
(2) there is a nice filtration �M = 〈Mβ | β < κ+〉 of Hκ+ witnessing that LCC(κ, κ+)

holds;
(3) there is aΔ1-formulaΘ and a parameter a ⊆ κ such that the relation<Θ defined

by (x <Θ y iff Hκ+ |� Θ(x, y, a)) is a global well-ordering of Hκ+ .

The following is a improvement of [9, Theorem 8].

Fact 2.15 (Fernandes [7]) Let L[E] be an extender model with Jensen λ-indexing.
Suppose that, for every α ∈ OR, the premouse L[E]||α is weakly iterable.2 Then, for
every infinite cardinal κ , the following are equivalent:

(a) 〈Lβ [E] | β < κ+〉 witneses that LCC(κ+, κ++) holds;
(b) L[E] |� “κ is not a subcompact cardinal”.

In addition, for every infinite limit cardinal κ , 〈Lβ [E] | β < κ+〉 witnesses that
LCC(κ, κ+) holds.

Lemma 2.16 Suppose that λ is a limit ordinal and that �M = 〈Mβ | β < λ〉 is a nice
filtration of Hλ. Then, for every infinite cardinal θ ≤ λ, Mθ ⊆ Hθ .

Proof Let θ ≤ λ be an infinite cardinal. By Clause (4) of Definition 2.9, for all β < θ ,
the set Mβ is transitive, Mβ ∩ OR = β, and |Mβ | = |β| < θ . It thus follows that
Mθ =⋃

β<θ Mβ ⊆ Hθ . ��
Motivated by the property of acceptability that holds in extender models, we define

the following property for nice filtrations:

Definition 2.17 Given a nice filtration �M = 〈Mβ | β < κ+〉 of Hκ+ , we say that �M
is eventually slow at κ iff there exists an infinite cardinal μ < κ such that, for every
cardinal θ with μ < θ ≤ κ , Mθ = Hθ .

Lemma 2.18 Suppose that �M = 〈Mβ | β < κ+〉 is a nice filtration of Hκ+ that is
eventually slow at κ . Then, for a tail of α < κ , for every sequence �F = 〈(Fn, kn) |
n ∈ ω〉 such that, for all n ∈ ω, kn ∈ ω and Fn ⊆ (Mα+)kn , there is �B that witnesses
LCC at α+ with respect to �M and �F .

Proof Fix an infinite cardinal μ < κ such that, for every cardinal θ with μ < θ ≤ κ ,
Mθ = Hθ . Let α ∈ (μ, κ) be arbitrary. Now, given a sequence �F as in the statement of
the lemma, build by recursion a⊆-increasing and continuous sequence 〈Aγ | γ < α+〉
of elementary submodels of 〈Mα+ ,∈, �M � α+, (Fn)n∈ω〉, such that:

2 Here, L[E]||α stands for 〈J Eα ,∈, E � ωα, Eωα〉, following the notation from [27]. For the definition of
weakly iterable, see [27, p. 311].
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• for each γ < α+, |Aγ | < α+, and
• ⋃

γ<α+ Aγ = Hα+ .

By a standard argument, C := {γ < α+ | Aγ = Mγ } is a club in α+. Let {γβ |
β < α+} denote the increasing enumeration of C . Denote Bβ := Aγβ . Then �B =
〈Bβ | β < α+〉 is an ∈-increasing and continuous sequence of elementary submodels
of 〈Mα+ ,∈, �M � α+, (Fn)n∈ω〉, such that, for all β < α+, clps(Bβ) = 〈Mγβ ,∈, . . .〉.

��
In the next two lemmas we find sufficient conditions for nice filtrations 〈Mβ |

β < κ+〉 to be eventually slow at κ .

Lemma 2.19 Suppose that κ is a successor cardinal and that �M = 〈Mβ | β < κ+〉 is
a nice filtration of Hκ+ witnessing that LCC(κ, κ+) holds. Then �M is eventually slow
at κ .

Proof As κ is a successor cardinal, �M is eventually slow at κ iff Mκ = Hκ . Thus, by
Lemma 2.16, it suffices to verify that Hκ ⊆ Mκ . To this end, let x ∈ Hκ , and we will
find β < κ such that x ∈ Mβ .

Set θ := | trcl{x}| and fix a witnessing bijection f : θ ↔ trcl{x}. As Hκ+ =
Mκ+ =

⋃
α<κ+ Mα , we may fix α < κ+ such that { f , θ, trcl{x}} ⊆ Mα . Let �B

witness LCC(κ, κ+) at α with respect to �M and �F := 〈( f , 2)〉. Let β < κ+ be such
that clps(Bθ+1) = 〈Mβ,∈, . . .〉.
Claim 2.19.1 θ < β < κ .

Proof By Definition 2.11(3)(c), θ + 1 ⊆ Bθ+1, so that, θ < β. By Clause (4) of
Definition 2.9 and by Definition 2.11(3)(c), |β| = |Mβ | = |Bθ+1| < |α| ≤ κ . ��

Now, as

Bθ+1 ≺ 〈Hκ+ ,∈, �M, F0〉 |� ∃y(∀α∀δ(F0(α, δ) ↔ (α, δ) ∈ y)),

we have f ∈ Bθ+1. Since dom( f ) ⊆ Bθ+1, Im( f ) ⊆ Bθ+1. But Im( f ) = trcl({x}) is
a transitive set, so that the Mostowski collapsing map π : Bθ+1 → Mβ is the identity
over trcl({x}), meaning that x ∈ trcl({x}) ⊆ Mβ . ��
Lemma 2.20 Suppose that κ is an inaccessible cardinal, μ < κ and �M = 〈Mβ |
β < κ+〉 witnesses that LCC(μ, κ+) holds. Then μ witnesses that �M is eventually
slow at κ .

Proof Suppose not. It follows from Lemma 2.16 that we may fix an infinite cardinal
θ with μ ≤ θ < κ along with x ∈ Hθ+\Mθ+ . Fix a surjection f : θ → trcl({x}). Let
α < κ+ be the least ordinal such that x ∈ Mα , so that μ < θ+ < α < κ+. Let �B
witness LCC(μ, κ+) at α with respect to �M and �F := 〈( f , 2)〉. Let β < κ+ be such
that clps(Bθ+1) = 〈Mβ,∈, . . .〉.
Claim 2.20.1 β < α.
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Inclusion modulo nonstationary 835

Proof By Clause (4) of Definition 2.9 and by Definition 2.11(3)(c), |β| = |Mβ | =
|Bθ+1| < |α|. and hence β < α. ��

By the same argument used in the proof of Lemma 2.19, x ∈ Mβ , contradicting
the minimality of α. ��
Question 2.21 Notice that if κ is an inaccessible cardinal and �M = 〈Mβ | β < κ+〉
is such that 〈Hκ+ ,∈, �M〉 |� LCC(κ, κ+), then, for club many β < κ , Mβ = Hβ . We
ask: is it consistent that κ is an inaccessible cardinal, �M = 〈Mβ | β < κ+〉 is such
that 〈Hκ+ ,∈, �M〉 |� LCC(κ, κ+), yet, for stationarily many β < κ , Mβ+ � Hβ+?

Lemma 2.22 Suppose that �M = 〈Mβ | β < κ+〉 is a nice filtration of Hκ+ . Given
a sequence �F = 〈(Fn, kn) | n ∈ ω〉 such that, for all n ∈ ω, kn ∈ ω and Fn ⊆
(Hκ+)kn , there are club many δ < κ+ such that 〈Mδ,∈, �M � δ, (Fn ∩ (Mδ)

kn )n∈ω〉 ≺
〈Mκ+ ,∈, �M, (Fn)n∈ω〉.
Proof Build by recursion an ∈-increasing continuous sequence �B = 〈Bβ | β < κ+〉
of elementary submodels of 〈Mκ+ ,∈, �M, (Fn)n∈ω〉, such that:

• for each β < κ+, |Bβ | < κ+, and
• ⋃

β<κ+ Bβ = Hκ+ .

By a standard back-and-forth argument, utilizing the continuity of �B and �M , {δ <

κ+ | Bδ = Mδ} is a club in κ+. ��
Definition 2.23 Suppose �M = 〈Mβ | β < λ〉 is a nice filtration of Mλ for some limit
ordinal λ > 0. Given α < λ and �F = 〈(Fn, kn) | n ∈ ω〉 in Mλ such that, for each
n ∈ ω, kn ∈ ω and Fn ⊆ (Mα)kn , for every sequence �B = 〈Bβ | β < |α|〉 in Mλ

and every letter l ∈ {a, b, c, d, e}, we let ψl( �B, �F , α, �M � (α + 1)) be some formula
expressing that Clause (3)(l) of Definition 2.11 holds.

The following forms the main result of this section.

Theorem 2.24 Suppose that κ is a regular uncountable cardinal, and �M = 〈Mβ |
β < κ+〉 is a nice filtration of Hκ+ that is eventually slow at κ , and witnesses that
LCC(κ, κ+) holds. Suppose further that there is a subset a ⊆ κ and a formulaΘ ∈ Σω

which defines a well-order <Θ in Hκ+ via x <Θ y iff Hκ+ |� Θ(x, y, a). Then, for
every stationary S ⊆ κ , Dl∗S(Π1

2 ) holds.

Proof Let S′ ⊆ κ be stationary. We shall prove that Dl∗S′(Π
1
2 ) holds by adjusting

Devlin’s proof of Fact 2.1.
As a first step, we identify a subset S of S′ of interest.

Claim 2.24.1 There exists a stationary non-ineffable subset S ⊆ S′\ω such that, for
every α ∈ S′\S, |Hα+| < κ .

Proof If S′ is non-ineffable, then let S := S′\ω, so that Hα+ = Hω for all α ∈ S′\S.
From now on, suppose that S′ is ineffable. In particular, κ is strongly inaccessible and
|Hα+| < κ for every α < κ . Let S := S′\(ω ∪ T ), where

T := {α ∈ κ ∩ cof(>ω) | S′ ∩ α is stationary in α}.
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To see that S is stationary, let E be an arbitrary club in κ .

� If S′ ∩ cof(ω) is stationary, then since S′ ∩ cof(ω) ⊆ S, we infer that S ∩ E �= ∅.
� If S′ ∩ cof(ω) is non-stationary, then fix a club C ⊆ E disjoint from S′ ∩ cof(ω),

and let α := min(acc(C) ∩ S′). Then cf(α) > ω and C ∩ α is a club in α disjoint
from S′, so that α /∈ T . Altogether, α ∈ S ∩ E .

To see that S is non-ineffable, we define a sequence 〈Zα | α ∈ S〉, as follows. For
every α ∈ S, fix a closed and cofinal subset Zα of α with otp(Zα) = cf(α) such that, if
cf(α) > ω, then the club Zα is disjoint from S′ ∩α. Towards a contradiction, suppose
that Z ⊆ κ is a set for which {α ∈ S | Z ∩ α = Zα} is stationary. Clearly, Z is closed
and cofinal in κ , so that Z ∩ S′ is stationary, otp(Z ∩ S′) = κ and hence D := {α < κ |
otp(Z ∩ S′ ∩ α) = α > ω} is a club. Pick α ∈ D ∩ S such that Z ∩ α = Zα . As

cf(α) = otp(Zα) = otp(Z ∩ α) ≥ otp(Z ∩ S′ ∩ α) = α > ω,

it must be the case that Zα is a club disjoint from S′ ∩ α, while Zα = Z ∩ α and
Z ∩ S′ ∩ α �= ∅. This is a contradiction. ��

Let S be given by the preceding claim. We shall focus on constructing a sequence
〈Nα | α ∈ S〉 witnessing Dl∗S(Π1

2 ) such that, in addition, |Nα| = |α| for every α ∈ S.
It will then immediately follow that the sequence 〈N ′α | α ∈ S′〉 defined by letting
N ′α := Nα for α ∈ S, and N ′α := Hα+ for α ∈ S′\S will witness the validity of
Dl∗S′(Π

1
2 ). As �M is eventually slow at κ , we may also assume that, for every α ∈ S,

Mα+ = Hα+ and the conclusion of Lemma 2.18 holds true.3 If κ is a successor
cardinal, we may moreover assume that, for every α ∈ S, Mα+ = Hκ .

Here we go. As S is non-ineffable, fix a sequence �Z = 〈Zα | α ∈ S〉 with Zα ⊆ α

for all α ∈ S, such that, for every Z ⊆ κ , {α ∈ S | Z ∩ α = Zα} is nonstationary. In
the course of the rest of the proof, we shall occasionally take witnesses to LCC at some
ordinal α with respect to �M and a finite sequence �F = 〈(Fn, kn) | n ∈ 4〉; for this,
we introduce the following piece of notation for any positive m < ω, X ⊆ (κ+)m and
α < κ+:

�FX ,α := 〈(X ∩ αm,m), (a ∩ α, 1), (S ∩ α, 1), ( �Z � α, 2)〉.

Next, for each α ∈ S, we define Sα to be the set of all β ∈ α+ satisfying the
following list of conditions:

(i) 〈Mβ,∈, �M � β〉 |� LCC(α, β),4

(ii) 〈Mβ,∈〉 |� ZF− & α is the largest cardinal,5

(iii) 〈Mβ,∈〉 |� α is regular & S ∩ α is stationary,
(iv) 〈Mβ,∈〉 |� Θ(x, y, a ∩ α) defines a global well-order,
(v) �Z � (α + 1) /∈ Mβ .

3 For all the small α ∈ S′\S such that Mα+ �= Hα+ , simply let N ′α := Nmin(S).
4 Note that β is not needed to define LCC(α, β) in the structure 〈Mβ ,∈, �M � β〉. Indeed, by LCC(α, β) we
mean ψ1(α) as in Remark 2.12.
5 In particular, 〈Mβ ,∈〉 |� α is uncountable.
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Then, we consider the set

D := {α ∈ S | Sα �= ∅ & Sα has no largest element}.

Define a function f : S → κ as follow. For every α ∈ D, let f (α) := sup(Sα); for
every α ∈ S\D, let f (α) be the least β < κ such thatMβ sees α, and �Z �(α+1) ∈ Mβ .

Claim 2.24.2 f is well-defined. Furthermore, for all α ∈ S, α < f (α) < α+.

Proof Let α ∈ S be arbitrary. The analysis splits into two cases:
� Suppose α ∈ D. As α ∈ S, we have

⋃
β<α+ Mβ = Mα+ = Hα+ , and hence

we may find some β < α+ such that �Z � (α + 1) ∈ Mβ . Then, condition (v) in the
definition of Sα implies that α < f (α) ≤ β < α+.

� Suppose α /∈ D. As α ∈ S, let us fix 〈Bβ | β < α+〉 that witnesses LCC
at α+ with respect to �M and �F∅,α+ . Set β := α + 2 and fix β̄ < κ+ such that
clps(Bβ) = 〈Mβ̄ , . . .〉. As β ⊆ Bβ and |Bβ | < α+, by Clause (4) of Definition 2.9,

β ≤ β̄ < α+. In addition, �Z �(α+1) ∈ Mβ̄ and there exists an elementary embedding

from 〈Mβ̄ ,∈〉 to 〈Hα+ ,∈〉, so that Mβ̄ sees α. Altogether, α < f (α) ≤ β̄ < α+. ��
Define �N = 〈Nα | α ∈ S〉 by letting Nα := M f (α) for all α ∈ S. It follows from

Definition 2.9(4) and the preceding claim that |Nα| = |α| for all α ∈ S.

Claim 2.24.3 Let X ⊆ κ . Then there exists a club C ⊆ κ such that, for all α ∈ C ∩ S,
X ∩ α ∈ Nα .

Proof ByLemma2.22,wenowfix δ < κ+ such thatκ, S, a ∈ Mδ and 〈Mδ,∈, �M�δ〉 ≺
〈Mκ+ ,∈, �M〉. Note that |δ| = κ . Let �B = 〈Bα | α < κ〉witness LCC at δ with respect
to �M and �FX ,κ .

Subclaim 2.24.3.1 C := {α < κ | Bα ∩ κ = α} is a club in κ .

Proof To see that C is closed in κ , fix an arbitrary α < κ with sup(C ∩ α) = α > 0.
As 〈Bβ | β < κ〉 is ⊆-increasing and continuous, we have

α =
⋃

β∈(C∩α)

β =
⋃

β∈(C∩α)

(Bβ ∩ κ) =
⋃

β<α

(Bβ ∩ κ) = Bα ∩ κ.

To see that C is unbounded in κ , fix an arbitrary ε < κ , and we shall find α ∈ C
above ε. Recall that, by Clause (3)(c) of Definition 2.11, for each β < κ , β ⊆ Bβ

and |Bβ | < κ . It follows that we may recursively construct an increasing sequence of
ordinals 〈αn | n < ω〉 such that:

• α0 := sup(Bε ∩ κ), and, for all n < ω:
• sup(Bαn ∩ κ) < αn+1 < κ .

In particular, sup(Bαn ∩ κ) ∈ αn+1 for all n < ω. Consequently, for α := supn<ω αn ,
we have that α < κ , and

Bα ∩ κ =
⋃

n<ω

(Bαn ∩ κ) ≤
⋃

n<ω

αn+1 ≤
⋃

n<ω

(Bαn+2 ∩ κ) = α,
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so that α ∈ C\(ε + 1). ��
To see that the club C is as sought, let α ∈ C ∩ S be arbitrary, and we shall verify
that X ∩ α ∈ Nα . Let β(α) be such that clps(Bα) = 〈Mβ(α),∈, . . .〉, and let jα :
Mβ(α) → Bα denote the inverse of the collapsing map. As α ∈ C , jα(α) = κ , and
j−1α (Y ) = Y ∩ α for all Y ∈ Bα ∩ P(κ).

Subclaim 2.24.3.2 For every β < κ+ such that �Z � (α + 1) ∈ Mβ , β > β(α).

Proof Suppose not, so that �Z � (α + 1) ∈ Mβ(α). As 〈Mδ,∈〉 ≺ 〈Mκ+ ,∈〉, we infer
that

〈Mδ,∈〉 |� ∀Z ⊆ κ ∃E club in κ (∀γ ∈ E ∩ S → Z ∩ γ �= Zγ ),

and hence

〈Mβ(α),∈〉 |� ∀Z ⊆ α ∃E club in α (∀γ ∈ E ∩ S → Z ∩ γ �= Zγ ).

In particular, using Z := Zα , we find some E such that

〈Mβ(α),∈〉 |� (E is a club in α) ∧ (∀γ ∈ E ∩ S → Zα ∩ γ �= Zγ ).

Pushing forward with E∗ := jα(E) and Z∗ := jα(Zα), we infer that

〈Mδ,∈〉 |� (E∗ is a club in κ) ∧ (∀γ ∈ E∗ ∩ S → Z∗ ∩ γ �= Zγ ).

Then Z∗ ∩α = jα(Zα)∩α = Zα , and hence α /∈ E∗ (recall that α ∈ S). Likewise
E∗ ∩ α = jα(E) ∩ α = E , and hence α ∈ acc(E∗) ⊆ E∗. This is a contradiction.

��
Now, since �Bwitnesses LCC at δwith respect to �M and �FX ,κ , for eachY in {X , a, S},

we have that

〈Bα,∈,Y ∩ Bα〉 ≺ 〈Mκ+ ,∈,Y 〉 |� ∃y∀z((z ∈ y) ↔ (z ∈ κ ∧ Y (z))),

therefore each of X , a, S is a definable element ofBα . So, as, for all Y ∈ Bα ∩P(κ),
j−1α (Y ) = Y ∩α, we infer that X ∩α, a ∩α, and S ∩α are all in Mβ(α). We will show
that β(α) < f (α), from which it will follow that X ∩ α ∈ Nα .

Subclaim 2.24.3.3 β(α) < f (α).

Proof Naturally, the analysis splits into two cases:
� Suppose α /∈ D. By definition of f (α) and by Subclaim 2.24.3.2, β(α) < f (α).
� Suppose α ∈ D. As Bα ≺ 〈Mδ,∈, �M � δ, X , a, S, �Z〉 and Im( jα) = Bα , we

infer that jα : Mβ(α) → Mδ forms an elementary embedding from 〈Mβ(α),∈, . . .〉 to
〈Mδ,∈, �M � δ, X , a, S, �Z〉 with jα(α) = κ . As κ, S, a ∈ Mδ and 〈Mδ,∈, M � δ〉 ≺
〈Mκ ,∈, �M〉, we have:
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(I) 〈Mδ,∈, �M � δ〉 |� LCC(κ, δ),
(II) 〈Mδ,∈〉 |� ZF− & κ is the largest cardinal,
(III) 〈Mδ,∈〉 |� κ is regular & S ∩ κ is stationary,
(IV) 〈Mδ,∈〉 |� Θ(x, y, a ∩ κ) defines a global well-order.

It now follows that β(α) satisfies clauses (i),(ii),(iii) and (iv) of the definition of Sα .
Together with Subclaim 2.24.3.2, then, β(α) ∈ Sα . So, by definitions of f and D,
β(α) < f (α). ��
This completes the proof of Claim 2.24.3. ��

We are left with addressing Clause (3) of Definition 2.6.

Claim 2.24.4 The sequence 〈Nα | α ∈ S〉 reflects Π1
2 -sentences.

Proof We need to show that whenever 〈κ,∈, (An)n∈ω〉 |� φ, with φ = ∀X∃Yϕ a
Π1

2 -sentence, for every club E ⊆ κ , there is α ∈ E ∩ S, such that

〈α,∈, (An ∩ (αm(An)))n∈ω〉 |�Nα φ.

But by adding E to the list (An)n∈ω of predicates, and by slightly extending the first-
order formula ϕ to also assert that E is unbounded, we would get that any ordinal
α satisfying the above will also satisfy that α is an accumulation point of the closed
set E , so that α ∈ E . It follows that if any Π1

2 -sentence valid in a structure of the
form 〈κ,∈, (An)n∈ω〉 reflects to some ordinal α′ ∈ S, then any Π1

2 -sentence valid in
a structure of the form 〈κ,∈, (An)n∈ω〉 reflects stationarily often in S.

Consider a Π1
2 -formula ∀X∃Yϕ, with integers p, q such that X is a p-ary second-

order variable and Y is a q-ary second-order variable. Suppose �A = (An)n∈ω is a
sequence of finitary predicates on κ , and 〈κ,∈, �A〉 |� ∀X∃Yϕ. By the reduction
established in the proof of Proposition 3.1 below, we may assume that �A consists of a
single predicate A0 of arity, say,m0. Recalling Convention 2.4 and since Mκ+ = Hκ+ ,
this altogether means that

〈κ,∈, A0〉 |�Mκ+ ∀X∃Yϕ.

Let γ be the least ordinal such that �Z , A0, S ∈ Mγ . Note that κ < γ < κ+. Let Δ
denote the set of all δ ≤ κ+ such that:

(a) 〈Mδ,∈, �M � δ〉 |� LCC(κ, δ),6

(b) 〈Mδ,∈〉 |� ZF− & κ is the largest cardinal,
(c) 〈Mδ,∈〉 |� κ is regular & S is stationary in κ ,
(d) 〈Mδ,∈〉 |� Θ(x, y, a) defines a global well-order,
(e) 〈κ,∈, A0〉 |�Mδ ∀X∃Yϕ,
(f) 〈Mδ,∈〉 |� �Z witness that S is not ineffable, and
(g) δ > γ .

6 In particular, δ > κ .
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As κ+ ∈ Δ, it follows from Lemma 2.22 and elementarity that otp(Δ∩ κ+) = κ+.
Let {δn | n < ω} denote the increasing enumeration of the first ω many elements of
Δ.

Definition 2.24.4.1 Let T ( �M, κ, S, a, A0, �Z , γ ) denote the theory consisting of the
following axioms:

(A) �M witness LCC(κ, κ+),
(B) ZF− & κ is the largest cardinal,
(C) κ is regular & S is stationary in κ ,
(D) Θ(x, y, a) defines a global well-order,
(E) 〈κ,∈, A0〉 |� ∀X∃Yϕ,
(F) �Z witness that S is not ineffable,
(G) γ is the least ordinal such that { �Z , A0, S} ∈ �M(γ ).

Let n < ω. Since Mδn is transitive, standard facts (cf. [6, Chapter 3, §5]) yield the

existence of a formulaΨ in the language { �̇M,∈}which isΔZF−
1 , and for all δ ∈ (γ, δn),

〈Mδ,∈, �M � δ〉 |� T ( �M � δ, κ, S, a, A0, �Z , γ )

⇐⇒
Ψ ( �M � δ, κ, S, a, A0, �Z , γ )

⇐⇒
〈Mδn ,∈, �M � δn〉 |� Ψ ( �M � δ, κ, S, a, A0, �Z , γ ).

(�1)

Since {δk | k < ω} enumerates the first ω many elements of Δ, Mδn believes that
there are exactly n ordinals δ such that Clauses (a)–(g) hold for Mδ . In fact,

〈Mδn ,∈, �M � δn〉 |� {δ | Ψ ( �M � δ, κ, S, a, A0, �Z , γ )} = {δk | k < n}. (�2)

Next, for every n < ω, as 〈Mδn+1 ,∈〉 |� |δn| = κ , we may fix in Mδn+1 a sequence�Bn = 〈Bn,α | α < κ〉 witnessing LCC at δn with respect to �M � δn+1 and �FA0,κ such
that, moreover,

〈Mδn+1 ,∈, �M � δn+1〉 |� “ �Bn is the <Θ -least such witness”.7

For every n < ω, consider the club Cn := {α < κ | Bn,α ∩ κ = α}, and then let

α′ := min
((⋂

n∈ω
Cn

)
∩ S

)
.

For every n < ω, let βn be such that clps(Bn,α′) = 〈Mβn ,∈, . . .〉, and let jn :
Mβn → Bn,α′ denote the inverse of the Mostowski collapse.

7 Recalling Definition 2.23, this means that 〈Mδn+1 ,∈, �M � δn+1〉 |�
“ �Bn is the <Θ -least �B such that (ψa ∧ ψb ∧ ψc ∧ ψd ∧ ψe)( �B, �FA0,κ , δn , �M � (δn + 1))”.
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Subclaim 2.24.4.1 Let n ∈ ω. Then j−1n (γ ) = j−10 (γ ).

Proof Since j−1n ( �Z) = �Z � α′, j−1n (A0) = A0 ∩ (α′)m0 and j−1n (S) = S ∩ α′, it
follows from

〈Mδn ,∈, �M � δn〉 |� γ is the least ordinal with { �Z , A0, S} ⊆ Mγ ,

that
〈Mβn ,∈, �M � βn〉 |� j−1n (γ ) is the least ordinal with { �Z � α′, A0 ∩ (α′)m0 , S ∩ α′} ⊆ Mγ .

Now, let γ̄ be such that

〈Mβ0 ,∈, �M � β0〉 |� γ̄ is the least ordinal such that { �Z � α′,A0 ∩ (α′)m0 ,S ∩ α′} ⊆ Mγ̄ .

Since �M is continuous, it follows that γ̄ is a successor ordinal, that is, γ̄ = sup(γ̄ )+1.
So 〈Mβ0 ,∈, �M � β0〉 satisfies the conjunction of the two:

• { �Z � α′, A0 ∩ (α′)m0 , S ∩ α′} ⊆ Mγ̄ , and
• { �Z � α′, A0 ∩ (α′)m0 , S ∩ α′} � Msup(γ̄ ).

But the two are Δ0-formulas in the parameters �Z � α′, A0 ∩ (α′)m0 , S ∩ α′, Mγ̄ and
Msup(γ̄ ), which are all elements of Mβ0 . Therefore,

〈Mβn ,∈, �M � βn〉 |� γ̄ is the least ordinal such that { �Z � α′, A0 ∩ (α′)m0 , S ∩ α′} ⊆ Mγ ,

so that j−1n (γ ) = γ̄ = j−10 (γ ). ��
Denote γ̄ := j−10 (γ ). Let Ψ be the same formula used in statement (�1). For all

n < ω and β̄ ∈ (γ̄ , βn), setting β := jn(β̄), by elementarity of jn :

〈Mβn ,∈, �M � βn〉 |� Ψ ( �M � β̄, α′, S ∩ α′, a ∩ α′, A0 ∩ (α′)m0 , �Z � α′, γ̄ )

⇐⇒
〈Mδn ,∈, �M � δn〉 |� Ψ ( �M � β, κ, S, a, A0, �Z , γ ).

(�3)

Hence, for all n < ω, by statements (�2) and (�3), it follows that

〈Mβn ,∈, �M � βn〉 |� {β | Ψ ( �M � β, α′, S ∩ α′, a ∩ α′, A0 ∩ (α′)m0 , �Z � α′, γ̄ )}
= { j−1n (δk) | k < n},

and that, for each k < n, jn(βk) = δk .

Subclaim 2.24.4.2 β ′ := supn∈ω βn is equal to sup(Sα′).

Proof For each n < ω, as clps(Bn,α′) = 〈Mβn ,∈, . . .〉, the proof of Subclaim2.24.3.3,
establishing that β(α) ∈ Sα , makes clear that βn ∈ Sα′ .

We first argue that β ′ /∈ Sα′ by showing that 〈Mβ ′ ,∈〉 �|� ZF−, and then we will
argue that no β > β ′ is in Sα′ . Note that {βn | n < ω} is a definable subset of
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β ′ since it can be defined as the first ω ordinals to satisfy Clauses (a)–(g), replacing
�M �δ, κ, S, a, A0, �Z , γ by �M �β, α′, S∩α′, a∩α′, A0∩(α′)m0 , �Z �α′, γ̄ , respectively.
So if 〈Mβ ′ ,∈〉 were to model ZF−, we would have get that supn<ω βn is in Mβ ′ ,
contradicting the fact that Mβ ′ ∩ OR = β ′.

Now, towards a contradiction, suppose that there exists β > β ′ in Sα′ , and let β be
the least such ordinal. In particular, 〈Mβ,∈〉 |� ZF−, and 〈βn | n < ω〉 ∈ Mβ , so that
〈Mβn | n ∈ ω〉 ∈ Mβ . We will reach a contradiction to Clause (iii) of the definition of
Sα′ , asserting, in particular, that S ∩ α′ is stationary in 〈Mβ,∈〉.

For each n < ω, we have that 〈Mδn+1 ,∈, �M � δn+1〉 |� Φ(Cn, δn, �Bn, κ), where
Φ(Cn, δn, �Bn, κ) is the conjunction of the following two formulas:

• Cn = {α < κ | Bn,α ∩ κ = α}, and
• �Bn is the <Θ -least witness to LCC at δn with respect to �M � δn+1 and FA0,κ .

Therefore, for Cn := j−1n+1(Cn) and Bn := j−1n+1( �Bn), we have

〈Mβn+1 ,∈, �M � βn+1〉 |� Φ(Cn, βn,Bn, α
′).

In particular,Cn = j−1n+1(Cn) = Cn∩α′. Recalling that α′ = min((
⋂

n∈ω Cn)∩S), we
infer that

⋂
n<ω Cn is disjoint from S∩α′. Thus, to establish that S∩α′ is nonstationary,

it suffices to verify the two:

(1) 〈Cn | n < ω〉 belongs to Mβ , and
(2) for every n < ω, 〈Mβ,∈〉 |� Cn is a club in α′.

As 〈Mβn | n ∈ ω〉 ∈ Mβ , we can define 〈Bn | n ∈ ω〉 using that, for all n ∈ ω,

〈Mβn+1 ,∈, �M � βn+1〉 |� “Bn is the <Θ -least witness to

LCC at α′ w.r.t. �M � βn+1 and FA0,α′”.

This takes care of Clause (1), and shows that 〈Mβn+1 ,∈〉 |� Cn is a club in α′. Since
Mβ is transitive and the formula expressing that Cn is a club is Δ0, we have also taken
care of Clause (2). ��

It follows that α′ ∈ D and f (α′) = sup(Sα′) = β ′.8 Finally, as, for every n < ω,
we have

〈α′,∈, A0 ∩ (α′)m0〉 |�Mβn
∀X∃Yϕ,

we infer that Nα′ = M f (α′) = Mβ ′ =⋃
n∈ω Mβn is such that

〈α′,∈, A0 ∩ (α′)m0〉 |�Nα′ ∀X∃Yϕ.

Indeed, otherwise there is X0 ∈ [α′]p ∩ Nα′ such that, for all Y ∈ [α′]q ∩ Nα′ ,
Nα′ |� [〈α′,∈, A0 ∩ (α′)m0〉 |� ¬ϕ(X0,Y )]. Find a large enough n < ω such that

8 Notice that the argument of this claim also showed that D is stationary.
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X0 ∈ Mβn . Now, since “〈α′,∈, A0∩ (α′)m0〉 |� ¬ϕ(X0,Y )” is a ΔZF−
1 formula on the

parameters 〈α′,∈, A0∩ (α′)m0〉, ϕ, and since Mβn is transitive subset of Nα′ it follows
that, for all Y ∈ [α′]q ∩ Mβn , Mβn |� [〈α′,∈, A0 ∩ (α′)m0〉 |� ¬ϕ(X0,Y )], which is
a contradiction. ��

This completes the proof of Theorem 2.24. ��
As a corollary we have found a strong combinatorial axiom that holds everywhere

(including at ineffable sets) in canonical models of Set Theory (including Gödel’s
constructible universe).

Corollary 2.25 Suppose that:

• L[E] is an extender model with Jensen λ-indexing;
• L[E] |� “there are no subcompact cardinals”;
• for every α ∈ OR, the premouse L[E]||α is weakly iterable.

Then, in L[E], for every regular uncountable cardinal κ , for every stationary S ⊆ κ ,
Dl∗S(Π1

2 ) holds.

Proof Work in L[E]. Let κ be any regular and uncountable cardinal. By Fact 2.15,
�M = 〈Lβ [E] | β < κ+〉 witnesses that LCC(κ, κ+) holds. Since Lκ+[E] is an
acceptable J -structure,9 �M is a nice filtration of Lκ+[E] that is eventually slow at κ .
In addition (cf. [22, Lemma 1.11]), there is a Σ1-formula Θ for which

x <Θ y iff L[E]|κ+ |� Θ(x, y)

defines a well-ordering of Lκ+[E]. Finally, acceptability implies that Lκ+[E] = Hκ+ .
Now, appeal to Theorem 2.24. ��

3 Universality of inclusionmodulo nonstationary

Throughout this section, κ denotes a regular uncountable cardinal satisfying κ<κ = κ .
Here, we will be proving Theorems B and C. Before we can do that, we shall need
to establish a transversal lemma, as well as fix some notation and coding that will be
useful when working with structures of the form 〈κ,∈, (An)n∈ω〉.
Proposition 3.1 (Transversal lemma) Suppose that 〈Nα | α ∈ S〉 is a Dl∗S(Π1

2 )-
sequence, for a given stationary S ⊆ κ . For every Π1

2 -sentence φ, there exists a
transversal 〈ηα | α ∈ S〉 ∈∏

α∈S Nα satisfying the following.
For every η ∈ κκ , whenever 〈κ,∈, (An)n∈ω〉 |� φ, there are stationarily many

α ∈ S such that

(i) ηα = η � α, and
(ii) 〈α,∈, (An ∩ (αm(An)))n∈ω〉 |�Nα φ.

9 For the definition of acceptable J -structure, see [27, p. 4].
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Proof Let c : κ × κ ↔ κ be some primitive-recursive pairing function. For each
α ∈ S, fix a surjection fα : κ → Nα such that fα[α] = Nα whenever |Nα| = |α|.
Then, for all i < κ , as fα(i) ∈ Nα , we may define a set ηiα in Nα by letting

ηiα :=
{
{(β, γ ) ∈ α × α | c(i, c(β, γ )) ∈ fα(i)}, if i < α;
∅, otherwise.

We claim that for everyΠ1
2 -sentence φ, there exists i(φ) < κ for which 〈ηi(φ)

α | α ∈ S〉
satisfies the conclusion of our proposition. Before we prove this, let us make a few
reductions.

First of all, it is clear that for every Π1
2 -sentence φ = ∀X∃Yϕ, there exists a large

enough n′ < ω such that all predicates mentioned in ϕ are in {ε, X, Y, An | n < n′}.
So the only structures of interest for φ are in fact 〈α,∈, (An)n<n′ 〉, where α ≤ κ . Let
m′ := max{m(An) | n < n′}. Then, by a trivial manipulation of ϕ, we may assume
that the only structures of interest for φ are in fact 〈α,∈, A0〉, where ω ≤ α ≤ κ and
m(A0) = m′ + 1.

Having the above reductions in hand, we now fix a Π1
2 -sentence φ = ∀X∃Yϕ

and positive integers m and k such that the only predicates mentioned in ϕ are in
{ε, X, Y, A0}, m(A0) = m and m(Y) = k.

Claim 3.1.1 There exists i < κ satisfying the following. For all η ∈ κκ and A ⊆ κm,
whenever 〈κ,∈, A〉 |� φ, there are stationarily many α ∈ S such that

(i) ηiα = η � α, and
(ii) 〈α,∈, A ∩ (αm)〉 |�Nα φ.

Proof Suppose not. Then, for every i < κ , we may fix ηi ∈ κκ , Ai ⊆ κm and a club
Ci ⊆ κ such that 〈κ,∈, Ai 〉 |� φ, but, for all α ∈ Ci ∩ S, one of the two fails:

(i) ηiα = ηi � α, or
(ii) 〈α,∈, Ai ∩ (αm)〉 |�Nα φ.

Let

• Z := {c(i, c(β, γ )) | i < κ, (β, γ ) ∈ ηi },
• A := {(i, δ1, . . . , δm) | i < κ, (δ1, . . . , δm) ∈ Ai }, and
• C := �i<κ {α ∈ Ci | ηi [α] ⊆ α}.

Fix a variable i that does not occur in ϕ. Define a first-order sentence ψ mention-
ing only the predicates in {ε, X, Y, A1} with m(A1) = 1 + m and m(Y) = 1 + k
by replacing all occurrences of the form A0(x1, . . . , xm) and Y(y1, . . . , yk) in ϕ

by A1(i, x1, . . . , xm) and Y(i, y1, . . . , yk), respectively. Then, let ϕ′ := ∀i(ψ), and
finally let φ′ := ∀X∃Yϕ′, so that φ′ is a Π1

2 -sentence.
A moment reflection makes it clear that 〈κ,∈, A〉 |� φ′. Thus, let S′ denote the set

of all α ∈ S such that all of the following hold:

(1) α ∈ C ;
(2) c[α × α] = α;
(3) Z ∩ α ∈ Nα;
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(4) |Nα| = |α|;
(5) 〈α,∈, A ∩ (αm+1)〉 |�Nα φ′.

By hypothesis, S′ is stationary. For all α ∈ S′, by Clauses (3) and (4), we have
Z ∩ α ∈ Nα = fα[α], so, by Fodor’s lemma, there exists some i < κ and a stationary
S′′ ⊆ S′\(i + 1) such that, for all α ∈ S′′:

(3’) Z ∩ α = fα(i).

Let α ∈ S′′. By Clause (5), we in particular have

(5’) 〈α,∈, Ai ∩ (αm)〉 |�Nα φ.

Also, by Clause (1), we have α ∈ Ci , and so we must conclude that ηi � α �= ηiα .
However, ηi [α] ⊆ α, and Z ∩ α = fα(i), so that, by Clause (2),

ηi � α = ηi ∩ (α × α) = {(β, γ ) ∈ α × α | c(i, c(β, γ )) ∈ fα(i)} = ηiα.

This is a contradiction. ��

This completes the proof of Proposition 3.1. ��

Lemma 3.2 There is a first-order sentence ψfnc in the language with binary predicate
symbols ε and X such that, for every ordinal α and every X ⊆ α × α,

(X is a function from α to α) iff (〈α,∈, X〉 |� ψfnc).

Proof Let ψfnc := ∀β∃γ (X(β, γ ) ∧ (∀δ(X(β, δ) → δ = γ ))). ��

Lemma 3.3 Let α be an ordinal. Suppose that φ is aΣ1
1 -sentence involving a predicate

symbol A and two binary predicate symbols X0, X1. Denote Rφ := {(X0, X1) |
〈α,∈, A, X0, X1〉 |� φ}. Then there are Π1

2 -sentences ψReflexive and ψTransitive such
that:

(1) (Rφ ⊇ {(η, η) | η ∈ αα}) iff (〈α,∈, A〉 |� ψReflexive);
(2) (Rφ is transitive) iff (〈α,∈, A〉 |� ψTransitive).

Proof (1) Fix a first-order sentenceψfnc such that (X0 ∈ αα) iff (〈α,∈, X0〉 |� ψfnc).
Now, let ψReflexive be ∀X0∀X1((ψfnc ∧ (X1 = X0)) → φ).

(2) Fix a Σ1
1 -sentence φ′ involving predicate symbols A, X1, X2 and a Σ1

1 -sentence
φ′′ involving binary symbols A, X0, X2 such that

{(X1, X2) | 〈α,∈, A, X1, X2〉 |� φ′}
= Rφ = {(X0, X2) | 〈α,∈, A, X0, X2〉 |� φ′′}

Now, let ψTransitive := ∀X0∀X1∀X2((φ ∧ φ′) → φ′′).
��
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Definition 3.4 Denote by Lev3(κ) the set of level sequences in κ<κ of length 3:

Lev3(κ) :=
⋃

τ<κ

κτ × κτ × κτ .

Fix an injective enumeration {�δ | δ < κ} of Lev3(κ). For each δ < κ , we denote
�δ = (�0δ , �

1
δ , �

2
δ ). We then encode each T ⊆ Lev3(κ) as a subset of κ5 via:

T� := {(δ, β, �0δ (β), �1δ (β), �2δ (β)) | δ < κ, �δ ∈ T , β ∈ dom(�0δ )}.

We now prove Theorem C.

Theorem 3.5 Suppose Dl∗S(Π1
2 ) holds for a given stationary S ⊆ κ .

For every analytic quasi-order Q over κκ , there is a 1-Lipschitz map f : κκ → 2κ

reducing Q to ⊆S.

Proof Let Q be an analytic quasi-order over κκ . Fix a tree T on κ<κ × κ<κ × κ<κ

such that Q = pr([T ]), that is,

(η, ξ) ∈ Q ⇐⇒ ∃ζ ∈ κκ ∀τ < κ (η � τ, ξ � τ, ζ � τ) ∈ T .

We shall be working with a first-order language having a 5-ary predicate symbol A

and binary predicate symbols X0, X1, X2 and ε. By Lemma 3.2, for each i < 3, let us
fix a sentence ψ i

fnc concerning the binary predicate symbol Xi instead of X, so that

(Xi ∈ κκ) iff (〈κ,∈, A, X0, X1, X2〉 |� ψ i
fnc).

Define a sentence ϕQ to be the conjunction of four sentences: ψ0
fnc, ψ

1
fnc, ψ

2
fnc, and

∀τ∃δ∀β[ε(β, τ ) →
∃γ0∃γ1∃γ2(X0(β, γ0) ∧ X1(β, γ1) ∧ X2(β, γ2) ∧ A(δ, β, γ0, γ1, γ2))].

Set A := T� as in Definition 3.4. Evidently, for all η, ξ, ζ ∈ P(κ × κ), we get that

〈κ,∈, A, η, ξ, ζ 〉 |� ϕQ

iff the two hold:

(1) η, ξ, ζ ∈ κκ , and
(2) for every τ < κ , there exists δ < κ , such that �δ = (η � τ, ξ � τ, ζ � τ) is in T .

Let φQ := ∃X2(ϕQ). Then φQ is a Σ1
1 -sentence involving predicate symbols

A, X0, X1 and ε for which the induced binary relation

RφQ := {(η, ξ) ∈ (P(κ × κ))2 | 〈κ,∈, A, η, ξ 〉 |� φQ}

coincides with the quasi-order Q. Now, appeal to Lemma 3.3 with φQ to receive the
corresponding Π1

2 -sentences ψReflexive and ψTransitive. Then, consider the following
two Π1

2 -sentences:

123



Inclusion modulo nonstationary 847

• ψ0
Q := ψReflexive ∧ ψTransitive ∧ φQ , and

• ψ1
Q := ψReflexive ∧ ψTransitive ∧ ¬(φQ).

Let �N = 〈Nα | α ∈ S〉 be a Dl∗S(Π1
2 )-sequence. Appeal to Proposition 3.1 with the

Π1
2 -sentence ψ1

Q to obtain a corresponding transversal 〈ηα | α ∈ S〉 ∈ ∏
α∈S Nα .

Note that we may assume that, for all α ∈ S, ηα ∈ αα, as this does not harm the key
feature of the chosen transversal.10

For each η ∈ κκ , let

Zη := {α ∈ S | A ∩ α5 and η � α are in Nα}.

Claim 3.5.1 Suppose η ∈ κκ . Then S\Zη is nonstationary.

Proof Fix primitive-recursive bijections c : κ2 ↔ κ and d : κ5 ↔ κ . Given η ∈ κκ ,
consider the club D0 of all α < κ such that:

• η[α] ⊆ α;
• c[α × α] = α;
• d[α × α × α × α × α] = α.

Now, as c[η] is a subset of κ , by the choice �N , we may find a club D1 ⊆ κ such
that, for all α ∈ D1 ∩ S, c[η] ∩ α ∈ Nα . Likewise, we may find a club D2 ⊆ κ such
that, for all α ∈ D2 ∩ S, d[A] ∩ α ∈ Nα .

For all α ∈ S ∩ D0 ∩ D1 ∩ D2, we have

• c[η � α] = c[η ∩ (α × α)] = c[η] ∩ c[α × α] = c[η] ∩ α ∈ Nα , and
• d[A ∩ α5] = d[A] ∩ d[α5] = d[A] ∩ α ∈ Nα .

As Nα is p.r.-closed, it then follows that η � α and A ∩ α5 are in Nα . Thus, we have
shown that S\Zη is disjoint from the club D0 ∩ D1 ∩ D2. ��
For all η ∈ κκ and α ∈ Zη, let:

Pη,α := {p ∈ αα ∩ Nα | 〈α,∈, A ∩ α5, p, η � α〉 |�Nα ψ0
Q}.

Finally, define a function f : κκ → 2κ by letting, for all η ∈ κκ and α < κ ,

f (η)(α) :=
{
1, if α ∈ Zη and ηα ∈ Pη,α;
0, otherwise.

Claim 3.5.2 f is 1-Lipschitz.

Proof Let η, ξ be two distinct elements of κκ . Let α ≤ Δ(η, ξ) be arbitrary.
As η � α = ξ � α, we have α ∈ Zη iff α ∈ Zξ . In addition, as η � α = ξ � α,

Pη,α = Pξ,α whenever α ∈ Zη. Thus, altogether, f (η)(α) = 1 iff f (ξ)(α) = 1. ��
10 For any α such that ηα is not a function from α to α, simply replace ηα by the constant function from α

to {0}.
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Claim 3.5.3 Suppose (η, ξ) ∈ Q. Then f (η) ⊆S f (ξ).

Proof As (η, ξ) ∈ Q, let us fix ζ ∈ κκ such that, for all τ < κ , (η �τ, ξ �τ, ζ �τ) ∈ T .
Define a function g : κ → κ by letting, for all τ < κ ,

g(τ ) := min{δ < κ | �δ = (η � τ, ξ � τ, ζ � τ)}.

As (S\Zη), (S\Zξ ) and (S\Zζ ) are nonstationary, let us fix a club C ⊆ κ such that
C ∩ S ⊆ Zη ∩ Zξ ∩ Zζ . Consider the club D := {α ∈ C | g[α] ⊆ α}. We shall show
that, for every α ∈ D ∩ S, if f (η)(α) = 1 then f (ξ)(α) = 1.

Fix an arbitrary α ∈ D ∩ S satisfying f (η)(α) = 1. In effect, the following three
conditions are satisfied:

(1) 〈α,∈, A ∩ α5〉 |�Nα ψReflexive,
(2) 〈α,∈, A ∩ α5〉 |�Nα ψTransitive, and
(3) 〈α,∈, A ∩ α5, ηα, η � α〉 |�Nα φQ .

In addition, since α is a closure point of g, by definition of ϕQ , we have

〈α,∈, A ∩ α5, η � α, ξ � α, ζ � α〉 |� ϕQ .

As α ∈ S and ϕQ is first-order,11

〈α,∈, A ∩ α5, η � α, ξ � α, ζ � α〉 |�Nα ϕQ,

so that, by definition of φQ ,

〈α,∈, A ∩ α5, η � α, ξ � α〉 |�Nα φQ .

By combining the preceding with clauses (2) and (3) above, we infer that the following
holds, as well:

(4) 〈α,∈, A ∩ α5, ηα, ξ � α〉 |�Nα φQ .

Altogether, f (ξ)(α) = 1, as sought. ��
Claim 3.5.4 Suppose (η, ξ) ∈ κκ × κκ\Q. Then f (η)�S f (ξ).

Proof As (S\Zη) and (S\Zξ ) are nonstationary, let us fix a club C ⊆ κ such that
C ∩ S ⊆ Zη ∩ Zξ . As Q is a quasi-order and (η, ξ) /∈ Q, we have:

(1) 〈κ,∈, A〉 |� ψReflexive,
(2) 〈κ,∈, A〉 |� ψTransitive, and
(3) 〈κ,∈, A, η, ξ 〉 |� ¬(φQ).

11 Nα is transitive and rud-closed (in fact, p.r.-closed), so that Nα |� GJ (see [18, §Other remarks on GJ]).
Now, by [18, §The cure in GJ, proposition 10.31], Sat is ΔGJ

1 .
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so that, altogether,

〈κ,∈, A, η, ξ 〉 |� ψ1
Q .

Then, by the choice of the transversal 〈ηα | α ∈ S〉, there is a stationary subset
S′ ⊆ S ∩ C such that, for all α ∈ S′:
(1’) 〈α,∈, A ∩ α5〉 |�Nα ψReflexive,
(2’) 〈α,∈, A ∩ α5〉 |�Nα ψTransitive,
(3’) 〈α,∈, A ∩ α5, η � α, ξ � α〉 |�Nα ¬(φQ), and
(4’) ηα = η � α.

By Clauses (3’) and (4’), we have that ηα /∈ Pξ,α , so that f (ξ)(α) = 0.
By Clauses (1’), (2’) and (4’), we have that ηα ∈ Pη,α , so that f (η)(α) = 1.
Altogether, {α ∈ S | f (η)(α) > f (ξ)(α)} covers the stationary set S′, so that

f (η)�S f (ξ). ��
This completes the proof of Theorem 3.5 ��
Theorem B now follows as a corollary.

Corollary 3.6 Suppose that κ is a regular uncountable cardinal and GCH holds. Then
there is a set-size cofinality-preserving GCH-preserving notion of forcing P, such that,
in V P, for every analytic quasi-order Q over κκ and every stationary S ⊆ κ , Q ↪→1
⊆S.

Proof This follows from Theorems 2.24 and 3.5, and one of the following:
� If κ is inaccessible, then we use Fact 2.13 and Lemma 2.20.
� If κ is a successor cardinal, then we use Fact 2.14 and Lemma 2.19.12 ��

Remark 3.7 By combining the proof of the preceding with a result of Lücke [17,
Theorem1.5], we arrive at following conclusion. Suppose that κ is an infinite successor
cardinal and GCH holds. For every binary relation R over κκ , there is a set-size GCH-
preserving (<κ)-closed, κ+-cc notion of forcing PR such that, in V PR , the conclusion
of Corollary 3.6 holds, and, in addition, R is analytic.

Remark 3.8 A quasi-order � over a space X ∈ {2κ , κκ} is said to be Σ1
1 -complete

iff it is analytic and, for every analytic quasi-order Q over X , there exists a κ-Borel
function f : X → X reducing Q to �. As Lipschitz �⇒ continuous �⇒ κ-Borel,
the conclusion of Corollary 3.6 gives that each⊆S is aΣ1

1 -complete quasi-order. Such
a consistency was previously only known for S’s of one of two specific forms, and the
witnessing maps were not Lipschitz.

4 Concluding remarks

Remark 4.1 The referee asked whether the conclusions of the main theorems are also
known to be false. This is indeed the case, as witnessed by the model of [10, §4], in

12 Note that in this case, P is moreover (<κ)-directed-closed and has the κ+-cc.
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which for any i, j < 2with i+ j = 1 there are no Borel reductions from⊆ℵ2∩cof(ℵi ) to
⊆ℵ2∩cof(ℵ j ). In a recent paper [8], we slightly improved this to get no Baire measurable
reductions from ⊆ℵ2∩cof(ℵi ) to ≤ℵ2∩cof(ℵ j ).

Remark 4.2 By [15, Corollary 4.5], in L , for every successor cardinal κ and every
theory (not necessarily complete) T over a countable relational language, the cor-
responding equivalence relation ∼=T over 2κ is either Δ1

1 or Σ1
1 -complete. This

dissatisfying dichotomy suggests that L is a singular universe, unsuitable for studying
the correspondence between generalized descriptive set theory and model-theoretic
complexities. However, using Theorem 3.5, it can be verified that the above dichotomy
holds as soon as κ is a successor of an uncountable cardinalλ = λ<λ inwhichDl∗S(Π1

2 )

holds for both S := κ ∩ cof(ω) and S := κ ∩ cof(λ). This means that the dichotomy
is in fact not limited to L and can be forced to hold starting with any ground model.

Remark 4.3 Let =S denote the symmetric version of ⊆S . It is well known that, in
the special case S := κ ∩ cof(ω), =S is a κ-Borel∗ equivalence relation [19, §6].
It thus follows from Theorem 3.5 that if Dl∗S(Π1

2 ) holds for S := κ ∩ cof(ω), then
the class of Σ1

1 sets coincides with the class of κ-Borel∗ sets. Now, as the proof of
[16, Theorem 3.1] establishes that the failure of the preceding is consistent with, e.g.,
κ = ℵ2 = 22

ℵ0 , which in turn, by [12, Lemma 2.1], implies that ♦∗S holds, we infer
that the hypothesis Dl∗S(Π1

2 ) of Theorem 3.5 cannot be replaced by ♦∗S . We thus feel
that we have identified the correct combinatorial principle behind a line of results that
were previously obtained under the heavy hypothesis of “V = L”.
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