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Abstract
In this paper, we first study the local well-posedness for the Cauchy problem of a
modified Camassa–Holm equation in nonhomogeneous Besov spaces. Then we obtain
a blow-up criteria and present a blow-up result for the equation. Finally, with proving
the norm inflation we show the ill-posedness occurs to the equation in critical Besov
spaces.
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1 Introduction

In this paper, we consider the Cauchy problem for the following modified Camassa–
Holm equation:

⎧
⎪⎨

⎪⎩

γt = λ
(
vx − γ − 1

λ
vγ

)

x , t > 0, x ∈ R,

vxx − v = γx + γ 2

2λ , t ≥ 0, x ∈ R,

γ (0, x) = γ0(x), x ∈ R,

(1.1)

which was called by Gorka and Reyes [19]. Let G = ∂2x −1,m = Gv. Then, Eq. (1.1)
can be rewritten as

⎧
⎪⎨

⎪⎩

γt + G−1mγx = γ 2

2 + λG−1m − γG−1mx , t > 0, x ∈ R,

m = γx + γ 2

2λ , t ≥ 0, x ∈ R,

γ (0, x) = γ0(x), x ∈ R.

(1.2)

The Eq. (1.1) was first studied through the geometric approach in [14,27]. Pseudo-
potentials, conservation laws and the existence and uniqueness of weak solutions to the
modified Camassa–Holm equation were presented in [19].We observe that if we solve
(1.2), then m will formally satisfy the following physical form of the Camassa–Holm
equation [10]:

mt = −2vmx − mvx + λvx .

If λ = 0, it is known as the well-known Camassa–Holm(CH) equation. It was
derived as a model for shallow water waves [10,11]. The CH equation is completely
integrable [6,10]and has a bi-Hamiltonian structure [4,17]. It admits peakon solitons
of the form ce−|x−ct | with c > 0, which are orbitally stable [13]. The local well-
posedness for the Cauchy problem of the CH equation in Sobolev spaces and Besov
spaces was proved in [7,8,15,26]. It was shown that there exist finite time blow-up
strong solutions and global strong solutions to the CH equation [5,7–9]. Recently,
norm inflation and ill-posedness for the CH eqution in the critical Sobolev Space
and Besov spaces was proved in [15,16,18]. The existence and uniqueness of global
weak solutions were presented in [12,29]. The global conservative, dissipative, and
algebro-geometric solutions were studied in [2,3,25].

In this paper, we investigate the local well-posedness for the Cauchy problem of a
modified Camassa-Holm Eq. (1.2) in Besov spaces, present a blow-up result to (1.2)
and prove norm inflation and hence ill-posedness for the equation in critical Besov
spaces. This paper is organized as follows. In Sect. 2, we introduce some preliminaries
which will be used in sequel. In Sect. 3, we prove the local well-posedness of (1.2) in
Bs
p,r with s > max( 12 ,

1
p ) or (s = 1

p , 1 ≤ p ≤ 2, r = 1) in the sense of Hadamard (i.e.
(1.2) has a unique local solution in Bs

p,r with continuity with respect to the initial data).
The main approach is based on the Littlewood–Paley theory and transport equations
theory. In Sect. 4, we present a blow-up result of the Eq. (1.2) and then prove that (1.2)

is ill-posed in H
1
2 and in B

1
2
2,r , 1 < r ≤ ∞ by a contradiction argument.
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On the Cauchy problem for a modified Camassa–Holm equation 859

2 Preliminaries

In this section, we will recall some propositions about the Littlewood–Paley decom-
position and Besov spaces.

Proposition 2.1 [1] Let C be the annulus {ξ ∈ R
d : 3

4 ≤ |ξ | ≤ 8
3 }. There exist radial

functions χ and ϕ, valued in the interval [0, 1], belonging respectively toD(B(0, 4
3 ))

and D(C), and such that

∀ξ ∈ R
d , χ(ξ) +

∑

j≥0

ϕ(2− jξ) = 1,

∀ξ ∈ R
d\{0},

∑

j∈Z
ϕ(2− jξ) = 1,

| j − j ′| ≥ 2 ⇒ Supp ϕ(2− j ·) ∩ Supp ϕ(2− j ′ ·) = ∅,

j ≥ 1 ⇒ Supp χ(·) ∩ Supp ϕ(2− j ·) = ∅.

The set C̃ = B(0, 2
3 ) + C is an annulus, and we have

| j − j ′| ≥ 5 ⇒ 2 jC ∩ 2 j ′ C̃ = ∅.

Further, we have

∀ξ ∈ R
d ,

1

2
≤ χ2(ξ) +

∑

j≥0

ϕ2(2− jξ) ≤ 1,

∀ξ ∈ R
d\{0}, 1

2
≤

∑

j∈Z
ϕ2(2− jξ) ≤ 1.

F represents the Fourier transform and its inverse is denoted by F−1. Let u be a
tempered distribution in S ′(Rd). For all j ∈ Z, define

� j u = 0 if j ≤ −2,

�−1u = F−1(χFu),

� j u = F−1(ϕ(2− j ·)Fu) if j ≥ 0,

S ju =
∑

j ′< j

� j ′u.

Then the Littlewood–Paley decomposition is given as follows:

u =
∑

j∈Z
� j u in S ′(Rd).
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860 Z. Luo et al.

Let s ∈ R, 1 ≤ p, r ≤ ∞. The nonhomogeneous Besov space Bs
p,r (R

d) is defined
by

Bs
p,r = Bs

p,r (R
d) = {u ∈ S′(Rd) : ‖u‖Bs

p,r (R
d ) =

∥
∥
∥(2 js‖� j u‖L p ) j

∥
∥
∥
lr (Z)

< ∞}.

There are some properties about Besov spaces.

Proposition 2.2 [1,20] Let s ∈ R, 1 ≤ p, p1, p2, r , r1, r2 ≤ ∞.

(1) Bs
p,r is a Banach space, and is continuously embedded in S ′.

(2) If r < ∞, then lim j→∞ ‖S ju − u‖Bs
p,r

= 0. If p, r < ∞, then C∞
0 is dense in

Bs
p,r .

(3) If p1 ≤ p2 and r1 ≤ r2, then Bs
p1,r1 ↪→ B

s−d( 1
p1

− 1
p2

)

p2,r2 . If s1 < s2, then the
embedding Bs2

p,r2 ↪→ Bs1
p,r1 is locally compact.

(4) Bs
p,r ↪→ L∞ ⇔ s > d

p or s = d
p , r = 1.

(5) Fatou property: if (un)n∈N is a bounded sequence in Bs
p,r , then an element u ∈ Bs

p,r
and a subsequence (unk )k∈N exist such that

lim
k→∞ unk = u in S ′ and ‖u‖Bs

p,r
≤ C lim inf

k→∞ ‖unk‖Bs
p,r

.

(6) Let m ∈ R and f be a Sm-mutiplier (i.e. f is a smooth function and satisfies that
∀α ∈ N

d , ∃C = C(α), such that |∂α f (ξ)| ≤ C(1 + |ξ |)m−|α|, ∀ξ ∈ R
d). Then

the operator f (D) = F−1( fF) is continuous from Bs
p,r to Bs−m

p,r .

We introduce two useful interpolation inequalities.

Proposition 2.3 [1,20] (1) If s1 < s2, θ ∈ (0, 1), and (p, r) is in [1,∞]2, then we
have

‖u‖
B

θs1+(1−θ)s2
p,r

≤ ‖u‖θ

B
s1
p,r

‖u‖1−θ

B
s2
p,r

.

(2) If s ∈ R, 1 ≤ p ≤ ∞, ε > 0, a constant C = C(ε) exists such that

‖u‖Bs
p,1

≤ C‖u‖Bs
p,∞ ln

(
e +

‖u‖Bs+ε
p,∞

‖u‖Bs
p,∞

)
.

Proposition 2.4 [1] Let s ∈ R, 1 ≤ p, r ≤ ∞.

⎧
⎨

⎩

Bs
p,r × B−s

p′,r ′ −→ R,

(u, φ) �−→ ∑

| j− j ′|≤1
〈� j u,� j ′φ〉,

defines a continuous bilinear functional on Bs
p,r × B−s

p′,r ′ . Denote by Q−s
p′,r ′ the set of

functions φ in S ′ such that ‖φ‖B−s
p′,r ′

≤ 1. If u is in S ′, then we have

‖u‖Bs
p,r

≤ C sup
φ∈Q−s

p′,r ′
〈u, φ〉.
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On the Cauchy problem for a modified Camassa–Holm equation 861

We then have the following product laws:

Lemma 2.5 [1,20] (1) For any s > 0 and any (p, r) in [1,∞]2, the space L∞ ∩ Bs
p,r

is an algebra, and a constant C = C(s, d) exists such that

‖uv‖Bs
p,r

≤ C(‖u‖L∞‖v‖Bs
p,r

+ ‖u‖Bs
p,r

‖v‖L∞).

(2) If 1 ≤ p, r ≤ ∞, s1 ≤ s2, s2 > d
p (s2 ≥ d

p if r = 1) and s1+s2 > max(0, 2d
p −d),

there exists C = C(s1, s2, p, r , d) such that

‖uv‖Bs1
p,r

≤ C‖u‖Bs1
p,r

‖v‖Bs2
p,r

.

(3) If 1 ≤ p ≤ 2, there exists C = C(p, d) such that

‖uv‖
B

d
p −d
p,∞

≤ C‖u‖
B

d
p −d
p,∞

‖v‖
B

d
p
p,1

.

Wenow state the so-calledOsgood lemma, a generalization of theGronwall lemma.

Lemma 2.6 [1] Let ρ be a measurable function from [t0, T ] to [0, a], γ a locally
integrable function from [t0, T ] toR+, andμ a continuous and nondecreasing function
from [0, a] to R+. Assume that for some c ≥ 0, the function ρ satisfies

ρ(t) ≤ c +
∫ t

t0
γ (t ′)μ(ρ(t ′))dt ′ for a.e. t ∈ [t0, T ].

If c > 0, then for a.e. t ∈ [t0, T ],

−M(ρ(t)) + M(c) ≤
∫ t

t0
γ (t ′)dt ′ with M(x) =

∫ a

x

dr

μ(r)
.

If c = 0, and μ satisfies
∫ a
0

dr
μ(r) = ∞, then ρ = 0, a.e.

Remark 2.7 [21] For example, whenμ(r) = r(1− ln r), r ∈ [0, 1], we haveM(x) =
ln(1 − ln x), and ρ(t) ≤ ec

exp− ∫ t
t0

γ (t ′)dt ′ , if c > 0. We will use this result later.

Now we state some useful estimates in the study of transport equations, which are
crucial to the proofs of our main theorem later.

{
ft + v · ∇ f = g, x ∈ R

d , t > 0,
f (0, x) = f0(x).

(2.1)

Lemma 2.8 [1,23] Let s ∈ R, 1 ≤ p, r ≤ ∞. There exists a constant C such that for
all solutions f ∈ L∞([0, T ]; Bs

p,r ) of (2.1) in one dimension with initial data f0 in

Bs
p,r , and g in L1([0, T ]; Bs

p,r ), we have, for a.e. t ∈ [0, T ],
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862 Z. Luo et al.

‖ f (t)‖Bs
p,r

≤ eCV (t)
(
‖ f0‖Bs

p,r
+

∫ t

0
e−CV (t ′)‖g(t ′)‖Bs

p,r
dt ′

)

with

V ′(t) =

⎧
⎪⎪⎨

⎪⎪⎩

‖∇v‖Bs+1
p,r

, if s > max(− 1
2 ,

1
p − 1),

‖∇v‖Bs
p,r

, if s > 1
p or (s = 1

p , p < ∞, r = 1),

‖∇v‖
B

1
p
p,1

, if s = 1
p − 1, 1 ≤ p ≤ 2, r = ∞,

and when s = 1
p − 1, 1 ≤ p ≤ 2, r = ∞, and V ′(t) = ‖∇v‖

B
1
p
p,1

.

Lemma 2.9 [24] Let s > 0, 1 ≤ p, r ≤ ∞. Define R j = [v · ∇,� j ] f . There exists
a constant C such that

∥
∥
∥(2 js‖R j‖L p ) j

∥
∥
∥
lr (Z)

≤ C(‖∇v‖L∞‖ f ‖Bs
p,r

+ ‖∇v‖Bs
p,r

‖ f ‖L∞).

Hence, if f solves the equation (2.1), we have

‖ f (t)‖Bs
p,r

≤ ‖ f0‖Bs
p,r

+ C
∫ t

0
(‖∇v‖L∞‖ f ‖Bs

p,r
+ ‖∇v‖Bs

p,r
‖ f ‖L∞ + ‖g‖Bs

p,r
dt ′).

Lemma 2.10 [1,23] Let 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, s > −d min( 1
p1

, 1
p′ ). Let

f0 ∈ Bs
p,r , g ∈ L1([0, T ]; Bs

p,r ), and let v be a time-dependent vector field such that

v ∈ Lρ([0, T ]; B−M∞,∞) for some ρ > 1 and M > 0, and

∇v ∈ L1([0, T ]; B
d
p1
p1,∞

⋂
L∞), if s < 1 + d

p1
,

∇v ∈ L1([0, T ]; B1+ d
p

p,r ), if s = 1 + d
p , r > 1,

∇v ∈ L1([0, T ]; Bs−1
p1,r ), if s > 1 + d

p1
or (s = 1 + d

p1
and r = 1).

Then the equation (2.1) has a unique solution f in
-the space C([0, T ]; Bs

p,r ), if r < ∞,

-the space
( ⋂

s′<s C([0, T ]; Bs′
p,∞)

)⋂
Cw([0, T ]; Bs

p,∞), if r = ∞.

Lemma 2.11 [22] Let 1 ≤ p ≤ ∞, 1 ≤ r < ∞, s > d
p (or s = d

p , p < ∞, r = 1).

Denote N̄ = N ∪ {∞}. Let (vn)n∈N̄ ∈ C([0, T ]; Bs+1
p,r ). Assume that ( f n)n∈N̄ in

C([0, T ]; Bs
p,r ) is the solution to

{
f nt + vn · ∇ f n = g, x ∈ R

d , t > 0,
f n(0, x) = f0(x)

(2.2)
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On the Cauchy problem for a modified Camassa–Holm equation 863

with initial data f0 ∈ Bs
p,r , g ∈ L1([0, T ]; Bs

p,r ) and that for some α ∈ L1([0, T ]),
sup
n∈N̄

‖vn(t)‖Bs+1
p,r

≤ α(t). If vn → v∞ in L1([0, T ]; Bs
p,r ), then f n → f ∞ in

C([0, T ]; Bs
p,r ).

3 Local well-posedness

In this section, we will investigate the local well-posedness for (1.2) in Besov
spaces.We introduce the following function spaces.

Definition 3.1 Let T > 0, s ∈ R, and 1 ≤ p, r ≤ ∞. Set

Es
p,r (T ) �

{
C([0, T ]; Bs

p,r ) ∩ C1([0, T ]; Bs−1
p,r ), if r < ∞,

Cw([0, T ]; Bs
p,∞) ∩ C0,1([0, T ]; Bs−1

p,∞), if r = ∞.

In this section, our main theorem is stated as follows.

Theorem 3.2 Let 1 ≤ p, r ≤ ∞, s ∈ R and let (s, p, r) satisfy the condition s >

max( 12 ,
1
p ) or (s = 1

p , 1 ≤ p ≤ 2, r = 1). Assume that γ0 ∈ Bs
p,r . Then there

exists a time T > 0 such that (1.2) has a unique solution γ in Es
p,r (T ). Moreover the

solution depends continuously on the initial data.

We divide it into six steps to prove Theorem 3.2.
Step one: Constructing approximate solutions.

We starts from γ 0 � 0, and define a sequence (γ n)n∈N of smooth functions by solving
the following linear transport equations:

⎧
⎪⎨

⎪⎩

γ n+1
t + G−1mnγ n+1

x = (γ n)2

2 + λG−1mn − γG−1mn
x ,

mn = γ n
x + (γ n)2

2λ ,

γ n+1(0, x) = Sn+1γ0.

(3.1)

Define Gn = G−1mn, Fn = (γ n)2

2 + λG−1mn − γG−1mn
x . Assume that γn ∈

L∞([0, T ]; Bs
p,r ) for all T > 0. Note that under the assumptions on (s, p, r), Bs

p,r is
an algebra. We have

‖Gn
x‖Bs

p,r
≤ C‖mn‖Bs−1

p,r

≤ C
(
‖γ n‖Bs

p,r
+ ‖γ n‖2Bs

p,r

)
. (3.2)

‖Fn‖Bs
p,r

≤ C
(
‖γ n‖2Bs

p,r
+ ‖G−1mn‖Bs

p,r
+ ‖γ n‖Bs

p,r
‖G−1mn

x‖Bs
p,r

)

≤ C
(
‖γ n‖Bs

p,r
+ ‖γ n‖2Bs

p,r
+ ‖γ n‖3Bs

p,r

)
. (3.3)

Therefore Gn
x , Fn ∈ L∞([0, T ]; Bs

p,r ). Hence, applying Lemma 2.10 ensures that
(3.1) has a global solution γ n+1 which belongs to Es

p,r (T ) for all T > 0.
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864 Z. Luo et al.

Step two: Uniform bounds.
Define Rn = ‖γ n(t)‖Bs

p,r
.Using Lemma 2.8 together with (3.2) and (3.3), we have

Rn+1 ≤ e
C

∫ t
0 ‖Gn

x‖Bsp,r dt ′
(
‖Sn+1γ0‖Bs

p,r
+

∫ t

0
e
−C

∫ t ′
0 ‖Gn

x‖Bsp,r dt ′′ ‖Fn‖Bs
p,r
dt ′

)

≤ CeC
∫ t
0 Rn+R2

ndt
′(‖γ0‖Bs

p,r
+

∫ t

0
e−C

∫ t ′
0 Rn+R2

ndt
′′
(Rn + R2

n + R3
n)dt

′).

(3.4)

The case where ‖γ0‖Bs
p,r

= 0 is trivial, we start with the case where ‖γ0‖Bs
p,r

�= 0. We

have known that R0 = 0. Fix a T > 0 such that 4C3T ‖γ0‖2Bs
p,r

< 1 and suppose that

∀t ∈ [0, T ], Rn ≤ C‖γ0‖Bs
p,r

2(1 − 4C3t‖γ0‖2Bs
p,r

)
1
2

. (3.5)

Pluge (3.5) into (3.4) and choose C ≥ 2‖γ0‖Bs
p,r
. After a simple calculation we derive

Rn+1 ≤ C‖γ0‖Bs
p,r

(1 − 4C3t‖γ0‖2Bs
p,r

)−
1
4

(

1 + C3‖γ0‖2Bs
p,r

∫ t

0
(1

−4C3t ′‖γ0‖2Bs
p,r

)−
5
4 dt ′

)

≤ C‖γ0‖Bs
p,r

2(1 − 4C3t‖γ0‖2Bs
p,r

)
1
2

.

Therefore, (γ n)n∈N is bounded in L∞([0, T ]; Bs
p,r ).

Step three: Cauchy sequence.
When s > max( 12 ,

1
p ) or (s = 1

p , 1 ≤ p ≤ 2, r = 1), some estimates we need are a
little different, so we have to discuss separately.

Case 1 s > max( 12 ,
1
p ).

We are going to prove that (γ n)n∈N is a Cauchy sequence in L∞([0, T ]; Bs−1
p,r ).

For that purpose, for all (n, k) ∈ N
2, we have

(γ n+k+1 − γ n+1)t + Gn+k(γ n+k+1 − γ n+1)x =
(
Gn − Gn+k

)
γ n+1
x + Fn+k − Fn,

where

Gn − Gn+k = G−1(γ n − γ n+k)x − 1

2λ
G−1

(
(
γ n)2 −

(
γ n+k

)2
)

,

Fn+k − Fn = 1

2

(
γ n+k − γ n

) (
γ n+k + γ n

)
+ λG−1

(
γ n+k − γ n

)
+ 1

2
G−1

((
γ n)2

−
(
γ n+k

)2
)

− γ n+k
(
∂xG

−1mn+k − ∂xG
−1mn

)
− (γ n+k − γ n)∂xG

−1mn .
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On the Cauchy problem for a modified Camassa–Holm equation 865

Applying Lemma 2.8, for any t in [0, T ], we get

‖(γ n+k+1 − γ n+1)(t)‖Bs−1
p,r

≤ e
C

∫ t
0 ‖Gn+k

x ‖Bsp,r dt ′
(
‖Sn+k+1γ0 − Sn+1γ0‖Bs−1

p,r

+
∫ t

0
e
−C

∫ t ′
0 ‖Gn+k

x ‖Bsp,r dt ′′
(
‖
(
Gn − Gn+k

)
mn+1

x ‖Bs−1
p,r

+‖Fn+k − Fn‖Bs−1
p,r

)
dt ′

)
. (3.6)

Using the fact Bs
p,r is an algebra and applying Lemma 2.5 (2), we have

‖
(
Gn − Gn+k

)
γ n+1
x ‖Bs

p,r

≤ C‖γ n+1‖Bs
p,r

(
1 + ‖γ n‖Bs

p,r
‖γ n+k‖Bs

p,r

)
‖γ n+k − γ n‖Bs−1

p,r
, (3.7)

and

‖Fn+k − Fn‖Bs−1
p,r

≤ C
(
1 + ‖γ n+k‖Bs

p,r
+ ‖γ n+k‖Bs

p,r
‖γ n‖Bs

p,r
+ ‖γ n+k‖2Bs

p,r

+‖γ n‖Bs
p,r

+ ‖γ n‖2Bs
p,r

)
‖γ n+k − γ n‖Bs−1

p,r
. (3.8)

Since (γ n)n∈N is bounded in L∞([0, T ]; Bs
p,r ) for all t in [0, T ], we finally get

‖
(
γ n+k+1 − γ n+1

)
(t)‖Bs−1

p,r

≤ C
(
‖Sn+k+1γ0 − Sn+1γ0‖Bs−1

p,r
+

∫ t

0
‖γ n+k − γ n‖Bs−1

p,r
dt ′

)
.

Taking an upper bound on [0, t], we have

‖γ n+k+1 − γ n+1‖L∞
t (Bs−1

p,r )

≤ C
(
‖Sn+k+1γ0 − Sn+1γ0‖Bs−1

p,r
+

∫ t

0
‖γ n+k − γ n‖L∞

t ′ (Bs−1
p,r )

dt ′
)
. (3.9)

Let gn(t) = supk ‖γ n+k − γ n‖L∞
t (Bs−1

p,r )
. Then (3.9) becomes

gn+1(t) ≤ C
(
sup
k

‖Sn+k+1γ0 − Sn+1γ0‖Bs−1
p,r

+
∫ t

0
gn(t

′)dt ′
)
.

Since (Snγ 0)n∈N is a Cauchy sequence in Bs−1
p,r , applying Fatou’s lemma, we have

g(t) � lim sup
n→∞

gn+1(t) ≤ C
∫ t

0
g(t ′)dt ′.
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The Gronwall lemma implies that g(t) = 0 for all t ∈ [0, T ]. Therefore (γ n)n∈N
is a Cauchy sequence in C([0, T ]; Bs−1

p,r ) and converges to some limit function γ ∈
C([0, T ]; Bs−1

p,r ).

Case 2 s = 1
p , 1 ≤ p ≤ 2, r = 1.

From Lemma 2.8, comparing with Case 1, we do not have the estimate for the norm
Bs−1
p,1 but Bs−1

p,∞. In fact, we only have

‖(γ n+k+1 − γ n+1)(t)‖
B

1
p −1
p,∞

≤ e

C
∫ t
0 ‖Gn+k

x ‖
B
1
p
p,1

dt ′(
‖Sn+k+1γ0 − Sn+1γ0‖

B
1
p −1
p,∞

+
∫ t

0
e

−C
∫ t ′
0 ‖Gn+k

x ‖
B
1
p
p,1

dt ′′

(‖(Gn − Gn+k)γ n+1
x ‖

B
1
p −1
p,∞

+ ‖Fn+k − Fn‖
B

1
p −1
p,∞

)dt ′
)
.

(3.10)

Applying Lemma 2.5 (3), we deduce that

‖(Gn − Gn+k)γ n+1
x ‖

B
1
p −1
p,∞

≤ C‖γ n+1‖
B

1
p
p,1

(1 + ‖γ n‖
B

1
p
p,1

+ ‖γ n+k‖
B

1
p
p,1

)‖γ n+k

− γ n‖
B

1
p −1

p,1

. (3.11)

‖Fn+k − Fn‖
B

1
p −1
p,∞

≤ C(1 + ‖γ n‖
B

1
p
p,1

+ ‖γ n+k‖
B

1
p
p,1

+ ‖γ n+k‖2
B

1
p
p,1

+ ‖γ n‖2
B

1
p
p,1

+ ‖γ n‖
B

1
p
p,1

‖γ n+k‖
B

1
p
p,1

)‖γ n+k − γ n‖
B

1
p −1

p,1

. (3.12)

Plugging (3.11), (3.12) into (3.10), and using uniform bounds of (γ n)n∈N, we have

‖(γ n+k+1 − γ n+1)(t)‖
B

1
p −1
p,∞

≤ C
(
‖Sn+k+1γ0 − Sn+1γ0‖

B
1
p
p,1

+
∫ t

0
‖γ n+k − γ n‖

B
1
p −1

p,1

dt ′
)
. (3.13)

Applying Proposition 2.3 (2), we find

‖γ n+k − γ n‖
B

1
p −1

p,1

≤ C‖γ n+k − γ n‖
B

1
p −1
p,∞

ln
(
e +

‖γ n+k − γ n‖
B

1
p
p,1

‖γ n+k − γ n‖
B

1
p −1
p,∞

)
. (3.14)
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Since the function x ln(e+ C
x ) is nondecreasing in (0,∞), from (3.13) and (3.14), we

have

‖γ n+k+1 − γ n+1‖
L∞
t (B

1
p −1
p,∞ )

≤ C
(
‖Sn+k+1γ0 − Sn+1γ0‖

B
1
p −1

p,1

+
∫ t

0
‖γ n+k − γ n‖

L∞
t ′ (B

1
p −1
p,∞ )

ln
(
e + C

‖γ n+k − γ n‖
L∞
t ′ (B

1
p −1
p,∞ )

)
dt ′

)
.

Let g(t) � lim supn→∞ supk ‖γ n+k − γ n‖
L∞
t (B

1
p −1
p,∞ )

. The above inequality can be

written as

g(t) ≤ C
∫ t

0
g(t ′) ln

(

e + C

g(t ′)

)

dt ′.

Hence Lemma 2.6 implies that g(t) ≡ 0, and (γ n)n∈N is a Cauchy sequence in

C([0, T ]; B
1
p −1
p,∞ ) and converges to some limit function γ in C([0, T ]; B

1
p −1
p,∞ ).

Step four Convergence.
We have to prove that γ belongs to Es

p,r (T ) and satisfies (1.2). Since (γ n)n∈N is
bounded in L∞([0, T ]; Bs

p,r ), we can apply the Fatou property for the Besov spaces to
show that γ also belongs to L∞([0, T ]; Bs

p,r ). Now, applying interpolation inequalities

implies that (γ n)n∈N converges to γ in C([0, T ]; Bs′
p,r ) for any s

′ < s. Then it is easy
to pass to the limit in (3.1) and to conclude that γ is indeed a solution of (1.2) in the
sense of distributions.

Finally, since γ belongs to L∞([0, T ]; Bs
p,r ), the right-hand side of (1.2) also

belongs to L∞([0, T ]; Bs
p,r ). According to Lemma 2.10, we can deduce that γ

belongs to C([0, T ]; Bs
p,r ) (resp., Cw([0, T ]; Bs

p,r )) if r < ∞ (resp., r = ∞). Again
using the equation (1.2), we prove that γt is in C([0, T ]; Bs−1

p,r ) if r is finite, and in
L∞([0, T ]; Bs−1

p,r ) otherwise. Hence, γ belongs to Es
p,r (T ).

Step five Uniqueness.
Then, we will prove the uniqueness of solutions to (1.2). The proof follows almost
exactly the proofs which we use in Step 3. Suppose that γ1, γ2 are two solutions of
(1.2). We obtain

∂t (γ1 − γ2) + G1∂x (γ1 − γ2) = (G2 − G1)∂xγ2 + F1 − F2,

where for i = 1, 2,

mi = ∂xγi + γ 2
i

2λ
, Gi = G−1mi , Fi = 1

2
γ 2
i + λG−1mi − γi∂xG

−1mi .

Case 1 s > max( 12 ,
1
p ).
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Applying Lemma 2.8, we get

‖(γ1 − γ2)(t)‖Bs−1
p,r

≤ e
C

∫ t
0 ‖∂xG1‖Bsp,r dt ′

(
‖(γ1 − γ2)(0)‖Bs−1

p,r

+
∫ t

0
e
−C

∫ t ′
0 ‖∂xG1‖Bsp,r dt ′′(‖(G2 − G1)∂xγ2‖Bs−1

p,r
+ ‖F1 − F2‖Bs−1

p,r
)dt ′

)
.

(3.15)

After a similar calculation as in Step 3, we have

‖(G2 − G1)∂xγ2‖Bs−1
p,r

≤ C‖γ1 − γ2‖Bs−1
p,r

(1 + ‖γ1‖2Bs
p,r

+ ‖γ2‖2Bs
p,r

), (3.16)

‖F1 − F2‖Bs−1
p,r

≤ C‖γ1 − γ2‖Bs−1
p,r

(1 + ‖γ1‖2Bs
p,r

+ ‖γ2‖2Bs
p,r

). (3.17)

Plugging (3.16), (3.17) into (3.15) yields that

‖(γ1 − γ2)(t)‖Bs−1
p,r

≤ e
C

∫ t
0 (‖γ1‖2Bsp,r +1)dt ′(‖(γ1 − γ2)(0)‖Bs−1

p,r

+ C
∫ t

0
e
−C

∫ t ′
0 (‖γ1‖2Bsp,r +1)dt ′′

(1 + ‖γ1‖2Bs
p,r

+ ‖γ2‖2Bs
p,r

)‖γ1 − γ2‖Bs−1
p,r

dt ′
)
.

(3.18)

Appling Gronwall’s inequality, we finally get

‖γ1(t) − γ2(t)‖Bs−1
p,r

≤ ‖γ1(0) − γ2(0)‖Bs−1
p,r

e
C

∫ t
0 (1+‖γ1‖2Bsp,r +‖γ2‖2Bsp,r )dt ′

. (3.19)

Case 2 s = 1
p , 1 ≤ p ≤ 2, r = 1.

According to Lemma 2.8, we get

‖(γ1 − γ2)(t)‖
B

1
p −1
p,∞

≤ e

C
∫ t
0 ‖∂xG1‖

B
1
p
p,1

dt ′(
‖(γ1 − γ2)(0)‖

B
1
p −1
p,∞

+
∫ t

0
e

−C
∫ t ′
0 ‖∂xG1‖

B
1
p
p,1

dt ′′

(‖(G2 − G1)∂xγ2‖
B

1
p −1
p,∞

+ ‖F1 − F2‖
B

1
p −1
p,∞

)dt ′
)
.

(3.20)

Similarly, we deduce that

‖(G2 − G1)∂xγ2‖
B

1
p −1
p,∞

≤ C(1 + ‖γ1‖2
B

1
p
p,∞

+ ‖γ2‖2
B

1
p
p,∞

)‖γ1 − γ2‖
B

1
p −1

p,1

, (3.21)

‖F1 − F2‖
B

1
p −1
p,∞

≤ C(1 + ‖γ1‖2
B

1
p
p,∞

+ ‖γ2‖2
B

1
p
p,∞

)‖γ1 − γ2‖
B

1
p −1
p,∞

. (3.22)
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Plugging (3.21), (3.22) into (3.20), and using the uniform bounds of γi , we have

‖(γ1 − γ2)(t)‖
B

1
p −1
p,∞

≤ C
(
‖(γ1 − γ2)(0)‖

B
1
p
p,∞

+
∫ t

0
‖γ1 − γ2‖

B
1
p −1

p,1

dt ′
)
. (3.23)

Applying Proposition 2.3 (2), it follows that

‖(γ1 − γ2)(t)‖
B

1
p −1
p,∞

≤ C
(
‖(γ1 − γ2)(0)‖

B
1
p −1
p,∞

+
∫ t

0
‖γ1 − γ2‖

B
1
p −1
p,∞

ln
(
e + C

‖γ1 − γ2‖
B

1
p −1
p,∞

)
dt ′

)
. (3.24)

Now let h(t) = ‖(γ1 − γ2)(t)‖
B

1
p −1
p,∞

. From above, h satisfies

h(t) ≤ C
(
h(0) +

∫ t

0
h(t ′) ln

(
e + C

h(t ′)

)
dt ′

)

≤ C
(
h(0) +

∫ t

0
h(t ′)

(
1 − ln h(t ′)

)
dt ′

)
.

By virtue of Remark 2.7, we finally get

‖γ1(t) − γ2(t)‖
B

1
p −1
p,∞

≤ C‖γ1(0) − γ2(0)‖e−Ct

B
1
p −1
p,∞

. (3.25)

Therefore, the uniqueness is obvious in view of (3.19) and (3.25). Moreover, an inter-
polation argument ensures that the continuity with respect to the initial data holds for
the norm C([0, T ]; Bs′

p,r ) whenever s
′ < s.

Step six Continuity with respect to the initial data.
Finally, we end up with a proposition about continuity until the exponent s.

Proposition 3.3 Let (s, p, r) be the statement of Theorem 3.2. Denote N̄ = N∪ {∞}.
Suppose that (γ n)n∈N̄ is the corresponding solution to (1.2) given by Theorem 3.2
with the initial data γ n

0 ∈ Bs
p,r . If γ n

0 → γ ∞
0 in Bs

p,r , then γ n → γ ∞
in C([0, T ]; Bs

p,r ) (resp.,Cw([0, T ]; Bs
p,r )) if r < ∞ (resp., r = ∞) with

4C3T supn∈N̄ ‖γ n
0 ‖2Bs

p,r
< 1.

Proof According to the proof of the existence, we find for all n ∈ N̄, t ∈ [0, T ],

‖γ n(t)‖Bs
p,r

≤ C‖γ n
0 ‖Bs

p,r

2
(
1 − 4C3t‖γ n

0 ‖2Bs
p,r

) 1
4

.
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Then (γ n)n∈N̄ is bounded in L∞([0, T ]; Bs
p,r ). We split γ n = yn + zn with (yn, zn)

satisfying

{
ynt + Gnynx = F∞,

yn|t=0 = γ ∞
0 ,

and

{
znt + Gnznx = Fn − F∞,

zn|t=0 = γ n
0 − γ ∞

0 .

Obviously we have

‖Gn‖Bs+1
p,r

≤ C(‖γ n‖Bs
p,r

+ ‖γ n‖2Bs
p,r

), (3.26)

‖Gn − G∞‖Bs
p,r

≤ C(‖γ n‖Bs
p,r

+ ‖γ ∞‖Bs
p,r

+ 1)‖γ n − γ ∞‖Bs−1
p,r

. (3.27)

We have already known γ n → γ ∞ in L∞([0, T ]; Bs−1
p,r ). At the same time, according

to (3.27), Gn satisfy the condition of Lemma 2.11. Then we deduce that yn → y∞ in
C([0, T ]; Bs

p,r ) if r < ∞.
According to Lemma 2.8, we have for all n ∈ N and t ∈ [0, T ],

‖zn(t)‖Bs
p,r

≤ e
C

∫ t
0 ‖Gn

x‖Bsp,r dt ′
(
‖γ n

0 − γ ∞
0 ‖Bs

p,r

+
∫ t

0
e
−C

∫ t ′
0 ‖Gn

x‖Bsp,r dt ′′ ‖Fn − F∞‖Bs
p,r
dt ′

)
. (3.28)

We get

‖Gn
x‖Bs

p,r
≤ C(‖γ n‖2Bs

p,r
+ ‖γ n‖Bs

p,r
),

‖Fn − F∞‖Bs
p,r

≤ C(‖γ n‖2Bs
p,r

+ ‖γ ∞‖2Bs
p,r

+ 1)‖γ n − γ ∞‖Bs
p,r

. (3.29)

Plugging (3.29) into (3.28), and using the uniform bounds of γ n , we obtain

‖zn(t)‖Bs
p,r

≤ C
(
‖γ n

0 − γ ∞
0 ‖Bs

p,r
+

∫ t

0
‖γ n − γ ∞‖Bs

p,r
dt ′

)
.

Observing that y∞ = γ ∞, z∞ = 0, we can easily deduce that

‖zn(t)‖Bs
p,r

≤ C
(
‖γ n

0 − γ ∞
0 ‖Bs

p,r
+

∫ t

0
(‖yn − y∞‖Bs

p,r
+ ‖zn‖Bs

p,r
)dt ′

)
.

Appling Gronwall’s inequality yields that

‖zn(t)‖Bs
p,r

≤ eCt
(
‖γ n

0 − γ ∞
0 ‖Bs

p,r
+

∫ t

0
e−Ct‖yn − y∞‖Bs

p,r
dt ′

)
.
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Therefore when r < ∞, zn → 0 in C([0, T ]; Bs
p,r ), and hence γ n → γ ∞ in

C([0, T ]; Bs
p,r ).

Considering the case r = ∞, we have weak continuity. In fact, for fixed φ ∈ B−s
p′,1,

we write

〈γ n(t) − γ ∞(t), φ〉 = 〈γ n(t) − γ ∞(t), S jφ〉 + 〈γ n(t) − γ ∞(t), φ − S jφ〉.

According to the duality, we have

|〈γ n(t) − γ ∞(t), φ〉| ≤ ‖γ n(t) − γ ∞(t)‖Bs−1
p,∞‖S jφ‖B1−s

p′,1
+ ‖γ n(t)

−γ ∞(t)‖Bs
p,∞‖φ − S jφ‖B−s

p′,1
.

Using the fact that γ n → γ ∞ in L∞([0, T ]; Bs−1
p,∞), and S jφ → φ in B−s

p′,1
and (γ n)n∈N̄ is bounded in L∞([0, T ]; Bs

p,r ), it is easy to conclude that 〈γ n(t) −
γ ∞(t), φ〉 → 0 uniformly on [0, T ].

��

4 Blow-up and ill-posedness

First we prove a conservation law for (1.2).

Lemma 4.1 Let γ0 ∈ Hs, s > 1
2 and let T ∗ be the the maximal existence time of the

corresponding solution γ to (1.2). For any t ∈ [0, T ∗), then we have

‖γ (t)‖L2 = ‖γ0‖L2 .

Proof Arguing by density, it suffices to consider the case where γ ∈ C∞
0 (R). The Eq.

(1.2) can be rewritten as a conservation law

γt = [(vx − γ )λ − γ v]x . (4.1)

Using the fact that vxx −v = γx + γ 2

2λ and thenmultiplying (4.1) with γ and integrating
by parts, we deduce that

1

2

d

dt

∫

R

γ 2dx =
∫

R

λγ (vxx − γx ) − γ γxv − γ 2vxdx

=
∫

R

−λγxvx − γ 2vx − γ γxvdx

=
∫

R

vvx − vxvxx − 1

2
γ 2vx − γ γxvdx

= 0.

��
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Next we state a blow-up criterion for (1.2).

Lemma 4.2 Let γ0 ∈ Bs
p,r with (s, p, r) being as in Theorem 3.2, and let T ∗ be the

maximal existence time of the corresponding solution γ to (1.2). Then γ blows up in
finite time T ∗ < ∞ if and only if

∫ T ∗

0
‖γ (t ′)‖2L∞dt ′ = ∞.

Proof Applying Lemma 2.9,

‖γ (t)‖Bs
p,r

≤ C(‖γ0‖Bs
p,r

+
∫ t

0
‖G1

x‖L∞‖γ ‖Bs
p,r

+ ‖G1
x‖Bs

p,r
‖γ ‖L∞ + ‖F‖Bs

p,r
dt ′),

(4.2)

where G1 = G−1m, F = 1
2γ

2 + λG−1m − γG−1mx , m = G−1(γx + γ 2

2λ ).

Note that the operator G−1 coincides with the convolution by the function x �→
−1
2 e−|x |, which implies that ‖G−1γ ‖L∞ , ‖G−1γx‖L∞ and ‖G−1γxx‖L∞ can be
bounded by ‖γ ‖L∞ . Then

‖G1
x‖L∞ ≤ C(‖γ ‖L∞ + ‖γ ‖2L∞). (4.3)

As s > 0, by Lemma 2.5, we have

‖G1
x‖Bs

p,r
≤ C‖γ ‖Bs

p,r
(1 + ‖γ ‖L∞), (4.4)

and

‖F‖Bs
p,r

≤ C(‖γ ‖Bs
p,r

‖γ ‖L∞ + ‖γ ‖Bs
p,r

(1 + ‖γ ‖L∞) + ‖G1
x‖Bs

p,r
‖γ ‖L∞

+ ‖G1
x‖L∞‖γ ‖Bs

p,r
)

≤ C‖γ ‖Bs
p,r

(1 + ‖γ ‖L∞ + ‖γ ‖2L∞). (4.5)

Plugging (4.3), (4.4) and (4.5) into (4.2), we get

‖γ (t)‖Bs
p,r

≤ C(‖γ0‖Bs
p,r

+
∫ t

0
(1 + ‖γ ‖L∞ + ‖γ ‖2L∞)‖γ ‖Bs

p,r
dt ′). (4.6)

Appling Gronwall’s inequality yields that

‖γ (t)‖Bs
p,r

≤ ‖γ0‖Bs
p,r
eC

∫ t
0 (1+‖γ ‖L∞+‖γ ‖2L∞ )dt ′ .

If T ∗ is finite, and
∫ T ∗
0 ‖γ ‖2L∞dt ′ < ∞, then γ ∈ L∞([0, T ∗); Bs

p,r ), which contra-
dicts the assumption that T ∗ is the maximal existence time.

On the other hand, by Theorem 3.2 and the fact that Bs
p,r ↪→ L∞, if

∫ T ∗
0 ‖γ ‖2L∞dt ′ = ∞, then γ must blow up in finite time. ��
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Let us consider the ordinary differential equation:

{
qt (t, x) = G−1

(
γx + γ 2

2λ

)
(t, q(t, x)), t ∈ [0, T ),

q(0, x) = x, x ∈ R.
(4.7)

If γ ∈ Bs
p,r with (s, p, r) being as in Theorem 3.2, then G−1(γx + γ 2

2λ ) ∈
C([0, T );C0,1). According to the classical results in the theory of ordinary differential
equations, we can easily infer that (4.7) have a unique solution q ∈ C1([0, T )×R;R)

such that the map q(t, ·) is an increasing diffeomorphism of R with

qx (t, x) = exp
( ∫ t

0
G−1(γx + γ 2

2λ
)(t ′, q(t ′, x)

)
dt ′ > 0, ∀(t, x) ∈ [0, T ) × R.

We prove the following theorem which shows that the corresponding solution of
(1.2) will blow up by giving negative condition for the initial data.

Theorem 4.3 Let γ0 ∈ Hs, s > 1
2 . Assume γ0(x0) < −2

√
d, with d = C(‖γ0‖L2 +

1
2|λ| ‖γ0‖2L2)(C‖γ0‖L2 + C 1

2|λ| ‖γ0‖2L2 + |λ|). Then the corresponding solution γ of
(1.2) blows up in finite time.

Proof Arguing by density, now we assume s > 3
2 . Then applying Lemma 4.1 and

Young’s inequality, we get

‖G−1γ (t)‖L∞, ‖G−1γx (t)‖L∞ ≤ ‖γ (t)‖L2 = ‖γ0‖L2 ,

and

‖G−1γ 2(t)‖L∞, ‖G−1(γ 2)x (t)‖L∞ ≤ ‖γ 2(t)‖L1 = ‖γ (t)‖2L2 = ‖γ0‖2L2 .

Denote c = C(‖γ0‖L2 + 1
2|λ| ‖γ0‖2L2). Then we have:

γt (t, q(t, x0)) = −1

2
γ 2 − γ

(

G−1γ + 1

2λ
∂xG

−1γ 2
)

+ λG−1
(

γx + γ 2

2λ

)

≤ −1

2
γ 2 + c|γ | + |λ|c

≤ −1

4
γ 2 + d.

Denote f (t) = −√
d− 1

2 γ0(x0)√
d− 1

2 γ0(x0)
edt . Solving the above inequality, we finally get

γ (t, q(t, x0)) ≤ 2
√
d f (t) + 2

√
d

f (t) − 1
. (4.8)
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As γ0(x0) < −2
√
d, we get

γt (t, q(t, x0)) < 0. (4.9)

Then we can deduce that γ (t) decreases monotonly and is less than zero at the point
q(t, x0) along the flow. Finally, we prove that the solution γ (t) blows up in finite
time. It is obvious that 0 < f (0) < 1 and f (∞) = ∞, which implies that exists
T > 0, f (T ) = 1. Denote the maximal time of the solution by T ∗. So we can

easily deduce that T ∗ ≤ T = 1
d ln(

√
d− 1

2 γ0(x0)

−√
d− 1

2 γ0(x0)
). Therefore, from (4.8) we know

γ (t, q(t, x0)) → −∞ as t → T ∗. Applying Lemma (4.2), the solution γ must blow
up in finite time. ��
Lemma 4.4 Assume γ ∈ H1 to (1.2). We have

‖γ ‖L∞ ≤ C(‖γ ‖B0∞,∞ · log2(2 + ‖γ ‖H1) + 1)

Proof Fixing an integer N > 0, we get

‖γ ‖L∞ ≤
∑

k≤N−1

‖�kγ ‖L∞ +
∑

k≥N

‖�kγ ‖L∞

≤ CN‖γ ‖B0∞,∞ + C
∑

k≥N

2
k
2 ‖�kγ ‖L2

≤ CN‖γ ‖B0∞,∞ + C2−N‖γ ‖H1 .

Setting N = log2(2 + ‖γ ‖H1), we complete the proof. ��
We need another blow-up criterion for (1.2) to prove norm inflation in the critical

Besov Spaces.

Lemma 4.5 Let γ0 ∈ H1, and let T ∗ be the maximal existence time of the corre-
sponding solution γ to (1.2). Then γ blows up in finite time T ∗ < ∞ if and only
if

∫ T ∗

0
‖γ (t ′)‖B0∞,∞dt ′ = ∞.

Proof Applying Lemma 2.9, and since L∞ ↪→ B0∞,∞, we have

‖γ (t)‖H1 ≤ C(‖γ0‖H1 +
∫ t

0
‖G1

x‖L∞‖γ ‖H1 + ‖G1
x‖H1‖γ ‖L∞ + ‖F‖H1dt ′),

(4.10)

where G1 = G−1m, F = 1
2γ

2 + λG−1m − γG−1mx , m = G−1(γx + γ 2

2λ ).
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Note that the operator G−1 coincides with the convolution by the function x �→
−1
2 e−|x |, which implies that ‖G−1γ ‖L∞ , ‖G−1γx‖L∞ and ‖G−1γxx‖L∞ can be
bounded by ‖γ ‖L∞ . Then applying Lemma 4.1, we get

‖G1
x‖L∞ ≤ C

(

‖γ ‖L∞ + ‖(−1

2
e−|x |)x‖L∞‖γ 2‖L1

)

≤ C(1 + ‖γ ‖L∞).

(4.11)

Applying Lemma 2.5, we have

‖G1
x‖H1 ≤ C(‖γ ‖H1 + ‖γ 2‖L2) ≤ C(‖γ ‖H1 + ‖γ ‖L∞), (4.12)

and

‖F‖H1 ≤ C(‖γ ‖H1‖γ ‖L∞ + ‖γ ‖H1 + ‖G1
x‖H1‖γ ‖L∞ + ‖G1

x‖L∞‖γ ‖H1)

≤ C‖γ ‖H1(1 + ‖γ ‖L∞). (4.13)

Plugging (4.11), (4.12) and (4.13) into (4.2), we get

‖γ (t)‖H1 ≤ C(‖γ0‖H1 +
∫ t

0
(1 + ‖γ ‖L∞)‖γ ‖H1dt ′). (4.14)

By Lemma 4.4, we have

‖γ (t)‖H1 ≤ C(‖γ0‖H1 +
∫ t

0

(
1 + ‖γ ‖B0∞,∞ log(e + ‖γ ‖H1)

)
‖γ ‖H1dt ′).

(4.15)

Appling Gronwall’s inequality yields that

‖γ (t)‖H1 ≤ ‖γ0‖H1e
Ct+C

∫ t
0 ‖γ ‖

B0∞,∞ log(e+‖γ ‖H1 )dt ′
.

Simplifying the above inequality and appling Gronwall’s inequality, we get

log(e + ‖γ (t)‖H1) ≤
(
log(e + ‖γ0‖H1) + Ct

)
e
C

∫ t
0 ‖γ ‖

B0∞,∞dt ′
.

If T ∗ is finite, and
∫ T ∗
0 ‖γ ‖B0∞,∞dt ′ < ∞, then γ ∈ L∞([0, T ∗); H1), which contra-

dicts the assumption that T ∗ is the maximal existence time.
On the other hand, by Theorem 3.2 and the fact that H1 ↪→ L∞ ↪→ B0∞,∞, if

∫ T ∗
0 ‖γ ‖B0∞,∞dt ′ = ∞, then γ must blow up in finite time. ��
We end up with the following theorem which proves the norm inflation and hence

the ill-posedness of the modified CH equation (1.2) in H
1
2 and in B

1
2
2,r , 1 < r ≤ ∞.
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Theorem 4.6 Let 1 ≤ p ≤ ∞ and 1 < r ≤ ∞. For any ε > 0, there exists γ0 ∈ H∞,
such that the following holds:

(1) ‖γ0‖
B

1
p
p,r

≤ ε;

(2) There is a unique solution γ ∈ C([0, T ); H∞) to the equation (1.2)with amaximal
lifespan T < ε;

(3) limsupt→T−‖γ ‖
B

1
p
p,r

≥ limsupt→T−‖γ ‖B0∞,∞ = ∞.

Proof Fix 1 ≤ p ≤ ∞ and 1 < r ≤ ∞, and ε > 0. We define g(x)

g(x) =
∑

k≥1

1

2kk
2

1+r

gk(x) (4.16)

with gk(x) given by the Fourier transform ĝk(ξ) = −2−kξ χ̃(2−kξ), where χ̃ is a
non-negative, non-zero C∞

0 function such that χ̃χ0 = χ̃ . Directly calculating, we

have �kg(x) = 1

2kk
2

1+r
gk(x). We also have ‖�kg(x)‖L p ∼ 2

k
p′

2kk
2

1+r
and

‖g‖
B

1
p
p,q

∼ ‖ 1

k
2

1+r

‖lq .

Then we get g ∈ B
1
p
p,r\B

1
p
p,1, and

g(0) =
∫

ĝ(ξ)dξ = −c
∑

k≥1

1

k
2

1+r

= −∞.

For any ε > 0, let γ0,ε = ‖g‖−1

B
1
p
p,r

· εSK (g) where K is large enough such that

γ0,ε(0) <
−2

√
d(edε+1)
edε−1

. Then γ0,ε ∈ H∞, ‖γ0,ε‖
B

1
p
p,r

≤ ε. Applying Theorem 4.3,

there is a unique associated solution γ ∈ C([0, T ); H∞) with a maximal lifespan
T < ε. By Lemmas 4.2 and 4.5, we can show that limsupt→T−‖γ ‖B0∞,∞ = ∞. ��
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