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Abstract

In this paper, we are concerned with the Cauchy problem for a generalized two-
component Dullin—Gottwald—Holm system arising from the shallow water regime
with nonzero constant vorticity. We provide new sufficient conditions on the initial
data which lead to the local-in-space blow-up. In addition, it is shown that horizontally
symmetric weak solutions to this system must be traveling wave solutions.
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1 Introduction

In this paper, we study the Cauchy problem for the following generalized two-
component Dullin—Gottwald—Holm (g2DGH) system [6,27,38]
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U — Upxy — Aty +3uity — 0 Quyttyy + Ulyyy) + Vilyxy

+ppx =0, t>0, xeR,
pr + (pu)y =0, t>0, xelR,
u(0, x) = up(x), x €R,
p (0, x) = po(x), x €R,

(1.1)

which was derived in the shallow water regime using Ivanov’s modeling approach in
[30]. Here u(z, x) stands for the horizontal velocity of the fluid, p (¢, x) is in connection
with the free surface elevation from equilibrium, the parameter A is related to a linear
underlying shear flow, and o is a dimensionless parameter providing the competition
(or balance) in fluid convection between nonlinear steepening and amplification due
to stretching. In the derivation of system (1.1), the boundary conditions # — 0 and
p — 1 as |x| — oo are required.

System (1.1) includes several classical shallow water wave models. For example,
if o = 1, system (1.1) becomes the two-component Dullin—-Gottwald—Holm (2DGH)
system [8,24,33,49]

ur — urxx — Ay +3uuy — 2uyuxy — Ulxxx + Yuxxx + ppx =0, t>0, xekR,
pr + (pu)y =0, t>0, xelR.
(1.2)

If we further take y = 0 in the 2DGH system (1.2), then it recovers the integrable

two-component Camassa—Holm (2CH) system

o + (pu)y =0, t>0, xeR,
(1.3)

{u, — Upyx — Aty + 3utty — 2Uxllyy — Ulyry + ppox = 0, t>0, xeR,

which was originally introduced by Olver and Rosenau [36] and rigorously derived in
the context of shallow water regime [11,30]. The Cauchy problem of the 2CH system
has been studied widely [5,15,17-23,31,40,44]. Here we give a brief review. The local
well-posedness of the 2CH system with initial data in the Sobolev spaces and Besov
spaces was established in [15,21,22]. It was shown that the 2CH system admits global
strong solutions [11,19,22] and also finite time blow-up solutions [11,15,17,19,22,
23,40,44]. Besides, it has global weak solutions [18,20,31]. Moreover, the Lipschitz
continuous dependence of conservative solutions to the 2CH system was investigated
in [5].

If p =0,0 =1, system (1.1) is reduced to the Dullin—-Gottwald—Holm (DGH)
equation [13], modeling the unidirectional propagation of shallow water waves over
a flat bottom,
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Up — Upex — Aty + 3utty — 2Uylyy — Ulyxx + YUxxx =0, t >0, x eR.
(1.4)

Equation (1.4) was deduced by Dullin, Gottwald and Holm [13] using the asymptotic
analysis and a near-identity normal form transformation from water wave theory. This
equation is integrable in the sense that it admits the Lax pair and bi-Hamiltonian
structure [13]. For the DGH equation, the local well-posedness of strong solutions
was proved in [37,41,43]. The precise blow-up scenario and several blow-up results
for strong solutions to the DGH equation were presented in [25,28,29,34,35,39,43,
45,47,48]. For the global existence of weak and strong solutions, we refer the readers
to [34,39,41,43,46] and the references therein. Furthermore, the orbital stability of
single peakon and the train of peakons for the DGH equation were proved in [26]
and [32], respectively. It is worth pointing out that the study of the DGH equation
was based on methods that were developed for the Camassa—Holm (CH) equation
[4,16], corresponding to the choice y = 0 in (1.4). In particular, the idea to associate
diffeomorphisms to derive invariance properties was pioneered by Constantin—Escher
[10] and Constantin [9], while Constantin and Strauss [12] verified that the peakons
of the CH equation are orbitally stable.

Han et al. [27] investigated the blow-up mechanism to the g2DGH system (1.1) on
the line and provided two sufficient conditions for wave breaking of strong solutions
in finite time, they also classified traveling wave solutions for this system. Chen and
Yan [6] studied the wave breaking phenomena and global existence of the g2DGH
system (1.1) on the circle. Recently, inspired by the ideas of [1-3], Wang and Zhu
[38] established a local-in-space blow-up criterion for the g2DGH system (1.1) with
o =1, y = 0 (corresponding to the 2CH system (1.3)), that is, a blow-up condition
involving only the values of ug . (xp) and uo(xp) in a single point xq of the real line.
One of our purposes in the present paper is to improve thisresultto 1l <o <4,y € R.

Another interesting issue investigated here is concerned with the traveling wave
solutions of the g22DGH system. Following the ideas of [7,14], we show that horizon-
tally symmetric weak solutions of the g22DGH system must be traveling wave solutions.
Denote G (x) = %e"’”, the fundamental solution of the operator (1 — 8)%)’1 on R,
which satisfies (1 — 8)%)_1 f = G f forall f € L*(R). Therefore, the Cauchy
problem (1.1) can be reformulated as

U + (ou — y)uy :—BXG*[%T"uz—I—(y —A)u—l—%u%—l—%pz], t >0, xeR,

Pt +upy = —uxp, t >0, xekR,
u(0, x) = ug(x), x e R,
00, x) = po(x), x € R.

(1.5)

The entire paper is organized as follows. In the next section, we recall several
useful results including the local well-posedness and the precise blow-up scenario for
the g@2DGH system, as well as the convolution estimates. Then we establish a new
local-in-space blow-up criterion with suitable conditions on the initial data. Finally
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in Sect. 3, we prove that an x-symmetric weak solution of the g2DGH system is
necessarily a traveling wave solution.

2 Local-in-space blow-up

This section is devoted to investigating the local-in-space blow-up criterion for the
Cauchy problem (1.5). We first recall the local well-posedness result and the precise
blow-up scenario of (1.5).

Lemma 2.1 ([27]) If (ug, po — 1) € H*(R) x H*"'(R) with s > 2, then there exists a
maximal time T = T (|[(uo, po — D |l gsxgs—1) > 0 and a unique solution (u, p — 1)
to the Cauchy problem (1.5) such that (u, p — 1) € C([0, T); H*(R) x H*"1(R)) N
Cl(0, T); H* "L (R) x H*"2(R)). Moreover, the solution depends continuously on
the initial data, and T can be chosen to be independent of s.

Lemma 2.2 ([27]) Suppose that o # 0 and (ug, po — 1) € H*(R) x H*~'(R) with
s > 2. Then the corresponding solution (u, p) to the initial value problem (1.5) blows
up in finite time T > 0 if and only if

t—T xeR

lim inf (inf aux(t,x)> = —00.

We define two convolution operators G and G_ as

Gox s = [ eroma.
2 ) @2.1)

e o
G_x f(x)= ?/ eV f(y)dy,
X
it is easy to see that
G=G++G_, Gy=G_—-0G4. 2.2)

The following convolution estimates are crucial to prove the local-in-space blow-up
criterion.

Lemma2.3 ([1,2,42]) Let1 <o < 4.
G) Ify # Aand o # 3, then

3— — A\’ —A\?
x| =2 (u+? %2 | s YO e — oy (us LAY
2 3—0 2 8 3—0

(i) If y = A, then

3 —
Gy * <T"u2 + %uf) > %(\/12 — 30 — Jo)u?.
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We are now in a position to state a local-in-space type of blow-up mechanism for
the Cauchy problem (1.5).

Theorem 2.1 Let 1 <o <4, (ug, po—1) € H*(R) x H* "X (R), s > 2and T > 0 be
the maximal time of existence of the corresponding solution (u, p) to (1.5). Assume
that there exists a point xo € R such that

po(x0) =0,
and
y-A\ A 3
ug,x (x0) < P ot + 32 v £ A o #S, 2.3)
—Bo luo(xo)l, if ¥v=A,
where
1 3 J12=3¢
ﬁ”—\/ 2te T T2 @b

Then the solution (u, p) blows up in finite time with an estimate of the blow-up time
T* as

2
2 y —A
T+ < a\/uo’x(xo) — B2 <MO(X0) + E)
2

0\ i (o) — B2 (x0)

=, if vy #A 0 #3

if y=A

Proof The two associated Lagrangian scales of the g22DGH system are established by

0
ﬂ=cm(t,ql)—)/, 0<t<T,

ot (2.5)
QI(ny)zxy XGR,
and
992
i T
o u(t,q2), 0<t<T, 2.6)
q2(0,x) = x, x eR,

where u € C1([0, T), H*~'(R)) is the first component of the solution (u, p) to (1.5).
A direct calculation yields

qi,ix = oux(t, q1)q1,x,
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and
g2,x = Ux(t, q2)q2 x.
Hence fort > 0, x € R, we have
q1x(t, x) =¢€° Jo ux(z.q1(z.x)) dt >0,
and
Gr.x(t,x) = ef(; ux(Tq(r0)dr

which implies that g; (¢, ) : R — R (i = 1, 2) are two diffeomorphisms of the line
for every ¢ € [0, T'). It is inferred that there exists an x1(#) € R such that

q2(t, x1(1) = q1 (¢, x0).
When r = 0, we obtain
x1(0) = q2(0, x1(0)) = q1(0, x0) = xo.

Along with the trajectory of g2 (¢, x1(¢)), we have

d

2P aa(t, x1 (1) = —ux(t, q2(t, X1 (1)) p (2, g2, X1 (1)) 2.7
Since po(xp) = 0, integrating the above equation gives

p(t. qa(t. x1(1))) = p(0, g2(0, x, (0)))e ™o wx(maa(mx1 (@) dT
— po(xp)e” Jowrmama@Ndr _

that is

o, q1(t, x0)) = p(t, q2(t, x1(2))) = 0.

Differentiating the first equation in system (1.5) with respect to x and using the
identity —83G % f=f— G x* f,one gets

) o5, 1,
Uy + (Ou — Y)uyy = ) u +()/—A)M—Eux+§p
- G« S u +(y—A)u+—ux+§p .

From the convolution estimates in Lemma 2.3, we infer that
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d
E“x(ta q1 (tv xO))

= [ux + (ou — YIux1(t, q1(¢, x0))
{3

[
+§P } (,q1(t, x0))

o 5 o 5 3—0 , o 5
u—i—(y—A)u—Eux—G* 5 u” +(y — Au + —u;

2
3—0 —
2

o 2
+§ux (, q1(z, x0))

3—0 +y—A2 o 4 (G +G_) 3—0 _|_)/—A2
— — —ut — )%
2 \"Ta3og ) T2t 2 \"T3-5

0 9
< u"+(y —Au

2 A=
u -+ (y — Au zux (G++Go) =

)
~|—§ux (, q1(z, x0))

—_A\?2
-0
o y—A 2
== |:,32 (M + TJ) - M§:| (t, q1(t, x0)), (2.9
where B, is given in (2.4). Due to the right-hand side of (2.9), we set

y—A
M) = [ﬁg (u + —) — ux] (t, q1(t, x0)),

3—0
y —A
NQ@) = [ﬁa (u + Eympn ) +ux} (t, q1(z, x0)).
-0

Then (2.9) becomes
d o
—uy(t,q1(t, x0)) < =M @)N(2). (2.10)
dt 2

For 1 <o <4, notice that 0 < B, < 1. Similarly using Lemma 2.3 it follows that

amM
T {Bolur + (u — yux] — [urx + (ou — y)uxxl} (¢, 1 (2, x0))
2

3—0 , ( A) +c7
=1{- u-—(y —Au+ —u
2 4 2
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3— 1
+G>|<|: 5 u? +(y — A)u—i—2 x+2p:|

By 0xG * 3 -
oYX 2

) o, 1,
u —l—(y—A)u—i-Eux-i-—p (t, q1(t, x0))

3_
:{ ST = At a1 )G

S0 (- At L
* — [e—
5 U y ut Sy

+(1+ﬂa)G+*[3 w + (y — A)u+5u ]+(1—ﬁa)G *(;Pz)

1

+ (14 B)Gy x <2p2 }(z q1(t, x0))
{ 3—0(
> ] _
- 2
|:3—(7<
B3

2
+<1+ﬁa>G+*[

3—0 y
Z|:— 5 <u+3

_ 2
~Vo) (u +I— } (t,q1(t, x0))

— A\?
_ _% |:'3§ <u+ 3;_0) —u,zc:| (t, q1(t, x0))

—A

) +(1—,3<7)G7
— 0

g u2

) e

o
=—5MN, (2.11)
and
dN
e {Bolus + (cu — yuy] + use + (ou — y)uxx} (¢, q1(t, x0))
= {3;6u2+(y—A)u—%u§—G

] e A A SO Y
u u —u -
2 y= M TP

3—0 , o, 1,
—Bo0:G % u +(V—A)u+5ux+—p (, q1(, x0))

2

@ Springer



Local-in-space blow-up and symmetry of traveling wave solutions...

2 AT~ 1+ 8,)G
=15 Y u— iy )G

. 3—0o 24 A) +a 2
u — u —Uu
2 v 2!

3—0 , o 5 1,
0= G x| T 4~ At T —(1+,3a)G_*(—p)

1
— (1= Bs)Gy % (§P2>} (7, q1(t, x0))
3—0 y—A S )
5{ 3 (u+3_0) —Eux—(l—i—ﬂg)G_

3—0 y —A 2 5 2
*[ 2 (“+3—a> +5“X}

2

| G 3—0 y—A 2 5 2
(1= Bs)Gy = 7 (u+3_a> +Eux (t, q1(z, x0))

3—-0 y—A\' o , o
< _Zp2 YT /123
—[ 2 (“+3—a> i~ g “

— A\2
—/o) <M+ %) j|(f’41(fax0))

91 52 y -4\’ 2
= 5 ﬁo u -+ E — Uy (tv ql(tv-x()))

By the assumption (2.3) on ug(xp), we know that

M@©O) >0, N(@O) <O,
M (0) > —%M(O)N@ > 0,

N'(0) < %M(O)N(O) <0.

We now claim for ¢t € [0, T)

M) >0, N(@) <O.

If (2.14) does not hold, then there exists 7y € [0, T') such that

to = min{r € [0, T)|M'(t) =0 or N'(1) = 0}.

(2.12)

(2.13)

(2.14)

(2.15)

@ Springer



582 W. Cheng, T. Xu

Then (2.13) implies that 7y > 0. The definition of 7y given in (2.15) together with
(2.11) and (2.12) leads to

0= M) = =2 MU)N () or 0=N'tto) < ZMu)N (). (2.16)
On the other hand, since M (¢) is increasing and N (¢) is decreasing on [0, #y], we have
M(to) = M(0) >0, N(t) < N(@©) <0.
Thus,
o o
—EM(to)N(to) >0 and EM(to)N(to) <0,

which contradict with (2.16). Therefore (2.14) holds for all r € [0, T).
Furthermore from (2.13) we see that

M(t)>M@O) >0, N(t)<N@O) <O. (2.17)

Let

H(t) =+—M({)N(t).
In view of (2.11), (2.12) and (2.17), it follows that

M'N + MN’
—MN
—$MN? + $M*N
2/—MN (2.18)
Z;E:AL<_EMN>
2J=MN \ 2

> %Hz(t).

H'(t) = —

\Y

Solving the above differential inequality, we get

2H (0)
H) > ——2
2 — o H(O)t
It is thereby inferred that
(t. q1(t. x0)) s Hy > 2O (> —
— s s = = = —> oo, as e .
Hall g1t X0 2—oHO) o H(0)
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which, in view of Lemma 2.2, implies that the solution («, p) blows up at a finite time
T* with

2
< .
~ oH()

The proof of Theorem 2.1 is completed. O

3 Symmetry of traveling wave solutions

In this section, we will consider the unique x-symmetric weak solution of the g22DGH
system and prove that such a solution must be a traveling wave solution. We first
rewrite system (1.1) with p = 1 4+ 1 (n — 0 as |x| — 00) as

=% 4

a- 8)%)’/” — Auy +3uity — 0 Quxliyy + Ultyxy) + Yiyxx + (1 + 1m0y
ne + (1 +mnu)y =0.

A weak solution of system (3.1) is defined as follows.

Definition 3.1 If (1, n) € C(R4, H'(R) x L?(R)) satisfies

[ fi e [0 = 02200+ (30 = A+ 32 4+ 05027 g,
— (%u2 — yu) d)xxx] dtdx =0, (3.2)
ffR+><R [n¢: + (1 +nugyldtdx =0,

forall ¢ € C5°(R4 x R). Then (u, n) is a weak solution to system (3.1).
Using the notation (-, -) for distributions, (3.2) can be rewritten as

(, (1= 02)¢0) + (3u? — Au+ G2 + 950 6 — (312 — yu, ¢onn) =0, (33)

Now we give the definition of x-symmetric solution.

Definition 3.2 A solution (u(z, x), (¢, x)) is x-symmetric if there exists a function
b(t) € C'(R,) such that for every t > 0,

(u(t, x),n(t, x)) = (u(t, 2b(t) — x), n(t, 2b(t) — x))

for a.e. x € R. We say that b(¢) is the symmetric axis of (u(¢, x), n(t, x)).
The next lemma gives the form of a weak solution of (3.1).

Lemma 3.1 Suppose that (U (x), V(x)) € H'(R) x L?(R) and satisfies

2
fo[-ev — 0o+ (307 - AU + U2+ ) g,
- (%UZ - VU) Wxxx] dx =0, (3.4)
Jal=cVoy + (1 + V)Ug,ldx =0,
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584 W. Cheng, T. Xu

forall ¢ € C5°(R). Then (u, n) given by
(u(t, x),n(t,x)) = Ux —ct —19)), V(x —clt —10))) (3.5)

is a weak solution of system (3.1) for any fixed ty € R.

Proof Without loss of generality, suppose #y = 0. Following the arguments in [14],
we obtain that (u, ) belongs to C(R, H'(R) x L%(R)). For any ¢ € Ci°(Ry. x R),
letting ¢ (¢, x) = ¢ (¢, x + ct), we find that

Oy (Pe) = (@x)e, 0 (Pe) = (Pr)c + C(¢x)c~ (36)
Assume (u(t, x), n(t,x)) = (U(x — ct), V(x — ct)), it is easy to see that

W, ) = (U, ¢c), (W ¢) = (U @), (2, ¢) = (UL o),
n,¢) = (V, ), (3.7)
L+ o) =L+ V)2 de), (A +mu,¢) = ((1+ VU, ),

where (U, V) = (U (x), V(x)). It follows from (3.6) and (3.7) that

u (1= 03¢0 = (U. (1 =0D¢) ) = WU, (1 = )@ — cdigo)).

(

< ut T2+ 4 +")2 ¢> <3 v Zyzg EVY a¢>
2x x| =\3 ) » 0xPc | s

(

(

2
u —yu, ¢xxx> <2U2_ U,o ¢c)

77 ¢1) = (V. (¢1)c) = (V. d1pe — cOxpc),
A +nu, ¢x) = (A + VU, 0x¢c). (3.8)

Notice that (U, V) is independent of time, for T sufficiently large such that it does
not belong to the support of ¢, it is then deduced that

W= aag0 = [ U [0 - oe.drds
R R,
=/U<x>[<1 — 00)¢e(T, x) — (1 = 37)¢p(0, x)] dx =0,
R

(U, 9¢c) =/U(X)/ 0 dtdx =/U(X)[¢C(T,X) (3.9)
R R, R
— ¢:(0,x)]dx =0,
(V, 0rbc) =/ V(x) Bzzbcdtdx:/ V() pe(T, x)
R Ry R

— ¢.(0, x)]dx = 0.
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Combining (3.8) with (3.9) gives rise to

5 (1+1n)? o,
x ’¢X>_<2

2 35 o
(. (1= 83)g0) +{ S0 = Au+ Sl + R )

3 o (1+V)?
= (U, —c(1 — 82)d,c) + <§U2 — AU + EU’% s ax¢c>
o
— (FU2—yU.ole)
3 14 V)2
= f f [—cua — 32)0x e + (EUZ — AU + %Uj + %) e
R, JR

(%2 _ 3
(2 U yU) ax@.] dxdi
=0,
and
M, @1) + (L +mu, ¢x) = (V, —cxde) + (1 + VU, dxpc)
= / f [—cVOorpe + (1 + V)UOdrpcldxdt =0,
Ry JR
where we used (3.4) with ¢(x) = ¢.(t, x), which belongs to C;°(R), for every given
t > 0. This completes the proof of the lemma. O
Finally, we state the main result of this section.

Theorem 3.1 If (u(¢, x), n(t, x)) is a unique weak solution of system (3.1) and is
x-symmetric, then (u(t, x), n(t, x)) is a traveling wave solution.

Proof Recalling Definition 3.1 and noting that C3° (R4 xR) is dense in Cé Ry, CS (R)),
thus we only consider the test function ¢ belonging to Cé Ry, CS (R)). Let us intro-
duce the notation

op(t,x) = $(t,2b(t) —x), b(t) € C'(R).
Then we derive that (¢p), = ¢ and

Oxup = —(Oxtt)p, OxPp = —(0xP)p,

. (3.10)
drpp = (0:4)p + 2b(3x )b,

where b denotes the derivative of b with respect to 7. Furthermore, we obtain that

(Up, ) = (u, ¢p), Uz, d) = (U, ¢p), ((@eup)?, ¢) = ((dx10)%, Pp),
(b, ®) = (1, B), (1 + 1), ) = (1 + )2, @p),
(1 + np)up, @) = (1 + mu, ¢p). (3.11)
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Since (u, n) is x-symmetric, using (3.10) and (3.11) we have

(u, (1=} = (u, (1 = 37)0, )0

)= (u, (I -
2
<%u2—Au+%§ (1+7)) >
)=
)

(1+n)?
_<—u _ALH_E x—i—T,&xd)b ,

3.12
< u? —yu,d ¢b>» G-12)
(n, dpp + 2D, dp),
—{((I +n)u, 3x¢p).

(30 = yuo
—u” — yu,
) 14 XXX

N, ¢
(T +nu, ¢«

In view of (3.3), one deduces

G, (1= 02)0) + (32

— Au+ Ju? 4 U5 ¢x> (Gu

—yu, (bxxx)
= (u, (1 — 02) Dby + 2b0, ) — <§u2 — Au+ Zu + % 3x¢b>
+ (Su? — yu, d}¢p) = 0,
<7], ¢l‘) + <(1 + 77)14, ¢x>
= (0, dipp + 2bdxp) — ((1 + mu, dxgp) = 0. (3.13)

Thanks to (¢p)p = ¢, by taking ¢ = ¢, in (3.13), we get

(. (1 = 023, + 2b3:9) — (3u?
+ (Su? — yu, 33¢) =0, (3.14)
(0, 8 +2b3.:0) — (1 + nu, dx¢p) = 0.

2
— Au+ Su + 5 9.9

Combining (3.3) and (3.14), we find

o 2
{w, b(1 = 990:9) — (307 — Au+ Sul + U 0.6) + (3

u? —yu,33¢)=0
(n, bdyd) — ((1 + mu, dcg) = 0.

"(3.15)

Forafixedfy > Oandany ¢ € C3°(R),letgc (¢, x) = ¢(x)pc(t), where pe € C5°(Ry)
is a mollifier with the property that p. — §(t — t), the Dirac mass at 7o, as € — 0
From (3.15), using the test function ¢ (¢, x), we get

/[(1—a§)ax<p/ l;u,oe(t)dtjl dx
R Ry
2
_ / |:3x§0/ (gu —Au+—u +(1+77) )pe(t)dt:|dx
R Ry \2

27 2

(3.16)
+ /R [agfp fR+ (%uz - yu) e (1) dt] dx =0,
/(axgo/ l;npe(z‘)dt) dx—/ |:3xg0/ (1+n)u,0€(t)dti| dx
R Ry R R4

@ Springer

=0.



Local-in-space blow-up and symmetry of traveling wave solutions... 587

Notice that

lim | bupe(t)dt = b(tp)u(ty, x),

€—0 Ry

lim | bnpe(t) dt = b(to)n(to, x),

e—0 Ry

in LZ(R), and

. 3 o (1+n)?
1 Ul A 2yt
Elm()/]R+ (214 u+ 2ux+ > pe (1) dt

3 1 o, x))?
= 20219 x) — Aulto, )+ (19, x) + L0
2 ) >
fim (%uz - yu) pe(t) dt = %”2@0, x) — yu(tg, x),

e—0 R,

lim | (L +mupe(r) dt = (1 4+ n(t0, x))u(to, x),
e—0 Ry

in LY(R). Hence, by taking the limit of (3.16) as € — 0, one obtains
. 3
/ b(to)u(to, x)(1 — 87)dc g dx —/ (*uz(to, x) — Au(fo, x) + gu?c(to, x)

n a+ ﬂ(zto, x))?

/ btoyn(to, )3 dx — / (1 + 0t )it )y dx = 0.
R R

) 0y dx —|—/ (guz(to, x) — yu(to,x)) 83(p dx =0, 3.17)
R \2

Therefore (u(ty, x), n(tg, x)) satisfies (3.4) forc = b(to). By means of Lemma 3.1,
we see that (ii(t,x),7(t,x)) = (u(to,x — b(1)(t — 10)), n(to, x — b(tp)(t —
tp))) is a traveling wave solution of system (3.1). Due to (u(tg, x), 7(tg, x)) =
(u(to, x), n(tp, x)) and the uniqueness of the solution of system (3.1), we deduce
that (z (¢, x), 1(t, x)) = (u(t, x), n(t, x)) for any ¢ > 0. Thus, we complete the proof
of Theorem 3.1. O
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