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Abstract
We observe that the class of metric f –K -contact manifolds, which naturally contains
that of K -contact manifolds, is closed under forming mapping tori of automorphisms
of the structure. We show that the de Rham cohomology of compact metric f –K -
contact manifolds naturally splits off an exterior algebra, and relate the closed leaves
of the characteristic foliation to its basic cohomology.
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1 Introduction

An f -structure on a smooth manifold is a (1, 1)-tensor f of constant rank, satisfying
f 3 + f = 0. This notion was introduced by Yano in [25] and generalizes both the
notion of almost complex and of almost contact structure. The rank of f is always even,
and if maximal, then f is either an almost complex or an almost contact structure (see
[25] and Sect. 2 for more details). f -structures with non-maximal rank (in particular
with dim ker( f ) = 2) arise naturally when studying hypersurfaces of almost contact
manifolds (see Blair–Ludden [7]).

An analogue of Hermitian structures on almost complex manifolds and of con-
tact metric structures on almost contact manifolds was introduced on the class of
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f -manifolds by Blair [5]. A metric f -contact manifold is a f -manifold (M2n+s, f )

endowed with s vector fields ξ1, . . . , ξs , s one forms η1, . . . , ηs and a Riemannian
metric g such that:

ηα(ξβ) = δβ
α , f (ξα) = 0, ηα ◦ f = 0, f 2 = − id+

s∑

α=1

ηα ⊗ ξα,

dηα(X , Y ) = g(X , f Y ), g( f X , f Y ) = g(X , Y ) −
s∑

α=1

ηα(X)ηα(Y ),

for every α, β ∈ {1, . . . , s} and X , Y ∈ T M , where δ
β
α is the Kronecker delta.

The Riemannian geometry of such manifolds was studied intensively by various
authors.We recall here some aspects of metric f -contact manifolds with s ≥ 2 that are
very different from the metric contact setting (i.e., when s = 1). Blair [5] showed that
there are no S-manifolds (i.e., normal metric f -contact manifolds, see Sect. 2) M2n+s

with s ≥ 2 of constant strictly positive curvature. Moreover Dileo–Lotta [12] proved
the non-existence of compact, simply connected, S-manifolds M2n+s with s ≥ 2.
Obviously the situation in the Sasakian setting (i.e., when s = 1) is different.

In Sect. 4we observe that ηα−ηβ , withα �= β, defines a nonzero element in H1(M)

(Lemma 4.1). The above mentioned result from [12] is a direct consequence of this.
We prove moreover a splitting theorem for the de Rham cohomology of metric f –K -
contactmanifolds, i.e., metric f -contactmanifold M whose characteristic vector fields
ξ1, . . . , ξs are Killing. (For s = 1 one obtains the well-known notion of a K -contact
manifold.)

Theorem 1.1 For any compact metric f –K -contact manifold M there is an isomor-
phism of �(Rs−1)-algebras

H∗(M) ∼= �(Rs−1) ⊗ H∗(M,Fs−1).

HereFs−1 denotes the Riemannian foliation on M determined by the Killing vector
fields ξ1, . . . , ξs−1, and H∗(M,Fs−1) the associated basic cohomology.

In Sect. 3 we describe a new method to construct examples of (compact) metric f -
(K -)contact manifolds. Starting from any metric f -contact manifold M , we construct
explicitly a metric f -contact structure on the mapping torus Mφ of any automorphism
φ of the metric f -contact structure on M . This construction respects the subclasses
of metric f –K -contact manifolds and of S-manifolds. We remark that this behavior
is quite unusual; indeed, most geometric classes of manifolds are not preserved by
forming mapping tori of automorphisms, see Remark 3.2.

In Sects. 5 and 6 we apply results from [18] to relate the closed leaves of the
characteristic foliationF given by the characteristic vector fields ξ1, . . . , ξs on ametric
f –K -contact manifold M to the basic cohomology H∗(M,F). We generalize results
of [16] in the K -contact case. The main tool is the torus T given by the closure of the
flows of the characteristic vector fields in the isometry group of M , and a T -invariant
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Morse–Bott function S whose critical set C is equal to the union of closed leaves of
F . This function generalizes a generic component of the contact momentum map in
the K -contact setting, see [24, Section 4]. We obtain:

Theorem 1.2 We have dimR H∗(M,F) = dimR H∗(C,F). If C consists of only
finitely many closed leaves of F , then dimR H∗(M,F) is equal to the number of
closed leaves of F .

We prove moreover the following

Theorem 1.3 The characteristic foliation of a compact metric f –K -contact manifold
M2n+s has at least n + 1 closed leaves. If it has only finitely many closed leaves, then
the following conditions are equivalent:

• The number of closed leaves of F is n + 1.
• The natural homomorphism R[ω] → H∗(M,F) induces an isomorphism of rings
R[ω]/(ωn+1) ∼= H∗(M,F), i.e., the basic cohomology H∗(M,F) is that of CPn.

• The basic cohomology H∗(M,Fs−1) is that of a 2n + 1-dimensional sphere.
• M has the real cohomology ring of S2n+1 × T s−1.

As a consequence we obtain that any automorphism of the K -contact structure on
a K -manifold M2n+1 which has exactly n + 1 closed orbits sends every closed Reeb
orbit to itself (see Corollary 6.5).

2 Metric f -manifolds

A f -structure on a smooth manifold M2n+s is a (1, 1) tensor f of constant rank and
such that f 3 + f = 0. Given such a structure, the tangent bundle of M splits into two
complementary subbundles im( f ) and ker( f ); moreover

f 2|im( f ) = − idim( f ),

and thus the rank of f is even, say 2n (cf. [25]). If ker( f ) is parallelizable then we
fix s global vector fields ξ1, . . . ξs on M which span the kernel of f . Let η1, . . . , ηs be
the 1-forms determined by

ηα(ξβ) = δβ
α , ηα ◦ f = 0.

Then we have:

f 2 = − id+
s∑

α=1

ηα ⊗ ξα.

In particular for s = 0 or s = 1 we have that M2n+s is an almost complex or
respectively an almost contact manifold. If in addition the structure tensors f , ξα, ηα

satisfy the normality condition:
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[ f , f ] + 2
s∑

α=1

dηα ⊗ ξα = 0,

where [ f , f ] denotes the Nijenhuis torsion of f , then (M, f , ξα, ηα) is called normal,
and for s = 0 or s = 1 we have that M is a complex manifold or respectively a normal
almost contact manifold.

It is well-known that amanifold M2n+s admitting an f -structure with parallelizable
kernel always admits a compatible metric, that is a Riemannian metric g satisfying

g( f X , f Y ) = g(X , Y ) −
s∑

α=1

ηα(X)ηα(Y ),

for every X , Y ∈ T M . The manifold M2n+s together with the structure tensors
( f , ξα, ηα, g) as above is called a metric f -manifold, and the 2-form defined by:

ω(X , Y ) := g(X , f Y ), X , Y ∈ T M

is the fundamental 2-form of M2n+s . We have that η1 ∧ · · · ∧ ηs ∧ ωn �= 0. A metric
f -contact manifold is a metric f -manifold (M2n+s, f , ξα, ηα, g) with s > 0 such
that

dηα = ω,

for every α ∈ {1, . . . , s}. If a metric f -contact manifold is normal, then it is called a
S-manifold.

We observe that for s = 1, the notion of metric f -contact manifold (resp.
S-manifold) coincides with the notion of contact metric manifold (resp. Sasakian
manifold).

We remark that one can construct metric f -contact structures on a manifold M2n+s

starting from s one-forms ηα on M2n+s satisfying some non-degeneracy condition
[13, Theorem 3.1]:

Theorem 2.1 Let M be a smooth manifold of dimension 2n + s admitting s one-
forms η1, . . . , ηs such that dη1 = · · · = dηs is a 2-form of constant rank 2n and
η1∧· · ·∧ηs ∧(dη1)

n vanishes nowhere. Then there exists a metric f -contact structure
( f , ξ1, . . . , ξs, η1, . . . , ηs, g) on M, where ξ1, . . . , ξs are the unique vector fields on
M such that ηα(ξβ) = δ

β
α and iξβ dηα = 0 for every α, β ∈ {1, . . . , s}.

This result generalizes thewell known construction of contact metric structures on a
odd-dimensional manifold endowed with a contact form, see for instance [6, Theorem
4.4].

In the following we recall some useful properties of metric f -contact manifolds
obtained in [9] and [15]. Let (M, f , ξα, ηα, g) be a metric f -contact manifold. Then
the operators

hα := 1

2
Lξα f , α ∈ {1, . . . , s}
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where Lξα denotes the Lie derivative relative to ξα , are self-adjoint and anticommute
with f . Moreover, for every α, β ∈ {1, . . . , s} and X ∈ T M we have

hαξβ = 0 (2.1)

by [9, Proposition 2.3],

∇ξα f = 0 (2.2)

by [9, Equation (2.4)],

[ξα, ξβ ] = 0 (2.3)

by [9, Corollary 2.4] and

∇Xξβ = − f X − f hβ X (2.4)

by [15, Proposition 2.4].
A metric f -contact manifold whose characteristic vector fields ξ1, . . . , ξs are

Killing is called a metric f –K -contact manifold. The following theorem is proved in
[9, Theorem 2.6].

Theorem 2.2 Let (M, f , ξ1, . . . , ξs, η1, . . . , ηs, g) be a metric f -contact manifold.
Then, for any α ∈ {1, . . . , s}, the vector field ξα is Killing if and only if hα = 0.

Hence, if (M, f , ξα, ηα, g) is metric f –K -contact manifold, Equation (2.4)
becomes

∇Xξα = − f X . (2.5)

Using (2.5) we conclude that the curvature tensor field R of M satisfies

R(X , ξα)Y = ∇X∇Y ξα − ∇∇X Y ξα = −(∇X f )Y , (2.6)

for each X , Y ∈ T M and α ∈ {1, . . . , s}, where we used[23, Proposition 8.1.3] for
the first equality.

3 Mapping tori of metric f–K -contact manifolds

In [12, Proposition 4.1] it was shown that the product of a Sasakian manifold with an
Abelian Lie group always admits the structure of an S-manifold. In this section we use
the same idea to show that the classes of metric f -contact, metric f –K -contact, and S-
manifolds are closed under forming the mapping torus with respect to automorphisms
of the structure. We begin by describing an explicit induced structure on the product
with the real line.
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Let (M2n+s, f , ξ1, . . . , ξs, η1, . . . , ηs, g) be a metric f -contact manifold with fun-
damental form ω. On the product manifold M × R we define a (1, 1) tensor f̄ and
s + 1 one-forms η̄1, . . . , η̄s+1 by

f̄ (X) = f (X), f̄

(
d

dt

)
= 0,

η̄α(X) = ηα(X), η̄α

(
d

dt

)
= 0, α = 1, . . . s,

η̄s+1(X) = 1

s
(η1(X) + · · · + ηs(X)), η̄s+1

(
d

dt

)
= 1,

for each X ∈ T M and where d
dt denotes the standard coordinate vector field on

R. We have that f̄ is an f -structure on M × R, im( f̄ ) = ⋂
α ker η̄α = im( f ),

dη̄1 = · · · = dη̄s+1 = π∗
1ω =: ω̄, where π1 : M × R → M is the projection on the

first component. We have ω̄ ∧ η̄1 · · · ∧ η̄s+1 �= 0. The vector fields

ξ̄α := ξα − 1

s

d

dt
, α = 1, . . . , s,

ξ̄s+1 := d

dt
,

are dual to η̄1, . . . , η̄s+1 and generate the kernel of f̄ . We consider moreover the
Riemannian metric ḡ defined by

ḡ(X , Y ) = g(X , Y ), ḡ(X , ξ̄α) = 0, ḡ(ξ̄α, ξ̄β) = δβ
α ,

for each X , Y ∈ im( f ) and α, β ∈ {1, . . . , s + 1}. It is easy to check that
( f̄ , ξ̄1, . . . , ξ̄s+1, η̄1, . . . , η̄s+1, ḡ) is a metric f -contact structure on M × R.

Let V be a local vector field tangent to im( f ). Observe that, for each α ∈ {1, . . . , s}

2h̄α(V ) =
[
ξα − 1

s

d

dt
, f̄ V

]
− f̄

[
ξα − 1

s

d

dt
, V

]

= [ξα, f V ] − f [ξα, V ]
= 2hα(V )

and

h̄s+1(V ) = 0.

Then, using Theorem 2.2 and Equation (2.1), we obtain that ( f , ξα, ηα, g) is a metric
f –K -contact structure on M if and only if ( f̄ , ξ̄α, η̄α, ḡ) is a metric f –K -contact
structure on M × R.
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Now consider two local vector fields V , W tangent to im( f ) and β ∈ {1, . . . , s}.
We have:

(
[ f̄ , f̄ ] + 2

s+1∑

α=1

dη̄α⊗ξ̄α

)
(V , W ) = [ f , f ] (V , W ) +2ω (V , W ) (ξ1 + · · · + ξs)

=
(

[ f , f ] + 2
s∑

α=1

dηα ⊗ ξα

)
(V , W ) ,

(
[ f̄ , f̄ ] + 2

s+1∑

α=1

dη̄α ⊗ ξ̄α

)
(
V , ξ̄β

) = f̄ 2[V , ξ̄β ] − f̄ [ f̄ V , ξ̄β ]

= f̄ 2[V , ξβ ] − f̄ [ f V , ξβ ]

=
(

[ f , f ] + 2
s∑

α=1

dηα ⊗ ξα

)
(
V , ξβ

)
,

(
[ f̄ , f̄ ] + 2

s+1∑

α=1

dη̄α ⊗ ξ̄α

)
(
V , ξ̄s+1

) = f̄ 2[V , ξ̄s+1] − f̄ [ f̄ V , ξ̄s+1] = 0.

Then, since ([ f̄ , f̄ ] + 2ω ⊗ ∑s+1
α=1 ξ̄α)(ξ̄β, ξ̄γ ) = 0, for each β, γ ∈ {1, . . . , s + 1},

we have that (M, f , ξα, ηα, g) is a S-manifold if and only if (M ×R, f̄ , ξ̄α, η̄α, ḡ) is
a S-manifold.

Summarizing, if ( f , ξα, ηα, g) is ametric f –K -contact structure (resp. S-structure)
on M , then the induced structure tensors ( f̄ , ξ̄α, η̄α, ḡ) on the product manifold M ×R

determine a metric f –K -contact structure (resp. S-structure) on M × R.

Remark 3.1 Another natural choice to construct a metric f -structure on the product
manifold M × R, is to consider on M × R the product metric

ḡ := π∗
1 (g) + π∗

2 (dt2),

where π1 and π2 are the projections from M × R on M and R respectively, and the
tensors f̄ , ξ̄α, η̄α defined by:

f̄ (X) = f (X), f̄

(
d

dt

)
= 0, ξ̄α = ξα, ξ̄s+1 = d

dt
,

η̄α(X) = ηα(X), η̄α

(
d

dt

)
= 0, η̄s+1(X) = 0, η̄s+1

(
d

dt

)
= 1,

for every X ∈ T M and α ∈ {1, . . . , s}. One can easily check that, if ( f , ξα, ηα, g)

is a metric f -contact structure on M , then ( f̄ , ξ̄α, η̄α, ḡ) is a metric f -structure on
M × R; however, since dη̄s+1 = 0, it is not a metric f -contact structure.

The construction above, generalized to warped products, was used in [11, Example
3.3] to produce examples of generalized S-space forms from generalized Sasakian
space-forms (see [1]).
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We now show that the structure constructed above descends to mapping tori of
automorphisms. Recall that, for a diffeomorphism φ : M → M of a manifold M the
mapping torus Mφ of (M, φ) is the quotient space (M × R)/Z, where the free and
properly discontinuous Z-action on the product space M × R is given by

m · (p, t) = (φm(p), t + m).

Let now (M, f , ξα, ηα, g) be a metric f -contact manifold and φ : M → M an
automorphism of the metric f -structure. Observe that the diffeomorphism

ρm : M × R → M × R; (p, t) �→ (φm(p), t + m),

m ∈ Z, preserves the structure tensors f̄ , ξ̄α, η̄α, ḡ on M ×R defined above. It follows
that the tensors f̄ , ξ̄α, η̄α, ḡ on M × R descend to Mφ , making it a metric f -contact
manifold. We have moreover that, if (M, f , ξα, ηα, g) is a (compact) metric f –K -
contact manifold (or a S-manifold), then Mφ with the induced structure is a (compact)
metric f –K -contact manifold (or respectively a S-manifold).

Remark 3.2 Most geometric classes of manifolds are not preserved by forming map-
ping tori of automorphisms. For instance, the mapping torus of a symplectomorphism
of a symplectic manifold naturally is a cosymplectic manifold, and that of a holo-
morphic isometry of a Kähler manifold is a co-Kähler manifold (see [21, Lemmata 1
and 4]). The mapping torus of a strict contactomorphism of a contact manifold is a
locally conformally symplectic manifold [4, Example 2.4], and an automorphism of a
Sasakian manifold induces a Vaisman structure on the mapping torus. From this point
of view, metric f –K -contact structures behave in a rather unusual way.

4 Cohomology of metric f–K -contact manifolds

Lemma 4.1 Let (M2n+s, f , ξα, ηα, g) be a compact, metric f -contact manifold with
s � 2. Then for all α �= β, the one-form ηα −ηβ defines a nonzero element in H1(M).

Proof The one-form ηα −ηβ is closed because dηα = ω for all α. If it was exact, then
ηα − ηβ = dh for a real-valued function h on M . As M is compact, h has a critical
point, so that ηα − ηβ has a zero. But (ηα − ηβ)(ξα) = 1 on all of M . 
�
Remark 4.2 In [12, Corollary 4.3] Dileo–Lotta showed the non-existence of simply
connected, compact S-manifolds with s � 2. (Note that obviously for s = 1 the result
does not hold, as any odd dimensional sphere admits a Sasakian structure.) Lemma
4.1 implies the same statement for metric f -contact manifolds:

Corollary 4.3 There are no compact, simply connected, metric f -contact manifolds
(M2n+s, f , ξα, ηα, g), with s ≥ 2.

Let M be a compact manifold. For a foliation F on M , we will consider its basic
cohomology H∗(M,F), which is by definition the cohomology of the subcomplex


(M,F) = {σ ∈ 
(M) | iXσ = LXσ = 0 for all X ∈ �(F)}
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On the topology of metric f–K -contact manifolds 363

of the de Rham complex (
(M), d), where �(F) denotes the space of vector fields
tangent to F .

In the rest of this section we consider a compact metric f –K -contact manifold
(M2n+s, f , ξα, ηα, g) with s ≥ 2. We recall that ω = dηα for all α = 1, . . . , s. As
the ξα are commuting Killing vector fields, they define an s-dimensional Riemannian
foliation F on M , which we call the characteristic foliation of M . We will also make
use of the Riemannian foliations on M spanned by the Killing vector fields ξ1, . . . , ξk ,
for k = 1, . . . , s, which we denote by Fk . The leaf dimension of Fk is k; we have
Fs = F , and we denote by F0 the trivial foliation by points.

Obviously, the leaves ofFk are contained in those ofFk+1, for all k = 0, . . . , s −1.
We observe moreover that the closure in the isometry group Isom(M, g) of M of

the subgroup generated by the flow of the characteristic vector fields ξ1, . . . , ξk , with
k ∈ {1, . . . , s},

Tk := 〈exp(t1ξ1), . . . , exp(tkξk)〉

is a connected, abelian Lie subgroup of Isom(M, g), which is also compact as M is
compact by hypothesis; hence Tk is a torus.

Proposition 4.4 We have short exact sequences

0 −→ H∗(M,Fk+1) −→ H∗(M,Fk) −→ H∗−1(M,Fk+1) −→ 0,

for all k = 0, . . . , s − 2, as well as

· · · −→ H p(M,F) −→ H p(M,Fs−1)

−→ H p−1(M,F)
δ−→ H p+1(M,F) −→ · · · ,

where the connecting homomorphism δ is given by δ([σ ]) = [ω ∧ σ ].
Proof This follows from a variant of the Gysin sequence for pairs of foliations, whose
proof is analogous to [8, Proposition 7.2.1]: Consider, for any k = 0, . . . , s − 1, the
short exact sequence of complexes

0 −→ 
∗(M,Fk+1) −→ 
∗(M,Fk)
Tk+1

iξk+1−→ 
∗−1(M,Fk+1) −→ 0,

where Tk+1 was defined before the proposition. The first map in the sequence is
the natural inclusion. One observes that the inclusion 
∗(M,Fk)

Tk+1 ⊂ 
∗(M,Fk)

induces an isomorphism in cohomology. (It is shown in [22, §9.1, Theorem 1] that the
averaging operator 
∗(M) → 
∗(M)Tk+1 induces an isomorphism in cohomology,
and one can restrict this operator to 
∗(M,Fk). In a slightly different context, this
argument was used also in [3, Lemma 5.3]).

To understand the connecting homomorphism in the induced long exact sequence
in cohomology one notes that for a given closed σ ∈ 
p−1(M,Fk+1) a preimage
under iξk+1 : 
∗(M,Fk)

Tk+1 → 
∗−1(M,Fk+1) is given by ηk+1 ∧ σ . This implies
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364 O. Goertsches, E. Loiudice

that δ([σ ]) = [d(ηk+1 ∧ σ)] = [ω ∧ σ ]. If k < s − 1, then ω = dηs is exact in

∗(M,Fk+1), so that the connecting homomorphism vanishes. 
�

Note that [ω] �= 0 in H∗(M,Fs) (see Lemma 6.3). We denote by �(Rs−1) the
exterior algebra on s − 1 generators, with generators in degree one. There is a natural
homomorphism�(Rs−1) → H∗(M) sending the standard basis vector ei to [ηi −ηs],
introducing on H∗(M) the structure of a �(Rs−1)-algebra.

Theorem 4.5 There is an isomorphism of �(Rs−1)-algebras

H∗(M) ∼= �(Rs−1) ⊗ H∗(M,Fs−1).

Proof The exact sequences in Proposition 4.4 imply that the natural map
H∗(M,Fs−1) → H∗(M) is injective. We claim that H∗(M,Fs−1) generates H∗(M)

freely as a �(Rs−1)-algebra.
To see that the �(Rs−1)-algebra morphism �(Rs−1) ⊗ H∗(M,Fs−1) → H∗(M)

is injective it suffices to show that for nonzero [σ ] ∈ H∗(M,Fs−1) the element

[(η1 − ηs) ∧ · · · ∧ (ηs−1 − ηs) ∧ σ ] ∈ H∗(M)

is nonzero. We can assume that the representative σ is invariant under the torus T gen-
erated by the flow of ξ1, . . . , ξs . Applying the composition iξs−1 ◦· · ·◦ iξ1 : H∗(M) →
H∗(M,F1) → · · · → H∗(M,Fs−1) to this class, we get back the original nonzero
element [σ ] ∈ H∗(M,Fs−1). Hence the homomorphism is injective.

Surjectivity follows for dimensional reasons: the short exact sequences in Proposi-
tion 4.4 imply that dimR H∗(M) = 2s−1 dimR H∗(M,Fs−1). 
�
Remark 4.6 One can derive a cohomological splitting, similar to Theorem 4.5, from a
Theorem of Chevalley, see [19, §IX.2, Theorem I]. Concretely, given a compact metric
f –K -contact manifold (M, f , ξ1, . . . ξs, η1, . . . , ηs, g), we consider the Abelian Lie
algebra

g =
{

s∑

α=1

aαξα |
s∑

α=1

aα = 0, aα ∈ R

}

as well as the foliation F̄ it defines.
As the ξα are commuting Killing vector fields and g(ξα, ξβ) = δ

β
α is constant for

all α and β, we can apply [10, Corollary 2.20] and obtain an algebraic connection
χ : g∗ → 
1(M) for the action of g: for an orthonormal basis {ei } of g with dual
basis {ei }, we have

χ(ei ) = g(ei , ·).

Then, [10, Theorem 2.21] yields a quasi-isomorphism of CDGAs

�(g∗) ⊗ 
∗(M, F̄) −→ 
∗
basg(M),
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where 
∗
basg(M) := {ω ∈ 
(M) | LXω = 0 for all X ∈ g} is the subcomplex of

g-basic forms on M . Here, we consider on
∗
basg(M) the standard differential; see [10,

Sections 2.2 and 2.5] for the definition of the differential dχ̄ on �(g∗) ⊗ 
∗(M, F̄).
In our setting, as the forms g(ei , ·) are linear combinations of the closed one-forms
ηα , they are closed; hence, χ̄ = d ◦ χ = 0 and thus the differential dχ̄ is just
1 ⊗ d. This implies, together with the fact that the inclusion 
∗

basg(M) → 
∗(M)

induces an isomorphism in cohomology (see [22, §9.1, Theorem 1]), that we obtain
an isomorphism

�(g∗) ⊗ H∗(M, F̄) −→ H∗(M).

5 Morse theory onmetric f–K -contact manifolds

In this section we construct, on any compact metric f –K -contact manifold, a Morse–
Bott function whose critical set is the union of the closed leaves of the characteristic
foliation. The construction and proof goes along the same lines as in the K -contact
case, see [24, Section 4].

Let (M2n+s, f , ξα, ηα, g) be a compact metric f –K -contact manifold. Consider
the torus

T := Ts = 〈exp(t1ξ1), . . . , exp(tsξs)〉,

and let Z ∈ Lie(T ) =: t be a generic element, in the following sense: in every point
p ∈ M the isotropy Lie algebra tp is of dimension at most dim T − s, as the elements
ξα are never contained in it. We define

t̃p := tp ⊕
⊕

α

Rξα.

As M is compact, there are in total only finitely many distinct subspaces t̃p ⊂ t. We
choose Z to satisfy

Z ∈ t \
⋃

p: t̃p �=t

t̃p;

note that this condition is void in case dim T = s.
The fact that [ξα, ξβ ] = 0 (see Eq. 2.3) implies the invariance of ηα under the

flow of ξβ for each α, β ∈ {1, . . . , s}; then, by continuity, any ηα is preserved by the
T -action on M . In particular

LZηα = 0, (5.1)

for each α ∈ {1, . . . , s}.
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Consider the real-valued map S : M → R, p �→ ηα(Z)(p). Using (5.1), we have:

(d S)(p) = d(iZηα)(p) = −(iZ dηα)(p) = −dηα(Z p, ·).

Thus the critical set C of S consists of the points p ∈ M such that Z p ∈ ⊕
α R(ξα)p.

Observe that by our choice of Z we have

C = {p ∈ M | dim T · p = s},

which is the same as the union of the closed leaves of the characteristic foliation F of
M . Moreover C is a manifold since it is the disjoint union of fixed point sets M H of
subtori H ⊂ T with dim H = dim T − s.

Lemma 5.1 Let N be a connected component of C and p ∈ N. Consider the Killing
vector field

δ = Z −
s∑

α=1

kαξα, (5.2)

where kα = ηα(Z)(p), α ∈ {1, . . . , s}, which vanishes along N. Then for all v,w ∈
Tp M perpendicular to N we have:

(i) ∇v Z = −k f (v) + ∇vδ, where ∇vδ is a nonzero tangent vector perpendicular to
N and k = ∑s

α=1 kα .
(ii) HessS(p)(v,w) = 2g(R(ξα, v)Z p, w) + 2g( f (∇v Z), w).
(iii) HessS(p)(v, f (∇vδ)) = 2g(∇vδ,∇vδ). Therefore the Hessian of S along N is

nondegenerate in directions perpendicular to N.

Proof The T -isotropy Lie algebra is constant along the closed submanifold N ; in
fact, N is equal to a connected component of the fixed point set of T 0

p , the identity
component of the isotropy group Tp. It follows that t = tp ⊕ ⊕s

α=1 Rξα , and the
equality Z = δ + ∑s

α=1 kαξα is precisely the decomposition of Z according to this
decomposition of t. This implies that ∇v Z = −k f (v) + ∇vδ (using (2.5)) and that δ

vanishes along all of N .
If ∇vδ = 0 then, because also δ(p) = 0 and δ is a Jacobi vector field along the

geodesic γ with initial velocity v, we have that δ vanishes along γ . On the other hand,
by our choice of Z , in a neighborhood of N the vector field Z vanishes only in points
of N . This implies that im(γ ) ⊂ N , contradicting the the fact that v is perpendicular
to N . To complete the proof of (i), consider a vector X at p tangent to N . As N is
a closed totally geodesic submanifold of M (see [20]) and δ is a Killing vector field
which, restricted to N , is tangent to N , we have g(∇vδ, X) = −g(∇Xδ, v) = 0 for
all X tangent to N , so that ∇vδ is perpendicular to N .

To prove (ii) consider V , W local vector fields extending v,w by parallel translation
along geodesics emanating from p. Using (2.5), (2.6) and the fact that Z and ξα are
Killing vector fields commuting with each other we obtain:
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HessS(p)(v,w) = V W (S)(p)

= V W (g(ξα, Z))(p)

= V (g(∇W ξα, Z) + g(ξα,∇W Z))(p)

= V (g(− f W , Z) − g(∇ξα Z , W ))(p)

= 2V (g(W , f Z))(p)

= 2(g(∇V W , f Z) + g((∇V f )(Z), W ) + g(W , f (∇V Z)))(p)

= 2g(R(ξα, v)Z p, w) + 2g( f (∇v Z), w).

We also compute

R(ξα, v)ξβ = −R(v, ξα)ξβ = (∇v f )ξα = − f (∇vξα) = f 2(v) = −v,

where we used (2.6) in the second and (2.5) in the fourth equality. The last equality is
true because N is T -invariant and hence v is contained in the image of f . Now, using
this information, we continue the computation above, taking w = f (∇vδ):

HessS(p)(v, f (∇vδ)) = 2g(R(ξα, v)Z p, f (∇vδ)) + 2g( f (∇v Z), f (∇vδ))

= 2g

⎛

⎝
s∑

β=1

kβ R(ξα, v)ξβ, f (∇vδ)

⎞

⎠ + 2g(∇v Z ,∇vδ)

= 2kg( f v,∇vδ) + 2g(−k f (v) + ∇vδ,∇vδ)

= 2g(∇vδ,∇vδ) �= 0.

In this computation we used that δ vanishes in p for the second equality, that ∇vδ is
perpendicular to N in the second and third equality, and the identity∇v Z = −k f (v)+
∇vδ from (i) in the third equality. 
�

Therefore it follows:

Proposition 5.2 The function S is a T -invariant Morse–Bott function with critical set
C.

6 Closed leaves of the characteristic foliation

In this section we relate the ordinary and basic cohomology of a compact metric f –
K -contact manifold (M2n+s, f , ξα, ηα, g) to the union C of the closed leaves of the
characteristic foliation F . This generalizes results from [16,24].

As usual we denote the fundamental 2-form of M2n+s by ω. The function S con-
sidered in Sect. 5 is F-basic, i.e., constant along leaves of F . Because of Proposition
5.2, [18, Theorems 6.3 and 6.4] are applicable and we obtain:

Theorem 6.1 We have the following equality of Poincaré polynomials:

Pt (M,F) =
∑

N

tλN Pt (N ,F),
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where N runs over the connected components of C, and λN is the index of N , i.e., the
rank of the negative normal bundle of N with respect to S.

Here, Pt (M,F) = ∑
tk dim Hk(M,F) is theF-basic Poincaré polynomial of M ,

and analogously for (N ,F). In particular we obtain by evaluating this equation at
t = 1:

Corollary 6.2 We have dimR H∗(M,F) = dimR H∗(C,F). If C consists of only
finitely many closed leaves of F , then dimR H∗(M,F) is equal to the number of
closed leaves of F .

Recall that an s-form η on a foliation F of leaf dimension s is called relatively
closed if dη(v1, . . . , vs+1) = 0 whenever s of the s + 1 tangent vectors vi are tangent
to F . It is well-known that for a relatively closed s-form η on an oriented manifold M
the natural map

∫

F ,η

: 
(M,F) −→ R; σ �−→
∫

M
η ∧ σ

descends to a map H∗(M,F) → R, see e.g. [17, Proposition 3.5].

Lemma 6.3 For k = 0, . . . , n, the form ωk defines a nonzero element in H2k(M,F).

Proof It suffices to show the claim for k = n. The given form is F-basic and thus
defines an element in H2k(M,F). To show that this element is nonzero we show that
it maps to a nonzero real number under the above integration operator, with respect to
an appropriate relatively closed s-form.

The form η1 ∧ · · · ∧ ηs is relatively closed with respect to the foliation F : we have

d(η1 ∧ · · · ∧ ηs) =
s∑

i=1

(−1)i−1ω ∧ η1 ∧ · · · ∧ η̂i ∧ · · · ∧ ηs,

and ω vanishes on vector fields tangent to F . Note also that M admits a natural
orientation induced by the volume form ωn ∧ η1 ∧ · · · ∧ ηs . Then

∫

F ,η1∧···∧ηs

ωn =
∫

M
ωn ∧ η1 ∧ · · · ∧ ηs �= 0.


�
For s = 1, i.e., in the K -contact setting, the following theorem was known pre-

viously – the statement about the minimal number of closed leaves generalizes [24,
Corollary 1], and the equivalence of the four conditions results from [16].

Theorem 6.4 The characteristic foliation of a compact metric f –K -contact manifold
M2n+s has at least n + 1 closed leaves. If it has only finitely many closed leaves, then
the following conditions are equivalent:

• The number of closed leaves of F is n + 1.
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• The natural homomorphism R[ω] → H∗(M,F) induces an isomorphism of rings
R[ω]/(ωn+1) ∼= H∗(M,F), i.e., the basic cohomology H∗(M,F) is that of CPn.

• The basic cohomology H∗(M,Fs−1) is that of a 2n + 1-dimensional sphere.
• M has the real cohomology ring of S2n+1 × T s−1.

Proof If the number of closed leaves is finite, then it is, by Corollary 6.2, given by
dim H∗(M,F). But this vector space contains, by Lemma 6.3, the n + 1 nontrivial
elements 1, [ω], . . . , [ω]n . This shows that there are at least n + 1 closed leaves, and
the equivalence of the first and second condition.

The equivalence of the second and third condition follows from the long exact
Gysin-type sequence in Proposition 4.4. The equivalence of the third and fourth con-
dition is Theorem 4.5. 
�
Corollary 6.5 Let M2n+1 be a real cohomology sphere, equipped with a K -contact
structure with finitely many closed Reeb orbits, and φ : M → M an automorphism of
the K -contact structure. Then φ sends every closed Reeb orbit to itself.

Proof As shown in Sect. 3 the mapping torus Mφ of φ naturally is a metric f –K -
contact manifold. Let C ⊂ M be the union of the closed Reeb orbits of M , which are
exactly n +1 by Theorem 6.4. Then the union of the closed leaves of the characteristic
foliation F of Mφ naturally is the mapping torus Cφ , whose number of connected
components is bounded from above by n + 1, with equality if and only if φ sends
every closed Reeb orbit to itself. But on the other hand every closed leaf of F is
isolated, hence this number of connected components is by Theorem 6.4 also bounded
from below by n + 1. 
�
Example 6.6 It was shown in [16] that there is a K -contact structure with exactly four
closed Reeb orbits on the 7-dimensional Stiefel manifold SO(5)/SO(3), which is a
real cohomology sphere. All (iterated) mapping tori of automorphisms of this example
thus satisfy the conditions in Theorem 6.4.
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