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Abstract

Let n, g be positive integers. We show that if G is a finitely generated residually finite
group satisfying the identity [x,, y?] = 1, then there exists a function f(n) such that
G has a nilpotent subgroup of finite index of class at most f(n). We also extend this
result to locally graded groups.
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1 Introduction

Let n be a positive integer. We say that a group G is (left) n-Engel if it satisfies the
identity [y, , x] = 1, where the word [x,, y] is defined inductively by the rules

Loyl =x""y ey, [onyl = [[x,0—1y], y] foralln > 2.

A important theorem of Wilson [13, Theorem 2] says that finitely generated resid-
ually finite n-Engel groups are nilpotent. More specific properties of residually finite
n-Engel groups can be found for example in a theorem of Burns and Medvedev (quoted
below as Theorem 5) stating that there exist functions c(n) and e(n) such that any resid-
ually finite n-Engel group G has a nilpotent normal subgroup N of class at most c(n)
such that the quotient group G /N has exponent dividing e(n). The interested reader
is referred to the survey [12] and references therein for further results on finite and
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residually finite Engel groups. The purpose of the present article is to provide the proof
for the following theorem.

Theorem 1 Let G be a finitely generated residually finite group satisfying the identity
[x,, ¥9] = 1. Then there exists a function f (n) such that G has a nilpotent subgroup
of finite index of class at most f(n).

A group is called locally graded if every non-trivial finitely generated subgroup
has a proper subgroup of finite index. The class of locally graded groups contains
locally (soluble-by-finite) groups as well as residually finite groups. We can extend
the Theorem 1 to the class of locally graded groups.

Corollary 1 Let G be a finitely generated locally graded group satisfying the identity
[x,, y1] = 1. Then there exists a function f(n) such that G has a nilpotent subgroup
of finite index of class at most f(n).

In the next section we describe the Lie-theoretic machinery that will be used in the
proof of Theorem 1. The proof of the theorem and of the corollary is given in Sect. 3.

2 About Lie algebras

Let L be aLie algebra over a field K and X a subset of L. By acommutator in elements
of X we mean any element of L that can be obtained as a Lie product of elements
of X with some system of brackets. If x1, ..., x¢, x, y are elements of L, we define
inductively

(1] = x93 [x1, .o, xe] = [lxns -0 -5 X1 ], X ]

and [x,0y] = x; [x,m y] = [[x,m—1 ], y], for all positive integers k, m. As usual,
we say that an element @ € L is ad-nilpotent if there exists a positive integer n such
that [x,, a] = 0 for all x € L. Denote by F the free Lie algebra over K on countably
many free generators x1, x2, .... Let f = f(x1, x2, ..., x,) be a non-zero element of
F. The algebra L is said to satisfy the identity f = 0 if f(ly, 2, ..., [,) = O for any
11,12,...,1,, € L.

The next theorem represents the most general form of the Lie-theoretical part of
the solution of the Restricted Burnside Problem [15,17,18]. It was announced by
Zelmanov [15]. A detailed proof can be found in [18].

Theorem 2 Let L be a Lie algebra over afield and suppose that L satisfies a polynomial
identity. If L can be generated by a finite set X such that every commutator in elements
of X is ad-nilpotent, then L is nilpotent.

2.1 Associating a Lie ring to a group
Let G be a group. A series of subgroups

G=G;>Gr=>... *)
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is called an N-series if it satisfies [G;, G ;] < G4 forall i, j > 1. Obviously any
N-series is central, i.e. G;/Gi+1 < Z(G/Gj41) for any i. Let p be a prime. An N-
series is called N ,-series if Gf < G; for all i. Given an N-series (x), let L*(G) be
the direct sum of the abelian groups L} = G;/G; 1, written additively. Commutation
in G induces a binary operation [, -] in L*(G). For homogeneous elements xG; 1 €
LY, yGji € L; the operation is defined by

[(xGit1,YGj+1] =[x, 1Gitj11 € L7y

and extended to arbitrary elements of L*(G) by linearity. It is easy to check that the
operation is well-defined and that L*(G) with the operations + and [-, -] is a Lie
ring. If all quotients G; /G4 of an N-series (x) have prime exponent p then L*(G)
can be viewed as a Lie algebra over the field with p elements. In the important case
where the series (x) is the p-dimension central series (also known under the name of
Zassenhaus-Jennings-Lazard series) of G we write D; = D;(G) =[] ipk=i )/j(G)pk
for the i-th term of the series of G, L(G) for the corresponding associated Lie algebra
over the field with p elements and L ,(G) for the subalgebra generated by the first
homogeneous component D1 /D, in L(G). Observe that the p-dimension central series
is an N-series (see [5, p. 250] for details).

The nilpotency of L ,(G) has strong influence in the structure of a finitely generated
pro-p group G. The proof of the following theorem can be found in [4, 1.(k) and 1.(0)
in Interlude A].

Theorem 3 Let G be a finitely generated pro-p group. If L ,(G) is nilpotent, then G
is p-adic analytic.

Let x € G and let i = i(x) be the largest positive integer such that x € D; (here,
D; is a term of the p-dimensional central series to G). We denote by X the element
xDjy1 € L(G). We now quote two results providing sufficient conditions for X to be
ad-nilpotent. The following lemma was established in [6, p. 131].

Lemma 1 Forany x € G we have (ad X))’ = ad ()?5).

Corollary 2 Let x be an element of a group G for which there exists a positive integer
m such that x™ is n-Engel. Then X is ad-nilpotent.

The following theorem is a particular case of a result that was established by Wilson
and Zelmanov in [14].

Theorem 4 Let G be a group satisfying an identity. Then for each prime number p
the Lie algebra L ,(G) satisfies a polynomial identity.

3 Proof of the main theorem

The following useful result is a consequence of [13, Lemma 2.1] (see also [11, Lemma
3.5] for details).
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Lemma2 Let G be a finitely generated residually finite-nilpotent group. For each
prime p let J, be the intersection of all normal subgroups of G of finite p-power
index. If G/J), has a nilpotent subgroup of finite index of class at most c for each p,
then G also has a nilpotent subgroup of finite index of class at most c.

Proof It follows from proof of [11, Lemma 3.5] that there exists a finite set of primes
7 such that G embeds in the direct product [ | per G/Jp. We will identify G with its
images in direct product. By hypothesis, for any p € w, G/J, contains a nilpotent
subgroup of finite index H,, with class at most ¢. Set H = Npex Hp,. Thus, G N H has
finite index in G and has nilpotency class at mos ¢, which completes the proof.

Recall that a group is locally graded if every non-trivial finitely generated subgroup
has a proper subgroup of finite index. Note that the quotient of a locally graded group
need not be locally graded, since free groups are locally graded (see [10, 6.1.9]), but
no finitely generated infinite simple group is locally graded. However, the following
results give a sufficient conditions for a quotient to be locally graded (see [7] for
details).

Lemma 3 Let G be alocally graded group and N a normal locally nilpotent subgroup
of G. Then G/ N is locally graded.

Let p be a prime and g be a positive integer. A finite p-group G is said to be
powerful if and only if [G, G] < GP for p # 2 (or [G, G] < G* for p = 2), where
G1 denotes the subgroup of G generated by all gth powers. While considering a pro-
p group G we shall be interested only in closed subgroups. So by the commutator
subgroup G’ = [G, G] we mean the closed commutator subgroup, G¢ means the
closed subgroup generated by the gth powers. Similarly to powerful finite p-groups,
we may define the powerful pro-p groups. For more details we refer the reader to
[7, Chapters 2 and 3 ]. In [1] the following useful result for powerful finite n-Engel
p-group was established.

Lemma4 There exists a function s(n) such that any powerful finite n-Engel p-group
is nilpotent of class at most s(n).

The proof of Theorem 1 will requires the following lemma.

Lemma5 Lets(n) be asin Lemma 4. If G is a finitely generated powerful pro-p group
satisfying the identity [x,, y1] = 1, then G? has nilpotency class at most s(n).

Proof Since G satisfies the identity [x,, y?] = 1, we can deduce from [4, Corollary
3.5] that H = G9 = {x? | x € G} is a powerful n-Engel pro-p group. According
to [4, Corollary 3.3], H is the inverse limit of an inverse system of powerful finite
p-groups H,. Lemma 4 implies that any group H, has class at most s(n), and so, H
has class at most s(n) as well. Finally, by a result due to Zelmanov [16, Theorem 1]
saying that any torsion profinite group is locally finite we get that the quotient group
G/ H is finite. This completes the proof. O

The proof of Theorem 1 will also require the following result, due to Burns and
Medvedev [3].
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Theorem 5 There exist functions c(n) and e(n) such that any residually finite n-Engel
group G has a nilpotent normal subgroup N of class at most c(n) such that G/N has
exponent dividing e(n). O

We are now ready to embark on the proof of our main result.

Proof of Theorem 1 For any positive integer n let s(n) and c¢(n) be as in Lemma 4 and
Theorem 5, respectively. Set f(n) = max{s(n), c(n)}. Since G satisfies the identity
[x,, y?] = 1 we can deduce from [2, Theorem A] that H = G? is locally nilpo-
tent. According to Lemma 3, G/H is locally graded. By Zelmanov’s solution of the
Restricted Burnside Problem [15,17,18], locally graded groups of finite exponent are
locally finite (see for example [8, Theorem 1]), and so G/ H is finite. Thus H is finitely
generated and so it is nilpotent.

By Lemma 2, we can assume that H is residually (finite p-group) for some prime
p. If p does not divides ¢, then H is finitely generated residually finite n-Engel group.
By Theorem 5, H contains a nilpotent normal subgroup N of class at most f(n) such
that the quotient group G /N has exponent dividing e(n). Thus, we can see that G/ N
is finite. Thereby, in what follows we can assume that H is residually (finite p-group),
where p divides q.

Set H = (hy,...,hy). Let L = L,(H) be the Lie algebra associated with the p-
dimensional central series of H. Then L is generated by fzi =h;iDy,i =1,2,...,¢t.
Let & be any Lie-commutator in h; and h be the group-commutator in /; having the
same system of brackets as /. Since for any group commutator / in A ..., h; we
have that 2 is n-Engel, Corollary 2 shows that any Lie commutator in /..., i, is
ad-nilpotent. Since H satisfies the identity [x,, y?] = 1, by Theorem 4, L satisfies
some non-trivial polynomial identity. According to Theorem 2 L is nilpotent.

Let H be the pro-p completion of H, that is, the inverse limit of all quotients of
H which are finite p-groups. Notice that H is finitely generated, being H finitely
generated.

Since the finite p-quotients of H are the same as the finite p-quotients of H by (a)
and (d) of [9, Proposition 3.2.2], we get that L p(H ) = L. Hence, L p(H ) is nilpotent
and so, H is a p-adic analytic group by Theorem 3.

By [4, 1.(a) and 1.(0o) in Interlude A], H is virtually powerful, that is, H has
a powerful subgroup K of finite index. By Lemma 5, K9 has class at most f(n).
Furthermore, it follows from [16, Theorem 1] that group K /K7 is finite. Finally, since
H is residually-p, it embeds in H.Thus, HN K% is a nilpotent subgroup of finite
index in G of class at most f'(n). This completes the proof. O

Proof of Corollary 1 Let f(n) be as in Theorem 1. It follows from [2, Theorem C]
that H = G1 is locally nilpotent. By Lemma 3, G/H is a locally graded group. By
Zelmanov’s solution of the Restricted Burnside Problem, locally graded groups of
finite exponent are locally finite. Thus, G/ H is finite and so, H is a finitely generated
nilpotent group. Since polycyclic groups are residually finite [10, 5.4.17], we can
deduce from Theorem 1 that H contains a subgroup of finite index and of class at
most f(n). The proof is complete.
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