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Abstract
Let n, q be positive integers. We show that if G is a finitely generated residually finite
group satisfying the identity [x,n yq ] ≡ 1, then there exists a function f (n) such that
G has a nilpotent subgroup of finite index of class at most f (n). We also extend this
result to locally graded groups.
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1 Introduction

Let n be a positive integer. We say that a group G is (left) n-Engel if it satisfies the
identity [y, n x] ≡ 1, where the word [x,n y] is defined inductively by the rules

[x,1 y] = x−1y−1xy, [x,n y] = [[x,n−1 y], y] for all n ≥ 2.

A important theorem of Wilson [13, Theorem 2] says that finitely generated resid-
ually finite n-Engel groups are nilpotent. More specific properties of residually finite
n-Engel groups can be found for example in a theorem ofBurns andMedvedev (quoted
below as Theorem5) stating that there exist functions c(n) and e(n) such that any resid-
ually finite n-Engel group G has a nilpotent normal subgroup N of class at most c(n)

such that the quotient group G/N has exponent dividing e(n). The interested reader
is referred to the survey [12] and references therein for further results on finite and
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residually finite Engel groups. The purpose of the present article is to provide the proof
for the following theorem.

Theorem 1 Let G be a finitely generated residually finite group satisfying the identity
[x,n yq ] ≡ 1. Then there exists a function f (n) such that G has a nilpotent subgroup
of finite index of class at most f (n).

A group is called locally graded if every non-trivial finitely generated subgroup
has a proper subgroup of finite index. The class of locally graded groups contains
locally (soluble-by-finite) groups as well as residually finite groups. We can extend
the Theorem 1 to the class of locally graded groups.

Corollary 1 Let G be a finitely generated locally graded group satisfying the identity
[x,n yq ] ≡ 1. Then there exists a function f (n) such that G has a nilpotent subgroup
of finite index of class at most f (n).

In the next section we describe the Lie-theoretic machinery that will be used in the
proof of Theorem 1. The proof of the theorem and of the corollary is given in Sect. 3.

2 About Lie algebras

Let L be a Lie algebra over a field K and X a subset of L . By a commutator in elements
of X we mean any element of L that can be obtained as a Lie product of elements
of X with some system of brackets. If x1, . . . , xk, x, y are elements of L , we define
inductively

[x1] = x1; [x1, . . . , xk] = [[x1, . . . , xk−1], xk]

and [x,0 y] = x; [x,m y] = [[x,m−1 y], y], for all positive integers k,m. As usual,
we say that an element a ∈ L is ad-nilpotent if there exists a positive integer n such
that [x,n a] = 0 for all x ∈ L . Denote by F the free Lie algebra over K on countably
many free generators x1, x2, . . .. Let f = f (x1, x2, . . . , xn) be a non-zero element of
F . The algebra L is said to satisfy the identity f ≡ 0 if f (l1, l2, . . . , ln) = 0 for any
l1, l2, . . . , ln ∈ L .

The next theorem represents the most general form of the Lie-theoretical part of
the solution of the Restricted Burnside Problem [15,17,18]. It was announced by
Zelmanov [15]. A detailed proof can be found in [18].

Theorem 2 Let L beaLie algebraover a field and suppose that L satisfies a polynomial
identity. If L can be generated by a finite set X such that every commutator in elements
of X is ad-nilpotent, then L is nilpotent.

2.1 Associating a Lie ring to a group

Let G be a group. A series of subgroups

G = G1 ≥ G2 ≥ . . . (*)
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is called an N -series if it satisfies [Gi ,G j ] ≤ Gi+ j for all i, j ≥ 1. Obviously any
N -series is central, i.e. Gi/Gi+1 ≤ Z(G/Gi+1) for any i . Let p be a prime. An N -
series is called Np-series if G

p
i ≤ Gpi for all i . Given an N -series (∗), let L∗(G) be

the direct sum of the abelian groups L∗
i = Gi/Gi+1, written additively. Commutation

in G induces a binary operation [·, ·] in L∗(G). For homogeneous elements xGi+1 ∈
L∗
i , yG j+1 ∈ L∗

j the operation is defined by

[xGi+1, yG j+1] = [x, y]Gi+ j+1 ∈ L∗
i+ j

and extended to arbitrary elements of L∗(G) by linearity. It is easy to check that the
operation is well-defined and that L∗(G) with the operations + and [·, ·] is a Lie
ring. If all quotients Gi/Gi+1 of an N -series (∗) have prime exponent p then L∗(G)

can be viewed as a Lie algebra over the field with p elements. In the important case
where the series (∗) is the p-dimension central series (also known under the name of
Zassenhaus-Jennings-Lazard series) of G we write Di = Di (G) = ∏

j pk≥i γ j (G)p
k

for the i-th term of the series of G, L(G) for the corresponding associated Lie algebra
over the field with p elements and L p(G) for the subalgebra generated by the first
homogeneous component D1/D2 in L(G). Observe that the p-dimension central series
is an Np-series (see [5, p. 250] for details).

The nilpotency of L p(G) has strong influence in the structure of a finitely generated
pro-p group G. The proof of the following theorem can be found in [4, 1.(k) and 1.(o)
in Interlude A].

Theorem 3 Let G be a finitely generated pro-p group. If L p(G) is nilpotent, then G
is p-adic analytic.

Let x ∈ G and let i = i(x) be the largest positive integer such that x ∈ Di (here,
Di is a term of the p-dimensional central series to G). We denote by x̃ the element
xDi+1 ∈ L(G). We now quote two results providing sufficient conditions for x̃ to be
ad-nilpotent. The following lemma was established in [6, p. 131].

Lemma 1 For any x ∈ G we have (ad x̃)p = ad (x̃ p).

Corollary 2 Let x be an element of a group G for which there exists a positive integer
m such that xm is n-Engel. Then x̃ is ad-nilpotent.

The following theorem is a particular case of a result that was established byWilson
and Zelmanov in [14].

Theorem 4 Let G be a group satisfying an identity. Then for each prime number p
the Lie algebra L p(G) satisfies a polynomial identity.

3 Proof of themain theorem

The following useful result is a consequence of [13, Lemma 2.1] (see also [11, Lemma
3.5] for details).
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Lemma 2 Let G be a finitely generated residually finite-nilpotent group. For each
prime p let Jp be the intersection of all normal subgroups of G of finite p-power
index. If G/Jp has a nilpotent subgroup of finite index of class at most c for each p,
then G also has a nilpotent subgroup of finite index of class at most c.

Proof It follows from proof of [11, Lemma 3.5] that there exists a finite set of primes
π such that G embeds in the direct product

∏
p∈π G/Jp. We will identify G with its

images in direct product. By hypothesis, for any p ∈ π , G/Jp contains a nilpotent
subgroup of finite index Hp with class at most c. Set H = ∩p∈π Hp. Thus, G ∩ H has
finite index in G and has nilpotency class at mos c, which completes the proof.

Recall that a group is locally graded if every non-trivial finitely generated subgroup
has a proper subgroup of finite index. Note that the quotient of a locally graded group
need not be locally graded, since free groups are locally graded (see [10, 6.1.9]), but
no finitely generated infinite simple group is locally graded. However, the following
results give a sufficient conditions for a quotient to be locally graded (see [7] for
details).

Lemma 3 Let G be a locally graded group and N a normal locally nilpotent subgroup
of G. Then G/N is locally graded.

Let p be a prime and q be a positive integer. A finite p-group G is said to be
powerful if and only if [G,G] ≤ Gp for p �= 2 (or [G,G] ≤ G4 for p = 2), where
Gq denotes the subgroup of G generated by all qth powers. While considering a pro-
p group G we shall be interested only in closed subgroups. So by the commutator
subgroup G ′ = [G,G] we mean the closed commutator subgroup, Gq means the
closed subgroup generated by the qth powers. Similarly to powerful finite p-groups,
we may define the powerful pro-p groups. For more details we refer the reader to
[7, Chapters 2 and 3 ]. In [1] the following useful result for powerful finite n-Engel
p-group was established.

Lemma 4 There exists a function s(n) such that any powerful finite n-Engel p-group
is nilpotent of class at most s(n).

The proof of Theorem 1 will requires the following lemma.

Lemma 5 Let s(n) be as in Lemma 4. If G is a finitely generated powerful pro-p group
satisfying the identity [x,n yq ] ≡ 1, then Gq has nilpotency class at most s(n).

Proof Since G satisfies the identity [x,n yq ] ≡ 1, we can deduce from [4, Corollary
3.5] that H = Gq = {xq | x ∈ G} is a powerful n-Engel pro-p group. According
to [4, Corollary 3.3], H is the inverse limit of an inverse system of powerful finite
p-groups Hλ. Lemma 4 implies that any group Hλ has class at most s(n), and so, H
has class at most s(n) as well. Finally, by a result due to Zelmanov [16, Theorem 1]
saying that any torsion profinite group is locally finite we get that the quotient group
G/H is finite. This completes the proof. 
�

The proof of Theorem 1 will also require the following result, due to Burns and
Medvedev [3].
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Theorem 5 There exist functions c(n) and e(n) such that any residually finite n-Engel
group G has a nilpotent normal subgroup N of class at most c(n) such that G/N has
exponent dividing e(n). 
�

We are now ready to embark on the proof of our main result.

Proof of Theorem 1 For any positive integer n let s(n) and c(n) be as in Lemma 4 and
Theorem 5, respectively. Set f (n) = max{s(n), c(n)}. Since G satisfies the identity
[x,n yq ] ≡ 1 we can deduce from [2, Theorem A] that H = Gq is locally nilpo-
tent. According to Lemma 3, G/H is locally graded. By Zelmanov’s solution of the
Restricted Burnside Problem [15,17,18], locally graded groups of finite exponent are
locally finite (see for example [8, Theorem 1]), and soG/H is finite. Thus H is finitely
generated and so it is nilpotent.

By Lemma 2, we can assume that H is residually (finite p-group) for some prime
p. If p does not divides q, then H is finitely generated residually finite n-Engel group.
By Theorem 5, H contains a nilpotent normal subgroup N of class at most f (n) such
that the quotient group G/N has exponent dividing e(n). Thus, we can see that G/N
is finite. Thereby, in what follows we can assume that H is residually (finite p-group),
where p divides q.

Set H = 〈h1, . . . , ht 〉. Let L = L p(H) be the Lie algebra associated with the p-
dimensional central series of H . Then L is generated by h̃i = hi D2, i = 1, 2, . . . , t .
Let h̃ be any Lie-commutator in h̃i and h be the group-commutator in hi having the
same system of brackets as h̃. Since for any group commutator h in h1 . . . , ht we
have that hq is n-Engel, Corollary 2 shows that any Lie commutator in h̃1 . . . , h̃t is
ad-nilpotent. Since H satisfies the identity [x,n yq ] ≡ 1, by Theorem 4, L satisfies
some non-trivial polynomial identity. According to Theorem 2 L is nilpotent.

Let Ĥ be the pro-p completion of H , that is, the inverse limit of all quotients of
H which are finite p-groups. Notice that Ĥ is finitely generated, being H finitely
generated.

Since the finite p-quotients of H are the same as the finite p-quotients of Ĥ by (a)
and (d) of [9, Proposition 3.2.2], we get that L p(Ĥ) = L . Hence, L p(Ĥ) is nilpotent
and so, Ĥ is a p-adic analytic group by Theorem 3.

By [4, 1.(a) and 1.(o) in Interlude A], Ĥ is virtually powerful, that is, Ĥ has
a powerful subgroup K of finite index. By Lemma 5, Kq has class at most f (n).

Furthermore, it follows from [16, Theorem 1] that group K/Kq is finite. Finally, since
H is residually-p, it embeds in Ĥ . Thus, H ∩ Kq is a nilpotent subgroup of finite
index in G of class at most f (n). This completes the proof. 
�
Proof of Corollary 1 Let f (n) be as in Theorem 1. It follows from [2, Theorem C]
that H = Gq is locally nilpotent. By Lemma 3, G/H is a locally graded group. By
Zelmanov’s solution of the Restricted Burnside Problem, locally graded groups of
finite exponent are locally finite. Thus, G/H is finite and so, H is a finitely generated
nilpotent group. Since polycyclic groups are residually finite [10, 5.4.17], we can
deduce from Theorem 1 that H contains a subgroup of finite index and of class at
most f (n). The proof is complete.
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