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Abstract
In this paper, existence and uniqueness of solutions for the nonlinear and linear models
of the arctic gyres over 84◦ north latitude are studied by using the stereographic
projection, which represents the streamline and no jet at the outside boundary. By
using the fixed point technique, we prove the existence and uniqueness of the local
solution of the nonlinear model. Next, we present the existence and uniqueness of the
solution in the semi-infinite interval under the suitable asymptotic conditions. In the
case of linear vorticity function, we give the explicit solutions by adopt the idea for
linear ODEs.

Keywords Existence and uniqueness · Second order differential equations · Ocean
gyre

Mathematics Subject Classification 34A12 · 45G99 · 76B03

1 Introduction

Gyres is a circular ocean current driven by wind stress and the rotation of the earth
under the Coriolis effect, see [1–4]. The gyres is deflected clockwise rotation in the
Northern Hemisphere and counterclockwise rotation in the Southern Hemisphere due
to the Coriolis effect. In ocean current, most of them rely on the equator to present
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a certain flow pattern in the North and South [5]. It is worth noting that the mid-
latitudes do not appear at the equator as the meridional components of the coriolis
force disappear, although they do encounter circulations [6].

Mathematical studies of ocean circulation are essential for predicting the character-
istics of large-scale natural phenomena in the ocean. In the arctic gyres, the horizontal
velocity is 0.01m/s [7], which is about 104 times of the vertical velocity [8]. There-
fore, in the case of ignoring the vertical velocity, the ocean circulation is approximately
regarded as flowing on the rotating sphere by introducing a flow function, and the cir-
culation model in the spherical coordinate system is transformed into a plane elliptic
partial differential equation by using the stereographic projection [7]. Since the arc-
tic region is covered by ice, waves do not effect, distinguishing the Southern Ocean
(where current and wave interactions are important), see [9,10], locating in the north-
ern Arctic Ocean (above latitude 84◦), the circulation is centered roughly to the north
and slowly rotates clockwise on an ice surface more than 2m thick [11].

Recently, Constantin and Johnson [7] transformed the Euler equation expressed in a
rotating frame in spherical coordinates coupledwith the equation ofmass conservation
and the appropriate boundary conditions into a second-order ordinary differential
equation on a semi-infinite interval under the condition that azimuthal variations is
ignored. It’s constrained by asymptotic conditions, the existence of solutions of the
equation are studied in [12–15].

In the present paper, we study the existence and uniqueness of the solution of the
nonlinearmodel of the arctic circulation by using the fixed pointmethod under themild
conditions that the outer boundary is a first-class line and there is no jet. We extend the
existence and uniqueness of local solutions in finite interval to a semi-infinite interval
by requiring that the North Pole corresponds to a known flow function.

2 Preliminaries

A model for ocean current in spherical coordinates can be described. In terms of
the stereographic projection from the South Pole, the azimuthal and polar velocity
components of horizontal gyre flow given by

1

sin θ
ψφ and − ψθ, (1)

where θ ∈ (0, π ] is polar angle with θ = π corresponding to the North Pole,
and ϕ ∈ [0, 2π) represents the azimuthal angle (see Fig. 1), and ψ(θ, ϕ) is the stream
function. In terms of the stream function � associated with the vorticity of the motion
of the ocean, defined by

ψ(θ, ϕ) = −ω cos θ + �(θ, ϕ),

where � is not driven by the Earth’s rotation, the governing equation of ocean flow
can be expressed as

1

sin2 θ
�ϕϕ + �θ cot θ + �θθ = F(� − ω cos θ), (2)

123



Existence and uniqueness results for a second order… 179

Fig. 1 Azimuthal and polar angular spherical coordinates ϕ and θ of a point P on the spherical surface of
the Earth,with θ = 0 and θ = π correspond to the South and North Pole. Respectively, the stereographic
projection of the unit sphere (center at origin) from the South Pole to the equatorial plane,the point P in
the arctic region,the straight line connecting it to the South Pole intersects the equatorial plane in a point
P ′ belonging to the interior of the circular region delimited by the Equator. The arctic gyres is mapped into
a circular region within the equatorial plane

where 2ω cos θ is the planetary vorticity (ω > 0 is the non-dimensional Coriolis
parameter), F is the oceanic vorticity which the form of ocean flow dictates the nature
of the oceanic vorticity function. For example, the vorticity of water flow, the interac-
tion of geophysical wave-current, and the ocean vorticity of these wind-driven flows
can be considered as a fixed non-zero constant. Although the spin vorticity is deter-
mined, the vorticity associatedwith oceanmotion can be selected to represent a specific
circulation, especially, when the ocean vorticity disappears (that is F = 0), the flow
field is irrotational.

The stereographic projection is used from the South Pole to the equatorial plane on
a unit sphere centered at the origin. Setting

ξ = reiφ with r = cot

(
θ

2

)
= sin θ

1 − cos θ
, (3)
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Fig. 2 In the unit circle, triangle OPS is an isosceles triangle, if G is the middle point of PS, we can get
∠PSO = π

2 − θ , through connecting OG, since OP = r , this indicates that (4) is true

where (r , φ) represents the polar coordinates on the equatorial plane, and r is a function
of θ , whose geometric relationship is shown in Fig. 2, and it transforms (3) into

ψξξ + 2ω
1 − ξξ

(1 + ξξ)3
− F(ψ)

(1 + ξξ))2
= 0, (4)

using Cartesian coordinates (x, y), the above equation is equivalent to a semilinear
elliptic partial differential equation


ψ + 8ω
1 − (x2 + y2)

(1 + x2 + y2)3
− 4F(ψ)

(1 + x2 + y2)2
= 0. (5)

where
 = ∂2x +∂2y is the Laplace operator, expressed in accordancewith the Cartesian
coordinates on the equatorial plane, in which the unknown functionψ(x, y) represents
the stream function. For a specified ω and F , the gyre is obtained by solving (5) in a
given plane region O, with Dirichlet boundary data

ψ = u0 on ∂O. (6)

where u0 means that the value of the flow function is at the boundary ∂O of O, and
the corresponding streamline ψ = u0. According to the stereographic projection is
employed, the plane region O corresponds to the ocean region, and the ocean region
is located at the location of the gyre.
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In this paper, we study the gyre problem in the Arctic Basin Ecozone which is
the core northern part of the Arctic Ocean, and it is covered by more than 2m of ice
thickness. Between the North Pole and 84 degrees north latitude, there is an ocean
area about 3.6km deep, covering an area of about 1.27 million square kilometers, with
no coast. The relatively constant ice sheets and floes in the arctic ocean, driven by the
circulation of theArcticOcean, slowly float in a clockwise direction, roughly the center
on North Pole. Setting corresponding to the planar region O = {r : 0 ≤ r < r0},
with θ ∈ [ 14π15 , π ], r = cot( θ

2 ) < 1
e , therefore r0 < 1

e , the considerations made
in [3,4,6] show that. The flow of the arctic gyre, ignoring the azimuthal variation,
corresponds to the radial symmetric solutionψ = ψ(r) of the problem (5)–(6). Setting
t0 = − ln(r0) ≥ 1, the change of variables according to r = e−t and

ψ(r) = u(t), t ≥ t0

we can transforms (5) and (6) as the following second-order ordinary differential
equation

u′′(t) = F(u(t))

cosh2(t)
− 2ω sinh(t)

cosh3(t)
, t > t0, (7)

with the constraint conditions

u(t0) = u0, (8)

where u0 represents the stream function on the outer boundary of the ring region, and
it expresses that the circle of latitude r = r0 is a streamline. We seek solutions of
(2) in the interior of the circle r = r0, let ∇(θ,ϕ)ψ = (0, 0) on the circle of latitude
θ = 2 cot−1(r0) in consideration of (1), since the component of azimuthal velocity
disappears in the whole rotation region, we have equivalent boundary conditions

u′(t0) = 0. (9)

which shows that means that there is no jet flow phenomenon on the peripheral bound-
ary.

3 Correlation results of nonlinear ocean vorticity

In this section, we study the existence and uniqueness of a continuous solution for the
following nonlinear second order differential equation [arising from (7)]

u′′(t) = a(t)F(t, u(t)) + b(t), t ≥ t0 (10)
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where a(·), b(·) : [t0,+∞) → R are continuous, F(·, ·) : [t0,+∞) × R → R is
continuous, and by the above case we consider the concrete forms

a(t) := 1

cosh2(t)
, b(t) := −2ω sinh(t)

cosh3(t)
, (11)

but we form our results for general cases. If u(t) is a solution of the problem (8)–(10),
integrating the equation on [t0, t), we obtain

u′(t) =
∫ t

t0
a(s)F(s, u(s))ds +

∫ t

t0
b(s)ds, (12)

then integrating (12) on [t0, t), which leads to

u(t) = u0 +
∫ t

t0
(t − s)a(s)F(s, u(s))ds +

∫ t

t0
(t − s)b(s)ds. (13)

Next, we study the existence and uniqueness for integral Eq. (13).

Theorem 3.1 Assume that a(·) : [t0,+∞) → R is continuous, b(·) : [t0,+∞) → R
is integrable and F(·, ·) : [t0,+∞) × R → R is continuous. Denoted by

J1 =
∫ T

t0
a(s)ds, J2 =

∫ T

t0
|b(s)|ds for some T > t0,

we suppose that there exists a constant h > 0 such that for

Mh = max
(t,u)∈[t0,T ]×[u0−h,u0+h] |F(t, u)|,

it holds Mh ≤ h
2(T−t0)J1

, J2 ≤ h
2(T−t0)

.Then the integral Eq. (13) has at least one

continuous solution u on the interval [t0, T ] and satisfying u(t0) = u0.

Proof Let U be the space of all continuous functions on [t0, T ]. Obviously U is the
Banach space with the maximum norm ‖u‖ = maxt∈[t0,T ] |u(t)|. We define the subset

U0 = {u ∈ C([t0, T ], R) : u(t0) = u0}

of the space U . Set

K = {u ∈ U0 : u0 − h ≤ u(t) ≤ u0 + h, t ∈ [t0, T ]}.

and the operator T : K → U be defined by

(T u)(t) = u0 +
∫ t

t0
(t − s)a(s)F(s, u(s))ds +

∫ t

t0
(t − s)b(s)ds (14)
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We consider the proof into the following four steps in order to prove that T defined
in (14) has a fixed point on K .

Step 1 We prove K is a closed and convex subset on U . In fact, let ui (t) ∈ K , i =
1, 2, . . . ,m, m ∈ N∗, and

m∑
i=1

λi = 1, λi ≥ 0

we have

∣∣∣∣∣
m∑
i=1

λi ui (t) − u0

∣∣∣∣∣ =
∣∣∣∣∣
m∑
i=1

λi (ui (t) − u0)

∣∣∣∣∣ ≤
m∑
i=1

λi h = h.

This gives that

m∑
i=1

λi ui (t) ∈ K .

which shows that K is convex.
Let un(t) ⊂ K , n = 1, 2, . . ., and un(t) → u∗(t) ∈ U , n → ∞. We have

|u∗(t) − u0| ≤ |un(t) − u∗(t)| + |un(t) − u0| ≤ h, n → ∞,

which shows that K is closed.
Step 2 We prove that T (K ) ⊂ K . For each t ∈ [t0, T ], we have

|(T u)(t) − u0| ≤
∫ t

t0
(t − s)(|a(s)F(s, u(s)) + b(s))|)ds

≤ (T − t0)Mh

∫ T

t0
|a(s)|ds + (T − t0)

∫ T

t0
|b(s)|ds ≤ h,

which shows that T : K → K is well-defined.
Step 3 We prove that T (K ) is relatively compact in U . Derive both sides of Eq. (14)
with respect to t , we have

(T u)′(t) =
∫ t

t0
a(s)F(s, u(s))ds +

∫ t

t0
b(s)ds, t ∈ [t0, T ].

For all t ∈ [t0, T ], we obtain

|(T u)′(t)| ≤ Mh

∫ T

t0
|a(s)|ds +

∫ T

t0
|b(s)|ds ≤ h

T − t0
.
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Let {un} be an arbitrary sequence in K , by using the mean value theorem, we obtain

|(T un)(t1) − (T un)(t2)| ≤ h

T − t0
|t1 − t2|, t1, t2 ∈ [t0, T ], n ∈ N∗,

which implies that {T un} is continuous, nondecreasing function in U .
Obviously, it is easy to see from step two that {T un} is uniformly bounded in U .
By using the Arzela–Ascoli theorem (see [16]), we obtain that {T un} is relatively

compact in U .
Step 4 We prove that T : K → K is continuous.

Given a fixed ε > 0, since F(t, u) : [t0, T ] × [u0 − h, u0 + h] → R is uniformly
continuous, there exists a constant δ > 0 such that if u, v ∈ [u0 − h, u0 + h] with
|u − v| < δ, then

|F(t, u) − F(t, v)| ≤ 2ε

a∗T 2 , for all t ∈ [t0, T ],

where a∗ = max
t∈[t0,T ] a(t). Hence, for arbitrary u1, u2 ∈ K with ‖u1 − u2‖ < δ, by

computations we can have

|(T u1)(t) − (T u2)(t)|=
∣∣∣∣
∫ t

t0
(t − s)a(s)F(s, u1(s))ds−

∫ t

t0
(t−s)a(s)F(s, u2(s))ds

∣∣∣∣
≤

∫ t

t0
(t − s)a(s)(|F(s, u1(s)) − F(s, u2(s))|)ds

≤ a∗
2ε

a∗T 2

∫ T

t0
(T − s)ds

= a∗
2ε

a∗T 2 · (T − t0)2

2
≤ ε.

Therefore, we have

‖T u1 − T u2‖ ≤ ε.

As a consequence, the operator T : K → K is continuous.
We have illuminated that all assumptions of the Schauders fixed point theorem are

satisfied. As a result, there exists u ∈ K such that T u = u, which corresponds to a
continuous solution of (13) on [t0, T ]. 
�

Note for (11) we have

∫ ∞

1
a(s)ds = 1 − tanh 1

.= 0.238406,
∫ ∞

1
|b(s)|ds = ω

cosh2 1
.= 0.419974ω,
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which gives uniform upper bounds for J1 and J2. Moreover, we have

∫ t

t0
(t − s)b(s)ds = −ω

(
t − t0

cosh2(t0)
+ tanh(t0) − tanh(t)

)
,

which has a linear growth.

Theorem 3.2 Assume that a(·), b(·) : [t0,+∞) → R+ and F(·, ·) : [0,+∞)×R+ →
R+ are continuous. Suppose further that

|F(t, u) − F(t, v)| ≤ L(|u − v|), ∀ u, v ∈ [0,+∞),

where L(·) : [0,+∞) → (0,+∞) is continuous, nondecreasing and satisfies the
condition

∫ 1

0

1

L(s)
ds =

∫ +∞

1

1

L(s)
ds = +∞. (15)

Then for any u0 > 0, Eq. (13) has a unique positive increasing continuous solution u
on the interval [t0,+∞) and satisfying u(t0) = u0.

Proof It is obviously u′(t) > 0 and u(t) > 0 because of the integral Eq. (12) and by
the assumptions of theorem. We prove the uniqueness result. Let u1(t) and u2(t) be
the two solutions of the integral Eq. (13) on [t0, T ], T > t0 which are positive. Then
we have

|u1(t) − u2(t)| =
∣∣∣∣
∫ t

t0
(t − s)a(s)F(s, u1(s))ds −

∫ t

t0
(t − s)a(s)F(s, u2(s))ds

∣∣∣∣
≤

∫ t

t0
(t − s)a(s)|F(s, u1(s)) − F(s, u2(s))|ds

≤ T
∫ t

t0
a(s)|F(s, u1(s)) − F(s, u2(s))|ds

≤ T
∫ t

t0
a(s)L(|u1(s) − u2(s)|)ds.

Let υ(t) = |u1(t) − u2(t)|, t ∈ [t0, T ], then υ(t) ≥ 0 and

υ(t) ≤ T
∫ t

t0
a(s)L(υ(s))ds. (16)

For G(r) = ∫ r
1

1
L(s)ds, r > 0, we obtain G(0+) = −∞, G(+∞) = +∞. Given a

fixed ε > 0, it follows from (16) that

υ(t) ≤ ε + T
∫ t

0
a(s)L(υ(s))ds. (17)
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By using the Bihary inequality (see [17]), we obtain

υ(t) ≤ G−1
(
G(ε) + T

∫ t

0
a(s)ds

)
, t ∈ [t0, T ]. (18)

Letting ε → 0 we have G(ε) → −∞, since G(0+) = −∞, hence G−1(−∞) = 0.
According to the assumptions of the theorem and (19), we obtain υ(t) = 0, which
shows that u1 = u2.

Now we show the existence. First, for any u0 ≥ 0 we consider

mu0 = max
(t,u)∈[t0,t0+1]×[u0,u0+1] F(t, u),

and Theorem 3.1 is applicable for

T = t0 + min

{
1

2J2
,

1

2mu0
, 1

}

with

K = {u ∈ U0 : u0 ≤ u(t) ≤ u0 + 1, t ∈ [t0, T ]}.

So we have a local existence and uniqueness. Next, assume that this solution is defined
on the maximal interval [u0, T̂ ) for T̂ ≤ +∞. If T̂ < +∞ then we use

F(t, u) ≤ F(t, 0) + L(u)

to get

u(t) ≤ u0 +
∫ T̂

t0
(T̂ − s)a(s)F(s, 0)ds +

∫ T̂

t0
(T̂ − s)b(s)ds + T̂

∫ t

t0
a(s)L(u(s))ds.

The Bihary inequality implies

u(t) ≤ G−1

(
G(u0 +

∫ T̂

t0
(T̂ − s)a(s)F(s, 0)ds +

∫ T̂

t0
(T̂ − s)b(s)ds)

+T̂
∫ T̂

0
a(s)ds

)
, (19)

so u(t) can be extended to T̂ and then to T̂ +δ for some δ > 0, which is a contradiction.
Thus T̂ = +∞. Summarizing we get uniqueness and global existence on [t0,+∞).


�
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Remark 3.3 (15) is suitable for some function, for example,

L(x) =
{
x, x ∈ [0, 1],
1, x ∈ [1,+∞).

(20)

Theorem 3.4 Assume that all assumptions in Theorem 3.2 are satisfied, and in the
arctic gyres centered at the Arctic Ocean, asymptotic conditions can be considered

lim
t→∞ u(t) = ψ0,

where ψ0 ∈ R is a constant, it can be considered as being fixed since the only role of
the stream function at the North Pole and physically. If u = u(t) is the solution of Eq.
(10) on the interval [t0, T ], then the solution u = u(t) of Eq. (10) pass by (t0, u0) can
be extended to the interval [t0,+∞].
Proof We can prove that the conclusion holds by using the continuation theorem of the
solution of the differential equation (see [18]), therefore, we omit the detailed proof
here. 
�

4 Linear oceanic vorticity

If the ocean vorticity F in the Eq. (10) is linear, i.e.,

F(t, u(t)) = l(t)u(t) + m(t),

where l(·),m(·) : [t0,+∞) → R are continuous, we have

⎧⎨
⎩
u′′(t) = p(t)u(t) + q(t), t ≥ t0,
u(t0) = u0,
u′(t0) = 0,

(21)

where

p(t) := l(t)

cosh2(t)
, q(t) := m(t)

cosh2(t)
− 2ω sinh(t)

cosh3(t)
.

Now we are ready to present the following linear results.

Theorem 4.1 Assume that F is a linear function, p(·), q(·) : [t0,+∞) → R are
continuous. If the p(·) = p is a constant, then the solution of (21) is written as

u(t) =
[
1 +

∞∑
n=1

pn

(2n)! (t − t0)
2n

]
u0 +

∫ t

t0

[
(t − τ)

+
∞∑
n=1

pn

(2n − 1)! (t − τ)2n−1

]
q(τ )dτ. (22)
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On the other hand, if the p(·) is not a constant, then the solution of (21) is written as

u(t) =
(
1 +

∫ t

t0

∫ τ1

t0
p(τ2)dτ2dτ1

+
∫ t

t0

∫ τ1

t0
p(τ2)

∫ τ2

t0

∫ τ3

t0
p(τ4)dτ4dτ3dτ2dτ1 + · · ·

)
u0

+
∫ t

t0

[
(t − τ) +

∫ t

τ

∫ τ1

τ

p(τ2)(τ2 − τ)dτ2dτ1 + · · ·
]
q(τ )dτ. (23)

Proof We set U(t) = (u′(t), u(t))T , then U(t0) = (u′(t0), u(t0))T = (0, u0)T = U0,
(21) can be written as the equivalent form

U
′(t) = P(t)U(t) + Q(t), t ≥ t0, (24)

with the constraint conditions

U(t0) = U0,

where

P(t) =
[
0 p(t)
1 0

]
,Q(t) =

[
q(t)
0

]
.

The homogeneous one of (24) is

U
′(t) = P(t)U(t), t ≥ t0. (25)

We get the state transition matrix

�1(t, t0) =
∫ t

t0
P(τ )dτ =

[
0

∫ t
t0
p(τ )dτ

t − t0 0

]
,

since

P(t)�1(t, t0) =
[
0 p(t)
1 0

] [
0

∫ t
t0
p(τ )dτ

t − t0 0

]
=

[
p(t)(t − t0) 0

0
∫ t
t0
p(τ )dτ

]
,

and

�1(t, t0)P(t) =
[

0
∫ t
t0
p(τ )dτ

t − t0 0

] [
0 p(t)
1 0

]
=

[∫ t
t0
p(τ )dτ 0
0 p(t)(t − t0)

]
.

If the system matrix P(t) and the state transition matrix �1(t, t0) are commutative
then P(t) = p, p is a constant. Then, the state transition matrix of Eq. (25) is
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�(t, t0) = exp

{ ∫ t

t0

[
0 p
1 0

]
dτ

}

=
[

1 + 1
2! p(t − t0)2 + 1

4! p
2(t − t0)4 + · · · p(t−t0)+ 1

3! p
2(t−t0)3+ 1

5! p
3(t−t0)5+· · ·

(t−t0)+ p(t−t0)+ 1
3! p

2(t−t0)3+ 1
5! p

3(t−t0)5+· · · 1 + 1
2! p(t − t0)2 + 1

4! p
2(t − t0)4 + · · ·

]

=

⎡
⎢⎢⎣

1 +
∞∑
n=1

pn

(2n)! (t − t0)2n
∞∑
n=1

pn

(2n−1)! (t − t0)2n−1

(t − t0) +
∞∑
n=1

pn

(2n−1)! (t − t0)2n−1 1 +
∞∑
n=1

pn

(2n)! (t − t0)2n

⎤
⎥⎥⎦ .

The solution to the nonhomogeneous Eq. (24) can be obtained, we have

U(t) =
[
u′(t)
u(t)

]
= �(t, t0)U(t0) +

∫ t

t0
�(t, τ )Q(τ )dτ

=

⎡
⎢⎢⎣

1 +
∞∑
n=1

pn

(2n)! (t − t0)2n
∞∑
n=1

pn

(2n−1)! (t − t0)2n−1

(t − t0) +
∞∑
n=1

pn

(2n−1)! (t − t0)2n−1 1 +
∞∑
n=1

pn

(2n)! (t − t0)2n

⎤
⎥⎥⎦

[
u′(t0)
u(t0)

]

+
∫ t

t0

⎡
⎢⎢⎣

1 +
∞∑
n=1

pn

(2n)! (t − τ)2n
∞∑
n=1

pn

(2n−1)! (t − τ)2n−1

(t−τ) +
∞∑
n=1

pn

(2n−1)! (t − τ)2n−1 1 +
∞∑
n=1

pn

(2n)! (t − τ)2n

⎤
⎥⎥⎦

[
q(τ )

0

]
dτ.

The solution of the Eq. (21) can be expressed as

u(t) =
[
(t−t0)+

∞∑
n=1

pn

(2n−1)! (t−t0)
2n−1

]
u′(t0)+

[
1+

∞∑
n=1

pn

(2n)! (t−t0)
2n

]
u(t0)

+
∫ t

t0

[
(t − τ) +

∞∑
n=1

pn

(2n − 1)! (t − τ)2n−1

]
q(τ )dτ.

Notice the constraints u′(t0) = 0, u(t0) = u0, (22) is verified.
On the other hand, if the systemmatrix P(t) and the state transition matrix�1(t, t0)

are not commutative, then the state transition matrix �(t, t0) can be derived by using
iterative way in turn, we have

�(t, t0) = E +
∫ t

t0

[
0 p(τ1)
1 0

]
dτ1 +

∫ t

t0

[
0 p(τ1)
1 0

] ∫ τ1

t0

[
0 p(τ2)
1 0

]
dτ2dτ1

+
∫ t

t0

[
0 p(τ1)
1 0

] ∫ τ1

t0

[
0 p(τ2)
1 0

] ∫ τ2

t0

[
0 p(τ3)
1 0

]
dτ3dτ2dτ1 + · · ·

Therefore,

U(t) =
[
u′(t)
u(t)

]
= �(t, t0)

[
0
u0

]
+

∫ t

t0
�(t, τ )

[
q(τ )

0

]
dτ.
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As a result, the solution of the Eq. (21) can be expressed for general linear ocean
vorticity F , that is (23). 
�

To end this section, we verify Theorem 4.1 by discussing two examples to which
this result is practicable.

Example 4.2 We give a special case where the system matrix is a constant matrix,
setting t0 = 2, u(t0) = 2, p(t) = 1, that is

P(t) =
[
0 1
1 0

]
,

the eigenvalues of the matrix P(t) are λ1 = 1, λ2 = − 1, in this way, we obtain the
transformation matrixM and its inverseM−1 of the matrix P(t) into a diagonal linear
Jordan canonical form

M =
[
1 1
1 − 1

]
and M

−1 =
[ 1
2

1
2

1
2 − 1

2

]
,

we obtain

�(t, 2) = exp(P(t)(t − 2)) = M

[
eλ1(t−2) 0

0 eλ2(t−2)

]
M

−1

=
[ 1
2

(
et−2 + e2−t

) 1
2

(
et−2 − e2−t

)
1
2

(
et−2 − e2−t

) 1
2

(
et−2 + e2−t

)
]

,

the solution of Eq. (24) if q(t) = 2, that is

U(t) = �(t, 2)U(2) +
∫ t

2
�(2, τ )Q(τ )dτ

=
[ 1
2

(
et−2 + e2−t

) 1
2

(
et−2 − e2−t

)
1
2

(
et−2 − e2−t

) 1
2

(
et−2 + e2−t

)
] [

0
2

]

+
∫ t

2

[ 1
2

(
eτ−2 + e2−τ

) 1
2

(
eτ−2 − e2−τ

)
1
2

(
eτ−2 − e2−τ

) 1
2

(
eτ−2 + e2−τ

)
] [

2
0

]
dτ

=
[

2
(
et−2 − e2−t

)
2

(
et−2 + e2−t − 1

)
]

.

If p(t) = 1 and q(t) = 2, the solution to the Eq. (21) can be written as

u(t) = 2
(
et−2 + e2−t − 1

)
.

Example 4.3 We assume q(t) = et−2
√
et−2 − 1, t ≥ 2, the conditions are satisfied

in Example 4.2, another form of solution of Eq. (24) can be obtained
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U(t) =
[
et−2 − e2−t

et−2 + e2−t

]
+

∫ t

2

[
eτ−2

√
eτ−2 − 1(eτ−2 + e2−τ )

eτ−2
√
eτ−2 − 1(eτ−2 − e2−τ )

]
dτ

=

⎡
⎢⎢⎢⎢⎣
et−2−e2−t+ 2

3

(
et−2 − 1

) 3
2 + 2

5

(
et−2 − 1

) 5
2 + 2

(
et−2−1

) 1
2 − 2 arctan

[(
et−2−1

) 1
2

]

et−2+e2−t+ 2
3

(
et−2 − 1

) 3
2 + 2

5

(
et−2 − 1

) 5
2 − 2

(
et−2−1

) 1
2 + 2 arctan

[(
et−2−1

) 1
2

]

⎤
⎥⎥⎥⎥⎦ ,

which shows that the solution of the Eq. (21)

u(t) = et−2 + e2−t + 2

3

(
et−2 − 1

) 3
2 + 2

5

(
et−2 − 1

) 5
2 − 2

(
et−2 − 1

) 1
2

+ 2 arctan

[(
et−2 − 1

) 1
2
]

.

5 Conclusions

Existence and uniqueness of solutions by amodel for the ocean flow in arctic gyres has
been studied by means of Schauder’s fixed point techniques and Bihary’s inequality.
By adding appropriate boundary conditions, the original equation is transformed into
an integral equation, and the existence and uniqueness of the solution is solved when
the ocean vorticity is nonlinear. We also have discussed the solutions of the equations
in linear cases, which follows two examples for verifying the rationality of themethod.
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