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Abstract

In this paper we mainly study the Cauchy problem for a generalized Camassa—Holm
equation in a critical Besov space. First, by using the Littlewood—Paley decomposition,
transport equations theory, logarithmic interpolation inequalities and Osgood’s lemma,
we establish the local well-posedness for the Cauchy problem of the equation in the

1
critical Besov space B;’ |- Next we derive a new blow-up criterion for strong solutions
to the equation. Then we give a global existence result for strong solutions to the
equation. Finally, we present two new blow-up results and the exact blow-up rate for
strong solutions to the equation by making use of the conservation law and the obtained
blow-up criterion.

Keywords A generalized Camassa—Holm equation - Local well-posedness - The
critical Besov space - Blow-up - Global existence

Mathematics Subject Classification 35Q53 - 35A01 - 35B44 - 35B65

Contents
I Introduction . . . . . . . . . e 802
2 Preliminari€s . . . . . . . . . e e e e e e 803

Communicated by Joachim Escher.

B Zhaoyang Yin
mcsyzy @mail.sysu.edu.cn

Xi Tu

tuxi@mail2.sysu.edu.cn

Department of Mathematics, Foshan University, Foshan 528000, China
Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

Faculty of Information Technology, Macau University of Science and Technology, Macau, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-020-01371-1&domain=pdf

802 X.Tu, Z.Yin

3 Local well-posedness . . . . . . . . .o e 808
4 ADlow-up Criterion . . . . . . . .. e 817
S Global eXiSteNCe . . . . . . . e e e e 819
6 Blow-up phenomena . . . . . . . . ... e 821
References . . . . . . . . L 827

1 Introduction

In this paper we consider the Cauchy problem for the following generalized Camassa—
Holm equation,

1
Ut — Utxx = 5(3'4;2( — 2UyUyxx — u,%x)ﬂ t >0,

(1.1)
u(0, x) = up(x),
which can be rewritten as
m=u—Uxx,
m,—uxmxz—%m2+um+%u§—%u2, t>0, (1.2)

m(0, x) = u(0, x) — uxx (0, x) = mo(x).

The Eq. (1.1) was proposed recently by Novikov in [38]. He showed that the equation
(1.1)is integrable by using as definition of integrability the existence of an infinite hier-
archy of quasi-local higher symmetries [38] and it belongs to the following class [38]:

(I- a)%)ul = F(u, ux, thyx, Uxxx), (1.3)

which has attracted much interest, particularly in the possible integrable members of
(1.3).

The most celebrated integrable members of (1.3) which have quadratic nonlinearity
are the well-known Camassa—Holm (CH) equation [4] and the famous Degasperis-
Procesi (DP) equation [23]:

(1— 8)%)14; =3uuy — 2UyUyy — Ulyyy, (1.4)

(1 — 0Hu; = duny — 3ty — Ultyyy. (1.5)

Both the CH equation and the DP equation can be regarded as a shallow water wave
equation [4,16,24]. They are completely integrable. That means that the system can be
transformed into a linear flow at constant speed in suitable action-angle variables (in the
sense of infinite-dimensional Hamiltonian systems), for a large class of initial data [4,
8,17,22]. They also have a bi-Hamiltonian structure [7,22,27], and admit exact peaked
solitons, which are orbitally stable [19]. It is worth mentioning that the peaked solitons
present the characteristic for the traveling water waves of greatest height and largest
amplitude and arise as solutions to the free-boundary problem for incompressible
Euler equations over a flat bed, cf. [5,10,14,15,40]. The main difference between DP
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equation and CH equation is that DP equation has short waves [36] and the periodic
shock waves [26].

The local well-posedness and ill-posedness for the Cauchy problem of the CH
equation in Sobolev spaces and Besov spaces were discussed in [11,12,20,29,35,39].
It was shown that there exist global strong solutions to the CH equation [9,11,12] and
finite time blow-up strong solutions to the CH equation [9,11-13]. The existence and
uniqueness of global weak solutions to the CH equation were proved in [18,44]. The
global conservative and dissipative solutions of CH equation were investigated in [2,3].

The local well-posedness of the Cauchy problem of the DP equation in Sobolev
spaces and Besov spaces was established in [28,30,47]. Similar to the CH equation,
the DP equation has also global strong solutions [33,48,50] and finite time blow-up
solutions [25,26,33,34,47-50]. It also has global weak solutions [6,25,49,50].

The third celebrated integrable member of (1.3) which has cubic nonlinearity is the
known Novikov equation [38]:

(1 = 02)u, = Sustyttyy + P,y — 4u’u,. (1.6)

It was showed that the Novikov equation is integrable, possesses a bi-Hamiltonian
structure, and admits exact peakon solutions u (¢, x) = iﬁe‘x —!l with ¢ > 0 [31].
The local well-posedness for the Novikov equation in Sobolev spaces and Besov spaces
was studied in [42,43,45,46]. The global existence of strong solutions under some sign
conditions were established in [42] and the blow-up phenomena of the strong solutions
were shown in [46]. The global weak solutions for the Novikov equation were studied
in [41].

Recently, the Cauchy problem of (1.1) in the Besov spaces By, ., s > max{L, %}
has been studied in [32]. To our best knowledge, the Cauchy problem of (1.1) in the

1
critical Besov space By | has not been studied yet. In this paper we first investigate
1
the local well-posedness of (1.2) with initial data in the critical Besov space B ;.

The main idea is based on the Littlewood—Paley theory, transport equations theory,
logarithmic interpolation inequalities and Osgood’s lemma. Then, we prove a new
blow-up criteria by the energy method, which is more precise than the blow-up criteria
derived in [32]. By virtue of a conservation law, we obtain two new blow-up results.
Finally, we conclude the exact blow-up rate of blowing-up solutions m (¢, x) to (1.1).

The paper is organized as follows. In Sect. 2 we introduce some preliminaries
which will be used in sequel. In Sect. 3 we prove the local well-posedness of (1.1)
by using Littlewood—Paley and transport equations theory, logarithmic interpolation
inequalities and Osgood’s lemma. In Sect. 4, we derive a conservation law and a
blow-up criterion. In Sect. 5, we show the global existence of strong solution to (1.1).
Section 6 is devoted to the study of blow-up phenomena of (1.1). We present two
blow-up results and the exact blow-up rate of blowing-up solutions to (1.1).

2 Preliminaries

In this section, we first recall the Littlewood—Paley decomposition and Besov spaces
(for more details to see [1]). Let C be the annulus {§ € R? ]% < |&] < %}. There
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804 X.Tu, Z.Yin

exist radial functions x and ¢, valued in the interval [0, 1], belonging respectively to
D(B(0, ‘3—‘)) and D(C), and such that

VEeRY, X&)+ )Y oQ77E) =1,

j=0
1j—Jj'1 = 2= Supp 9(27&) N Supp 9(2~7'8) = 4,
j = 1= Supp x(&) N Supp p27/'€) = .

Define the set C = B(0, %) + C. Then we have
j—j1=5=2/'Cn2ic=0.

Further, we have

VEeR!, - <x*®) + ) ¢’ < 1.

Jj=0

N =

Denote F by the Fourier transform and F ~! by its inverse. From now on, we write
h = F~'¢ and h = F~'x. The nonhomogeneous dyadic blocks A ;j are defined by

Aju=0if j<-2, A_ju=x(Du =/ R(yyux — y)dy,
]Rd

and, Aju= ¢ D)yu = 2j‘1/ hI y)yu(x —y)dy if j=0,
R4

J'=j—1

The nonhomogeneous Besov spaces are denoted by B, , (RY)

K / rjs r
B, =ques |||u||B;r(1Rd) = Z 2PN Al gy | <00
jz-1

Next we introduce some useful lemmas and propositions about Besov spaces which
will be used in the sequel.

Proposition2.1 [1]Let 1 < p1 < pp <ocoand1 <ry <rp <00, and let s be a real
number. Then we have

s—d(-L—-L)
B, , RY) < B,,,"" " (RY).
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Ifs > %ors: %, r = 1, we then have

d d
B (RY) — L®(RY).

Lemma 2.2 [1] A constant C exists which satisfies the following properties. If s; and
so are real numbers such that s1 < sy and 0 € (0, 1), then we have, for any (p,r) €
(1,00 and u € Sy,

0 1-6
u|l osi+a-0s, < ||ull%s; el s, —and 2.1
L e g e @10
¢ 1 ! o 1-6
Ul osj+a-0), < -+ ullZs, lull s - 2.2
gy < —— (e 1_9)n I el 22)

Lemma 2.3 [1] For any positive real number s and any (p, r) in [1, c0]?, the space
L®@®RY N B;,r(Rd) is an algebra, and a constant C exists such that

luvlips ey = € <||M||L°°(Rd)||v||B;_,(Rd) + ”““B;,,(Rd)”v”LOO(]Rd)) .

Ifs > %ors = %, r = 1, then we have

uv|| ps < Cllull gs V|| ps .

l ||3W(Rd) <C| ”Bp,r(Rd)” ||Bp,r(Rd)

The following two lemmas is crucial to study well-posedness in the critical space
1

B3 | (R).

_1 1
Lemma 2.4 [37] For any a € B2’§O(R) and b € Bzz’l(R), there exists a constant C
such that

IlabIIB_% SCllallB_% 121 s 2.3)

) IR BL®)

Lemma 2.5 (Morse-type estimate, [1,20]) Let s > max{%, 2y and (p,r) in [1, 00]?

ors = %, p=2,r=1 Foranya € B;;l R and b € B;),(Rd), there exists a
constant C such that

||ab||B;;rl(Rd) =< C||Cl||B»;;rl(Rd)||b||32.r(Rd)~

Lemma 2.6 [21] Foranys € R, e € (0, 1] and f € ngg (R), there exists a constant
C such that

”f”]ﬁ"'f(]}g) )

C
1 £ 1l85, < —I1fll5; Rln(e+
2 =g P 118, @

Remark 2.7 [1]Lets € R, 1 < p,r < oo. Then the following properties hold true:
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806 X.Tu, Z.Yin

@) Bz,r(Rd) is a Banach space and continuously embedding into S’ (R?), where
S'(R?) is the dual space of the Schwartz space S(RY).
(i) If p, r < oo, then S(RY) is dense in B3, (RY).
(iii) If u, is a bounded sequence of B‘;,’r(Rd ), then an element u € B‘;,,r(Rd) and a
subsequence u,, exist such that

. _ . / d . .
klingounk =u in SR and ||M||B;'r(Rd) < Chknig;f ||unk||B;,r(Rd).

(iv) 35’2(11@ ) = H*(RY).
The following Osgood’s lemma appears as a substitute for Gronwall’s lemma.

Lemma 2.8 (Osgood’s lemma, [1]) Let p > 0 be a measurable function, y > 0 be
a locally integrable function and u be a continuous and increasing function. Assume
that, for some nonnegative real number c, the function p satisfies

t

p(t) < c+ / Y ()lp( )t
b

0

t

dr
n(r)

1
Ifc > 0, then —M(p(@@)) + M(c) < / y(Hdt' with M(x) = /

]

1
If ¢ = 0 and p verifies the condition /
0

= 400, then the function p = 0.
n(r)

Remark 2.9 In this paper, we set u(r) = r(1 — Inr) which satisfies the condition

1

d

/ (r) = +00. A simple calculation shows that M (x) = In(1 — In x), we deduce
0o Mmr

that

t
expf —)/(t/)dl‘/
p(t) <ec fo , if ¢>0.

Now we introduce a priori estimates for the following transport equation.

{ fitvwWi=s. 2.4)

f|t:0 = fo-

Lemma 2.10 (A priori estimates in Besov spaces, [1,20,21]) Let 1 < p < p; < oo,
1<r <oo s > —dmin(%, #). For the solution f € L*°([0, T]; B;’r(Rd)) of
(2.4) with velocity Vv € L'([0, T1; B, ,(RY) N L (RY)), initial data fo € B3, ,(RY)
and g € L'([0, TY; B‘I‘,yr(Rd)), we have the following statements. If s # 1 + % or
r=1,
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||f(l)||3;,_r(Rd)
t
= Ifollgs, me) +/(; <||g(f/)||31s)y,(]1{<d) +CV, (T/)||f(f/)||B;,V,(Rd))df/, (2.5)
”f”(B;‘,’,(]Rd))

t
< (nfonB;,,,(Rm /O exp(—cvpl(r’))||g<r’>||B;,‘,(Rd>dt’> eXP(C V1), (2.6)

t
where Vp (1) = / Vol dr', if s < 1+ %; Vp (1) =
0 Bl o RE)NL® (RA)
t
VUl ps—1 pardt’s if s > 1+ Lors =14+ <L, r =1, and C is a constant
Bpl,r(]R ) P1 P1

depending onlyon's, p, pyandr.

Lemma 2.11 [1] Let s be as in the statement of Lemma 2.10. Let fy € Bz)r(Rd),
g € L0, T1; B;’r(Rd)), and v be a time-dependent vector field such that v €
LP([0, T1; BM (R?)) for some p > 1 and M > 0, and

4 d
Vo e L'(0,TT; Bj, oo (®R?), if s <1+ o7

d d
Vv e L'(10. T By, LL(RY), ifs>14+— or s=14+—andr=1.
' P1 p1

Then, (2.4) has a unique solution f in

— the space C([0, T1; B‘;,,r(Rd)), if r <oo,

— the space (N, _, C([0, T1; B;/’OO(R")))HCU,([O, T1: BS (o (RY))), if r = oc.
Moreover, the inequalities of Lemma 2.10 hold true.

Lemma2.12 [35] Let s > %,r <oo(rs=2L11<p<oor=1,keN
and a constant C depending only on s, p,r, v, and g. If (2.4) satisfies the following
conditions for all f, f € B, ,,

(Dlvll g < CA+ 111, ).
@ligllsy, < CA+1£1 ).

p.r —

Glv(f) = v(Dlsy, < CILF = Flls, A+ 1£15 1.

p.r

@lg(f) = gDlpy, < CIf = Fllay, A+ 11 )-

Denote n € N. If ug tends to ug € Bls,’r and u" tends tou € C([0, T]; B;;l), then u"
tends tou € C([0, T]; B‘;,’r).

Notations Since all space of functions in the following sections are over R, for sim-
plicity, we drop R in our notations of function spaces if there is no ambiguity.
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808 X.Tu, Z.Yin

3 Local well-posedness

In this section, we establish local well-posedness of (1.2) in the critical Besov space
1

B;l . Our main result can be stated as follows.

1
Theorem 3.1 Let mg € B22’1. Then there exists some T > 0, such that (1.2) has a
1 _1
unique solution m in C ([0, T); Bzz’l) Nnclqo, T): 32,12 .

Proof In order to prove Theorem 3.1, we proceed as the following five steps.

Step 1 First, we construct approximate solutions which are smooth solutions of some
linear equations. Starting for mg(¢, x) 2 m(0,x) = mg, we define by induction
sequences (m,),eN by solving the following linear transport equations:

0rMpy1 — OxltpdxMpy 1 = %(ax”n)z - %(”n - mn)2
=u,m, + %(axun)2 — %u% — %m% 3.1
= F(mp, un),

My 1 (t, X)|1=0 = Su+1mo.
1 1 1
We assume that m, € L°(0,T; By ). Note that By | is an algebra and B; ; —

1
L°°, which leads to F(m,,u,) € L*°,T; Bzz,l). Hence, from Lemma 2.11,
1
the Eq. (3.1) has a global solution m,; which belongs to C([0, T); B22’1) N
_1
clqo, 1); B, 1) for all positive T.
Step 2 Next, we are going to find some positive 7 such that for this fixed 7 the

approximate solutions are uniformly bounded on [0, 7]. We define that U, (t) £
fot NG 1 dt’. By Lemma 2.10, we infer that
B

C [y 182unll 1 dr’

32
lmpt1ll 1 <e 21 <||Sn+1m0|| 1
822,1 322,1
!
. —C oy 19%unll %dr
+/ e Paa ”F(mm un)” 1 dl/)
0 By,
t
_ ’
seC%m(W&+mmn%-+/'ecm“nuwmmuan%cu).(&m
B, 0 By,

1 1
Since 3221 is an algebra and B22 | = L>°, we deduce that

1 1
Hiwmmz—iwn—mwz

1
b
By

1 2 1 2
= S 11(xun) IIBZ% + G =ma)7ll

.1 BZ,I

IA

l0xunll 1 [0xttnllLoe + ity — myull 1 ity — my || Lo
B7, By,
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< Clmu|*, . (3.3)
B}

Plugging (3.3) into (3.2), we obtain

t
CU, —CU, (¢ 2
Il y < e '<’><||Sn+1mo|| L+ [ O, ldﬂ)
BZ,] BZ.] 0 32%1

1
< eCUn(l‘)<C”mO” % +C/ e—CUn(l‘)”’,nn”2l dt/), (34)
B 2

2,1 0 BZ,]

where we take C > 1.
We fix a T > 0 such that 2C2T ||my| 1< 1. Suppose that
B

2,1

CIIMOIIB% CIIMoIIB%
2,1 2,1 A
t < : < £M, Viel0,T].
b Uy = T3 mol 17 = T=2C%moll 1 T [0, %]
2,1 B2 B2
2.1 2.1
3.5
Since U, (1) = fé ||mn(r)||B% dr, it follows that
2,1
. C2{lmo| !
(CUO=CU) < ey / By
N ¢ 1 =2C%mo|l 1
By,
d|[1-=2C%t|mo| 1
- I/Z sz,l
(&).€ —_—
=PI | T2 moll
BZ
2,1
1
L=2C"Imoll 1 \?
BZ]
= : 3.6
[—2C2mol G0
322.1
Set U, (t') = 0 when ' = 0. We obtain
1
2
1
eCUn = 3.7)

1 =2C2t|moll 1
By

By using (3.5), (3.6) and (3.7), we have
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810 X.Tu, Z.Yin

1 O 1
B7,
t /
< OO mo]| 4 +C/ COO=CUO iy ()| | ar’
BZ,] 0 32%1
1
P C3lmol? |
1 ! B;,
—————— | {clmoll , +/ S |
1 =2C%t|mo|l~ B2, Jo 1+1
BF, 1 =2C2t lmg|l 1
322,1
1
2 Climoll d(1-2C2"Imol
2 t 2
1 By, Bj
<|———1 {cimol 1 - :
1=2C%mol | B2, 2 0 143
Ba 1 —=2C2 Imgll 1
B7,
1 1
2 2
: Clmoll 1 + Climoll : I
v " " . r
1= 2C%moll 1 s Mpr | 1T=2¢2mol 4 | ©
2 2,1 2,1 5
BZ.l BZ,I
Climoll
— BZ,I
1—2C2|mol|
By
Cllmol| !
B
< el —M. (3.8)
1=2C2T|mol| 4

BZ,I

1
Thus, (m,),en is uniformly bounded in L*°(0, T'; Bzz’l).
Step 3 From now on, we are going to prove that m, is a Cauchy sequence in

_1
L°°(0, T; B2’ ;O). For this purpose, we deduce from (3.1) that

O (Mpyg g1 — Mp1) — Ox iy Ox (My 141 — Mpgq)
= O (U1 — ) dxmpgg + 50 (gt — un)Ox (g + 1)
- %(Mn+1 —up — Mpg + mp)Upy) + g — Mpip —mp)
= 8x(”n—i—l - Mn)ax[mn-i-l + %(”n—&-l +un)] — %(un-i-l - ”n)(un+l +Uup — My —my)
+ %(mn-i-l = mp)Upy] + Up — My — Mp)
= Oy (1 — un)dxRY | — 3 (g — un)R2 | + 3 (mygy — ma)R
My ti+1 — Mpt1lt=0 = (Sppi+1 — Su+1)mo,

2
n,l’

(3.9)
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where

1
Ryll‘l = Mpy1 + E(un—i-l + un),

2
R, =upi +uy —myq —my.

1
By Lemma 2.10 and using the fact that m,, is bounded in L*°(0, T; BZZ’I), we infer
that

Imnyi41() = mup1 (O 1
By

t
< CT<||<Sn+z+1 — Spedmoll _y + f 10: Gans1 = un)dc Ry 1y
0 2,00

B2,oo

1 1
1= Wt — u)R2 1 4 Nl (g — m) R, 1 dt ). (3.10)
2 ’ BZZ 2 tipT2

,00 2,00

Taking advantage of Lemma 2.4, we have

1
10x (ttp1 — un)aan,[” _%
BZ,oo

1
< N0y (Unt1 — un)ll 1 [ 0x |:mn+l + E(“n-H + “n)i| ”B_%

BZ,] 2,00

1
< lmpp —mull _1llmpp + Z@Uppr +un)ll 1
2 2 B2
2.1 2,00
< Climugy —mpll _1 | lmppll

B, By, B34 B;y
< 3CM||my4; — my||

e A A ol L7/

3.11)

_%7
B2,l

1 2
5(“n+l - un)Rn,l _%

2,00

< lupts — unll 1 letpi + tp — My — myl| -1
B; B %

< Cllmgr =mall g (Wt g+ lmall )+ w4 Nl
BZ,I BZ.] B2,I BZ.] BZ,]

< 4CM||myq — my | (3.12)

,%’
B2,l

-}
BZ,oo

1 2
E(mrH»l - mn)Rn,l

< Impts — my|| _% lttngs + tpn — My —my|| _%
2,1 Bz,oo
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< Clmptr —mpll _1 [ mpsrll v+ lmall 1+ Nl 1+ lluall 1
B, { By By, By By,
< 4CM||myy; — my|| -1 (3.13)
B2.l
where C > 1. Plugging (3.11)—(3.13) into (3.10) yields that

2,00

lmpti+1(2) — mn+1(f)||B,% < CT(

||(Sn+l+1 - Sn+l)m0|| 7%

BZ,oc
t
+f 11CM||my4; — my|| _|dt’>. (3.14)
0 By
Applying Lemma 2.6 to the above inequality, we have
lmpt141@) —mpp 1O _1 < Cr | 1(Sp4141 — Sp+-Dmoll _1
BZ,oc

BZ,oo

. mp gy (1) = mu (t)||
+/ HCM[lmy (1) —mn ()| _1In]e
0 B, 2

+ B dr’
n _ /
5 lmp @) — mu @)l -1
2,00
(3.15)
Since
n+l
Yo Agmo| = C27MImoll _y,
1
=n+1 -5
=" B, &

2,00

and that (my)en is uniformly bounded in L*°([0, T'; B; +), then it follows that

141 (8) = musr I 1

2,00
~ f C
<G|z [ =l _ynfe dr

0 B2 lmnt1 —my llB,l

2,00

/ My —mpl|l 1
scT2ﬂ+fnww—mm,l1—m 2 | g

0 B, 2 C

Noticing that the function x(1 — In %) is nondecreasing in x € [0, C), we get
@ Springer
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Impy141(@) —mpp O 1
0 2

t (32,00)
lmpss — mp ”
~ —n ! BZ oo)
<Cr|27"+ lmns — myll _1 1 —1In dt
0 F(By2) ¢
(3.16)
Let g, (t) = sup;ey lmu1(t) — my, (t)|| -l . Noticing that the function x (1 —
t ( 2, oo)
In %) is nondecreasing in x € [0, C), we get
T
~ t
gns1(t) < Cr (2—" + / gn(0) (1 ~n 200 ) dt), (3.17)
0
which along with the Fatou—-Lebesgue theorem leads to
A T g
g(t) =limsup g,1(7) < C/ g ( —1In —) (3.18)
n—00 0

By Lemma 2.8, we infer that m;,4;4+1(t) — mu+1(t) = 0 as n — oo. In other
1

words, (m,),eN is a Cauchy sequence in L*°(0, T'; Bz_ Eo) and converges to some
_1
limit functionm € L*°(0, T; B, 2,

Step 4 We now prove the existence of solutions. We prove that m belongs to
1 _1
C([0, T); Bzz,l) nclo, 7); B2’12) and satisfies the Eq. (1.2) in the sense of distribu-
1
tions. Since (m;,),en is uniformly bounded in L*°(0, T'; Bi 1), the Fatou property for
1

the Besov spaces ensures that m € L*°(0, T'; le).
Taking limit in the Eq. (3.1), we conclude that m is indeed a solution of (1.2). Note
1

that m € L*>(0, T; BZI). Then

1
2
BZ,I

Lo e 1o 9
Hz(ﬁxu) 2(u m)

1 3 u)? ! 2
< 5”( i) ”32%1 + EII(M —m) IIB%

2,1

IA

loxull 1 lloxullzoe + llu —mll 4 llu—mire
B B
2,1 2.1

<Clml|*, . (3.19)
822,1

1
This means that the right-hand side of (1.2) also belongs to L*°(0, T'; 3227 1)- Hence,
1
according to Lemma 2.11, the function m belongs to C ([0, T); Bzz,l). Lemma 2.5

_1
implies that (4u — 2u,)m, is bounded in L*°(0, T’; B2’12 ). Again using the equation
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814 X.Tu, Z.Yin

_1
(1.2) and high regularity of u, we see that d,u is in C([0, T); 32,12)- Then, we know
1 _1
thatu € C([0, T); B ) NC'([0,T); B, }

Step 5 Finally, we prove the uniqueness of strong solutions to (1.2). Suppose that
M =(1-03)u, N=(~1-0})v e ES are two solutions of (1.2). Set W = M — N.
Hence, we obtain that

HW — dud W
=3 (u — )G — L —vG* + 1wG?, (3.20)
Wli=o = M(0, x) = N (0, x) = W(0),

where
| 1
G =N+§(u+v),
G*=u+v—M—N.

We define that U (r) = fo lm (2’ )|| ! dt’. By Lemma 2.10 and using the fact that

2 1
m is bounded in L>®(0, T; le), we infer that

t
AR
/ e CU® (H—Bx(u —0)3,G!
0 2

_1
2

Wiy < Cec’f(”(nW(mn

2,00 200 BZ.oo
2 2 1
—II(M—v)G || - —IIWG l _) t)- (3.21)
Taking advantage of Lemma 2.4, we have
1 | 1
S0 —v)0:G | | =@ —v)| 1 [ (N+Z@wt+v)]| |
2 BZ‘ozo 82%1 2 BZ.ozo
1
<|WI _1|[N+=@m+v)|
22 2 B2
2,00
=ciw) (nNn I U %)
21 BZ.I BZ.I B2.l
=3CM|WI _1, (3.22)
By f
I — v)G?|| gh S IIM—vII pllut+v—M—NJ|
200 2,1 BZ,oo

=ClIwl 1 (IIMIIBI AN o+l v+l s )
21

21 2,1 2,1 2,1

=< 4CMIIWII -

2

(3.23)

ST
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IWG?| _y < W] llu+v=M-=NI|
2 2

Zoo 200 2,1

<CIIWII - <|IM|| 1 +||N|| 1 +I|u|| I )
2 B2l

200 Nt 2.1 21

<4CM|W]|| 1 (3.24)

BZ,I
Plugging (3.22)—(3.24) into (3.21) yields that

VO wmy

2,00
t
<CIWOI _y + / 1HCMe™ VO W _ydt’
B, % 0 B, |
||W(t)||Bl
<CIW©O)] _ / 1CMe™ V@ w ()| yn)est — 2L | ar
B2 Jo B, 2 MWl s
2,00
(3.25)
Now define W(t) L e~ CUO W ()| _1.Since the function xln(e + %) is nonde-
200
creasing and m is bounded in L*°(0, T'; B2,1)’ it follows that
Ci /
W(t) <C W(O) + W(t YIn|le+ =— ) dt
W)
7 37 . (t ) /
<Ci{W(©O) + W(t ){1—1In C dt' ). (3.26)
0 1

By virtue of Lemma 2.8 and Remark 2.9 with p = %, we verifies that

W(t) < CiW (0)Pi=C1t)

which leads to

IWOI 1 = CIWOI _1exp{Car} < CoW O _jexp{CoT).  (3.27)

B 2,00 B 2, oc B 2, 1
Taking advantage of the interpolation argument ensures that

< GIWO)° y exp{CaT}, (3.28)

IW Ol o718, < ')
2,1

where 6 = 1 — s’ € (0, 1]. The above inequality implies the uniqueness.
This completes the proof of Theorem 3.1. O
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816 X.Tu, Z.Yin

Next, we prove the solution of (1.2) guaranteed by Theorem 3.1 depends continu-
ously on the initial data.

Theorem 3.2 Denote N = NUoo. Let (mn),, y be the corresponding solution of (1.2)
1
guaranteed by Theorem 3.1 with the initial data m{j(x) € Bzz,l. If mg tends to mg° in

1 1
By |, then m"(t, x) tends to m*(t, x) € C([0, T1; By |) with 2C2T ||my|| 1< 1.
’ ’ By

Proof By Theorem 3.1, we can find M > 0 such that for all n € N,

sup [lu" || 1 <M.
neN Lo([0.T1; Byy)
From (3.27), we have ||m" — m®|| | tends to zero as n — o0.

L>(0.T:B, 2)
_1
For fixed ¢ € B, i, we write

(m" —m®>, ¢) = (S;[m" —m™], ) + ((Id — Sj)[m" —m®™], ¢)
= (m" —m™, Sjp) + (m" —m™>, (Id — S)gp). (3.29)

Direct computations show that

|m" — m™. S;)] < CM|m" — m™| L ISiell s (3.30)
L®([0,T); B, 2) B}
and
[(m" —m™, (Id = Spe)| < CMll¢ — Sjpll _1. (3.31)
2,1
Note that [[¢ — S;¢| _1 tendsto zeroas j — oo and [|m” —m™|| _1 tends
B, ? L®([0,T):B, 7)

to zero as n — 00. Then (3.31) may be made arbitrarily small for j large enough. For
fixed j, we then let n tend to infinity so that (3.30) tends to zero. Thus, we conclude that

1
" — m®, @) tends to zero. Then we obtain m" tends to m in C,, ([0, T); B22,oo)'

1 _1 _1
Because 3227oo < Bz,lz, we obtain m” tends to m® in C([0, T'); Bz’lz).
1

(m

Note that for all m = u — uyy, M = U — lixx, € B} |,

luy —Bxll 1 < Clm—m| _i, (3.32)
B}, B, {
1 2 2 ~2 1 ~ ~\2
”E”X_E(”"”) A (¥
<L -@ s+ Nu—m2—a@-w
27 * B; 2 B},
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1 ~ ~ 1 ~ ~ ~ ~
= Sl —u)(ux +u)ll v+ Sl —u—m+m)(u+u—m—m)| 1
2 B}, 2 By

< CM|m -7l _i. (3.33)
B

2,

=l

1
Then by Lemma 2.12 and (3.19), we have that u” tends tou € C([0, T]; Bzz‘l). O

4 A blow-up criterion

After establishing local well-posedness theory, a natural question is whether the corre-
sponding solution exists globally in time or not. This section is devoted to investigating
a blow-up criterion for (1.2). At first, we show a conservation law and an a priori esti-
mate for strong solutions to (1.2).

Lemma4.1 Let ug € H®, s > % Then the corresponding solution u to (1.2) has
constant energy integral

/R Uy +uz)dx = /R ((u{))2 + <u6>2) dx = [lul?,,.

Proof Arguing by density, it suffices to consider the case where u € C§°. Applying
integration by parts, we obtain

/uxmdeZ/ux(“x_uxxx)dx:/uﬁdx+/‘ u)zcxd'x‘
R R R R

Taking advantage of Lemmas 4.1 and 4.2, we infer that

d
—/ Uymdx
dt Jg

= /(B,uxmx + Ormyuy)dx
R
= 2/ OMmyuydx = 2/ Uy [UxMyy + 2uyymy]dx
R R

= —2/ u)zcmxx + 2ty mydx
R
=0.
O

Lemmad4.2 Let ug € H*, s > %, and let T be the maximal existence time of the
corresponding solution u to (1.2). Then we have

lull 2 < luoll 2 + 2llull, T (4.1)
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818 X.Tu, Z.Yin

Proof Arguing by density, it suffices to consider the case where u € C§°.
Note that G(x) = te™l and G(x)«f = (1 — 337! f forall f € L*(R) and
G»m = u. Then we can rewrite (1.1) as follows:

ur — —uy =G x* [uz + —u? ] . “4.2)

By (4.2), we infer that

d
dr Jr

= 2/ oruudx
R

1 1
:2/Ru[§u)2(+G>k <u§+§u§x>]dx

2 2
< Nl 2 [l el e + 1G22 @l + la132)

u’dx

2
< 4lull 2 lugll5 -
Thus we have

lullz2 < lluoll 2 + 2llugl?, ¢ < Nluoll g2 + 20ug i3, T 4.3)

Remark 4.3 From Lemmas 4.1 and 4.2, we obtain
lull gz < llullp2 + lluxllz2 + Nuxxllpz < lluoll g2 +2||u6I|12,,1T~ 4.4)

Then we present a blow-up criterion for (1.2).

Lemma4.4 Let upg(x) € HS, s > %, and let T be the maximal existence time of the
solution u(x, t) to (1.2) with the initial data uy(x). Then the corresponding solution
blows up in finite time if and only if

liminf inf m = —o0.
t—T xeR

Proof Arguing by density, it suffices to consider the case where u € C§°.
A direct computation yields

2 2
”mx”LZ = / (ux — uyxy)“dx
R

= f (u% + 214)2“ + uixx)dx.
R
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Hence,
luxll gz < llmxllp2 < 2 luxll 2. 4.5)

Differentiating both sides of (1.2) with respect to x, taking L? inner product with .,
and then integrating by parts, we obtain

d
dt Jr

= / 2my 0;mydx
R

= 2/ my[2(u — m)my + uxmyyldx
R

2
midx

= /[4(u — m)mi + 2ummyy |dx
R

= /[4(14 — m)mi — uxxmi]dx
R

:/S(M—m)midx.
R

Suppose that m is bounded from above on [0, T) and T < oo. By (4.5) and Lem-
mas 4.1-4.2, we get

d(llmy2,)

dt
= / [B3(u — m)m%]dx
R

2 2
< Climyliz2 + 3llullLoellmll7

< Cilmll3.. (4.6)
here C1 > 0. An application of Gronwall’s inequality yields
lmll g1 < e imoll g1, V1 €l0,T). 4.7

So in view of (4.5) and (4.7), we obtain that if m is bounded from above on [0, T'),
then so does the H2-norm of u,, which contradicts the assumption that 7 < oo is the
maximal existence time. This completes the proof. O

5 Global existence

In this section, we present a global existence result for the Cauchy problem (1.2).
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Theorem 5.1 Assume thatuo € H* is such that the associated potential m{y = ufy—u{)

satisfies mg(xo) > 0, mg(x) = 0 on (=00, x9) and m(x) < 0 on (xo, +00) for some
point xog € R. Then the corresponding solution to (1.2) exists globally in time.

Proof Applying Theorem 3.1 and a simple density argument, it suffices to consider
up € H* to prove the above theorem. Given ug € H 4 T* is the maximal existence
time of the corresponding solution to (1.2) with the initial data u.

We consider the following initial value problem

{ W00 _ _y (1 gt x), 1€]0. T, x€R, .

q(0,x)=x, x eR.

By applying classical results in the theory of ordinary differential equations, we infer
that (5.1) has a unique solution g € C'([0, T) x R; R). Moreover, the map q (-, t) is
an increasing diffeomorphism of R with

1
qx(t, x) = exp ([ —uxx(7,q(7, X))df) >0, V(@ x) el0,T) xR
0
Hence, from (1.2), the following identity can be proved:

my(t,q(t, x))ge(t, x) = mé(x)ef(; uedt’ g (¢ x) €0, T) x R. (5.2)

In fact, a direct computation yields

%{mx (t,q(1, x))qx (1, x)}

= Mixqx + Mxxqrqx — Mxqx;
= qx(Myx — UxMyy — UyxxMy)

= (qxUxxNx. (5.3)

Applying Gronwall’s inequality, we obtain (5.2).
Since ¢ (¢, x) is an increasing diffeomorphism of R as long as ¢ € [0, T'), we deduce

m'(t,x) 20, if x <q(,x0),
{m’(tvx) <0, if x=q(t, x). (5:4)

Using the fact that the flow ¢(¢,x) is a differmorphism and mqo(xg) > O,
and by (5.4) we see that xo is the maximum value point. (5.4) tells us that
m(t) will increase monotonously at the interval (—oo, ¢g(¢, xg)) along the flow and
decrease monotonously at the interval (g (¢, xg), +00) along the flow. Moreover, since
m(t, q(t, xp)) belongs to H®, m(t, g(t, x9)) will not be less than zero. Otherwise, it
will contradict with the decay of infinity in H*. As a result, Theorem 4.4 ensure that
the solution u(, x) exists globally in time. This completes the proof of the theorem.

O
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Applying D, to both sides of the Eq. (4.2) yield

1
(Ux)r — uxuxy = 0,G * |:”,2r + Eu%xi| , (5.5)
which indicates that u, satisfies the CH Eq. (1.4). Thus solution to (4.2) or (5.5) are
actually the velocity potentials of the solution to the CH equation. Then by comparing
the global existence of these two equations, we obtain the following Remark.

Remark 5.2 The Eq. (1.2) and the CH equation are truly different for the global exis-
tence. As for the CH equation, the global strong solutions exist globally in time under
some conditions that m( don’t change the sign and that m¢ satisfies myp < O on
(—00, x0) and mqo > 0 on (xg, +00, ) for some point xg € R [9]. But as for the equa-
tion (4.2), there only exist zero solutions under some conditions that 7, don’t change
the sign. The corresponding solutions to (1.2) exist globally with some certain condi-
tions that my satisfies mo(xg) > 0, mg > 0 on (=00, x9) and m(, < 0 on (xp, +00, )
for some point xg € R.

6 Blow-up phenomena

In this section we prove that there are some initial data for which the corresponding
solutions to (1.2) with some certain conditions will blow up in finite time.

Theorem 6.1 Assume that uy € H*, s > % And my satisfy mi < 0 on (—00, xo)
and m6 > 0 on (xg9, 400, ) for some point xo € R, then the corresponding solution
of (1.2) blows up in finite time.

Proof Applying Theorem 3.1 and a simple density argument, it suffices to consider
ug € H* to prove the above theorem. Given ug € H 4 T* is the maximal existence
time of the corresponding solution to (1.2) with the initial data uy.

Since g (¢, x) is an increasing diffeomorphism of R as long as ¢t € [0, T'), we deduce

{m/(t,x)fo, if x <gql(t, xp), ©.1)

m'(t,x) >0, if x=>q(t xp).

Because of u, = Gxm, where G > 0, we can write u, (¢, x) and u,, (¢, x) as

X

ux(t,x):e; / esmg(t,é)dé-i-%/ eSme (1, £)dE, (6.2)

Upr(f, x) = e fx esmg(t,f)d§+§/oo e me(t,£)dE. (6.3)

2 J
Consequently
o
(ux + uyx)(t, x) ZeX/ eismé(hé)d%}
! X
(ux — uyx)(t, x) zeix/ eismé(tvg)d%_v
—0oQ
forall ¢+ > 0.
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Differentiating (4.2) with respect to x by two times, we find

1 1
Uixx — UxUxxx = Eu)zcx - M)ZC + G * |:u)2( + E”ix:l . (6.4)

21> %u% with (6.4), we deduce that

Combining the inequality G * [u)% + %u

1 1
Utxx — UxUxxx = Eu?‘x - Eu)zc (6.5)
Defining now w(t) := u,, (¢, q(t, x0)), % = —u,(t,q(t, x)), we obtain from
the above inequality the relation
1 2 1 2
wy(t, q(t, x0)) = EM”(I, q(t, x0)) — Eux(t’ q(t, x0)). (6.6)
Letting
q(t,x0)
V() = (uy — ) (1, q(t, X)) = €100 / me(1,6)ds <0, (6.7)
—0o0

K(1) = (uy + uxx) (1, q(t, x0)) = 400 f e me(t,E)dE > 0. (6.8)
q(t,x0)

Differentiating (6.7) with respect to X, we obtain

d q(t,x0) d
SV (@) = a0 / Emet, 8)de — La VO, (69)
t o0 dt

Direct computations show that

q(t,x0)
/ Emye (1, §)dE (6.10)

—00

q(1,x0) £
=/ eS(ugmeg + 2uggme)d§

—00

q(1,x0) ¢
:[ e (ag(ugmg)—{-uggmg)dg
—00

q(1,x0) £
=/ e (—ugmg +uggmg)d§

—00

q(1,x0) 1 q(1,x0) 1
— §(__,2 _ (L 2 2
= /_OO g [e ( 2”55 +u5u55>:|d§ /_oo [e (2145& —l—ug)]dé

atao [ 1 2 A S NI
=e’” _Euxx(f,q@’xo))+uxuxx(17‘I(tax0)) - e 5”55 +M5 dg,

—00
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which follow with (6.9) and V() = (u, — uxy)(t, (¢, x0)) yield

d 1
—V(t)———uxx(l q(t,x0)) + uxuxx) (1, q(t, X0))

- / [eé (%ugg +u§) ds+ux) (1, q(t, o)V (1)

<= 019, x0) + 3209, %) <O 6.1

In an analogous way,we obtain

d
EKU)_ > ”(t q(t, x0)) + uxuxy)(t, q(t, x0))
e (L2 w2 ae -
+/ [e (2'455 +”g> ds Mx) (t,q(t, x0)K (1)
1 1
5 (t q(t, x0)) — SU (f q(t, x0)) > 0. (6.12)

In view of (6.6)—(6.9) and (6.11)—(6.12), we see that

1 1 1
w, (2, q(t, x0)) > Eu”(t q(t, x0)) — FUx 2(t,q(t, x0)) > ——V(t)K(t)

> —EV(O)K(O) > 0. (6.13)

Assume that the solution exists globally in time. We now show that this leads to a
contradiction.
From (6.13), by intergration, we see that

w(t) > w(0) — %V(O)K(O)t. (6.14)

Since —V (0)W(0) > 0, and the H'(R) — norm of u, is conservation law, there exists
certainly some ¢y > O such that

w?(t) = 2uyllLom®), ¢ > fo. (6.15)

Combining (6.6) with (6.15) yields

d 1
Ew(t) > sz(t), t > to. (6.16)

By (6.7), w(0) > 0, by (6.16), w(t) > 0, for t > 0. Then solving the inequality
(6.16), we get

1 1

w(r)  w(t)

+ - (t —19) <0. (6.17)
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Taking into account that wL(t) > 0 and ;lt(t —1tp) — ocoast — 00, we get a

contradiction. This proves that the wave u(¢, x) breaks in finite time. O
Then we present another blow-up result.

Theorem 6.2 Assume that ¢ > 0, uy € H®, s > %and mo(xg) < —(1 +

e)[(Blugl7, In(1 + 3+ ||u0||§12)% + lluoll 2], then the corresponding solution of
(1.2) blows up in finite time.

Proof By a standard density argument, here we may assume s = 3 to prove the
theorem.

Given ug € H>, let T be the maximal existence time of the corresponding solution
to (1.1) with the initial data ug € H>.

From (1.2), we obtain,

1 1 1
my — uxmy = — Emz + zuﬁ — Euz + um
1 1 1 1
<- zmz + Eui — Euz + (Zm2 + uz)
1 2 1 2 1 2
1
<= m* + llully
1
<= 3m* + (ol gz + 2llug7:0)°. (6.18)
Set now w(r) := infyer[im(r, q(t, x)], 942 = Ly (1,41, 1)), fix e > 0.
and take
1
- BlluglZ, In(1 + 2) + lluol%,2)2 — lluol g2 6.19
Alluli3,,
1
K(Ty) = Sluoll 2 + g3 T, (6.20)
which satisfying
2
2K(T)Ty —In{1+-) >0,
&
Then we obtain from the above inequality the relation
dw 2 2
—- = —wlHKXT), Viel0,TINI0, 7], (6.21)

In view of w(0) < —(1 4+ &) K7, we obtain

w(t) < —(1+e)K(Ty), VYtel0, TIN[O,Tq].
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By solving the inequality (6.21), we get

2K(T) w(O)+K(T1)€2tK(T1)

A 6.22
T w(@) - KT w(0) — K(T1) (622
Since
_wO-K@) o 2Kd) 2 (6.23)
w(0) + K(T1) w(0) + K(T1) 3

then it follows that there exists 7*

1w — KTy | 2
°<T§2Kanmw©+Kan52Kaan+ )Sn’ 029

I3
such that
< —K(T 2K (Th) 6.25
wit) = =K+ — ok ey~ ~o (6.25)
w(0)+K (T1)
as t — T*. This proves that the wave u (¢, x) breaks in finite time. O

Remark 6.3 The Eq. (1.2) and the CH equation are truly different for the blow-up
phenomena. The solution to the CH equation with the particular condition will blow
up in finite time. Similarly, the solution to (1.2) will blow up in finite time with the
corresponding condition. However, the corresponding solution of (1.2) with mq(xo) <
—(1+ 8)[(8”146”%_[1 In(1 + %) + IIMOII?{Z)% ~+ |luol| 21 blows up in finite time. But
we can’t deduce the blow up phenomena to the CH equation with the corresponding
condition.

Finally, we prove the exact blow-up rate for blowing-up solutions m(¢, x) to (1.2)
guaranteed by Theorem 6.2. In order to establish this result, we need the following
useful lemma.

Lemma6.4 [13]Let T > 0andu € C'([0, T); H?). Then for every t € [0, T), there
exists at least one point £(t) € R with

a(r) = sup(ve(t, x)) = v (1, £(1)).

xeR

The function a(t) is absolutely continuous on (0, T') with

da _ 0.7
E—vm(tf(f)) ae.on (0,T).

Theorem 6.5 Letug € H', s > % mo(xp) < —(lluollgz2 + ||uo||%12T) and T be the
blow-up time of the corresponding solution u to (1.2). Then

lim <sup[m(t, xX)(T — t)) =2. (6.26)

t—=>T \xeR
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Proof As mentioned earlier, we only need to prove the theorem for s = 3.
Note that G(x) = te™"land G(x)xf = (1 — 82)~!f forall f € L*(R) and
G+m = u. Then we can rewrite (1.2) as follows:

1 1
U = Eux + G~ [u + 2um:| . (6.27)
Defining now LY = —y (¢, q(t, x)). In view of (1.2) and (6.27), we obtain
dim —u)(t,q(t,x)) 1 1
o + 5(m — u)2 = —G(x) * u + = > xx . (6.28)

Thanks to (6.28), Lemmas 4.1, we have

dim —u)(t, q(t, 1 1
(m u?t q(t, x)) +§(m =u; +G(x)>x<<u +2uxx>,
< 2)lux i3,
< 2Jupll?-
Defining now w(t) := infxeR[%(m — u)(t, q(t, x))], we obtain from the above
inequality the relation
‘—+w 2||u0||H1, Vi € (0, 7). (6.29)

For every ¢ € (0, %), in view of (6.25), we can find a ¢y € (0, T') such that

Co 2llugly, ,
wto) < = 2Mug I3, + —— < —v2llugll .

Thanks to (6.25) and (6.29), we have w (1) < —6}. This implies that w(¢) is decreasing
on [to, T), hence,

20lugll3 2flug I3
w(r) < —\/2||M6||3,1 + % < - %, vt € 1o, T).

Noticing that —w? — 2[lug[|,, < W) < —w? +2|up?

s a.e e (to, T), we get

—1—-e=< di <—$> <—-1+4e¢, ae.tetyT). (6.30)
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Integrating (6.30) with respect to t € [#9, T) on (¢, T) and applying lim; .7 w(t) =
—o0 again, we deduce that

(=l1=e(T -1 = < (=1+e)(T —1). (6.31)

w(t)

Since ¢ € (0, %) is arbitrary, it then follows from (6.31) that (6.26) holds. Noting that
Lemma 4.2, we get lim;_, 7 (inf ycr u(t, x)(T —t)) = 0.
This completes the proof of the theorem. O
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