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Abstract
Assume Vojta’s Conjecture for blowups of P

1 × P
1. Suppose a, b, α, β ∈ Z, and

f (x), g(x) ∈ Z[x] are polynomials of degree d ≥ 2. Assume that the sequence
( f ◦n(a), g◦n(b))n is generic and α, β are not exceptional for f , g respectively. We
prove that for each given ε > 0, there exists a constantC = C(ε, a, b, α, β, f , g) > 0,
such that for all n ≥ 1, we have

gcd( f ◦n(a) − α, g◦n(b) − β) ≤ C · exp(ε · dn).

We prove an estimate for rational functions and for a more general gcd and then obtain
the above inequality as a consequence.

Keywords Greatest common divisor · Vojta’s conjecture

Mathematics Subject Classification Primary 11G35; Secondary 11D75 · 11J25 ·
14D10 · 14G25

1 Introduction

In [6], Bugeaud, Corvaja, and Zannier proved the following theorem.

Theorem 1.1 Let a, b be multiplicatively independent integers ≥ 2, and let ε > 0.
Then, provided n is sufficiently large, we have

gcd(an − 1, bn − 1) < exp(εn).
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104 K. Huang

The authors of that paper obtained the result by contradiction. They began by con-
structing a family of vectors in terms of n, a, and b. Then they showed that if the
bound is not satisfied, then the vectors must lie in a lower-dimensional linear subspace
by the Schmidt Subspace Theorem. Using this result they are able to derive algebraic
relations on powers of a and b, which guarantee that a, b are multiplicatively depen-
dent. Silverman interpreted in [28] this result as a special case of Vojta’s Conjecture.
Theorem 1.1 has been further generalized in [19] where Levin interpreted it as another
special case of Vojta’s Conjecture.

One may ask whether a similar inequality holds for iterations of polynomials, as
iterations are dynamical analogues of power maps. It seems that current tools are not
powerful enough to tackle this problem unconditionally. In [25] Silverman observed
that one can interpret the greatest common divisor as a height function on some blowup
of the projective plane. Furthermore, assumingVojta’sConjecture (cf. [31]), Silverman
gave in [28] an upper bound for the greatest common divisor of the values of some
polynomial functions, in terms of the absolute values of the initial points. See also [24]
for an application of Silverman’s method to gcd bounds of analytic functions. Many
other authors have worked out various generalization and variations of this problem,
both over number fields and function fields (see [1,8–10,14,17,21,27] for example).
See also [13,23] for related unlikely intersection results, interpreted in the context of
Ailon–Rudnick type result [1].

In this paper, we apply Silverman’s method in the situation of iterations. In fact,
we will prove a Silverman-type estimate for a fixed smaller iteration, and derive some
results on gcd’s. However, there are some technical difficulties. First, in order to
have the required operands of the greatest common divisor, one needs to blow up a
Zariski closed subset in general (as opposed to subvarieties in [28]), depending on the
prescribed constant ε. Second, in the case of the rational functions the numerators of
iterates might not be iterates of any polynomial, so we need a more detailed analysis.
We also need to control the degree of ramification, for this we also need the very mild
assumption that α, β are not exceptional.

Definition 1.2 Let X be an algebraic variety defined over Q. We say that a sequence
(xn)n ⊆ X(Q) is generic in X if for any proper Zariksi closed subset Y � X , there
exists an N ∈ N such that for all n ≥ N , xn /∈ Y . A point x0 ∈ Q is said to be
exceptional for a rational function φ ∈ Q(x) if the backward orbit∪∞

n=0(φ
◦n)−1({x0})

is finite.

A main result of this paper is the following theorem. It is based on Vojta’s Conjec-
ture, which is described in Conjecture 2.7.

Theorem A AssumeVojta’sConjecture for blowups ofP1×P
1. Suppose a, b, α, β ∈ Z,

and that f (x), g(x) ∈ Z[x] are polynomials of degree d ≥ 2. Assume that α, β are
not exceptional for f , g respectively. Assume that the sequence ( f ◦n(a), g◦n(b))n
is generic in Q

2
. Then for each given ε > 0, there exists a constant C =

C(ε, a, b, α, β, f , g) > 0, such that for all n ≥ 1, we have

gcd( f ◦n(a) − α, g◦n(b) − β) ≤ C · exp(ε · dn).
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Generalized greatest common divisors for orbits under… 105

Remark Let d1 = deg( f ), d2 = deg(g). The result is trivial when d1 	= d2 and
d = max(d1, d2), and is proved in [8] for the case d1 = d2 = 1. We use the con-
vention that gcd(0, 0) = 0. But this involves only finitely many n, since the sequence
( f ◦n(a), g◦n(b))n is generic, and hence so is ( f ◦n(a) − α, g◦n(b) − β)n .

In [32] Xie proved the Dynamical Mordell–Lang Conjecture for polynomial
endomorphisms of the affine plane. Therefore the genericity of the sequence
( f ◦n(a), g◦n(b))n is equivalent to the Zariski density of ( f ◦n(a), g◦n(b))n . On the
other hand, Medvedev and Scanlon gave in [20] characterizations of periodic curves
under split polynomial endomorphisms of P

1 × P
1. The equation of the curve should

meet certain commutativity conditions, which are unlikely to hold in general. There-
fore the genericity condition of the sequence ( f ◦n(a), g◦n(b))n is a mild condition.

Actually we will prove Theorem 2.11 and obtain Theorem A as a consequence. In
[28] Silverman defined a more general gcd height which is the log of gcd in the case
of rational integers. In the same paper he proved most results in this more general
framework. See Sect. 2 for the precise definitions and statements. The idea of the
proof of Theorem 2.11 is as follows. Following the idea of Silverman, we prove in
Theorem 3.5 an upper bound for the greatest common divisor gcd(F1(a′),G1(b′))
for general square-free polynomials F1,G1 and we will apply it (essentially) to
gcd( f ◦D(a′), g◦D(b′)) for some large D depending on ε and d with a′ = f ◦(n−D)(a)

and b′ = g◦(n−D)(b).
The plan of this paper is as follows. Section 2 contains a table of notation, basics

of height functions and algebraic geometry, a statement of Vojta’s Conjecture, some
results concerning the gcd height, and statements of other main theorems of this paper.
We prove our main theorem concerning the gcd height in Sect. 3. In Sect. 4, we first
cite a genericity criterion for the case when f = g are non-special polynomials,
replacing the genericity condition. We also cite a theorem of Corvaja and Zannier for
the case of power maps. At the end of Sect. 4 we give several examples to explain
why the genericity condition in Theorem A is necessary; our policy is to include only
results which are easy to state and hopefully clarify things greatly. In Sect. 5, we give
a conditional result for characterizing large gcd’s.

2 Preliminaries

We use the following notation throughout this paper.

K a number field.
M(K ) the set of places of K .
nv the local degree [Kv : Qw]wherew is the contraction of v onQ; the product

formula has power nv for the place v.
f , g rational functions defined over K .
d the degree of f and g.
hPn the Weil height on P

n(K ).
ĥ f the canonical height with respect to f .
f ◦n the n-th iterate of f .
| · |v the v-adic absolute value.
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106 K. Huang

v+(·) max(0,− log | · |v).
For P = [x0, . . . , xn] ∈ P

n(K ), choose a number field L over which P is defined
and define the Weil height

hPn (P) = 1

[L : Q]
∑

v∈M(L)

nv max (log |x0|v, . . . , log |xn|v) . (2.1)

This definition is independent of the choice of L .
Suppose f : P

1 → P
1 is an endomorphism of degree d ≥ 2. Then following

a construction of Tate, Call and Silverman defined in [7] the canonical height h f

associated with f as

ĥ f (P) = lim
n→∞

hP1 ( f ◦n(P))

dn

for all P ∈ P
1(K ).

Theorem 2.1 ([7]) The canonical height satisfies

1. ĥ f (P) = hP1(P) + O(1),
2. ĥ f ( f (P)) = d · ĥ f (P).

See also Section 3.3 of [29] for more details. Here the implied constant in O(1) is
effective and depends only on n and the morphism f , but not on the point P ∈ P

n(K ).
Now we introduce some notions in algebraic geometry. For more information one

may refer to [15].

Definition 2.2 Let R = K [X0, . . . , Xn] and let T ⊆ R be a set of homogeneous
polynomials in X0, . . . , Xn . Every set

zero(T ) := {P ∈ P
n(K ) | f (P) = 0 for all f ∈ T }

is called a Zariski closed subset of P
n(K ). A Zariski closed subset V ⊆ P

n(K ) is
called a projective variety if it cannot be written as a union of two Zariski closed proper
subsets.

To give more general definition of height functions, we need the notion of divisors
on nonsingular varieties. See Sections 1.5 and 2.6 of [15] for more details.

Definition 2.3 Let X be a nonsingular projective variety. The group of Weil divisors
on X is the free abelian group generated by the closed subvarieties of codimension one
on X . It is denoted by Div(X). Denote by K (X)∗ the multiplicative group of nonzero
rational functions on X . Each rational function f ∈ K (X)∗ gives a principal divisor

div( f ) =
∑

Y�X codimension 1

ordY ( f ) · Y .

The group Div(X) divided by the subgroup of principal divisors is called the divisor
class group of X .
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Generalized greatest common divisors for orbits under… 107

Remark In the case when X is nonsingular, the class group is canonically isomorphic
to the group Pic(X). For the definition of the latter, see Section 2.6 of [15].

Definition 2.4 Suppose D ∈ Div(X). The complete linear system of D is the set

L(D) = { f ∈ K (X)∗ | D + div( f ) ≥ 0} ∪ {0}.

If L(D) 	= 0, then L(D) induces a rational morphism φD : X ��� P
n . For more

details refer to Section A.3 of [16].

Definition 2.5 A divisor D ∈ Div(X) is said to be very ample if the above map φD is
an embedding. A divisor D is said to be ample if an positive integral multiple nD of
D is very ample.

Fix a nonsingular variety X defined over K . For each divisor D ∈ Div(X) defined
over K we can define height functions hX ,D : X(K ) → R as below. For more details,
including that these height functions are well-defined, refer to [16], Theorem B.3.2.

• If D is very ample, choose an embedding φD : X → P
n . Then define hX ,D(x) =

hPn (φD(x)).
• If D is ample, then suppose nD is very ample, define hX ,D = 1/n · hX ,nD .
• In general, we can write D = D1 − D2 with D1, D2 ample, and define hX ,D =
hX ,D1 − hX ,D2 .

The following theorem is oneof themost important results inDiophantine geometry.
See also Sections 2.3 and 2.4 of [5] and Chapter 4 of [18].

Theorem 2.6 (The Weil Height Machine, Part of [16], Theorem B.3.2) In the context
of the above paragraphs, the height functions constructed in this way, are determined,
up to O(1). They satisfy the following properties.

• Let D, E ∈ Div(X). Then hX ,D+E = hX ,D + hX ,E + O(1).
• (Northcott’s Theorem) Let D ∈ Div(X) be ample. Then for every finite extension

K ′/K and every constant B, the set

{P ∈ X(K ′) | hX ,D(P) ≤ B}

is finite.
• Let D, E ∈ Div(X) with D = E + div( f ). Then

hX ,D(P) = hX ,E (P) + O(1)

for all P ∈ X(K ).

Remark Formula (2.1) can be thought of as hPn ,H in the context of Theorem 2.6 where
H is a hyperplane in P

n .

Remark The “O(1)′′ constants that appear in Theorem 2.6 depend on the varieties,
divisors, and morphisms, but they are independent of the points on the varieties. In the
sense of Theorem 2.6, height functions globally differed by O(1) can be thought of as
the same height function. Therefore in terms of Item 1 of Theorem 2.1, the canonical
height ĥ f can be thought of as hP1,H where H is a point in P

1.
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108 K. Huang

Intuitively, ampleness is a positivity notion on algebraic varieties and it is closely
related with height functions. The more “ample” a divisor D is, the more “positive”
the height function hX ,D is. We will use the following version of Vojta’s Conjecture.
It is Conjecture 3.4.3 of the monograph [31]. For the definition of normal crossing
divisor, see Chapter 5, Remark 3.8.1 of [15].

Conjecture 2.7 (Vojta) Let K be a number field, and let X be a nonsingular projective
variety defined over K . Suppose A is an ample normal crossing divisor on X and KX is
the canonical divisor of X, both defined over K . Let hA and hKX be the corresponding
height functions respectively. For each fixed ε > 0, there is a Zariski closed proper
subset V of X and a constant C such that

hKX (x) ≤ ε · hA(x) + C

for all x ∈ X(K )\V (K ).

In fact, for algebraic variety X , Silverman defined in [25] height functions hX ,Y

with respect to any closed subschemes Y . For our purpose it is enough to recall the
following part.

Theorem 2.8 ([25]) Let X be a projective variety and let Z(X) denote the set of closed
subschemes of X. For each V ∈ Z(X) there is a map hX ,D : X(K ) → R≥0 such that
these hX ,D satisfy the following conditions:

1. If D ∈ Z(X) is a positive divisor, then hX ,D is the usual height function associated
to D given by Theorem 2.6;

2. Let φ : X → X ′ be a morphism of varieties, and let Y ′ ∈ Z(X ′). Then

hX ,φ∗Y ′ = hX ′,Y ′ + O(1). (2.2)

Concerning the relationship between the greatest common divisor and heights, we
briefly recall Silverman’s idea in [28]. For all v ∈ M(Q) and a ∈ Z, recall that
v+(a) = max(− log |a|v, 0) ∈ [0,+∞]. Silverman began his discussion in [25] by
writing the greatest common divisor as

log gcd(a, b) =
∑

v∈M(Q)

min(v+(a), v+(b)) (2.3)

for a, b ∈ Z. Then he extends this function for a, b ∈ Q by the same formula. By the
last paragraph on page 337 of [28], Eq. (2.3) can be interpreted as the height function
on P

1×P
1 with respect to the subschemes (0, 0), and furthermore as a height function

associated with a divisor on the blowup of P
1 × P

1 along (0, 0). See page 163 of
[15] for the definition of blowup and strict transform. See pages 28–29 of [15] for a
concrete example of blowing up a point.

Proposition 2.9 ([15], Chapter 5, Proposition 3.1) Let π : W̃ → W be the blowup of
a nonsingular surface W at a point P. Then
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Generalized greatest common divisors for orbits under… 109

1. π induces an isomorphism of W̃ − π−1(P) and W − P,
2. The set E := φ−1(P) is isomorphic to P

1. It is called the exceptional divisor of
the blowup π ,

3. W̃ is nonsingular.

The following definition is a slight generalization of that given by Silverman in
[28].

Definition 2.10 Let K be a number field and let X/K be a smooth variety. Let Y/K �

X/K be a subscheme of codimension r ≥ 2. Letπ : X̃ → X be the blowup of X along
Y , and let Ỹ = π−1(Y ) be the exceptional divisor of the blowup. For x ∈ (X−Y )(K ),
we let x̃ = π−1(x) ∈ X̃ . The generalized (logarithmic) greatest common divisor of
the point x ∈ (X − Y )(k) with respect to Y is the quantity

hgcd(x; Y ) := hX ,Y (x) = h X̃ ,Ỹ (x̃)

where the last inequality follows from (2.2).

For a number fields K and for a, b ∈ K we also define the generalized gcd as

hgcd(a, b) = 1

[K : Q]
∑

v∈M(K )

nv min(v+(a), v+(b)). (2.4)

As a consequence of the Weil height machine, the relationship between hgcd as in
Definition 2.10 and in Eq. (2.4) is shown at the end of this paragraph. See [25,28]
for some interesting cases over Z where the contribution from the places at infinity is
zero or bounded. Suppose K is a number field. Let X = P

1 × P
1 and let f (X1) ∈

K [X1], g(X2) ∈ K [X2] be square-free polynomials. Then over Q the vanishing set
Z( f ) and Z(g) define two divisors D1 and D2 on X . Set Y = D1 ∩ D2. Then for all
points x = (x1, x2) ∈ (P1 × P

1)(K ) such that f (x1) 	= 0 and g(x2) 	= 0, we have

hgcd ( f (x1), g(x2)) = hP1×P1,(0,0)( f (x1), g(x2))

= hP1×P1,( f ,g)∗(0,0)(x1, x2) + O(1)

= hX ,Y (x) + O(1)

= hgcd(x; Y ) + O(1),

where the second equality follows from (2.2).
Our goal is to prove the following theorem.

Theorem 2.11 Let K be a number field. Assume Vojta’s Conjecture for blowups of
P
1 ×P

1 and K . Suppose a, b, α, β ∈ K. Let f , g ∈ K (X) with degree d ≥ 2. Assume
that the sequence ( f ◦n(a)−α, g◦n(b)−β)n ⊆ P

1(Q)×P
1(Q) is generic, and α and

β are not exceptional for f and g respectively. Then for each given ε > 0, there exists
a constant C = C(ε, a, b, α, β, f , g) such that

for all n ≥ 1, we have

hgcd( f
◦n(a) − α, g◦n(b) − β) ≤ ε · dn + C .
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110 K. Huang

We can also conclude the periodicity of an irreducible component of the Zariski clo-
sure ( f ◦n(a), g◦n(b))n under ( f , g) in the cases when the Dynamical Mordell–Lang
Conjecture is proved. See Sect. 4 for more details. Thanks to the powerful theorems
proved in [2,20,22], we can give some concrete conditions for ( f ◦n(a), g◦n(b))n being
generic in the case when f = g are so-called non-special polynomials (see Sect. 4).

Theorem 2.12 Let K be a number field and f ∈ K [x] be a polynomial of degree
d ≥ 2. Assume Vojta’s Conjecture for blowups of P

1 × P
1 and for K . Assume that f

is not conjugate (by a rational automorphism defined over K ) to a power map or a
Chebyshev map. Suppose a, b, α, β ∈ K and α, β are not exceptional for f . Assume
that there is no polynomial h ∈ K [x] such that h ◦ f ◦k = f ◦k ◦ h for some k ∈ N>0
and h(a) = b, h(α) = β or h(b) = a, h(β) = α, then for any ε > 0, there exists a
C = C(ε, a, b, α, β, f , g) > 0 such that for all n ≥ 1, we have

hgcd( f
◦n(a) − α, f ◦n(b) − β) ≤ ε · dn + C .

3 The Proof of Theorem 2.11

Throughout this section we denote by X the surface P
1 × P

1.

3.1 Algebraic geometry of P
1 × P

1 and its blowups

By Chapter 2, Example 6.6.1 of [15] we have

Pic(X) ∼= Z ⊕ Z.

where the image of the divisor class of an irreducible curve C is the degrees of its
projection into the two coordinates (deg(pr1 : C → P

1), deg(pr2 : C → P
1)). More

generally, if the image of a divisor D ∈ Pic(X) is (a, b), then we say that D is of type
(a, b). Fix D1 ∈ Pic(X) to be a divisor of type (1, 0) and Fix D2 ∈ Pic(X) to be a
divisor of type (0, 1). The intersection product on X is given by the rule

((a, b).(a′, b′)) = ab′ + a′b (3.1)

and extend by Q-linearity to Pic(X) ⊗ Q. In other words, the intersection product on
X is determined by the matrix

[ D1 D2

D1 1
D2 1

]
. (3.2)

Let K be a number field. Recall that a one-variable polynomial over a field K is
called square-free if it does not have repeated roots in K . Suppose f ∈ K [X1] and
g ∈ K [X2] are square-free polynomials in one variable, Let Y be the scheme-theoretic
intersection
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Generalized greatest common divisors for orbits under… 111

Y = Z( f ) ∩ Z(g) ⊆ P
1 × P

1,

which is the subscheme defined by the ideal ( f ) + (g), is then a reduced cycle of
codimension 2.

Suppose Z( f ) = {α1, . . . , αm}, Z(g) = {β1, . . . , βn}. Then

Y = ∪1≤i≤m,1≤ j≤n{(αi , β j )},

each with multiplicity one. Also divisors {X1 = αi } and {X2 = β j } meet transver-
sally, hence Y is a reduced cycle of codimension 2. To simplify notation write
Y = {Q1, . . . , Qs}. Let π : X̃ → X be the blowup of X = P

1 × P
1 along Y ,

let Ỹ be the preimage of Y , and let P̃ be the preimage of P . Then X̃ is a nonsingular
variety by Proposition 2.9.

The following properties are useful to find the canonical divisor and an ample
divisor on X̃ .

Proposition 3.1 ([15], Chapter 5, Propositions 3.2 and 3.3) Suppose π : X̄ → X is the
blowup of a surface X at a point P and let E be the exceptional divisor. The natural
maps π∗ : Pic(X) → Pic(X̄) and Z → Pic(X̄) defined by 1 �→ E give rise to an
isomorphism Pic(X̄) → Pic(X)⊕Z. Let π∗ : Pic(X̄) → Pic(X) denote the projection
on the first factor. The intersection theory on X̄ is determined by the rules:

1. if C, D ∈ Pic(X), then (π∗C .π∗D) = (C .D),
2. if C ∈ Pic(X), then (π∗C .E) = 0,
3. it holds that E2 = −1,
4. (a special case of the projection formula) if C ∈ Pic(X) and D ∈ Pic(X̄), then

(π∗C .D) = (C .π∗D).

Else, the canonical divisor of X̄ is given by KX̄ = π∗KX+E where E is the exceptional
divisor.

Since the blowup of Y does not involve the blowup at a point on an exceptional
curve, we have that X̃ can be obtained by blowing up s distinct points on X one by
one. Therefore applying Proposition 3.1 s times yields

Pic(X̃) ∼= Pic(X)
⊕ s⊕

i=1

Z · Ỹi .

Define π∗ and π∗ similarly as in Proposition 3.1.
Since Yi ’s are preimages of distinct Qi ’s, so if i = j , then (Ỹi , Ỹi ) = −1 by

Item 3 of Proposition 3.1, and if i 	= j then Ỹi and Ỹ j do not intersect and we have
(Ỹi , Ỹ j ) = 0. Therefore (Ỹi , Ỹ j ) = −δi j . Combining this with Eq. (3.1) we know that
the intersection product matrix on Pic(X̃) ⊗ Q is
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112 K. Huang

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

π∗(D1) π∗(D2) Ỹ1 Ỹ2 ... Ỹs

π∗(D1) 1
π∗(D2) 1

Ỹ1 −1
Ỹ2 −1
...

. . .

Ỹs −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

with empty entries zero.
By Theorem 3.1

KX̃ = π∗KX + Ỹ1 + · · · + Ỹs

where each Ỹi is the preimage of Qi .
We can choose −KX to be the normal crossing divisor {X1 = a} + {X1 = b} +

{X2 = a′} + {X2 = b′} where a, b, a′, b′ are distinct nonzero algebraic numbers in
K . By Definition 2 of [28], we still have hgcd(P; Y ) = h X̃ ,Ỹ (P̃).

To apply Vojta’s Conjecture, let A ∈ Pic(X) be an ample divisor of type (1, 1) and
consider the Q-divisor

Ã := π∗A − 1

N

(
Ỹ1 + · · · + Ỹs

)
∈ Pic(X̃) ⊗ Q.

Lemma 3.2 Ã is ample when N > s.

Proof We need the following definition from Chapter 1, Exercise 5.3 of [15].

Definition 3.3 Let Y ⊆ A
2 be a curve defined by the equation f (X1, X2) = 0. Let

P = (x1, x2) be a point of A
2. Make a linear change of coordinates so that P becomes

the point (0, 0). Then write f as a sum f = f0 + f1 + . . . + fd , where fi is a
homogeneous polynomial of degree i in X1 and X2. Then we define the multiplicity
of P on Y , denoted μP (Y ), to be the least r such that fr 	= 0.

We also need the following lemma, which we state without proof.

Lemma 3.4 ([15], Chapter 1, Exercise 7.5(a)) An irreducible curve Y of degree d > 1
in P

2 cannot have a point of multiplicity ≥ d.

Now letC ⊆ P
1×P

1 be an irreducible curve of type (a, b). Let C̃ be its strict transform.
By Lemma 3.4 we know that C cannot have a point of multiplicity ≥ deg(C). By
Chapter 5, Proposition 3.6 of [15],

(Ỹi .C̃) = (Ỹi .π
∗C − μQi (C) · Ỹi ) = μQi (C). (3.4)

Now let pri : C → P
1 be the projection to the i-th coordinate. Then deg pr1 =

a, deg pr2 = b. This is to say, if we restrict C to A
2, then the defining equation has
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Generalized greatest common divisors for orbits under… 113

degree b on X1 and degree a on X2. It follows that deg(C) ≤ a + b. By the Item 4 of
Proposition 3.1, we have

(
π∗A.C̃

)
=

(
A.π∗C̃

)
= (A.C) = a + b.

Then by Eq. (3.4) and linearity

( Ã.C̃) =
(
π∗A.C̃

)
− 1

N

(
(Ỹ1.C̃) + · · · + (Ỹs .C̃)

)

= a + b − 1

N

(
μQ1(C) + · · · + μQs (C)

)

≥ a + b − 1

N
· s · (a + b)

> 0

as N > s.
We also have

( Ã.Ỹi ) =
(
π∗A.Ỹi

)
− 1

N

(
(Ỹ1.Ỹi ) + · · · + (Ỹs .Ỹi )

)

= 0 − 1

N
(−δ1i − · · · − δsi )

= 1

N
.

Finally by the previous equality

( Ã. Ã) =
(
Ã. π∗A

)
− 1

N

(
( Ã. Ỹ1) + · · · + ( Ã. Ỹs)

)

>
(
π∗ Ã. A

)
− 1

N
· s

N

= (A.A) − s

N 2

≥ 1 + 1 − s

N 2

> 0

as N > s.
But

Pic(X̃) = π∗Pic(X)
⊕ s⊕

i=1

Z · Ỹi ,

and every effective curve C in X̃ is linearly equivalent to a non-negative combination
of Ỹi ’s and the strict transform of effective curves in X , so Ã is ample by the Nakai-
Moishezon criterion (see Chapter 5, Theorem 1.10 of [15]). ��
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3.2 The proof, continued

We first prove the following modification of Theorem 2 of [28].

Theorem 3.5 With notation as in Sect. 3.1, let K be a number field. Suppose f ∈ K [t1]
and g ∈ K [t2] are square-free polynomials in one variable, Let

Y = Z( f ) ∩ Z(g) ⊆ X = P
1 × P

1

as in the Sect. 3.1. Also recall from there that X̃ is the blowup of X along Y .
Assume that Vojta’s conjecture is true for X̃ over K . Fix ε > 0. Then there is

a algebraic subset V � P
1 × P

1, depending on f , g and ε, so that for each P =
(x1, x2) ∈ P

1(K ) × P
1(K ), either

1. P ∈ V , or
2. hgcd( f (x1), g(x2)) ≤ (3 + ε) (h(x1) + h(x2)) + O(1).

Proof of Theorem 3.5 We follow the proof in [28]. By Lemma 3.2 and assumingVojta’s
Conjecture we have

h X̃ ,KX̃
(P̃) ≤ ε · h X̃ , Ã(P̃) + Cε

for all P ∈ X(K )\V (K ). Also KX̃ = π∗KX + Ỹ and Ã = π∗A − 1/N · Ỹ , so

h X̃ ,π∗KX
(P̃) + h X̃ ,Ỹ (P̃) ≤ ε · h X̃ ,π∗A(P̃) − 1

N
· h X̃ ,Ỹ (P̃) + Cε,

hX ,KX (P) +
(
1 + 1

N

)
h X̃ ,Ỹ (P) ≤ ε · hX ,A(P) + C ′

ε,

(
1 + 1

N

)
hgcd(P; Y ) ≤ ε · hX ,A(P) + hX ,−KX (P) + C ′

ε,

hgcd(P; Y ) ≤ ε · hX ,A(P) + hX ,−KX (P) + C ′′
ε .

But KX is linearly equivalent to −2A, and let P = (x1, x2). Then

hX ,−KX (P) = 2 · (h(x1) + h(x2)) + O(1),

hX ,A(P) = h(x1) + h(x2),

hgcd(P; Y ) = hgcd( f (x1), g(x2)).

Now Theorem 3.5 is verified. ��
For the proof of Theorem 2.11 we need with the following

Lemma 3.6 Let σ, τ ∈ K (x) be Möbius transforms defined over K . Set fσ =
σ f σ−1, gτ = τgτ−1. Then there exists a constant C > 0, depending on
α, β, f , g, σ, τ , such that for all a, b ∈ K, for all finite set S ⊂ M(K ) containing all
the archimedean places and for all n ∈ N, we have

∣∣hgcd,S
(
f ◦n
σ (σa) − σα, g◦n

τ (τb) − τβ
) − hgcd,S( f

◦n(a) − α, g◦n(b) − β)
∣∣ ≤ C .
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Proof It suffices to show that for any fixed α ∈ K , and for any fixedMöbius transform
σ , there exists a finite set S′ ⊂ M(K )fin and a constant C ′ > 0, such that for all
x ∈ K and v ∈ S′, we have

∣∣v+ (σ x − σα) − v+(x − α)
∣∣ ≤ C ′, and for all x ∈ K

and v ∈ M(K )fin\S′, we have v+ (σ x − σα) = v+(x − α).
Since each Möbius transform defined over K is a composition of translations,

dilations and inverses defined over K , it suffices to prove the result for the case when
σ is one of the above three types of maps. The result is trivial for translations and
dilations.

If σ(x) = 1/x , write x = x1/x2, α = α1/α2, x1, x2, α1, α2 ∈ OK . Since the
class number of K is finite, there exists γ ∈ OK such that for fixed α ∈ OK

and for all x ∈ OK we can always choose x1, x2, α1, α2 such that the ideals
gcd(x1, x2) | γ, gcd(α1, α2) | γ . Now

|x − a|v =
∣∣∣∣
α2x1 − α1x2

α2x2

∣∣∣∣
v

, |σ x − σα|v =
∣∣∣∣
α2x1 − α1x2

α1x1

∣∣∣∣
v

.

But the ideal

gcd(α2x1 − α1x2, α2x2) | gcd(α2
2x1 − α1α2x2, α1α2x2) = gcd(α2

2x1, α1α2x2)

| gcd(α1α
2
2x1, α1α

2
2x2) | α1α

2
2γ,

so

v+(α2x1 − α1x2) − v(α1α
2
2γ ) ≤ v+(x − α) ≤ v+(α2x1 − α1x2).

Similarly

v+(α2x1 − α1x2) − v(α2
1α2γ ) ≤ v+(σ x − σα) ≤ v+(α2x1 − α1x2).

Therefore

∣∣v+(σ x − σα) − v+(x − α)
∣∣ ≤ max

(
v(α1α

2
2), v(α2

1α2γ )
)

≤ v(α2
1α

2
2γ ).

Hence we may choose S′ = {v ∈ M(K )fin | v(α1) 	= 0, v(α2) 	= 0 or v(γ ) 	= 0}. ��
Lemma 3.7 (Lemma 3.52 of [29]) Let φ : P

1 → P
1 be a rational map of degree at

least 2 and let Q ∈ P
1 be a point such that Q is not a totally ramified fixed point of

P
1. Let eQ(φ) be the multiplicity of φ at Q. Then

lim
m→∞

eQ(φm)

(degφ)m
= 0.

Proof of Theorem 2.11 By Lemma 3.6 for hgcd,S we may assume that α = β = 0. For
any fixed integer D, write in the lowest terms f ◦D = F1/F2 and g◦D = G1/G2 where
F1, F2,G1,G2 are polynomials with coefficients in OK .

Write
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F1(x) = a0 + · · · + aN x
N ,

F2(x) = b0 + · · · + bMxM ,

G1(x) = a′
0 + · · · + a′

N ′xN
′
,

G2(x) = b′
0 + · · · + b′

M ′xM
′

with all coefficients in OK . By Lemma 3.6 we may assume that all preimages of 0
under f and g are not ∞. This implies that N ≥ M . Let

S := {v ∈ M(K ) | v(aN ) 	= 0, v(bM ) 	= 0, v(a′
N ′) 	= 0, or v(b′

M ′) 	= 0} ∪ M(K )∞.

Then S is finite. For each place v /∈ S and for any x0 ∈ K , if v(x0) ≥ 0, then
v(F2(x)) ≥ 0 and hence v+( f ◦D(x0)) ≤ v+ (F1(x0)) . If v(x0) < 0, then

v+( f ◦D(x0)) = v+
(
aN xN0
bMxM0

)
= v+ (

xN−M
0

)
= 0 ≤ v+ (F1(x0)) .

In either case we have

v+( f ◦D(x0)) ≤ v+ (F1(x0)) .

Similarly for any v /∈ S and for any y0 ∈ K ,

v+(g◦D(y0)) ≤ v+ (G1(y0)) .

Therefore the sum of the part of hgcd outside S satisfies

hgcd,S
(
f ◦D(a′), g◦D(b′)

) := 1

[K : Q]
∑

v∈M(K )fin\S
nv min

(
v+( f ◦D(a′)), v+(g◦D(b′))

)

≤ 1

[K : Q]
∑

v∈M(K )fin\S
nv min

(
v+(F1(a

′)), v+(G1(b
′))

)

≤ hgcd,S
(
F1(a

′),G1(b
′)
)
. (3.5)

Let F rad
1 (x) = rad(F1)(x), and letGrad

1 (y) = rad(G1)(y), where for a one-variable
polynomial P , rad(P) is the product of all monic irreducible polynomials dividing P .
As the sequence

(
f ◦(n−D)(a), g◦(n−D)(b)

)
n is generic in P

1(Q)×P
1(Q), there exists

N ′′ = N ′′(ε, f , g, a, b, such that for all n ≥ N ′′ we have
(
f ◦(n−D)(a), g◦(n−D)(b)

)
/∈ V (K ) (3.6)

whereV is as inTheorem3.5.ApplyTheorem3.5 to thepoint
(
f ◦(n−D)(a), g◦(n−D)(b)

)

and the functions F rad
1 and Grad

1 , with ε = 1. Let u = f ◦(n−D)(a), v = g◦(n−D)(b).
Then
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hgcd,S
(
F rad
1 (u),Grad

1 (v)
)

≤ hgcd
(
F rad
1 (u),Grad

1 (v)
)

≤ 4 (h (u) + h(v)) + O(1).

(3.7)

Let M ′ = sup E where

E = ∪(x,y)∈( f ◦D, g◦D)−1(0,0)

{
ex ( f

◦D − 0), ey(g
◦D − 0)

}

where eQ(φ) is the multiplicity of φ at Q. In the following inequalities, the implied
constants only depend on f , g, a, b, α, β, D. Compared with Theorem 2.11, we have
an extra dependence with D. However, this dependence will be removed when ε is
involved later. We have

hgcd,S
(
f ◦n(a), g◦n(b)

)

= hgcd,S
(
f ◦D( f ◦(n−D)(a)), g◦D(g◦(n−D)(b))

)

≤ hgcd,S
(
F1( f

◦(n−D)(a)),G1(g
◦(n−D)(b)))

)
(by (3.5))

≤ hgcd,S

((
F rad
1 ◦ f ◦(n−D)(a)

)M ′
,
(
Grad

1 ◦ g◦(n−D)(b)
)M ′)

+ O(1)

≤ M ′ ·
(
4 · h

(
f ◦(n−D)(a)

)
+ 4 · h

(
g◦(n−D)(b)

)
+ O(1)

)
+ O(1) (by (3.7))

≤ M ′ ·
(
4dn−D · ĥ f (a) + 4dn−D · ĥg (b) + O(1)

)
+ O(1) (by 2 of Theorem 2.1)

≤ dn · M
′

dD
·
(
4ĥ f (a) + 4ĥg(b) + C

)
+ O(1) (by 1 of Theorem 2.1).

Since 0 is not exceptional for f or g, we know that they are not totally ramified fixed
point of f ◦2, g◦2 respectively. Indeed, if 0 were totally ramified fixed point of f ◦2,
then

∪∞
i=1( f

◦i )−1(0) = {0} ∪ f −1(0)

is a finite set, and hence 0 is exceptional for f . Similar argument holds for g. Therefore
by Lemma 3.7, we can choose D = D(ε, f , g, a, b) ∈ N sufficiently large so that

M ′

dD
·
(
4ĥ f (a) + 4ĥg(b) + C

)
<

ε

2
.

Thus, we have

hgcd,S
(
f ◦n(a), g◦n(b)

) ≤ ε

2
· dn . (3.8)

Now look at all places v ∈ S and all infinite v. By assumption we know that 0 is
not exceptional with respect to f and g and a and b are not preperiodic with respect
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to f and g. By Lemma 4.1 of [30] (cited below as Lemma 3.8, see also Theorem E of
[26] for an archimedean version), we know for all sufficiently large n ∈ N,

nvv
+ (

f ◦n(a)
) ≤ ε

2 · ([K : Q] + |S|) · dn,

nvv
+ (

g◦n(b)
) ≤ ε

2 · ([K : Q] + |S|) · dn .
(3.9)

Combining equations (2.4), (3.8) and (3.9), we obtain the requested estimate and hence
finish up the proof of Theorem 2.11. ��
Lemma 3.8 ([30]) Let K be a number field and let φ be a rational function of degree
d ≥ 2 defined over K . Suppose 0 is exceptional with respect to φ and let a be a point
in P

1(K ) for which there is a strictly increasing sequence integers (ei )∞i=1 such that
φ◦ei (a) 	= 0. Then

lim
i→∞

v+ (φ◦ei (a))

dei
= 0.

4 On the genericity condition

The Dynamical Mordell–Lang Conjecture predicts that given an endomorphism φ :
X → X of a complex quasi-projective variety X , for any point P ∈ X and any
subvariety Y � X , the set {n ∈ N | φ◦n(P) ∈ Y } is a finite union of arithmetic
progressions (sets of the form {a, a+d, a+2d, . . . }with a, d ∈ N≥0). TheDynamical
Mordell–Lang Conjecture was proposed in [12]. See also [3,11] for earlier works. In
the case of étale maps we know that the Dynamical Mordell–Lang Conjecture is
true. See the recent monograph [4]. Xie proved in [32] the Dynamical Mordell–Lang
Conjecture for polynomial endomorphisms of the affine plane.

Proof of Theorem 2.12 The result is clearly true in the case when (a, b) is preperiodic
under ( f , f ). When (a, b) is not preperiodic under ( f , f ), by Theorem A it suffices
to show that the sequence ( f ◦n(a), f ◦n(b))n is generic. If there were infinitely many
iterates ( f ◦n(a), f ◦n(b)) lying on a curveC , then by Theorem 0.1 of [32], the Dynam-
ical Mordell–Lang Conjecture for polynomial endomorphisms of the affine plane, we
knowC itself is periodic under ( f , f ). Replacing f by an iterate f ◦m wemay assume
that C is fixed under ( f , f ). Now we can apply the results of [20,22] classification
for invariant curves. In fact, using these results Baker and DeMarco demonstrated in
page 32 of [2] that the irreducible invariant curve in the above theorem must be a
graph of the form y = h(x) or x = h(y), for a polynomial h which commutes with
some f ◦k with initial conditions as in Theorem 2.12. This contradicts the assumption
of Theorem 2.12. ��

Wegive two examples to show that if the assumption of Theorem2.12 is not verified,
then we might not have the upper bound.
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Example 4.1 Under the hypothesis of the above proof and use the same notation.
Assume that the curve is given by y = h(x) and h ◦ f ◦k = f ◦k ◦ h for some k ∈ N>0.
Suppose n = mk with k ∈ N. If h(α) = α, then

gcd( f ◦n(a) − α, f ◦n(b) − α) = gcd( f ◦mk(a) − α, f ◦mk (h(a)) − α)

= gcd( f ◦mk(a) − α, h( f ◦mk(a)) − h(α))

= | f ◦mk(a) − α| = | f ◦n(a) − α|.

Example 4.2 Let f (x) = g(x) = x3 + x . Assume a = −b and α = −β. Then for
h(x) = −x , we have h ◦ f = f ◦ h, h(a) = b and h(α) = β. Now

f ◦n(a) − α = f ◦n(−b) + β = − f ◦n(b) + β = −(g◦n(b) − β),

so

gcd( f ◦n(a) − α, g◦n(b) − β) = | f ◦n(a) − α| � |a|δn

for any δ < 3.

In the case of power maps, if ( f ◦n(a), g◦n(b))n is generic, the following uncondi-
tional result is proved by Corvaja and Zannier ([8]).

Example 4.3 Suppose K is a number field and suppose a, b, α, β ∈ K . Also suppose
that f and g are power maps, and a, b are multiplicatively independent. Let d =
max(deg f , deg g), then for each fixed ε > 0, there exists some C = C( f , g, a, b)
such that

gcd( f ◦n(a) − α, g◦n(b) − β) ≤ C · max (h(a), h(b))εd
n
. (4.1)

In fact, the genericity of the sequence ( f ◦n(a), g◦n(b))n is equivalent to the multi-
plicative independence of a and b. The assumption that α and β are not exceptional
implies that α 	= 0 and β 	= 0. Then Inequality (4.1) is a consequence of Inequality
(1.2) of Corvaja and Zannier [8].

Now we provide an example to explain that the genericity of ( f ◦n(a), f ◦n(b))n is
necessary for power maps.

Example 4.4 Let a = 125, b = 25, α = β = 1, f (x) = x2, g(y) = y2. Then
gcd( f ◦n(a) − α, g◦n(b) − β) is divisible by 52

n − 1 = O
(
( f ◦n(a))1/3

)
.

5 When is the gcd large?

As we have seen, when the sequence ( f ◦n(a), g◦n(b))n is not generic, gcd( f ◦n(a) −
α, g◦n(b)−β)might be big in general. Our goal in this section is to show the following
result.
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Theorem 5.1 Assume Vojta’s Conjecture. Suppose f , g ∈ Z[X ] and a, b, α, β ∈ Z.
Then for all η > 0,

• either the set

{n ∈ N | log gcd( f ◦n(a) − α, g◦n(b) − β) ≥ η · dn}

is a finite union of arithmetic progressions, or
• there is a finite union of arithmetic progressions J such that

lim
n→∞,n∈J

1

ηdn
· log gcd( f ◦n(a) − α, g◦n(b) − β) = 1.

Proof We choose D as in the proof of Theorem 2.11. That is, we choose D =
D(ε, f , g, a, b) ∈ N sufficiently large so that

M ′

dD
·
(
4ĥ f (a) + 4ĥg(b) + C

)
<

η

2

where

M ′ = max
f ◦D(x)=α, g◦D(y)=β

(
ex ( f

◦D − α), ey(g
◦D − β)

)
.

Then the proof of Theorem 2.11 shows that assuming Vojta’s Conjecture, there is a
proper algebraic subset V ⊆ P

1×P
1 such that as long as ( f ◦(n−D)(a), g◦(n−D)(b)) /∈

V and n is sufficiently large, we have

log gcd( f ◦n(a) − α, g◦n(b) − β) <
η

2
· dn .

Let I = {n ∈ N | ( f ◦(n−D)(a), g◦(n−D)(b)) ∈ V }. Then the set

{n ∈ N\I | log gcd( f ◦n(a) − α, g◦n(b) − β) ≥ η · dn}

is finite. By the Dynamical Mordell–Lang Theorem for polynomial maps on the affine
plane (cf. [32]), I is a finite union of arithmetic progressions. Hence it suffices to show
that the set

{n ∈ I | log gcd( f ◦n(a) − α, g◦n(b) − β) ≥ η · dn}

is a finite union of arithmetic progressions. Looking at each irreducible component of
V , it is enough to consider the case when V is a curve. In that case the set

{( f ◦n(a) − α, g◦n(b) − β) | n ∈ I }
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is contained in the curve V ′ := f ◦(D)(V ) + (−α,−β) where + means translation on
A
2. By abuse of notation, we also donote by V ′ its Zariski closure in P

1×P
1. Suppose

ι : V ′ ↪→ P
1 × P

1 is the inclusion map.
Suppose (x1, x2) ∈ V ′ and fix D′ ∈ Div(V ′) of degree 1, then

hgcd(x1, x2) = hP1×P1,(0,0)(x1, x2)

= hV ′, ι∗(0,0)(x1, x2) + O(1)

= deg(ι∗(0, 0)) · hV ′,D′(x1, x2) + O(1)

where the last equality follows from Proposition B.3.5 of [16], due originally to Siegel.
Clearly it’s enough to consider the case when a is not preperiodic under f and b is

not preperiodic under g. In this case the projection π1 : V ′ → P
1, (x1, x2) �→ x1 is

dominant. Fix D ∈ Div(P1) of degree 1. Then

hV ′,D′(x1, x2) = 1

deg(π1)
· hP1,D(x1) + O(1)

by Theorem 2.6. Now

hgcd( f
◦n(a) − α, g◦n(b) − β) = deg(ι∗(0, 0))

deg(π1)
· hP1,D( f ◦n(a) − α) + O(1)

= deg(ι∗(0, 0))
deg(π1)

·
(
ĥ f (a) · dn + O(1)

)
+ O(1).

Therefore, in the case when V ′ is a curve, if η = ĥ f (a) · deg(ι
∗(0, 0))

deg(π1)
, then

lim
n→∞,n∈J

1

η · dn · log gcd( f ◦n(a) − α, g◦n(b) − β) = 1

for a finite union of arithmetic progression J ; otherwise the set

{n ∈ I | log gcd( f ◦n(a) − α, g◦n(b) − β) ≥ η · dn}

is always a finite set or complement of a finite set. Hence for general V ′, for all but
finitely many η, the set in the statement is a finite union of arithmetic progressions. ��
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