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Abstract
We obtain results bounding the degree of the series

∑∞
n=1 1/αn , where {αn} is a

sequence of algebraic integers satisfying certain algebraic conditions and growth con-
ditions. Our results extend results of Erdős, Hančl and Nair.
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1 Introduction

Questions on the irrationality and transcendence of infinite series have a long history.
Often, the series have rational terms, and many famous open problems arise in this
way. For instance, the Riemann ζ -function is known to take transcendental values at
even, positive integers and to be irrational at 3. On the other hand, not much is known
about the values at any other specified odd integer greater than 1, although the values
are known to be irrational at infinitely many of these [1,4].

The ζ -values are instances of the family of series

∞∑

n=1

1

αn
, (1)

where αn is an algebraic integer.
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This makes it pertinent to study conditions on the sequence {αn} which ensure
irrationality or even transcendence of the series in (1). It was shown by Erdős [3] that
if the αn are rational integers, αn = an , then the series of (1) is irrational provided
limn→∞ a1/2

n

n = ∞. This condition of course falls short of saying anything at all about
the ζ -values. Nevertheless, it is essentially best possible. See [6] for an example. The
condition was weakened by Hančl [5], who proved that irrationality of the series (1)
is ensured by the condition

1 < lim inf
n→∞ a1/2

n

n < lim sup
n→∞

a1/2
n

n ,

where the an are still rational integers.
It appears that not much is known when the αn are no longer assumed to be rational

integers. One result which does exist is due to Hančl and Nair [6]. They showed that
for αn = √

an with an ∈ N, irrationality of the series (1) is ensured by the condition

lim
n→∞ a2

−n2/2

n = ∞.

In the present paper, we develop the methods of Hančl and Nair to deal with the
more general case where the αn are algebraic integers such that |αn| = αn . Here α

denotes the house of α, i.e. the maximum modulus of the conjugates of α. Examples
for which this holds include Salem and Pisot numbers, but also d-th roots of rational
integers, αn = d

√
an . As we will see, these are in a sense extremal cases for our results,

and the former gives better bounds than the latter.
In addition to the irrationality results, the approach taken allows us to give lower

bounds on the degree of the series (1), where we set the degree of a transcendental
number equal to ∞.

Theorem 1 Let d, D ∈ N, ε > 0 and let {αn} be a sequence of algebraic integers
with max degαn = d, such that |αn| = αn . Suppose that |αn| increases, and that
|αn| ≥ n1+ε for n sufficiently large. Furthermore, we suppose �(αn) > 0 for all
n ∈ N or that �(αn) > 0 for all n ∈ N. Finally, suppose that

lim sup
n→∞

αn

1

Dn ∏n−1
i=1 (di+d) = ∞.

Then,

deg

( ∞∑

n=1

1

αn

)

> D.

Note that if we let D = d = 1, the conditions of the theorem imply that αn is a
sequence of natural numbers, such that

lim sup
n→∞

|αn|
1

2n−1 = ∞.

Since αn = an are assumed to be natural numbers in this case, we recover the result
of Erdős on noting that
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lim sup
n→∞

a
1

2n−1
n =

√

lim sup
n→∞

a
1
2n
n .

Similarly, wemay recover the result of Hančl andNair by letting D = 1 andαn = √
an

with their growth condition on the an .
Many of the assumptionsmade in Theorem 1 can beweakened at the cost of making

the growth condition on the houses of the αn more complicated. In the final section
of the paper, we will comment on the various conditions and the extent to which they
can be weakened.

2 Auxiliary results

We will make heavy use of Weil heights and Mahler measures of algebraic numbers.
We recall the definitions.

Let α be an algebraic number, let K be a number field containing α and let MK

denote the set of places of K . Then, the (Weil) height of α is defined as

H(α) =
∏

ν∈MK

max{1, |α|ν}dν/d ,

where d = [K : Q] and dν = [Kν : Qν], andwhere Kν andQν denote the completions
of the fields at the place ν. With the normalisation in the exponent, the height becomes
independent of the field K .

We will also need to define the Mahler measure of α. For this purpose, suppose
that α is algebraic of degree d and let α1 = α, α2, . . . , αd denote the conjugates of α.
Finally, let ad denote the leading coefficient of the minimal polynomial of α defined
over Z. The Mahler measure of α is defined as

M(α) = |ad |
d∏

i=1

max{1, |αi |}.

Here, the only place playing a role is the usual Archimedean one, i.e. the modulus in
the complex plane.

The following wonderful result is classical, see e.g. [10].

Theorem 2 For an algebraic number α of degree d,

H(α) = M(α)1/d .

We would further like to relate the house of an algebraic integer α to the height of
α. The following lemma accomplishes this.

Lemma 3 Let α be an algebraic integer of degree d. Then,

H(α) = M(α)1/d ≤ α ≤ M(α) = H(α)d .
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The inequalities are best possible.

Proof The outermost identities follow immediately from Theorem 2. For the inequal-
ities, note first that since α is assumed to be an algebraic integer, ad = 1, so that

M(α) =
d∏

i=1

max{1, |α|}.

Note also that α ≥ 1, as α is an algebraic integer. The first inequality now just states
that the geometric mean of a set of positive reals is bounded above by the maximum
value, while the second one is even more trivial.

To see that the inequalities are best possible, consider first α = d
√
a with a a

positive integer. The minimal polynomial of α is (a factor of) P(X) = Xd − a, so
that all conjugates of α are of the form ζd

d
√
a, where ζd is a d-th root of unity. Hence,

M(α) = ( d
√
a)d = a. On the other hand, evidently α = d

√
a, so that the first inequality

of the lemma is an identity.
Conversely, suppose that α is a Salem or Pisot number of degree d. Then, M(α) =

α = α, which proves optimality of the second inequality. 
�
The optimality of the inequalities above justify the remarks in the introduction about

the extremal cases of our results. If we are able to get a better-than-expected bound
on the Mahler measure of certain numbers in our construction, the resulting growth
conditions can be significantly weakened. Our main theorem uses only the lower
bound, which is valid in general. However, it should be clear from the remainder of
the paper how the arguments may be modified if one has a series of reciprocals of
Pisot and Salem numbers.

We will need to know that the height remains unchanged on taking the reciprocal.
This is also classical, see [10].

Lemma 4 Let α be a non-zero algebraic number. Then, H(α) = H(1/α).

We will be using the following bounds on heights and degrees of sums of algebraic
numbers.

Lemma 5 Let n ∈ N, and let β1, . . . , βn be algebraic numbers. Then,

H

(
n∑

i=1

βi

)

≤ 2n
n∏

i=1

H(βi ),

and

deg

(
n∑

i=1

βi

)

≤
n∏

i=1

deg(βi ).

For a proof of the first inequality, see [10]. The second inequality can be found in [7].
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A final ingredient from the theory of algebraic numbers needed, is the Liouville–
Mignotte [8,9] bounds on the distance between algebraic numbers. For a unified proof
of the inequalities, see appendix A of [2]

Lemma 6 Let α and β be non-conjugate algebraic numbers. Then,

|α − β| ≥ 1

2deg(α) deg(β)M(α)deg(β)M(β)deg(α)
.

The final auxiliary results needed are essentially exercises in calculus. The first is
the following, essentially proved in [3].

Lemma 7 Let {an} be an increasing sequence of real numbers satisfying for some
ε > 0, that an > n1+ε for all n ∈ N. Then,

∞∑

n=k

1

an
<

2 + 1/ε

aε/(1+ε)
k

.

Note that in Erdős’ proof, the numerator on the right hand side is left as an unspeci-
fied constant depending on ε. We give a short proof that this constant may be replaced
by 2 + 1/ε.

Proof By assumption, a1/(1+ε)
k > k. Hence,

∞∑

n=k

1

an
=

[a1/(1+ε)
k ]∑

n=k

1

an
+

∞∑

n=[a1/(1+ε)
k +1]

1

an
≤ 1

ak

[a1/(1+ε)
k ]∑

n=k

1 +
∞∑

n=[a1/(1+ε)
k +1]

1

n1+ε
.

For the first sum,

1

ak

[a1/(1+ε)
k ]∑

n=k

1 <
a1/(1+ε)
k

ak
= 1

aε/(1+ε)
k

.

The second sum is estimated by the first summand plus an integral. First,

∞∑

n=[a1/(1+ε)
k +1]

1

n1+ε
= 1

[a1/(1+ε)
k + 1]1+ε

+
∞∑

n=[a1/(1+ε)
k +1]+1

1

n1+ε
.

Since ε/(1 + ε) < 1,

aε/(1+ε)
k < ak ≤ [a1/(1+ε)

k + 1]1+ε,
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so that

1

[a1/(1+ε)
k + 1]1+ε

<
1

aε/(1+ε)
k

.

For the final sum,

∞∑

n=[a1/(1+ε)
k +1]+1

1

n1+ε
<

∫ ∞

[a1/(1+ε)
k +1]

dx

x1+ε
= 1

ε([a1/(1+ε)
k + 1])ε

≤ 1/ε

aε/(1+ε)
k

.

The result follows on combining the inequalities. 
�
The second result is extracted from the proof of the main theorem in [6], where

special cases are used a number of times. We deduce a general form here.

Lemma 8 Let {an}∞n=1 be a sequence of real numbers such that

lim sup
n→∞

an = ∞.

Then for infinitely many k ∈ N,

ak+1 >

(

1 + 1

k2

)

max
1≤n≤k

an .

Proof Suppose to the contrary that an N0 ∈ N exists, such that for k ≥ N0,

ak+1 ≤
(

1 + 1

k2

)

max
1≤n≤k

an .

Then, for any k ≥ N0,

ak+1 ≤
(

1 + 1

k2

)

max
1≤n≤k

an

≤
(

1 + 1

k2

) (

1 + 1

(k − 1)2

)

max
1≤n≤k−1

an

≤ · · ·

≤
k∏

n=N0+1

(

1 + 1

n2

)

max
1≤n≤N0

an

≤
∞∏

n=1

(

1 + 1

n2

)

max
1≤n≤N0

an,

which is finite, and so in contradiction with our assumption. 
�
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3 Proofs of themain theorem

We now prove our main theorem. We argue by contradiction. A preliminary observa-
tion, which is used at several points in the proof, is a lower bound on the tail of the
defining series. Thus, we let

γ =
∞∑

n=1

1

αn
,

and assume that γ is algebraic of degree at most D. Also, let

γN =
N∑

n=1

1

αn

be the N ’th partial sum of the series. Clearly, this is an algebraic number, and we
estimate its degree and Mahler measure by Lemmas 4 and 5. First,

deg(γN ) ≤
N∏

i=n

deg

(
1

αn

)

=
N∏

i=n

deg (αn) =: DN .

For the Mahler measure, we get that

M(γN ) = H(γN )DN ≤
(

2N
N∏

n=1

H

(
1

αn

))DN

=
(

2N
N∏

n=1

H (αn)

)DN

≤
(

2N
N∏

n=1

αn

)DN

,

where the latter equality follows from Lemma 3.
Now, let

γ (N ) =
∞∑

n=N+1

1

αn
= γ − γN .

Note that our assumption that �(αn) > 0 for all n ∈ N or that �(αn) > 0 for all
n ∈ N guarantees that γ (N ) �= 0 for all N ∈ N. Hence, using the above estimates and
Lemma 6,

|γ (N )| = |γ − γN |
≥ 1

2deg(γ ) deg(γN )M(γ )deg(γN )M(γN )deg(γ )
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≥ 1

2D·DN M(γ )DN

(
2N

∏N
n=1 αn

)DDN

= 1
(
2N+1H(γ )

∏N
n=1 αn

)DDN
.

The upshot is the following critical estimate, valid for all N ∈ N,

|γ (N )|
(

2N+1H(γ )

N∏

n=1

αn

)DDN

≥ 1. (2)

At this point, the path to a contradiction is clear. All we need to do is to ensure that
our condition on the growth of the αn implies that Eq. (2) is violated for arbitrarily
large values of N . This is accomplished by obtaining an upper bound on |γ (N )|. Note
that

|γ (N )| =
∣
∣
∣
∣
∣

∞∑

n=N+1

1

αn

∣
∣
∣
∣
∣
≤

∞∑

n=N+1

1

|αn| =
∞∑

n=N+1

1

αn
. (3)

Consequently, in order to arrive at a contradiction, it suffices to prove that

∞∑

n=N+1

1

αn

(

2N+1H(γ )

N∏

n=1

αn

)DDN

< 1 (4)

for arbitrarily large values of N .
The final inequality to be derived depend only on properties of the series∑∞
n=N+1

1
αn

, a series of reciprocals of increasing real numbers, and so the completion
of the proof is just amatter of calculus and in particular application of Lemmas 7 and 8.

In the following, we will assume that the degree of the αn is bounded by some
d ∈ N. Consequently, we may replace DN in inequality to (4) by dN and proceed to
derive a contradiction to this statement. We will discuss this restriction further in the
final section of the paper. In brief, what is required to proceed is an upper bound on
the geometric growth rate of the product of the degrees.

Assume that αn ≥ n1+ε , so that by Lemma 7,

∞∑

n=N+1

1

αn
<

2 + 1/ε

αN+1
ε/(1+ε)

.

To proceed, we need to find a lower bound on αN+1 for infinitely many N . We split
the remainder of the proof into three cases.
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Arithmetic properties of series of reciprocals of… 649

Case I: Suppose that

lim sup
n→∞

αn

1

Dn ∏n−1
i=1 ((d+1)i+d+1) = ∞.

By Lemma 8, for infinitely many values of N ,

αN+1

1
DN+1 ∏N

i=1((d+1)i+d+1) ≥
(

1 + 1

N 2

)

max
1≤n≤N

αn

1

Dn ∏n−1
i=1 ((d+1)i+d+1) .

Note that

log

(

1 + 1

N 2

)

≥ 2N 2 − 1

2N 4 ,

and that

N∏

n=1

((d + 1)n + d + 1)
2N 2 − 1

2N 4 ≥ log 2(d + 1)N ,

so that

(

1 + 1

N 2

)DN+1 ∏N
i=1((d+1)i+d+1)

> 2D
N+1(d+1)N .

Hence, we find that for these infinitely many values of N ,

αN+1 ≥ 2D
N+1(d+1)N

(

max
1≤n≤N

αn

1

Dn ∏n−1
i=1 ((d+1)i+d+1)

)DN+1 ∏N
i=1((d+1)i+d+1)

≥
(
2D

N
αN

)D(d+1)N

(

max
1≤n≤N

αn

1

Dn ∏n−1
i=1 ((d+1)i+d+1)

)DN+1(d+1)
∏N−1

i=1 ((d+1)i+d+1)

=
(
2D

N
αN

)D(d+1)N

(

max
1≤n≤N

αn

1

Dn ∏n−1
i=1 ((d+1)i+d+1)

)DN+1(d+1)N
∏N−2

i=1 ((d+1)i+d+1)

(

max
1≤n≤N

αn

1

Dn ∏n−1
i=1 ((d+1)i+d+1)

)DN+1(d+1)2
∏N−2

i=1 ((d+1)i+d+1)
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≥ · · · ≥

≥
(

2D
N

N∏

n=1

αn
DN−n

)D(d+1)N

.

Consequently, for these values of N ,

∞∑

n=N+1

1

αn
≤ (2 + 1/ε)

(

2D
N

N∏

n=1

αn
DN−n

)−(D(d+1)N )ε/(1+ε)

.

Inserting this into the right hand side of (4), we find that

∞∑

n=N+1

1

αn

(

2N+1H(γ )

N∏

n=1

αn

)DdN

≤ (2 + 1/ε)

(

2D
N

N∏

n=1

αn
DN−n

)−(D(d+1)N )ε/(1+ε) (

2N+1H(γ )

N∏

n=1

αn

)DdN

.

As N can be arbitrarily large, this proves (4) in the first case.
In the following, we will suppose

lim sup
n→∞

αn

1
Dn ∏n−1

i=1 ((d+1)i+d+1) < ∞,

but

lim sup
n→∞

αn

1

Dn ∏n−1
i=1 (di+d) = ∞.

By the first of these conditions,

αn < 2(d+1)n
2

, (5)

for n sufficiently large. We now deal with the remaining two cases.

Case II: Suppose for this case that

αn ≥ 2n (6)

for all n sufficiently large. We require an upper estimate on the tail, γ (N ).
For N sufficiently large, write

|γ (N )| ≤
∞∑

n=N+1

1

αn
=

[log2 αN+1 +1]∑

n=N+1

1

αn
+

∞∑

n=[log2 αN+1 +1]+1

1

αn
.
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Arithmetic properties of series of reciprocals of… 651

We estimate the first sum by the maximum value times the number of summands, so
that

[log2 αN+1 +1]∑

n=N+1

1

αn
≤ log2 αN+1 + 1

αN+1
,

and the second sum by an integral using (6), so that

∞∑

n=[log2 αN+1 +1]+1

1

αn
≤

∫ ∞

[log2 αN+1 +1]
dx

2x
≤ 1/ log 2

αN+1
.

In total, for N large enough, we have on applying (5)

|γ (N )| ≤ 2 log2 αN+1

αN+1
<

2(d + 1)(N+1)2

αN+1
≤ 2dN

2

αN+1
. (7)

To arrive at a contradiction to (2), we need a lower bound on αN+1 valid for N
arbitrarily large. Noting that

log

(

1 + 1

N 2

) N∏

n=1

(dn + d) ≥ log 2N 2dN ,

we may argue by Lemma 8 as in the proof of case I to find that for infinitely many N ,

αN+1 ≥ 2D
N+1N2dN

(

max
1≤n≤N

αn

1
Dn ∏n−1

i=1 (di+d)

)DN+1 ∏N
i=1(d

i+d)

≥
(
2D

N N2
αN

)DdN
(

max
1≤n≤N

αn

1

Dn ∏n−1
i=1 (di+d)

)DN+1d
∏N−1

i=1 (di+d)

=
(
2D

N N2
αN

)DdN
(

max
1≤n≤N

αn

1
Dn ∏n−1

i=1 (di+d)

)DN+1dN ∏N−2
i=1 (di+d)

(

max
1≤n≤N

αn

1

Dn ∏n−1
i=1 (di+d)

)DN+1d2
∏N−2

i=1 (di+d)

≥ · · · ≥

≥
(

2D
N N2

N∏

n=1

αn
DN−n

)DdN

.
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In combination with (7), we now find that for these infinitely many values of N ,

|γ (N )|
(

2N+1H(γ )

N∏

n=1

αn

)DdN

≤ 2dN
2

(

2D
N N2

N∏

n=1

αn
DN−n

)−DdN (

2N+1H(γ )

N∏

n=1

αn

)DdN

≤ C2dN
2+DdN (N+1)−DN+1dN N2

,

where C > 0 is a constant such that

(
H(γ )

∏N
n=1 αn

∏N
n=1 αn

DN−n

)DdN

≤ C,

which may clearly be chosen. Unless d = D = 1, we may choose N so large that this
is < 1, which contradicts (2). When d = D = 1, we are in the case considered by
Erdős [3], and we already have the theorem.

Case III: Assume now that (6) fails for infinitely many values of n, i.e. that

αn < 2n, (8)

for infinitely many values of n. By assumption, for any B large enough (to be fixed),
there are infinitely many n such that

αn ≥ 2BD
n ∏n−1

i=1 (di+d). (9)

Let s be the least natural number satisfying this inequality, and let k ∈ {1, . . . s} be
the largest number satisfying (8). Finally, by Lemma 8, there are infinitely many n for
which

αn >

((

1 + 1

(n − 1)2

)

max
1≤i≤n−1

αi
1/(Di ∏i−1

j=1(d
j+d))

)Dn ∏n−1
j=1(d

j+d)

.

Let r ≥ k be the smallest integer satisfying this inequality.
We claim first that r ≤ s. To see this, suppose for a contradiction that s < r . By

choice of r , for any t ∈ {k + 1, . . . , r − 1},

αt ≤
((

1 + 1

(t − 1)2

)

max
k≤i≤t−1

αi
1/(Di ∏i−1

j=1(d
j+d))

)Dt ∏t−1
j=1(d

j+d)

.
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Applying first (9) and the definition of s, and subsequently the above inequality several
times, noting that k < s < r , we find that

2B ≤ αs
1/(Ds ∏s−1

j=1(d
j+d))

≤
(

1 + 1

(s − 1)2

)

max
k≤n≤s−1

αn
1/(Di ∏n−1

j=1(d
j+d))

≤ · · · ≤
⎛

⎝
s−1∏

j=k+1

(

1 + 1

( j − 1)2

)
⎞

⎠ αk
1/(Dk ∏k−1

j=1(d
j+d))

< 2
s−1∏

j=k+1

(

1 + 1

( j − 1)2

)

≤ 2 sinh(π)

π
< 8. (10)

On choosing B ≥ 3, we obtain the desired contradiction, and we have r ≤ s.
To proceed, note that

r−1∏

n=1

(dn + d) log

(

1 + 1

(r − 1)2

)

≥ d
1
2 (r−1)2+ 1

2 (r−1) 2(r − 1)2 − 1

2(r − 1)4

≥ d4r log 2.

Arguing by Lemma 8 as in the preceding cases,

αr ≥ 2D
rd4r

(

max
1≤n≤r−1

αn

1
Dn ∏n−1

i=1 (di+d)

)Dr ∏r−1
i=1 (di+d)

≥ 2D
rd4r

(
r−1∏

n=1

αn

)Drdr−1

. (11)

With the argument leading to (10), we find that for t ∈ k + 1, . . . , r − 1,

αt
1/(Dt ∏t−1

j=1(d
j+d)) ≤ 8.

Since the sequence αn increases, the above estimates imply by choice of k that

r−1∏

i=1

αi =
k∏

i=1

αi

r−1∏

i=k+1

αi ≤ 2k
2

r−1∏

i=k+1

8D
i ∏i−1

j=1(d
j+d)

.

Note that this immediately implies that for some C > 0 independent of k,

r−1∏

i=1

αi ≤ CDr−1 ∏r−2
j=1(d

j+d)
. (12)
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To finish the proof, we consider |γ (r − 1)| by splitting it into three sums,

|γ (r − 1)| ≤
∞∑

n=r

1

αn
=

[log2 αr ]∑

n=r

1

αn
+

s−1∑

n=[log2 αr +1]

1

αn
+

∞∑

n=s

1

αn
.

For the first sum, as αn increases,

[log2 αr ]∑

n=r

1

αn
≤ log2 αr

αr
.

In the summation range of the second sum, αn ≥ 2n , so

s−1∑

n=[log2 αr +1]

1

αn
≤

∞∑

n=[log2 αr +1]

1

2n
= 2

2[log2 αr +1] ≤ 2

αr
≤ log2 αr

αr
.

The third sum is estimated by Lemma 7,

∞∑

n=s

1

αn
≤ 2 + 1/ε

αs
ε/(1+ε)

.

Hence,

|γ (r − 1)| ≤ 2 log2 αr

αr
+ 2 + 1/ε

αs
ε/(1+ε)

.

Applying (5) and (11) to the first summand,

2 log2 αr

αr
≤ 2(d + 1)r

2

αr
< (d + 1)r

2
21−Drd4r

(
r−1∏

n=1

αn

)−Drdr−1

< 2−Drd3r
(
r−1∏

n=1

αn

)−Drdr−1

.

For the second summmand, by choice of s,

2 + 1/ε

αs
ε/(1+ε)

≤ 2 + 1/ε

(2BD
s
∏s−1

i=1 (di+d))ε/(1+ε)
.

We claim that these inequalities will contradict (2) whenever r is large enough.
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To see this, note that

|(γ (r − 1))|
(

2r H(γ )

r−1∏

n=1

αn

)Ddr−1

<

⎛

⎜
⎝2−Drd3r

(
r−1∏

n=1

αn

)−Drdr−1

+ 2 + 1/ε

(2BDs
∏s−1

i=1 (di+d))ε/(1+ε)

⎞

⎟
⎠

(

2r H(γ )

r−1∏

n=1

αn

)Ddr−1

.

Now,

2−Drd3r
(
r−1∏

n=1

αn

)−Drdr−1 (

2r H(γ )

r−1∏

n=1

αn

)Ddr−1

clearly tends to 0 as r increases. For the second summand, we use (12), so that

2 + 1/ε

(2BDs
∏s−1

i=1 (di+d))ε/(1+ε)

(

2r H(γ )

r−1∏

n=1

αn

)Ddr−1

≤ 2 + 1/ε

(2BDs
∏s−1

i=1 (di+d))ε/(1+ε)

(
2r H(γ )CDr−1 ∏r−2

j=1(d
j+d)

)Ddr−1

,

which evidently also tends to zero as r increases, on noting that s ≥ r .
We now have a contradiction to (2) for a single value of r , provided the value of r

produced above is large enough. However, we need infinitely many counterexamples
to prove the result. This is easy. Recall that k ≤ r ≤ s, and note that if we increase B,
s will increase. Hence, k will increase, considering how k was chosen. It follows that
on increasing B, we will obtain infinitely many values of r so that the above holds.
This is in contradiction with (2) and completes the proof. 
�

4 Concluding remarks

We end our paper with some concluding remarks on possible extensions of our result.
As the reader will have noticed, we have made quite a few assumptions in our proof,
which could be weakened. These have been made in order to simplify the statement
and presentation. We comment on these individually.

The first observation is concerned with the αn being algebraic integers. In fact, this
is needed only in the application of Lemma 3. The assumption can be replaced by any
inequality relating |αn| to M(αn). Note that in the same spirit, we could replace the
assumption that |αn| = αn with a similar relation. Of course, this would change the
growth condition for the limes superior.

The second observation concerns the assumption on the upper bound on deg(αn)

being fixed. In our statement of the main theorem, we introduce a uniform bound on
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the degrees of the numbers αn . This allows us to replace DN = ∏N
n=1 deg(αn) in (2)

by dN throughout, which simplifies calculations enormously. In the interest of clarity,
we will not pursue this any further here, but with additional care, it should be possible
to obtain a growth estimate depending on DN rather than dN .

The third observation concerns the assumption that �(αn) > 0 for all n ∈ N or
that �(αn) > 0 for all n ∈ N. The only purpose of this assumption is to ensure that
γ (N ) �= 0 for all N ∈ N. Any other assumption ensuring this would be sufficient to
ensure the conclusion of Theorem 1with the remaining assumptions being unaffected.
However an assumption ensuring this property is necessary, as it is entirely possible
to construct a sequence of algebraic integers satisfying all the other assumptions of
the theorem, such that the resulting series is rational.

Our final observation concerns the special case when all αn are Pisot or Salem
numbers, so that M(αn) = αn . In our proof of the main theorem, we applied only the
first inequality in Lemma 3 in our derivation of (2). While this inequality is true and
best possible for all algebraic integers, if one specialises to all the αn being Pisot or
Salem numbers, a stronger inequality is obtained, namely that

|(γ (N ))|
(

2N+1H(γ )

N∏

n=1

αn
1/ deg(αn)

)DDN

≥ 1. (13)

This would lead to a weaker assumption on the growth of the sequence of αn .
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