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Abstract
In recent papers and books, a global quantization has been developed for unimodular
groups of type I. It involves operator-valued symbols defined on the product between
the group G and its unitary dual ̂G, composed of equivalence classes of irreducible
representations. For compact or for graded Lie groups, this has already been developed
into a powerful pseudo-differential calculus. In the present article we extend the for-
malism to arbitrary locally compact groups of type I, making use of the Fourier theory
of non-unimodular second countable groups. The unitary dual and its Plancherel mea-
sure being quite abstract in general, we put into evidence situations in which concrete
forms are available. Kirillov theory and parametrizations of large parts of ̂G allow
rewriting the basic formulae in a manageable form. Some examples of completely
solvable groups are worked out.

Keywords Locally compact group · Exponential Lie group · Noncommutative
Plancherel theorem · Pseudo-differential operator · Coadjoint orbit

Mathematics Subject Classification Primary 46L65 · 47G30 · Secondary 22D10 ·
22D25

1 Introduction

Aiming at a pseudo-differential theory working globally for classes of non-
commutative Lie groups, M. Ruzhansky and collaborators, following an undeveloped
idea ofM. Taylor [43, Sect. 1.2] (see also [44]), introduced quantizations making a full
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use of the group structure and the harmonic analysis concepts connected with its repre-
sentation theory. Namely, denoting bŷG the space of classes of equivalence of unitary
irreducible representations of G, to suitable families

{

a(x, ξ) | x ∈ G, ξ ∈ ̂G
}

, where
a(x, ξ) is an operator in the Hilbert space Hξ of the representation ξ , one associates
operators Op(a), acting in various function spaces over G. Using specific properties,
first the cases of compact Lie groups [37] and graded nilpotent Lie groups [16] were
treated and developed into a very detailed formalism. Hörmander-type of symbol
classes are available and this has far-reaching consequences, many traditional results
valid forG = R

n being adapted to theses cases. In the books [16,37] many other recent
relevant referencesmay be found, amongwhichwe cite a few: [2,4,17,23,33,36,38,39].
One can also find there plenty of results and applications, as well as a description of
the advantages of such a framework, that we do not repeat here.

The core of the theory can be extended to much more general classes of topolog-
ical groups. In [30], one treats unimodular second countable type I locally compact
groups (clearly in such a general case not all the techniques from [16,37] can be
adapted). See also [28] for the corresponding Berezin-Toeplitz formalism. However,
non-unimodular type I groups form a rich and important class. Many simple and nat-
ural semi-direct products are of this type. Even in low dimension, the non-unimodular
Lie groups prevail. Many other examples arise in the study of parabolic subgroups of
semisimple Lie groups, that are used to investigate irreducible representations using
extensions of Mackey’s machine.

The first main purpose of this article is to make the necessary adaptations to treat
the non-unimodular case. Since Fourier theory is basic, the key is the non-unimodular
version of the Plancherel theorem of Tatsuuma [42] and Duflo and Moore [11], as
presented in book-form by H. Führ in [18].

So let G be a locally compact group with unit e and unitary dual ̂G. It will be
assumed that our groups are second countable and of type I. The formula

[Op(A)u] (x) =
∫

G

∫

̂G
Trξ

(

A(x, ξ)D
1
2
ξ πξ (xy

−1)∗
)

�(y)−
1
2 u(y)dm̂(ξ)dm(y)

(1.1)

is the starting point for a global pseudo-differential calculus on G. It involves suitable
operator-valued symbols A defined on G × ̂G, the modular function � of the group
and the formal dimension operators Dξ introduced by Duflo and Moore [11]. Formula
(1.1) makes use of the Haar m and Plancherel m̂ measures on G and ̂G respectively.
We also fixed a measurable field of irreducible representations (πξ )ξ∈̂G such that πξ

belongs to the class ξ and πξ acts on a Hilbert space Hξ . The trace Trξ refers to this
Hilbert space.

Formula (1.1) is a generalization of the relation derived in [30, (1.1)] for unimodular
groups, with a difference on the order of the factors that has to do with the choice of a
convention for the Fourier transform. Thus our quantization will cover right invariant
operators whereas the one in [30] gives rise to left invariant operators.

One of the advantages of using operator valued symbols is that one gets a global
approach and a full symbol, free of localization choices, everything relying on har-
monic analysis concepts attached to the group. Even for compact Lie groups there is
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Global and concrete quantizations on general type I groups 561

no notion of full scalar-valued symbols for a pseudo-differential operator using local
coordinates. For a more detailed discussion, for motivations and a full development of
particular cases see [16,30,37]. All these contain historical background and references
to the existing literature treating pseudo-differential operators and quantization in a
group theoretic context.

The first part of the article presents the quantization in the non-unimodular case.
After reviewing the general form of Plancherel’s Theorem, in Sect. 3 the basic con-
structions are indicated. A natural Wigner transformation appears as a dequantization,
i.e. as an inverse of the Op procedure. The integral kernel of Op(A) is computed in
terms of the symbol A. There are also some brief remarks upon the connections with
the Schrödinger representation of suitable crossed product C∗-algebras and with fam-
ilies of (unbounded) Weyl operators, as well as on the Op-calculus for product groups
and for the Abelian case.

In Sect. 4 we state and prove a covariance property, showing how conjugation with
group translations is reflected at the level of the symbols.

Until now, the formalism works mainly at the level of (suitable) L2-spaces, as
required byPlancherel’s Theorem. Section 5 is dedicated to restrictions and extensions.
The treatement of [30, Sect. 5], involving “smooth” compactly supported functions and
corresponding distributions is briefly reviewed, since it does not depend on unimod-
ularity. (For groups without an explicit Lie structure Bruhat’s space D(G) is useful.)
Of course one is also interested in Schwartz-type spaces and their duals, formed of
tempered distributions. Besides the well-known constructructions for nilpotent groups
(that are all unimodular), there is a less known approach valid for solvable group [10],
many of them being non-unimodular.We show that such spacesmay be used in the set-
ting of the global quantization, for extension or restriction purposes, extending known
results from the case R

n .
One could complain that the unitary dual and its Plancherel measure and transform

are complicated and abstract objects. Thus we arrive at the second main goal of this
article. We put into evidence some situations when more explicit and manageable
versions are available and adapt the global quantization to this concrete setting.

The main idea in Sect. 6 is to use Kirillov theory, having as a starting point the
Kirillov map κ : g�/G → ̂G, trying to involve the space g�/G of all coadjoint orbits
in the global pseudo-differential formalism. This works well especially when the
two spaces ̂G and g�/G are not too different. In particular, when G is an exponential
group, Kirillov’s map is a homeomorphism (hence a Borel isomorphism) [26] and it
is possible to replace (̂G, m̂) with an isomorphic copy (g�/G, ν) in the constructions
of the preceding section. The paper [12] supplies information about the measure ν.
Thus one gets an orbital form of the quantization, having its covariance properties.
This may also be adapted to more general situations, being enough to have a good
Kirillov correspondence on controlled subsets with negligible complements. But the
fact is that the orbit space and its measure theory are still intricate and non-explicit if
no extra information is used.

Fortunately, there are cases in which the Plancherel transform has been worked
out in concrete terms. We shall review some of such situations in Sect. 7 and put
our quantization in this perspective. One is mainly interested in stratifying the dual
vector space g�, putting into evidence “the main layer” � ⊂ g� as well as a suitable
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562 M. Măntoiu, M. Sandoval

cross section 	, and using as much Euclidean theory as one can. Ideally, 	 should
be a smooth manifold, explicitly modeled over an open subset of a vector space, also
hoping to convert the Plancherel measure to one equivalent to the Lebesgue measure
and to compute its density. Then a concrete form of the global quantization would be
available. Nilpotent groups are quite easy to deal with [5], but they are unimodular
and we would like to be able to cover more general situations. We rely on results of
Duflo-Raïs [12] and Currey [6–9] for completely solvable groups and indicate briefly
the more complicated situation of exponential groups.

Currey’s parametrizations, valid for such large classes of groups, are remarkable,
actually explicit, but quite involved. But in particular cases it might be easier to get
manageable parametrizations using directly Mackey’s machine of induced represen-
tations. This has been done in [1] for the 3-dimensional connected simply connected
solvable Lie groups in the Bianchi classification. In Sect. 8 we review their results
and put them in the perspective of the concrete global pseudo-differential calculus for
such groups.

A parameter τ (actually a measurable map τ : G → G) can be used in formulas
to govern ordering issues, as a number belonging to [0, 1] was traditionally involved
[41] for τ -quantizations in R

n . It has already been introduced in [30, Sect. 4] for
non-unimodular groups, its role has been analyzed and it has been shown when a
symmetric Weyl-type quantization (corresponding to τ = 1/2 for R

n) is available.
We also make use of this parameter in Sect. 3, to convince the reader that it can
be included even for non-unimodular groups. But we send to [30] for explanations
and results (especially concerning the adjoint operation at the level of symbols and
the ordering of multiplications and convolution operators in this calculus). And in
the second half of the article, for simplicity, we stick to the Kohn–Nirenberg-type
quantization, corresponding to τ(·) = e.

The basic facts and constructions of Sect. 3 and an analysis of the “ax + b′′ group
appeared as an announcement in [32].

Let us make some final comments. Although the idea to involve the irreducible
representation theory of a (suitable) group in the construction of a global pseudo-
differential calculus appeared in the eighties, a large part of the constructions and
results of the present paper are formally new. This is especially true for the concrete
versions, appearing in Sects. 6, 7 and 8 . Up to our knowledge, the basic formulae (3.9),
(6.6), (7.6), (8.3), (8.4), all needing consistent explanations, did nor appear explicitly
in the literature. As soon as one states clearly the main aims of the formalism, the
development follows rather straightforwardly. In particular, the proofs are few and
follow quite obvious lines. Therefore, the present work could mainly be considered an
expository article. But the Harmonic Analysis tools staying behind the constructions
are sophisticated and deep, and putting them to work rigorously in the quantization
setting requires a non-trivial effort. This is particularly the case for non-unimodular
groups, the main topic of the paper. Collecting together and adapting the constructions
needed for the parametrized versions in the exponential (and especially in the com-
pletely solvable case) is also a consistent work, not easily accessible for an expert in
pseudo-differential operators. The general types of groups we consider do not allow
a more detailed unified analytical development of the pseudo-differential calculus. In
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Global and concrete quantizations on general type I groups 563

the future, having the general theory exposed here as a starting point, we intend to
study deeper aspects and applications for interesting subclasses of groups.

2 The unitary dual and the Plancherel transform

We start with a couple of notations. For a (complex, separable) Hilbert space H,
one denotes by B(H) the C∗-algebra of all linear bounded operators in H and by
K(H) the closed two-sided ∗-ideal of all the compact operators. The Schatten-von
Neumann class B

p(H) of order p ∈ [1,∞) is a Banach space. Hilbert-Schmidt
operators form a two-sided ∗-ideal B

2(H) and a Hilbert space with the scalar product
〈A, B〉B2(H) := Tr(AB∗).

Let G be a locally compact group with unit e and fixed left Haar measurem. Being
mainly interested in non-unimodular cases, we recall the role played by the modular
function for substitution of variables

∫

G
f (y) dm(y) =

∫

G
�(x) f (yx) dm(y) =

∫

G
�(y)−1 f (y−1) dm(y). (2.1)

There is a Banach ∗-algebra structure on L1(G): the convolution of two functions is
defined by

( f �g)(x) =
∫

G
f (y)g(y−1x) dm(y),

and the involution is given by

f �1(x) = �(x)−1 f (x−1).

In general, one has a p-dependent isometric involution on L p(G) ≡ L p(G;m) given
by

f �p (x) = �(x)−
1
p f (x−1).

Remark 2.1 The correspondence L2(G) � f → f �2 ∈ L2(G)† is a linear unitary map.
In the following we reserve the notation f � ≡ f �2 for functions in the Hilbert space
L2(G).

Let now G be a type I second countable locally compact group. We set ̂G :=
Irrep(G)/∼= (cf. [13,20]) for all the classes of irreducible strongly continuous unitary
representations ofG and call it the unitary dual ofG. Both Irrep(G) and ̂G are endowed
with (standard) Borel structures [13, Sect. 18.5]. The structure on̂G is the quotient of
that on Irrep(G) and is called the Mackey Borel structure. There is a measure on ̂G,
called the Plancherel measure associated to m and denoted by m̂ [13, Sect. 18.8].

For non-unimodular groups an important role is played by the Duflo–Moore oper-
ators (also called formal dimension operators). They are densely defined positive
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564 M. Măntoiu, M. Sandoval

operators with dense image Dπ : Dom(Dπ ) → Hπ and satisfy almost everywhere
the semi-invariance condition

π(x)Dππ(x)∗ = �(x)−1Dπ , ∀ x ∈ G. (2.2)

Let m̂ be a Plancherel measure in̂G, (πξ )ξ∈̂G a measurable field of representations
and Dπξ ≡ Dξ : Hξ → Hξ a family of densely defined positive operators satisfying
(2.2) for m̂-a. e. ξ ∈ ̂G. We define (in the weak sense) the operator-valued Fourier
transform of a function w ∈ L1(G) as the map

̂G � ξ �→ πξ (w) :=
∫

G
w(y)πξ (y) dm(y) ∈ B(Hξ )

and the Plancherel transform of w ∈ L1(G) ∩ L2(G) as the operator

(Pw)(ξ) ≡ ŵ(ξ) = πξ (w)D1/2
ξ .

In such terms, the main result, that we are going to use repeatedly, is the following
form [11,18,42] of the non-commutative Plancherel theorem (the unimodular case can
be found in [13]):

Theorem 2.2 Let G be a type I second countable locally compact group. There exists a
σ -finite Plancherel measure m̂ on̂G, a measurable field of irreducible representations
(πξ )ξ∈̂G with πξ ∈ ξ , a measurable field (Dξ )ξ∈̂G of densely defined positive operators

on Hξ with dense image, satisfying (2.2) for m̂-almost every ξ ∈ ̂G, which have the
following properties:

1. Let w ∈ L1(G) ∩ L2(G). For m̂-almost all ξ ∈ ̂G, the operator ŵ(ξ) extends to a
Hilbert-Schmidt operator on Hξ and

‖w ‖22 =
∫

̂G
‖ ŵ(ξ) ‖2

B2
dm̂(ξ).

2. The Plancherel transformation extends in a unique way to a unitary operator

P : L2(G) →
∫ ⊕

̂G
B2(Hξ ) dm̂(ξ).

3. The Plancherel measure and the operator field satisfy the inversion formula

w(x) =
∫

̂G
Trξ

(

ŵ(ξ)D
1
2
ξ πξ (x)

∗
)

dm(ξ),

for allw in the Fourier algebra of G (in particular, for allw ∈ D(G)) ; see Sect. 5.

The integral converges absolutely in the sense that ŵ(ξ)D
1
2
ξ extends to a trace-class

operator m̂-a.e. and the integral of the trace-class norms is finite.
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Global and concrete quantizations on general type I groups 565

We make use of the following notations:

B2(̂G) =
∫ ⊕

̂G
B2(Hξ ) dm̂(ξ), B1(̂G) =

∫ ⊕

̂G
B
1(Hξ )D

− 1
2

ξ dm̂(ξ),

B2(G × ̂G) = L2(G) ⊗ B2(̂G), B2(̂G × G) = B2(̂G) ⊗ L2(G). (2.3)

B2(G × ̂G), one of our natural spaces of symbols, has the inner product

〈A, B〉B2 =
∫

G

∫

̂G
Trξ

[

A(x, ξ)B(x, ξ)∗
]

dm̂(ξ) dm(x).

3 The basic definitions: the global quantization and theWigner
transform

We introduce pseudo-differential operators through τ -quantizations for an arbitrary
measurable function τ : G → G. For this we fix a Plancherel measure m and a
measurable field (πξ ,Dξ )ξ∈̂G as in the non-commutative Plancherel Theorem. It is
easy to see that different choices give rise to equivalent constructions.

We recall that to elements u, v of L2(G) one associates the rank one operator

ϒu,v : L2(G) → L2(G), ϒu,v(w) := 〈w, v〉L2(G) u. (3.1)

This induces an isomorphism ϒ : L2(G)⊗ L2(G) → B
2
[

L2(G)
]

, associating integral
operators to kernels

[ϒ(K )u](x) :=
∫

G
K (x, y)u(y)dm(y), (3.2)

such that ϒ(u ⊗ v) = ϒu,v .
The remaining part of the construction, relying on the fact that G is a second

countable type I group, is conveniently summarised in the following commutative
diagram:

L2(G) ⊗ L2(G) L2(G) ⊗ B2(̂G) B2(̂G) ⊗ L2(G)

L2(G) ⊗ L2(G) B
2[L2(G)

]

�id⊗P

�
Cτ

�������Schτ

�
Opτ

�P⊗P−1

�
ϒ

�
Wigτ

�������

FWigτ (3.3)

which will be seen to be composed of isomorphisms. This requires a definition and
some explanations.

Definition 3.1 (a) The Opτ-arrow is called the global τ -pseudo-differential calculus
or the global τ -quantization, it points downwards and it is the inverse of theWigτ-
arrow (the τ -Wigner transformation) pointing upwards. ThusWigτ = (

Opτ
)−1=

(

Opτ
)∗will be seen as a dequantization procedure (a symbol map).
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566 M. Măntoiu, M. Sandoval

(b) We call FWigτ := (

P ⊗ P−1
)◦ Wigτ the τ -Fourier-Wigner transformation.

(c) We call Schτ = ϒ ◦ Cτ the τ -Schrödinger representation.

We now introduce the “change of variable” transformation Cτ . Given a square
integrable function K : G × G → C, we set

[

Cτ(K )
]

(x, y) := �(y)−
1
2 K

(

τ(yx−1)x, xy−1). (3.4)

Proposition 3.2 The transformations Cτ , Schτ ,Opτ ,Wigτ , FWigτ are unitary.

Proof Recall that ϒ andP are unitary. We show that Cτ : L2(G) → L2(G) ⊗ L2(G)

is also unitary. Then this will define the unitary maps Schτ ,Opτ ,Wigτ , FWigτ making
the diagram commute.

The fact that Cτ is well-defined and isometric follows easily from Fubini’s theorem,
the left invariance of the Haar measure and formula (2.1). Then one also checks by
direct computations that the adjoint of Cτ coincides with its inverse and is given by

[

(Cτ )−1(L)
]

(x, y) = �
(

y−1τ(y−1)−1x
) 1
2 L

(

τ(y−1)−1x, y−1τ(y−1)−1x
)

.

(3.5)

��
Remark 3.3 The formulae (3.4) and (3.5) look quite intricate. But let us suppose thatG
is Abelian, in additive notation, and that τ : G → G commutes with inversion (being
a homomorphism, for instance). Then the two formulae read

[Cτ(K )](x, y) = K (x + τ(y − x), x − y),
[

(Cτ )−1(L)
]

(x, y) = L(x + τ(y), x − y + τ(y)). (3.6)

If G = R
n is a vector space, multiplication with a number τ ∈ [0, 1] fits in

our scheme and the formulae are familiar from the theory of τ -quantizations [41],
important particular cases being τ = 0 (Kohn–Nirenberg), τ = 1/2 (Weyl) and τ = 1
(right quantization). In our framework too, the mapping τ is related to ordering issues.
We refer to [30, Sect. 4 and 6] for unimodular groups and to [32, Sect. 6] for discussions
about how the formalism covers multiplication and convolution operators, the way
these are ordered and Weyl-type requirements on τ to have a simple condition on
the symbol A yielding a self-adjoint operator Opτ(A). The relation between different
τ -quantizations is similar to the unimodular case [30, Sect 3].

Remark 3.4 In the important simple case τ(x) = e for every x ∈ G we will skip the
upper index, writting C, Sch,Op,Wig, FWig. One could call Op the Kohn–Nirenberg
global quantization.

Making use of the diagram (3.3) and of the notation (2.3), we have obtained unitary
transformations

Opτ := ϒ ◦ Cτ ◦ (id ⊗ P)−1 : B2(G × ̂G) → B
2[L2(G)

]

(3.7)
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Global and concrete quantizations on general type I groups 567

(global τ -quantization) and its inverse (dequantization)

Wigτ := (id ⊗ P) ◦ (Cτ )−1◦ ϒ−1 : B
2[L2(G)

] → B2(G × ̂G).

Opτ(A) is then called the τ -pseudo-differential operator with symbol A. Unitarity
implies

〈

Opτ(A), T
〉

B2[L2(G)] = 〈

A,Wigτ(T )
〉

B2(G×̂G)
, ∀ A ∈ B2(G × ̂G), T ∈ B

2[L2(G)].
(3.8)

One computes easily

[

Opτ(A)u
]

(x)

=
∫

G

∫

̂G
Trξ

(

A(τ (yx−1)x, ξ)D
1
2
ξ πξ (yx

−1)

)

�(y)−
1
2 u(y) dm̂(ξ) dm(y).

(3.9)

Thus, the integral kernel of Opτ(A) is the square integrable function kerτA = Cτ
[

(id⊗
P)−1A

]

given by

kerτA(x, y) = �(y)−
1
2

∫

̂G
Trξ

(

A(τ (yx−1)x, ξ)D
1
2
ξ πξ (xy

−1)∗
)

dm̂(ξ).

WritingWigτ
u,v := Wigτ(ϒu,v), we get the quantization of rank one operators (3.1)

ϒu,v = Opτ
(

Wigτ
u,v

)

,

where

Wigτ
u,v(x, ξ)

=
∫

G
�

(

y−1τ(y−1)−1x
) 1
2 u

(

τ(y−1)−1x)v(y−1τ(y−1)−1x
)

D1/2
ξ πξ (y)

∗dm(y).

(3.10)

A different but equivalent realization is achieved via the Fourier-Wigner transfor-
mation, taking on elementary vectors u ⊗ v the explicit form (note that the role of the
variables x, y is different from (3.10))

FWigτ
u,v(ξ, y)

=
∫

G
�

(

y−1τ(y−1)−1x
) 1
2 u

(

τ(y−1)−1x)v(y−1τ(y−1)−1x
)

D1/2
ξ πξ (x)

∗dm(x).

Setting ̂A := (

P ⊗ P−1
)

A, the case T = ϒu,v in (3.8) then reads

〈

Opτ(A)u, v
〉

L2(G)
= 〈

A,Wigτ
u,v

〉

B2(G×̂G)
= 〈

̂A, FWigτ
u,v

〉

B2(̂G×G)
. (3.11)
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568 M. Măntoiu, M. Sandoval

Remark 3.5 In the diagram (3.3) we also included the Schrödinger representation
Schτ := ϒ ◦ Cτ defined for K ∈ L2(G × G) by

[

Schτ(K )v
]

(x) :=
∫

G
�(y)−1/2K

(

τ(yx−1)x, xy−1
)

v(y) dm(y). (3.12)

For unimodular groups, it is shown in [30, Sect. 7] how this is related to the the-
ory of crossed product C∗-algebras associated to the action left of the group G by
left translations on C∗-algebras A of complex functions defined on G (or more gen-
eral). Actually (3.12) is the integrated form of a canonical (Schrödinger) covariant
representation of the dynamical system (A, left,G) and it is a representation in the
Hilbert space L2(G) of both the full and the reduced crossed products A�leftG and
A�

red
leftG. The connection to global pseudo-differential operators is given by applying

the partial Plancherel transform. Besides yielding new A-dependent symbol spaces
for the quantization (the projective tensor product L1(G)⊗A is densely contained in
both crossed products) and allowing a neat identification of the compact operators
(those corresponding to the caseA = C0(G)), this formalism is also useful to provide
Fredholm and spectral properties of pseudo-differential operators, as it was done in
[27] for unimodular groups. The non-unimodular ones can be treated very similarly,
so we will not give a detailed approach.

Remark 3.6 For direct products G := G1 × G2 of type I second countable locally
compact groups one has, after natural identifications,

Opτ1×τ2
G1×G2

= Opτ1
G1

⊗ Opτ2
G2

.

For this one has to assume that the quantization parameter τ has the form τ1 × τ2,
leading to Cτ

G = Cτ1
G1

⊗Cτ2
G2

(after suitable unitary identifications based on (G1×G2)×
(G1×G2) ≡ (G1×G1)×(G2×G2)). The assertion is easy to verify starting from (3.7).
In [20, Sect. 7.25] it is established that, in the type I setting, Ĝ1 × G2 can be identified
witĥG1 ×̂G2, and the Plancherel data on G1 ×G2 (measure and Duflo–Moore family)
decomposes as a tensor product of Plancherel data of the two groups (use unicity
properties).

Remark 3.7 When G is Abelian (unimodular, in particular), its unitary dual ̂G is also
an Abelian locally compact group in a natural way, Plancherel measures are Haar
measures of this group and B2(̂G) = L2(̂G). By Pontryagin theory, the second dual
is canonically equivalent to G and thus

̂G × ̂
̂G ∼= ̂G × G ∼= G × ̂G.

This can be used to show that in this case the global quantizations associated to G and
tôG are equivalent.

Summary. Although one can proceed with the τ -quantizations, from now on we
restrict to the basic case τ(·) = e. For the convenience of the reader, and for further
reference, we summarize.
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[Op(A)u](x) =
∫

G

∫

̂G
Tr

(

A(x, ξ)D
1
2
ξ πξ (yx

−1)

)

�(y)−
1
2 u(y) dm̂(ξ) dm(y),

[

Sch(K )v
]

(x) =
∫

G
�(y)1/2K

(

x, xy−1
)

v(y) dm(y),

kerA(x, y) = �(y)−
1
2

∫

̂G
Tr

(

a(x, ξ)D
1
2
ξ πξ (xy

−1)∗
)

dm̂(ξ),

Wigu,v(x, ξ) =
∫

G
�

(

y−1x
) 1
2 u

(

x
)

v
(

y−1x
)

D
1
2
ξ πξ (y)

∗ dm(y),

FWigu,v(ξ, x) =
∫

G
�

(

x−1y
) 1
2 u

(

y)v(x−1y
)

D
1
2
ξ πξ (y)

∗dm(y) . (3.13)

Remark 3.8 Onemay introduce the notion of aWeyl system; this is then used to recover
pseudo-differential operators. This has been done in [30] in the unimodular case;
the elements of the Weyl system were unitary operators, expressing basic commuta-
tion relations in exponentiated form. We indicate briefly and formally the corrections
needed for non-unimodular groups, leading this time to unbounded operators. This
will not be needed or developed below.

We try to write for u, v ∈ L2(G), x ∈ G, ξ ∈ ̂G and φ ∈ Hξ

FWigu,v(ξ, x)φ =
∫

G
[FW(ξ, x) (u ⊗ φ)](y)v(y) dm(y),

Wigu,v(x, ξ)φ =
∫

G
[W(x, ξ) (u ⊗ φ)](y)v(y) dm(y),

for operators FW(x, ξ) and W(x, ξ) in L2(G;Hξ ). This would lead, at least formally,
to formulae as

Op(A) =
∫

G

∫

̂G
Trξ [A(x, ξ)W(x, ξ)]dm(x)dm̂(ξ)

=
∫

G

∫

̂G
Trξ [̂A(ξ, x)FW(ξ, x)]dm(x)dm̂(ξ).

A short computation shows that

[

Wτ
u,v(x, ξ)�

]

(y) = �(y)−1/2[D1/2
ξ πξ (yx

−1)
](

�(x)
)

,
[

FWτ
u,v(ξ, x)�

]

(y) = �(y)1/2
[

D1/2
ξ πξ (xy)

∗](�(xy)
)

,

and the appearence of the non-unimodular ingredients � and D1/2
ξ makes them

unbounded.

Remark 3.9 One is not bound to use irreducible representations. In certain cases we
could make use of other tools, as soon as a reasonable version of the Plancherel
transformation is available, meaning in loose terms a unitary equivalence defined on
L2(G), with explicit inverse and involving concepts from harmonic analysis. Actually,
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570 M. Măntoiu, M. Sandoval

this will be seen in Sects. 6 and 7. We mention briefly another example [35]. By
definition, a generalized motion group is a semidirect product G := V � K, where the
compact group K acts on the Euclidean space V by orthogonal transformations. For
every λ ∈ V let us define the quasi-regular representation

πλ : G → B
[

L2(K)
]

,
[

πλ(v,k)ϕ
]

(h) := e2π i(λ|hv)ϕ(hk).

Setting

F : L1(G) ∩ L2(G) → L2(V; B
[

L2(K)
])

, [F(u)](λ) :=
∫

G
u(v,k)πλ(v,k)dvdk,

one gets by extension an isomorphism F : L2(G) → L2
(

V; B
[

L2(K)
])

and an inversion
formula, leading to a global quantization

OP : L2(G) ⊗ L2(V; B
[

L2(K)
]) → B

2[L2(G)
]

given formally by

[OP(a)u](v,k) :=
∫

G

∫

V
Tr

[

a(v,k; λ)πλ
(

v′ − k′k−1v, k′k−1)]u(v’,k’)dλdv′dk’.

(3.14)

We learned this approach from [35], where the global quantization is developed in a
detailed pseudo-differential calculus with Hörmander-type symbol classes. The rather
simple ingredients in (3.14) are essential for the success of some of the analytical
aspects of the approach. But there is no direct use of the unitary dual in this case. The
quasi-regular representations πλ are irreducible if and only if λ �= 0 and K is Abelian
(which is not the most interesting case). In addition πλ and πλ′

are actually unitarily
equivalent if λ and λ′ are in the same K-orbit (the same sphere in R

n if K = SO(n)).

4 Covariance properties

Let us set

�(x) :=
∫ ⊕

̂G
πξ (x)dm̂(ξ), ∀ x ∈ G. (4.1)

It is a unitary element of the von Neumann algebra
∫ ⊕
̂G B(Hξ )dm̂(ξ) of decomposable

operators in the Hilbert space
∫ ⊕
̂G Hξdm̂(ξ). This von Neumann algebra also acts to

the left and to the right on the direct integral Hilbert space B2(̂G), so we may define
ad�(x) : B2(̂G) → B2(̂G) by the formula

ad�(x)

(∫ ⊕

̂G
T (ξ)dm̂(ξ)

)

:=
∫ ⊕

̂G
πξ (x)T (ξ)πξ (x)

∗dm̂(ξ).
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We also recall the left regular representation

Left : G → B
[

L2(G)
]

,
[

Leftz(u)
]

(x) := u
(

z−1x
)

and the right regular representation

Right : G → B
[

L2(G)
]

,
[

Rightz(u)
]

(x) := �(z)1/2 u(xz).

Proposition 4.1 For any A ∈ B2
( ×̂G

)

and z ∈ one has

Leftz ◦ Opτ(A) ◦ Left∗z = Opτ
[

(

Leftz⊗ ad�(z)
)

A
]

. (4.2)

Proof One can show this starting from (3.9), but it is more illuminating to rely on
(3.7). Setting for any unitary operator S : L2(G) → L2(G)

adS : B
2[L2(G)

] → B
2[L2(G)

]

, adS(T ) := S ◦ T ◦ S∗,

one has to prove adLeftz ◦ Opτ = Opτ ◦ (

Leftz⊗ ad�(z)
)

, i.e.

adLeftz ◦ ϒ ◦ Cτ ◦ (id ⊗ P)−1= ϒ ◦ Cτ ◦ (id ⊗ P)−1◦ (

Leftz⊗ ad�(z)
)

. (4.3)

By using (3.2), one gets immediately

adLeftz ◦ ϒ = ϒ ◦ (

Leftz ⊗ Leftz
)

. (4.4)

Then

(

[(

Leftz ⊗ Leftz
) ◦ C

]

K
)

(x, y) = [C(K )](z−1x, z−1y
)

= �
(

z−1y
)−1/2

K
(

z−1x, z−1xy−1z
)

= �
(

y
)−1/2[(Leftz ⊗ [LeftzRightz]

)

(K )
](

x, xy−1)

=
(

[

C ◦ (

Leftz ⊗ [LeftzRightz]
)]

K
)

(x, y),

so one gets

(

Leftz ⊗ Leftz
) ◦ C = C ◦ (

Leftz ⊗ [LeftzRightz]
)

. (4.5)
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Finally, using the definitions, the semi-invariance (2.2) of the Duflo–Moore opera-
tors and changes of variables relying on (2.1), one computes

[

(

P ◦ [

LeftzRightz]
)

u
]

(ξ) =
∫

G
u
(

z−1xz
)

�(z)1/2πξ (x)D
1/2
ξ dm(x)

=
∫

G
u(x)�(z)−1/2πξ

(

z)πξ (x)πξ (z)
∗D1/2

ξ dm(x)

= πξ (z)
∫

G
u(x)πξ (x)D

1/2
ξ dm(x)πξ (z)

∗

= [

�(z)P(u)�(z)∗
]

(ξ),

to be written

P ◦ [

LeftzRightz] = ad�(z) ◦ P. (4.6)

Now (4.3) follows from (4.4), (4.5) and (4.6) (in which we change z into z−1) and the
proof is finished. ��
Corollary 4.2 For any T ∈ B

2
[

L2(G)
]

and z ∈ G one has

Wigτ
(

Leftz ◦ T ◦ Left∗z
) = (

Leftz⊗ ad�(z)
)(

Wigτ (T )
)

. (4.7)

In particular, for every u, v ∈ L2(G) one has

Wigτ
Leftz(u),Leftz(v) = (

Leftz⊗ ad�(z)
)(

Wigτ
u,v

)

. (4.8)

Proof SinceWigτ andOpτ are reciprocal maps, (4.7) follows immediately from (4.2).
To get (4.8) one sets T := ϒu,v , uses Wigτ

u,v := Wigτ(ϒu,v) and the formulas

Sϒu,vS∗ = ϒS(u),S̃(v)
with S̃(v) := S(v), noticing that Left∗z = Leftz−1 commutes

with complex conjugation. ��

5 Restrictions and extensions of the pseudo-differential calculus

It is interesting and useful to extend the quantization tomore general classes of symbols
and to operators which are only densely defined on L2(G).

One option is to use the Bruhat space D(G) and its strong dual D′(G). They are
defined in [3] and are meant to extend to the locally compact group case the spaces of
smooth compactly supported test functions C∞

c (G) and its dual, formed of distribu-
tions, that only makes sense for Lie groups. We refer to [3] and to [30, Sect. 5] for the
definitions and the basic properties; for Lie groups they have the usual meaning. In
[30, Sect. 5] they were used to extend the global quantization for the case of unimod-
ular groups. The calculus being now available in general form, the same treatment
is available, since the Bruhat spaces need no unimodularity condition and the new
features of the non-unimodular Plancherel transform are easily taken into account.
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Global and concrete quantizations on general type I groups 573

For completeness, we only state briefly the extension result. If G is a Lie group then
D(G) = C∞

c (G), with the usual inductive limit topology; for the general case, the
reader should consult [3].

One defines D(̂G) := P[D(G)], also transferring by the Plancherel map the
locally convex topology from the Bruhat space D(G). One has continuous and dense
embeddings D(G) ↪→ Cc(G) ↪→ L2(G), so D(̂G) is a dense subspace of B2(̂G).
Unfortunately, D(̂G) is difficult to describe explicitely even in some of the simplest
cases. By the Kernel Theorem for Bruhat spaces [3, Sect. 5] one has

D(G × G) ∼= D(G)⊗D(G) ↪→ L2(G × G)

continuously and densely. The symbol ⊗ indicates the projective tensor product, but
we recall that the spaces involved here and below are known to be nuclear. This refers
in particular to

D
(

G × ̂G
) := D(G)⊗D(̂G) ↪→ B2(G × ̂G).

Taking into account the strong dual, one gets a Gelfand triple D
(

G×̂G
)

↪→ B2
(

G×
̂G

)

↪→ D ′(G × ̂G
)

.

Proposition 5.1 The pseudo-differential calculus Op : L2(G)⊗B2(̂G) → B
2
[

L2(G)
]

restricts to a topological isomorphism Op : D
(

G × ̂G
) → L

[D′(G),D(G)
]

and
extends to a topological isomorphism Op : D ′(G ×̂G

) → L
[D(G),D′(G)

]

.

We denoted by L(M,N ) the space of all the linear continuous operators between
the topological vector spaces M and N . Besides applying the Kernel Theorem, one
has to check that C : D(G × G) → D(G × G) is a linear homomorphism. If τ -
quantizations are considered, clearly one needs specific requirements on τ to ensure
the same property for Cτ introduced in (3.4).

Remark 5.2 Note that D(G) is left invariant by the (left and right) translations. The
covariance relations (4.2) and (4.7) remain true in the extended setting, with suitable
reinterpretations.

Extending concepts as Schwartz functions and tempered distributions to Lie groups
is tricky. For connected simply connected nilpotent groups this is done quite easily by
composing with the inverse of the exponential map exp : g → G elements of the usual
Schwartz space S(g) of the Lie algebra. Even if for the more general exponential
groups, by definition, the exponential map is a diffeomorphism, the same strategy
is insufficient, since in general the resulting S(G) would be incomparable with the
Lebesgue spaces L p(G). A convenient modification has been proposed in [10] for
connected simply connected solvable groups (named Solvable from now on), and it
may be used for our extension purposes.

So let us fix a type I Solvable Lie group G with Lie algebra g and a basis
{X1, . . . , XN } of g. The following definition can be extracted from [10]:

Definition 5.3 The Borel function σ : G → R+ is an admissible weight if
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574 M. Măntoiu, M. Sandoval

(i) there exists q ∈ N such that
∫

G
dm(x)
σ (x)q < ∞,

(ii) there exists m ∈ N such that �(x) ≤ σ(x)m for every x ∈ G,
(iii) there exist r ∈ N and C ≥ 1 such that C−1σ(x)1/r ≤ σ

(

x−1
) ≤ Cσ(x)r for

every x ∈ G,
(iv) there exist s ∈ N andC ≥ 1 such that σ(xy) ≤ Cσ(x)sσ(y)s for every x, y ∈ G.

Actually [10] starts with the construction of an explicit function σ , depending
on some choices and a special realization of the Solvable group G, and then the
properties above are deduced. But the subsequent results of [10] then only depend on
the properties and not on the explicit form of the weight σ .

Definition 5.4 An admissible weight σ on the Solvable group G being given, one
defines the Schwartz-type space Sσ (G) to be the family of all smooth complex func-
tions w on G such that all the seminorms

‖w‖∞
k,α := ‖σ k Xαw‖L∞(G), k ∈ N, α ∈ N

N (5.1)

are finite.

The function σ being admissible, in [10] it is shown that Sσ (G) is a nuclear Fréchet
space with continuous dense embedings D(G) ↪→ Sσ (G) ↪→ L p(G) for every p ∈
[1,∞]. See also [40]. The same topological vector space emerges if in (5.1) one
uses L p-norms instead of the uniform norm, right Haar measures instead of left Haar
measures; the convention upon Xα (right or left invariant) is also not important. At
least for the particular choice of σ indicated in [10], one gets S(g) = Sσ (G) ◦ exp in
the nilpotent case, while for groups with polynomial growth Sσ (G) can be identified
with S(RN ).

The topological dual of Sσ (G) with the strong dual topology is denoted by S ′
σ (G),

its elements are tempered distributions. It is shown that they are finite sums of Xα-
derivatives of continuous functions that are growing slowly at infinity with respect to
the weight (i.e. satisfying |u| ≤ Cσ l for some l ∈ N).

To state our extension result, we also define Sσ

(

̂G
) := P[Sσ (G)] ↪→ B2(̂G),

with the Fréchet structure transported from Sσ (G). Once again this is a space which is
difficult to describe in concrete terms even in simple cases. Then we setS ′

σ (G×̂G) for
the topological dual of the (projective) tensor product Sσ (G)⊗Sσ (̂G) ↪→ B2(G×̂G).

Proposition 5.5 The pseudo-differential calculus Op : L2(G)⊗B2(̂G) → B
2
[

L2(G)
]

extends to a topological isomorphism Op : S ′
σ

(

G ×̂G
) → L

[Sσ (G),S ′
σ (G)

]

, where
the space of distributions is endowed with the strong dual topology, while the operator
space carries the topology of uniform convergence on bounded subsets.

Proof Recalling fromSect. 3 thatOp = ϒ◦C◦(

id⊗P−1
)

in the L2-type spaces, every
ingredient being unitary, let us take into consideration the next diagram, describing
the extension:

S ′
σ (G × ̂G) S ′

	(G × G)

L
[Sσ (G),S ′

σ (G)
] S ′

	(G × G)

�(id⊗P)†

�
Op

�
C

	ϒ

123



Global and concrete quantizations on general type I groups 575

For the product group G × G we use the admissible weight (x, y) �→ 	(x, y) :=
σ(x)σ (y). The choice 	̃ in [10, Sect. 7] is different, but it is easy to check that

1

c
	̃(x, y) ≤ 	(x, y) ≤ 	̃(x, y)2, ∀ (x, y) ∈ G × G

(the first estimate appears at [10, (7.1)] and the second one is obvious), so the semi-
norms inS	(G×G) andS	̃(G×G) are equivalent, the two spaces being the same, with
the same topology. Having this in mind, Corollary 7.4 of [10], a version of Schwartz’s
Kernel Theorem for our spaces, says that the lower horizontal arrow is a topological
isomorphism extending (3.2).

The upper horizontal arrow is, by definition, the dual (adjoint) of

S	(G × G) ∼= Sσ (G)⊗Sσ (G)
id⊗P−→ Sσ (G)⊗Sσ (̂G) =: Sσ (G × ̂G),

where the first congruence is [10, Th.7.1] (recall that we can switch from 	 to 	̃).
We use standard properties of the projective tensor products and the very definition of
Sσ (̂G) to justify the fact that the restriction id⊗P is an isomorphism.

Finally, to justify the right vertical arrow, by duality, one only has to check that

C : S	

(

G × G
) → S	

(

G × G
)

, [C(K )](x, y) := �(y)−1/2K (x, xy−1)

is a homeomorphism. This is rather long, but straightforward, using the admissibility
of the weight σ . ��
Remark 5.6 Similar ideas may be put to work to show that Op : L2(G) ⊗
B2(̂G) → B

2
[

L2(G)
]

restricts to a topological isomorphism Op : Sσ

(

G × ̂G
) →

L
[S ′

σ (G),Sσ (G)
]

. Setting L(M) := L(M,M), one also has algebras of global
pseudo-differential operators L

[Sσ (G)
]

and L
[S ′

σ (G)
]

and a ∗-algebra of opera-
tors L

[Sσ (G)
] ∩ L

[S ′
σ (G)

]

. In general they are not comparable with B
2
[

L2(G)
]

or
B
2
[

L2(G)
]

. Behind these operator algebras there are algebras of symbols with com-
position and involution given by

A#B := Op−1[Op(A)Op(B)
]

and A# := Op−1[Op(A)∗
]

.

All these may be recast in the framework of Fréchet-Hilbert algebras and their asso-
ciated Moyal algebras [29], but we shall not do this here.

6 Kirillov theory and coadjoint orbit quantizations for exponential
groups

Let us first mention briefly some notions belonging to Kirillov theory [25]. Tacitly, the
Lie groupwill always be type I, connected, simply connected and N -dimensional, with
Lie algebra g and dual g� of g. For the duality, one uses the notation 〈X , θ〉 := θ(X),
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576 M. Măntoiu, M. Sandoval

(X , θ) ∈ g × g�. We recall the adjoint and coadjoint actions of G on g and g�,
respectively, given by

Adx (X) = d

dt

∣

∣

∣

t=0
x et X x−1 = d

dt

∣

∣

∣

t=0
innx

(

et X
)

,

Ad�
x (θ) = θ ◦ Ad−1

x ,

where innx (y) = xyx−1 defines an inner automorphism of G. Note that exp ◦Adx =
innx ◦ exp. For every θ ∈ g�, the Lie algebra g(θ) of the isotropy group G(θ) := {

x ∈
G | Ad�

x (θ) = θ
}

can be written as g(θ) = {X ∈ g | θ ◦ adX = 0}.
It is known that the orbits of the action Ad�, called coadjoint orbits, are invariant

symplectic manifolds
{(O, ωO) |O ∈ g�/G

}

(being the symplectic leaves of a Poisson
manifold structure on g�). So there are invariant measures, the Liouville measures ωO
on the orbits O ; they are unique up to a positive constant. Let us also set 2n for the
maximal dimension of the coadjoint orbits, so N = 2n + m for some m ∈ N.

Definition 6.1 An exponential group [21] is a Lie group for which the exponential
map exp : g → G is a diffeomorphism (with inverse log : G → g).

The exponential property is stable for Lie subalgebras or quotients. Connected sim-
ply connected nilpotent Lie groups are exponential. Many Frobenius groups (those
having at least one open coadjoint orbit) are exponential. On the other hand, exponen-
tial groups are solvable, connected and simply connected.

In the exponential case, we denote by κ : g�/G → ̂G the Kirillov map [25], also
admitting the notation ξO := κ(O). We write ξ → Oξ for the inverse map. This type
of notation can be extended, setting ωξ for the symplectic form on Oξ and ωξ for the
corresponding canonical invariant measure.

Some basic facts for exponential groups (or Lie algebras) are (cf. [12,21,26]):

(BF1) Kirillov’s map κ : g�/G → ̂G is a homeomorphism. The pushforward κ−1(m̂)

of the Plancherel measure by κ−1 is equivalent to the pushforward ν̃ := q(dθ)

by the quotient map q : g� → g�/G of the Lebesgue measure.
(BF2) Besides Lebesgue measures dθ one is also interested in measures μ on g� that

are Ad�-invariant. These are of the form dμ�(θ) = �(θ)dθ , for some positive
�−1-semi-invariant Borel function� : g� → R+. Semi-invariance means that
one has almost everywhere

�
[

Ad�
x (θ)

] = �(x)−1�(θ). (6.1)

It is known that such functions exist, and rational choices are possible.
(BF3) Such a measure μ� being given, there is a unique basic measure ν� on g�/G

over which it decomposes into the fiber measures ωO on the orbits, which
formally could be written as μ� = ∫

g�/G
ωO dν�(O). The precise meaning is

that for every continuous compactly supported function h : g� → C one has

∫

g�

h(θ)�(θ)dθ =
∫

g�/G

[∫

O
h(θ)dωO(θ)

]

dν�(O). (6.2)
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In addition, ν� is the image through κ−1 of one of the Plancherel measures m̂
on̂G.

(BF4) It is also proven in [12] that, for any coadjoint orbit O, the set of functions
� : O → R+ satisfying the semi-invariance condition (6.1) is in one-to-one
correspondence � ↔ D�,O ≡ D�,ξO with the Duflo–Moore operators asso-
ciated to the class ξO ∈ ̂G (satisfying (2.2)). In a certain sense D�,O dν�(O)

is canonical and thus does not depend on �.
(BF5) It is possible to correlate the choices in such a way as to rewrite the Plancherel

Inversion Formula (at least) for any v ∈ D(G) = C∞
c (G) in the form

v(e) =
∫

g�/G

Tr
[

D1/2
�,O πO(v)D1/2

�,O
]

dν�(O). (6.3)

Applying a left translation to v leads to the full orbital form of Plancherel’s
Inversion Formula

v(x) =
∫

g�/G

Tr
[

D1/2
�,O πO(v)πO(x)∗ D1/2

�,O
]

dν�(O). (6.4)

We are going now to recast the global pseudo-differential calculus for exponential
groups in the setting of Kirillov’s theory. Relying on the facts above, one can replace
the space B2

(

̂G
) := ∫ ⊕

̂G B
2(Hξ )dm̂(ξ) with its isomorphic version

B2(g�/G
) :=

∫ ⊕

g�/G

B
2(HO)dν�(O). (6.5)

The isomorphism denoted by K , have its roots in the Kirillov map. The orbital
Plancherel transformation

Porb : L2(G) → B2(g�/G
)

,
[

Porb(v)
]

(O) := πO(v)D1/2
�,O

being unitary, with inverse extending (6.4), we are lead to the orbital form of the global
quantization

Oporb : L2(G) ⊗ B2(g�/G
) → B

2[L2(G)
]

, Oporb := ϒ ◦ C ◦ (id ⊗ Porb)
−1,

obviously equivalent to Op by taking into account the unitary map

(id ⊗ Porb) ◦ (id ⊗ P)−1= id ⊗ K : L2(G) ⊗ B2(
̂G

) → L2(G) ⊗ B2(g�/G
)

.
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In terms of the Schrödinger representation of Remark 3.5, there is also the direct
definition Oporb = Sch ◦ (id ⊗ Porb)

−1. One gets

[

Oporb(B)u
]

(x)

=
∫

G

∫

g�/G

Trξ
[

B(x,O)D1/2
�,O πO(yx−1)

]

�(y)−
1
2 u(y) dν�(O) dm(y).

(6.6)

Remark 6.2 Let us set

�orb(x) :=
∫ ⊕

g�/G

πO(x)dν�(O) ∈
∫ ⊕

g�/G

B(HO)dν�(O), ∀ x ∈ G, (6.7)

and then ad�orb(x) : B2
(

g�/G
) → B2(g�/G) by

ad�orb(x)

(

∫ ⊕

g�/G

T (O)dν�(O)
)

:=
∫ ⊕

g�/G

πO(x)T (O)πO(x)∗dνψ(O).

For B ∈ B2
(

G×g�/G
)

and z ∈ G one has the orbital version of the covariance relation
(4.2)

Leftz ◦ Oporb(B) ◦ Left∗z = Oporb
[

(

Leftz⊗ ad�orb(z)
)

B
]

.

Remark 6.3 The extension results of Sect. 5 may easily be adapted to this setting, just
by replacing the abstract Plancherel map with the orbital one.

7 Completely solvable Lie groups and the concrete form of the
quantization

One still needs to replace the orbit space with a nicer version and to describe explicitly
themeasure ν� in this new realization. To do this, for exponential groups, onemay rely
on [7,8], where a parametrization of (large parts of) the orbit space is put into evidence,
including an explicit form of the measure ν� . But the corresponding results for the
subclass of completely solvable Lie groups, given in [9] and applied to Plancherel
theory in [6], are more manageable. For simplicity, we treat the completely solvable
case anddedicateRemark7.5 to somecomments on the changes needed for exponential
groups.

We recall that a (connected simply connected) Lie group is called completely
solvable if its (real) N -dimensional Lie algebra g satisfies the following equiva-
lent conditions: (a) the spectrum (eigenvalues) of all the operators adX : g → g
(X ∈ g) are all real, (b) there is a sequence of ideals {0} = g0 ⊂ g1 ⊂ · · · ⊂
gN−1 ⊂ gN = g with dim gk = k for every k ∈ {1, . . . , N }. We also recall that
connected simply connected nilpotent ⇒ completely solvable ⇒ exponential ⇒
solvable and that all the implications are strict.
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There is a complete stratification for completely solvable groups (as well as for the
exponential ones), but “the main fine layer” will be enough for us. The starting point
is given by the inclusions

g� ⊃ g�◦ ⊃ � =
⊔

ε∈E
�ε. (7.1)

We do not describe the open subset g�◦, which will not be directly relevant. We
mentioned it only to make the connection with Pukansky’s rough stratification, valid
for every solvable group. Let us give a description of the ingredients of (7.1) and the
role they play. More precise results, also containing parametrizations of the coadjoint
orbits and computations of the Liouville measures, are in [6, Th.1.2, Lemma1.3]. The
constructions depend on a choice of a Jordan-Hölder basis in g.

A Zariski-open subset of the vector spaceW (applied toW = g�, for instance) is the
union of a family of sets of the form {θ ∈ W | Pα(θ) �= 0}, where each Pα : W → R

is a polynomial. So Zariski-open implies open. If it is not void, a Zariski-open subset
is dense and has Lebesgue-negligible complement.

The subset� is non-void and Zariski-open (so it is dense in g� and has full Lebesgue
measure) and Ad�-invariant and all the coadjoint orbits contained in � have maximal
dimension 2n (but this is also true for the larger set g�◦). It possesses an algebraic subset
	, homeomorphic to �/G, which is a (topological) cross-sections for all the orbits in
�. Let us denote the homeomorphism by h : �/G → 	.

Since there is no nice description of 	, the set � is further decomposed as a finite
union over ε ∈ E of disjoint open subsets �ε , with 	ε := 	 ∩ �ε easier to describe.
One has #(E) ≤ 2n . For every ε ∈ E there is a direct sumdecomposition g� = Vε⊕V ε

with dim Vε ≥ 2n and dim Vε ≤ m := N − 2n. One also finds a rational function

pε : �ε ⊂ Vε → V ε, Gr(pε) = 	ε (7.2)

defined on a Zariski-open subset �ε ; the role of its graph is indicated in (7.2). Then
the canonical projection

prε : g� = Vε ⊕ V ε → Vε

defines by restriction a rational diffeomorphism 	ε
∼= �ε . So we get a (rational

diffeomorphic) parametrization of the useful cross-section 	ε (already a homeomor-
phic version of the slice �ε/G of the orbit space). Finally, by composing the suitable
restrictions, one gets the homeomorphism hε := prε ◦ hε : �ε/G → �ε ,

�ε/G �ε ⊂ Vε

	ε

�hε

�
hε








�
prε

serving among others to endow �ε/G with the structure of a differentiable manifold.
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580 M. Măntoiu, M. Sandoval

The remaining part of the job is to transport to the Euclidean open sets �ε , with
their Lebesguemeasures dλ, as much relevant theory as we can.We recall from Sect. 6
that to any rational semi-invariant function � : g� → R one uniquely associates:

• a family
{

D�,O | O ∈ g�/G
}

of Duflo–Moore operators labeled by the coadjoint
orbits,

• a measure ν� on the orbit space, bringing its contribution to the decomposition
(6.2) and to the Plancherel-type inversion formula (6.4).

The main result of [7] tells us that, for a certain polynomial Pε : g� → R (proportional
to a Pfaffian acting on elements of the Jorden–Hölder basis), the pushforward by hε

of the restriction ν�,ε to �ε/G satisfies

[

hε(ν�,ε)
]

(dλ) =: d��,ε(λ) = γ�,ε(λ)dλ,

with γ�,ε(λ) := ∣

∣�
[

pr−1
ε (λ)

]∣

∣

∣

∣Pε

[

pr−1
ε (λ)

]∣

∣. (7.3)

Of course one has γ�,ε ◦ prε = ∣

∣�Pε

∣

∣ (absolute value of a rational function), which
is useful for expressing the “shorter” pushforward hε(ν�,ε), but then using pr−1

ε (dλ)

is less attractive.

Remark 7.1 If G has irreducible representations that are square integrable, than each
refined layer �ε is a single coadjoint orbit, so �ε is a (the) point in a 0-dimensional
vector space Vε and it is of course an atom.

So now, specifying a “generic” orbit O ∈ �/G reduces to specifying some ε ∈ E
and some element λ ∈ �ε ⊂ Vε . As a consequence of the above, (6.3) reads now

v(e) =
∑

ε∈E

∫

�ε

Tr
[

D1/2
�,λ,ε πλ,ε(v)D1/2

�,λ,ε

]

∣

∣�
[

pr−1
ε (λ)

]∣

∣

∣

∣Pε

[

pr−1
ε (λ)

]∣

∣ dλ,

only involving integration on a finite number of open subsets of the vector spaces Vε .
By a left translation we arrive at the concrete Plancherel inversion formula

v(x) =
∑

ε∈E

∫

�ε

Tr
[

D1/2
�,λ,ε πλ,ε(v)πλ,ε(x)

∗ D1/2
�,λ,ε

]

∣

∣�
[

pr−1
ε (λ)

]∣

∣

∣

∣Pε

[

pr−1
ε (λ)

]∣

∣ dλ.

(7.4)

Corollary 7.2 Let us also consider the open subsets
{

̂Gε := κ
(

�ε/G
) | ε ∈ E

}

of the
unitary dual̂G. Then̂G� := ⊔

ε∈E ̂Gε is an (open) dense subset of ̂G with Plancherel-
negligible complement. In addition eacĥGε

∼= �ε/G ∼= �ε is endowedwith a structure
of a differentiable manifold.

These facts suggest considering the Hilbert space

B2
con(�) :=

⊕

ε∈E

∫ ⊕

�ε

B
2(HOλ

)

d��,ε(λ) ∼=
⊕

ε∈E

∫ ⊕

�ε/G

B
2(HO

)

dν�,ε(O),

(7.5)
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isomorphic to

B2(
̂G

) :=
∫ ⊕

̂G
B
2(Hξ )dm̂(ξ) ∼=

⊕

ε∈E

∫ ⊕

̂Gε

B
2(Hξ

)

dm̂ε(ξ),

where m̂ε is the restriction of the Plancherel measure to the open subset ̂Gε :=
κ
(

�ε/G
)

.
The concrete Plancherel transformation

Pcon : L2(G) → B2
con

(

�),
[

Pcon(v)
]

(λ) := πOλ
(v)D1/2

�,Oλ
≡ πλ(v)D1/2

�,λ

being unitary, with inverse indicated by (7.4), we are lead to the concrete form of the
global quantization

Opcon : L2(G) ⊗ B2
con(�) → B

2[L2(G)
]

, Opcon := ϒ ◦ C ◦ (id ⊗ Pcon)
−1,

obviously equivalent to (3.7) by taking into account the unitary map

(id ⊗ Pcon) ◦ (id ⊗ P)−1 : L2(G) ⊗ B2(
̂G

) → L2(G) ⊗ B2
con

(

�).

In terms of the Schrödinger representation there is also the direct definition

Opcon = Sch ◦ (id ⊗ Pcon)
−1.

One gets

[

Opcon(B)u
]

(x)

=
∑

ε∈E

∫

G

∫

�ε

Trξ
[

B(x, λ)D1/2
�,λ πλ(yx

−1)
]

�(y)−
1
2 u(y) γ�,ε(λ)dλ dm(y).

(7.6)

The extension results of Sect. 5 may easily be adapted to this setting, by replacing
the abstract Plancherel map with the concrete one.

Remark 7.3 There is an obvious adaptation of the covariance results Proposition 4.1
or Remark 6.2 to the concrete framework. Setting

�con(x) :=
⊕

ε∈E

∫ ⊕

�ε

πλ(x)γ�,ε(λ)dλ ∈
⊕

ε∈E

∫ ⊕

�ε

B(Hλ)γ�,ε(λ)dλ, ∀ x ∈ G,

in terms of the corresponding ad�con(x) : B2
con(�) → B2

con(�), one has the concrete
covariance relation for B ∈ B2(G) ⊗ B2

con(�) ≡ B2(G × �) and z ∈ G

Leftz ◦ Opcon(B) ◦ Left∗z = Opcon
[

(

Leftz⊗ ad�con(z)
)B

]

.
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Example 7.4 One of the simplest situations occurs when G is a connected simply con-
nected nilpotent Lie group for which there are flat coadjoint orbits [5,34] (equivalently,
if there are square integrablemodulo the center irreducible representations). Of course,
such groups are unimodular, so already the modular function, the Duflo–Moore oper-
ators and the function� are trivial. In this case, one can take E to be a singleton and�

is a Zariski open subset of the dual z� of the center z of the Lie algebra g. Specifically,

� = {

θ ∈ z� | Pf(θ) �= 0
}

,

where Pf : z → R is a certain explicit Pfaffian, a coadjoint-invariant homogeneous
polynomial. The density of the measure � on � ⊂ g� with respect to the Lebesgue
measure of the vector space g� is proportional to |Pf(·)|. This case has been considered
from several points of view in [31], so we are not going to give further details.

Remark 7.5 We describe briefly some complications occurring for exponential groups
that are not completely solvable; the details can be found in [7,8]:

• This time one must start with a basis of the complexification gC of the Lie algebra
g, satisfying some precise conditions.

• A convenient big open invariant subset � ⊂ g� is a bundle over a cross-section 	.
• This cross-section 	, still an algebraic manifold, has a more complicated nature.
Even after suitable localizations, it is not modelled by Zariski-open subsets of
some vector subspace V . Instead of V one uses Cartesian products of pieces that
are of one of the forms R, C, {−1, 1} or T. The natural “Lebesgue” measures of
these pieces contribute now to the part dλ in the concrete measure (7.3).

• The density in (7.3) needs a correction by a factor involving some of the roots of
the coadjoint action.

• Some functions needed for parametrization, instead of rational, are now only real
analytic.

• The Duflo–Moore operators take a precise form (multiplication by the modular
function), if the Vergne polarization is chosen for the realizations of the irreducible
representations.

8 The connected simply connected solvable Bianchi groups

Although the results of the previous section are explicit (if one follows closely the
details in [6,7]), they are quite complicated. In certain particular cases it might be
easier to rely on some direct treatment, as [1].

We recall that the 3-dimensional real Lie algebras have been long ago classified
modulo isomorphy by Bianchi in 9 classes gW with W = I, II, . . . , IX. The classes
gVIII and gIX are simple and they do not concern us here. The remaining ones are all
solvable, most of them exponential actually (see below). The corresponding connected
simply connected solvable Lie groups

{

GW | W = I, II, . . . ,VII
}

are the topic of this
section. The classes are indicated specifying a special member easy to identify.
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The first Bianchi group is the vector space GI = R
3, and it is clear that the global

quantization in this case is just the usual Kohn–Nirenberg quantization [19,41], the
initial motivation of all our approach. We do not review it here.

The second one is the Heisenberg group GII = H3 (nilpotent and thus unimodular).
Its global quantization has been repetedly considered before, so we will not treat it.
See [16, Sect. 6] for a very detailed approach (including many references) as well as
Example 7.4.

The third one is GIII = Aff × R, the direct product between the affine group Aff
(also called “ax + b”) of the real line and the one-dimensional vector space R. We
treated Aff in [32], see also [15,22], and for the direct product one can use Remark 3.6.
For completeness, we are now going to indicate briefly the form of the global pseudo-
differential operators.

Thus GIII = Aff × R = R+ × R × R with composition law

(a, b; c) · (

a′, b′; c′) = (

aa′, ab′ + b; c + c′).

The left Haar measure is |a|−2dadbdc, and the right Haar measure is |a|−1dadbdc,
hence the modular function is given by �(a, b; c) = |a|−1.

The unitary dual ̂Aff consists only of two points with strictly positive Plancherel
measure and a null set of one-dimensional representations [19, Sect. 6.7], that we can
neglect. The two main representations are square integrable and act onH± = L2(R±)

by

[π±(a, b)ϕ](s) = |a|1/2e2π ibsϕ(as).

TheDuflo–Moore operator are (D±ϕ)(s) = |s| ϕ(s).Correspondingly, the dual aff� of
the Lie algebra, identified withR

2, has the two open coadjoint orbitsO± := {(α, β) ∈
R
2 | ±α > 0} (half planes), while all (α, 0) are fixed points. Remark 7.1 is relevant

here. The contribution ofAff to the space of symbols is L2(Aff)⊗[

B
2(H−)⊕B

2(H+)
]

(see (7.5); here E = {±}).
Taking into consideration the dual ̂R of R, previous formulae and Remark 3.6, the

quantization reads

[Op(B)u](a, b; c)

=
∑

±

∫ ∞

0

∫∫∫

R3

e−icζ

|a′|3/2 Tr±
(

B±(a, b; c |ζ )D
1
2±π±

(

b − a

a′ b
′, a

a′
)∗

)

u(a′, b′; c′) da′db′dc′dζ

=
∑

±

∫ ∞

0

∫∫

R2
Tr±

(

B̃±(a, b; c |c)D
1
2±π±

(

b − a

a′ b
′, a

a′
)∗

)

u(a′, b′; c′) da
′db′dc′

|a′|3/2 .

By ˜ we indicated a (suitably normalized) partial Euclidean Fourier transformation.
Traces are computed with respect to the Hilbert spaces H± and the symbol B ≡
(B−,B+) can be seen as an element of
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584 M. Măntoiu, M. Sandoval

(

L2(Aff) ⊗ [

B
2(H−) ⊕ B

2(H+)
]

)

⊗
(

L2(R) ⊗ L2(̂R)
)

∼= L2(G × ̂R; B
2(H−)

) ⊕ L2(G × ̂R; B
2(H+)

)

.

We treat now the three-dimensional Lie algebras with two-dimensional derived
algebra. Let us denote by g′ the vector space of the Lie algebra g generated by com-
mutators (actually it is an ideal). One has

dim g′
I = 0, dim g′

II = dim g′
III = 1, dim g′

VIII = dim g′
IX = 3.

For the remainingBianchi Lie algebras gW one has dim g′
W = 2 and this leads to a com-

mon structure. Each one is (isomorphic with) the semi-direct product gW = R
2
�MWR

of a two-dimensional Abelian Lie algebra by R, defined by a linear automorphism
MW : R

2 → R
2. Let us skip the index W for a while and use notations as

(

(α, β); γ
) ≡ (α, β; γ ) for elements of g. Then the Lie bracket is

[(α, β; γ ), (α′, β ′; γ ′)] = (

γ M(α′, β ′) − γ ′M(α, β); 0). (8.1)

Consequently, the corresponding Lie groups have the form G = R
2
�MR, which

is a semi-direct product defined by the action of R by automorphisms of the vector
group R

2 given by

M : R → Aut(R2), Mc := ecM . (8.2)

The composition law is

(a, b; c)(a′, b′; c′) = (

(a, b) + Mc(a
′, b′); c + c′).

Then a left Haarmeasure ofG is dm(a, b; c) = det
(

e−cM
)

dadbdc and themodular
function is �(a, b; c) = det

(

e−cM
)

(thus the Lebesgue measure dadbdc is a right
Haar measure).

Currey’s parametrization (only depending on a choice of a suitable Jordan-Hölder
basis) is not so complicated in three dimensions. But we found convenient to rely on
results from [1], in which the authors found easier to apply directly Mackey’s induced
representation theory for semidirect products than the parametrization methods of
Currey. Different (but equivalent) descriptions rely on different choices for topological
cross-sections in the orbit space. The emphasis in [1] is on the orbit structure of the
contragredient action M⊥ of R on the dual ̂R2 ≡ R

2, and this will allow below a
unified treatment. But in cases VI and VII Currey’s cross-sections could be considered
simpler.

The main conclusion is that the unitary dual ̂G can be identified with the dis-
joint union of a family of fixed points, labeled by R, and not contributing to the
Plancherel measure, and a quotientR2•/M⊥, whereR

2• := R
2\{0}. The generic classes

of irreducible representations ξ are actually labeled by a parameter σ belonging to a
cross-section 	 ⊂ R

2•. The (1-dimensional) algebraic submanifolds 	, composed of
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one or several connected components, and its relevant measures dρ(σ) = ρ(σ)dσ ,
will be indicated below, via a parametrization, case by case. The generic classes of
irreducible representations can all be realized on the Hilbert space Hσ = L2(R) as

[

πσ (a, b; c)ϕ]

(t) := eiσ ·e−tM(a,b)ϕ(t − c),

while the Duflo–Moore operators are multiplication operators by themodular function
� (only depending on the last variable c ∈ R). Making use of this limited information,
one writes the global quantization as

[Op(B)u](a, b; c) =
∫

R3

∫

	

Tr

(

B(a, b; c |σ)D
1
2
σ πσ

(

(a′, b′) − e(c′−c)M (a, b); c′ − c
)

)

u(a′, b′; c′) det
(

e−c′M )1/2
da′db′dc′ρ(σ)dσ.

(8.3)

To be more specific, one has to invoke the Bianchi classification [14,24] and results
describing the parametrization spaces from [1]. It can be shown that two such semi-
direct product Lie algebras given respectively by M1 and M2 are isomorphic if and
only if the endomorphisms M1 and M2 are similar up to a scaling. Combining this
with the real form of Jordan’s canonical decomposition, one gets the cases

MIV =
[

1 0
1 1

]

, MV =
[

1 0
0 1

]

, M (q)
VI =

[

1 0
0 − q

]

, M (p)
VII =

[

p − 1
1 p

]

,

where q �= 0,−1 and p ≥ 0, with corresponding group actions

etMIV =
[

et 0
tet et

]

, etMV =
[

et 0
0 et

]

, etM
(q)
VI =

[

et 0
0 e−qt

]

, etM
(p)
VII =

[

ept cos t − ept sin t
e pt sin t e pt cos t

]

.

All the groups are completely solvable, with the exception ofG(p)
VII (for p > 0 called

the Grélaud group in [21]). In fact G(0)
VII is not even exponential. The single unimodular

ones correspond to M (1)
VI and M (0)

VII . In each case there is a parametrization � of 	

and a measure d�(λ) = γ (λ)dλ, that we now recall. By dλ we denote the Lebesgue
measure on the indicated segments or, in one case, on the circle. The densities γ are
indicated up to a strictly positive constant.

(IV) � = (−∞, 0) � (0,∞), γ (λ) = 1 + |λ|,
(V) � = T := R/Z, γ (λ) = 1,
(VI) � = (0,∞) × {1, 2, 3, 4}, γq(λ) = qλ(mod2),
(VII) � = (e−pπ , 1] � [1, epπ ), γ (λ) = |λ| (here p > 0).

Details, including more formulae and a picture of the orbits and of the cross-
sections 	, can be found in [1]; they help to understand the splittings. The results are
roughly compatible with Currey’s theory. We recall however that both Currey’s and
the parametrizations from [1] depend on choices and can be subject to modifications.
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The parametrizations and the measures should be inserted into (8.3) to replace the
cross-section 	 and the measure ρ(σ)dσ . For example, for the case (V) one gets

[Op(B)u](a, b; c) =
∫

R3

∫

T

Tr

(

B(a, b; c |σ)D
1
2
σ πσ

(

(a′, b′) − e(c′−c)M (a, b); c′ − c
)

)

u(a′, b′; c′)e−c′
da′db′dc′dλ.

(8.4)
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30. Măntoiu, M., Ruzhansky, M.: Pseudo-differential operators, Wigner transform and Weyl systems on

type I locally compact groups. Doc. Math. 32, 1539–1592 (2017)
31. Măntoiu, M., Ruzhansky, M.: Quantizations on nilpotent Lie groups and algebras having flat coadjoint

orbits. J. Geom. Anal. (2018). https://doi.org/10.1007/s12220-018-0096-1
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