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Abstract

We develop a special multilinear complex interpolation theorem that allows us to prove
an optimal version of the bilinear Hormander multiplier theorem concerning symbols
that lie in the Sobolev space L (]R2”), 2 <r < 00o,rs > 2n,uniformly over all annuli.
More precisely, given such a symbol with smoothness index s, we find the largest open
set of indices (1/p1, 1/ p2) for which we have boundedness for the associated bilinear
multiplier operator from LP!(R") x LP2(R") to LP(R") when 1/p = 1/p1 + 1/p2,
1 < p1, pp < 00.

Keywords Multilinear operator - Multiplier operator - Interpolation

Mathematics Subject Classification 42B15 - 42B30

1 Introduction

Multipliers are linear operators of the form

T, (f)(x) = fR F@o@eivds

Communicated by G. Teschl.

The first author would like to thank the Simons Foundation.

B Loukas Grafakos
grafakosl @missouri.edu

Hanh Van Nguyen
hvnguyen@ua.edu

1 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
2 Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-019-01300-x&domain=pdf

736 L. Grafakos, H. Van Nguyen

where f is a Schwartz function on R” and f(é‘;) = fR" f(x)e 27 *E g x is its Fourier
transform.

Let W be a Schwartz function whose Fourier transform is supported in the annulus
of the form {& : 1/2 < |&| < 2} which satisfies ZieZ @(2_-/5) = 1forall § # 0.
We denote by A the Laplacian and by (I — A)*/? the operator given on the Fourier
transform by multiplication by (1447 2|€|%)*/?; also fors > 0, and we denote by L the
Sobolev space of all functions 2 on R" with norm ||h][.; = |[( — AY2h| < o0.
Extending an earlier result of Mikhlin [15], the optimal version of the Hormander
multiplier theorem says that if

sup ||@c7(2k~) L <00 )
keZ $
and
1 1 ) ) @)
[ — < — .
p 2 n

then T, is bounded from L7 (R") to itself for I < p < co. Héormander’s [13] original
version of this theorem stated boundedness in the entire interval 1 < p < oo provided
s > n/2. A restriction on the indices first appeared in Calderén and Torchinsky [1],
while condition (2) appeared in [5]; this condition is sharp as examples are given in
[5] indicating that the theorem fails in general when |l - %| > 2. Moreover, recently
Slavikova [19] provided an example showing that boundedness may also fail even on
the critical line ]% — % =

In this paper we provide bilinear analogues of these results. The study of the
Hormander multiplier theorem in the multilinear setting was initiated by Tomita
[21] and was further studied by Fujita, Grafakos, Miyachi, Nguyen, Si, Tomita (see
[2,7,8,11,17,18]) among others. For a given function o on R?" we define a bilinear

operator

To (fi, )(x) = fR ) /R ChE)f&)o @, e R dg dg

originally defined on pairs of Cg° functions f1, f> on R". We fix a Schwartz function
W on R%" whose Fourier transform is supported in the annulus 1/2 < [(§1,62)] <2
and satisfies

YW UELE)) =1 (E1.&) #0.
JjEZ
The following theorem is the main result of this paper:

Theorem 1.1 Let2 <r < 00,5 > %,1 < p1,p2 <ocandletl/p=1/p1+1/p2 >

0.
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(a) Letn/2 < s < n. Suppose that

1 s 1 s s 1 s 1
— <, —<—,l-—-<—-—< -4 3)
D1 no p n n p n 2

Then for all Cg°(R") functions f1, f> we have

176 (f1, f2)llLr@gny < Csup I|0(2j~)@||L;(Rzn)||f1IILm ®n I f2llLr2 @y (4)
JEZ

Moreover, if (4) holds for all fi, f» € Ci° and all o satisfying (1), then we must
necessarily have

1 s 1 s s 1 s 1
- LA )
)4 n p» n n_p n 2
(b) Letn < s < 3n/2 and satisfy
1 s 1
—<-—-+=. (6)
p n 2

Then (4) holds. Moreover, if (4) holds for all f1, f> € C3° and all o satisfying (1),
then we must necessarily have

<-4+ @)

S |-
S|«
| =

©) Ifs > 37" then (4) holds for all 1 < p1, p2 < ooand% < p < oo.

This theorem uses two main tools: First, the optimal n/2-derivative result in the
local L2-case contained in [6] and a special type of multilinear interpolation suitable
for the purposes of this problem (see Theorem 3.1 below). Figure 1 (Sect. 4), plotted
on a slanted (1/py, 1/p2) plane, shows the regions of boundedness for 7, in the two
casesn/2 <s <nandn < s < 3n/2. Note also that in the former case, the condition
-5 < L is only needed when p > 2.

Finally, we mention that the necessity of conditions (3), (5), and (7) in Theorem 1.1
are consequences of Theorems 2 and 3 in [6]; these say that if boundedness holds,
then we must necessarily have

1
o,

=

S|«

= e

’

S |«

S|«
N =

1 1
p1 p

Also, if T, maps LP' x LP2 to L? and p > 2, then duality implies that 7, maps
LP x LP2 to LP1. Now p’ plays the role of p; and so constraint % < & becomes

-5 < L This proves (5). So the main contribution of this work is the sufficiency
of the conditions in (3) and (6).
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738 L. Grafakos, H. Van Nguyen

2 Preliminary material for interpolation
In this section we briefly discuss three lemmas needed in our interpolation.

Lemma2.1 Let0 < pg < p < p1 < oo berelatedasin 1/p = (1 —0)/po + 0/ p1
for some 6 € (0, 1). Given f € C(‘)’o R™) and ¢ > 0, there exist smooth functions
hj, Jj =1,..., Ng, supported in cubes with pairwise disjoint interiors, and nonzero
complex constants cj such that the functions

N, ,
e = Z |C§|%(l—z)+p’—lz e ®
j=1
satisfy
Ifoe = fllpm <e if p1 < 00
5% = Flm < and o
[ £ e < I £l +6  if 1 =00
and

1
it,€ )P p 1+it, P T
LFE 00 < IS, +€ o 5l < (LF1, + )7
where &' depends on €, py, p1, p, || f||Lr and tends to zero as € — 0.

Proof Given f e Ci°(R") and & > 0, by uniform continuity there are N, cubes Q;
(with disjoint interiors) and nonzero complex constants cj. such that

Ne . in(1, po) Ne : min(1,p1)
e [min(l.pp)  gminCl.po H e |mind.py  gmind
Hf a ZCJXQi LP0 = 2 I Zlcijj' Ln = 2
J= J=
and
Ne
&
Hf—;QXQ? L <e (10)
]:

Find smooth functions gj satisfying 0 < g;f < Xos such that

Ne . min(1, po) Ne : min(1,p1)
o |min(Lpo) e ’ H e g|min(l,p1) e ’
Hf_ 28 < e 1 P
j=1 j=1
P e
where the last estimate is required only when p; < oco. We set hi = €' gj , where

qu. is the argument of the complex number c?. Then h? is that function claimed in (8).

@ Springer



The Hérmander multiplier theorem, 1l the complete bilinear... 739

Observe that
A N,
& __ £ & __ & &
=) _I5Ing =) c5s;
j=1 j=1

satisfies (9) when p; < 00; in the case p; = co we have

Ne N,
€ .
7= Y Ielxgs = D¢ j—f‘+|f|55+|f|55+||f||m.
j=1 j=1

Now we have

£ |, < Z'C 17105 = ( min(lp) g || £ p))#l.p)7

having made use of (10).
Given a,c >0and e > Osete’ = &'(g,a,c) = (¢ + c")l/“ — ¢. Then (¢ +
c¢/e < ¢ 4 cand e — 0ase — 0. Then for a suitable &’ that only depends
on ¢, p, po, P1, || fllL», the preceding estimate gives: ||f” 8||L,,0 < ||f||Lp + ¢’ and

analogously || £ .o < (1 £17, + & )l/p1 when p; < oo; notice that if p; = oo
then || f!+"¢|| .~ < I and the right hand side of the inequality is equal to 1, thus the
inequality is still valid. O

Lemma 2.2 Given a domain Q2 on the complex plane and (M, 1) a measure space, let
V : Q x M — C be a function such that V (-, x) is analytic on 2 for almost every
x € M. If the function

V*z,x) = sup xeM (11)

w:\w—z\<%dist(z,8$2)

is integrable over M for each z € 2, then the mapping z — V (z, -) is an analytic
function from Q to the Banach space L' (M, d ).

Proof Fix z € Q and denote r, = Ldist(z, 99). It is enough to show that

HV(Z—%—h )=V dV

- G ” —0. (12)

h—)() LY(M,dp)

The assumption yields that for some set Mo with u(M\My) = 0, we have

Viz+h,x)—V(z,x) dV

I =47
P h dz @ x)
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740 L. Grafakos, H. Van Nguyen

for all x € M. Thus for each x € My and h € C with |h| < r, we can write

Viz+h,x)—V(z,x)
h

dV(Z x)‘ _‘h/ dv(w x)dw — ill—(z x)‘

<2 sup
w:lw—z|<r;

=2V*(z, x).

dVv
= w, )|

Since V*(z,-) is integrable on My, the Lebesgue dominated convergence theorem
Viz+h,x)—V(z,x) dV
— ——(z,x)|dp(x)
h dz

yields
lirn/
h—0 Mo
Viz+h,x)—V(z, av
=/ tim [VEXRDZVED V(o olauw =o.
My dz

h—0 h

This yields (12) and completes the proof, as the last integral is over the entire space
M. O

Lemma2.3 Given 0 <a <b <00, Q={z€C : a <N() < b}, and a measure
space (M, ) of finite measure, let H : Q x RY x M — C be a measurable function
so that H(-, &, x) be analytic on  and continuous on Q for each (£,x) € R x M.
Suppose that

dH —d—1
sup | H(w. &,)| + sup | (w. 6.)] = C(1 + [g)) (13)

we we

for all (£,x) € RY x M. If ¢ be a bounded measurable function on R?, then the
mapping z —> V(z, -), defined by

V(zx) = / lp©) [V H (2,8, x)ds,
R4
is an analytic function from S to the Banach space L' (M, d 1) and is continuous on

Q.
Proof Let K = {£ e R? : (&) # 0). By assumption, for each x € M we have

A% .
0= / (&) In(JpE) e V8 EV H (7, &, x)dE
Z K
- / |¢<5)|Ze"“g<¢@>>—dH (z, &, x)dE.
K dz

As for each z € 2 we have

1
[ ® 1 In(e@E)D] < ‘Slup1 |t log Ml + (1 + lpll=)”log(1 + llgllzx) = ¢ < 00
1=
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The Hormander multiplier theorem, IIl: the complete bilinear... 741

and H satisfies assumption (13), the associated function V*(z, -) defined in (11) is
bounded and thus integrable over M. Therefore, using Lemma 2.2 we deduce that
z +—> V(z, -) is analytic from 2 to LM, du).

Using Lebesgue’s dominated convergence theorem and the fist part of assumption
(13) we easily deduce that V (z, -) is continuous up to the boundary of 2. O

Lemma 2.4 [3] Let F be analytic on the open strip S = {z € C : 0 < N(z) < 1} and
continuous on its closure. Assume that for all 0 < v < 1 there exist functions A, on
the real line such that

|F(t +it)| < A (t) forallt € R,

and suppose that there exist constants A > 0 and 0 < a < 7 such that for all t € R
we have

0 < A (t) <exp{Ae}.

Then for 0 < 6 < 1 we have

\FO)] Sexp{sin(w) /""[ log [Ao (1) L loglAi@)] }dt}‘

2 cosh(mrt) — cos(w@)  cosh(wt) + cos(h)

In calculations it is crucial to note that

sin(0) /oo dr _1 sin(70) /Oo dr _o
2 —oo cosh(mt) — cos(mh) ’ 2 —oo cosh(t) + cos(mh) ~

3 Multilinear interpolation

In this section we prove the main tool needed to derive Theorem 1.1 by interpolation.
We denote by é’ = (&1, ..., &n) elements of R™", where &§; € R". We fix a Schwartz
function ¥ on R"" whose Fourier transform is supported in the annulus 1/2 < |§ | <2
and satisfies

Y WeE)=1, 0#£EeR™
j

Theorem 3.1 Let 0 < p?,...,pgl < o0 0 < p},...,p,]n <00, 0 < qo,q1 < 0,

0<s0,51 <00, 1 <rg,ri <00,0<0 <1, and let

1 1-6 0 1 1-6 0 1 1-6 6
— = 0 +_1» - = +_7 - = +_1 S=(1_9)s0+9s1
pPi Py Py q q0 q r ro r
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742 L. Grafakos, H. Van Nguyen

forl =1,...,m. Assume roso > mn, and r1s; > mn and that for all f; € C5°(R"),
l=1,...,m, we have

1o (fis oo fi) ey < Kicsup [0 @7
JEZ

m
k
1 gy E 1, ot

for k = 0,1 where Ky, K| are positive constants. Then the intermediate estimate
holds:

m
1o (fis s fi) lLaqny < Co Ky~ (,(2,.)@ o | T
s =1
(14)
forall fi € C3°(R"), where Cy depends on all the indices, on 6, and on the dimension.
Consequently, if pj < ooforalll € {1, ..., m}, then T, admits a bounded extension

from LPY x - .- x LPm to L9 that satisfies (14).

Proof Fix a smooth function ® on R™" such that supp(®) C {% < |§ | < 4} and

® = 1 on the support of the function U. Denote p;j=U~- A)% [o(27 ~)®] and define

o.E) =Y (1 — ) [|<oj|’('f?+f3)eiAfg W} QUEBIE). (15)

JEZ
This sum has only finitely many terms and we now estimate its L norm. O

Fix E: € R™ . Then there is a jy such that |§ | A~ 2/ and there are only

two terms in the sum in (15). For these terms we estimate the L°° norm of
_SoU=0ts2 r(E242) iAre (0)) it Wi
(I—-A) 2 [lgjl 0 T et A @] For z = T 4ir with0 < T < 1, let

st = (1 —1)so + tsy and 1/r; = (1 — t)/ro + t/r1. By the Sobolev embedding
theorem we have

—foUzatniz e (L) iArg (g))
I = A 5 . ) r] e g9j H
)+S z 1=z 2y .
< Clry. s0.mm) H(l _ A)f 12 [|¢j|r( o Trr) piArg (w_i)]‘ e
.. 50—S -z, z .
S C(r-[, S, n)H (I _ A)ll 02 1 [|(pj|r( o +r1 )ezArg ((pj)]‘ er(Rm”)

IA

=z zy .
C'(res e mm)(1+1so = s )™/ "0 71 eire 0

L't (Rmn)

IA

1ot =
C"(ro, r1, 50, 51, T, mn)(1 + Itl)m"/2+1”|<ﬁj|r( n ti)

L't (Rmn)

r/re

= C"(ro, r1, 50, 51, T, mn)(1 + Itl)mn/2+1||<ﬁ]|u (Rmn) -
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The Hérmander multiplier theorem, lll: the complete bilinear... 743

It follows from this that

PN r/re
”U‘L’+it”L°°(Rm") < C//(r07 r1,80,51, T, mn)(1 + |t|)mn/2+1 ( sup ||U(2] ')\IjHLr(Rmn)) .
= §

(16)
Let T, be the family of operators associated to the multipliers 0. Let ¢ be given.
Suppose first that min(plo, pll) < ooforalll € {l,...,m}. This forces p; < oo

for all /.

Case I: min(gy, ¢;) > 1 This assumption implies that ¢ > 1, hence ¢, ¢, ¢| < 0.
Fix fi,g € CgO(R"). For given ¢ > 0, forevery / € {1, ..., m}, by Lemma 2.1 there
exist functions ff’s and g%¢ of the form (8) such that

0, 0, 0, 0,
I/, g—lelL,,; <& e—leley <& g™ =gl g4 <& lg™" =gl <&
(17)
when max( plo, pll) < oo, while one of the first two inequalities is replaced by
0,
A7 N < Wil 6 + & = Wil + & when pf = max(p}, p|) = oo, and
that

1
x "
LA 0 < (AN, +&)r, 1A = (LA +€0) s
LP] L

€L

1
it, q a 1+it, q Nl
gl < (Igl?, +&)b, [g+ire| < (||g||”,+s)ql.

LN

Define
F) = /R To.(F5F. o 5967 dx

=me 0e @) 7€) L EnE (1 + e+ ) dE

(1=2)+s12 1=z zy . N .
—Zf (1 — a)y~ [I il ’0+'l)elArg<¢’f’} @ IH®IE)

JEZ

< ([T €)1 4+ ) B
=1
=2 f [mir(%*ﬁ)e’“g“"ﬂ](z—f%)
]EZ mn

sol=o+s12 [~ .o 2 .
x(I—m)~ [eb(ffs)(]'[ S5 @)~ + - +sm>>}(5)ds.

Notice that

(-~ “”“[cb(z fs>(]"[ T 6 e e+ +sm)>}(§>

=1
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744 L. Grafakos, H. Van Nguyen

is equal to a finite sum (over k1, ..., ky,, [) of terms of the form

&)

r1
= (U=2)+
‘Cillp? Z

L, I)/n(i)ﬁm, f/(,),

AL AN N

g [6(2’j-){k,,____k,n,l] @),

which we call H (z, ?} ), where &k, ... k. are Schwartz functions. Thus H(z, § ) is an
analytic function in z. Moreover H (z, g? ) can be thought of as a function of three
variables H (z, § , X0), being constant in the variable xo, where {xo} is a measure space
of one element equipped with counting measure. With this interpretation, it is not hard
to verify that H(z, &, xo) satisfies (13).

Lemma 2.3 guarantees that F (z) is analytic on the strip 0 < %(z) < 1 and contin-
uous up to the boundary. Furthermore, by Holder’s inequality,

FGDI < | To, (17 £

S
L.90 ||glt L%’

and noting that only the terms with j = k — 1, k, k + 1 survive in the sum in (15)

for 07, (2F-)W, the Kato—Ponce inequality [10,14] applied as ||(1 — A)*/2(F®)| 10 <
ClIUI = AY2(F) o yields

e "
1T (F15 s ) L0

m
it,e
W TTHAS o
Ly, o1 L"1

so(I—=it)+syit
2

Uit(zk')ﬁ‘

< Ko sup
keZ

1-it 1)

< CurosKosup (YN EYN [lgel 0 Frleite o]
(S

m
it,e
< [THA" 1, 0
=1

rom 1
mn o 0
< C(m.n,ro,50)(1+ |s1 — sol 1t) 2 T Ko sup lgsll % [ [ (I AlT + &)
JEZ =1
= Clm,n,ro, 50,500 + ) FH Ko sup (7 = )3 (027 T 7

JEZ

m e
i ,0
< [TCLANT +&)7
=1
Thus, for some constant C = C(m, n, rg, 5o, S1) we have

s : i
Finl = €+ 1D F Kosup | (1 = &)3e @B (Ngl?,, +e) %

JEZL

1

xH (Ifi 12, + )
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The Hérmander multiplier theorem, lll: the complete bilinear... 745

Similarly, we can choose the constant C = C(m, n, ry, so, s1) above large enough so
that

o , L
FA+inl = A+ F Kisup | = 230 @)81| 7 (1gl?,, +¢)

JEZ

m
< [T (AN, +€)r .
=1

Note that F(z) is a combination of finite terms of the form

where

ﬂ(l—z)-{-ﬂ Pm( _ Pm. —
0 g I 2)+ | /( Z)+ /Z
Akl ’’’’’ km,l(z) = |C/é{‘] |1’1 LN |Ck |Pm Pm |dl |q q

and 1, g% are smooth functions with compact support. Thus for z = v +it,r € R
and 0 < t < 1 it follows from (16) and from the definition of F(z) that

L )7 = Az (D).

s

mn PN
F@I= C@ e fivees fs gt a0 an @+ 10 F (sup 0279
JE

As A (1) < exp(Ae“" 1), the admissible growth hypothesis of Lemma 2.4 is satisfied.
Applying Lemma 2.4 we obtain

3

’ L
FO1 < kYK sup [ = 02097 1] | (117, +)d [T (1 +&) 7
J€Z e =1 t

(18)
But

Fwwiézuﬁﬁ“qﬁﬂfﬁw

and then we have

th Ty(fi. .. fu) g dx = F(6) + /R [To(fro s ) = To £ f0)] g dx

+ %];" Ta(fleyg’ Tt f’z’e)(g - gg’s) dx.
(19)
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746 L. Grafakos, H. Van Nguyen

A telescoping identity yields

To (frvees fi) = To e N < S T (freees fimts fr = £ S0 S,

For every fixed /, applying the hypothesis that 7, is bounded from LP x - x LPh
to L9 for k = 0, 1 we obtain

1
7o (i it fi= 5 A0 ) e S U= 75 TT O+ &)
J#l LY

In view of the inequality ||]Ls < ||k || 190 ||h 14 74, these estimates yield

176G i fo= 75 15 f e S W= 7510 A= 71
I1 (||f,»||i-;k_ +8’)”7

J#

L”l

As 0 < 6 < 1 and one of p? or pl1 is strictly less than infinity, the expression on the
right above is bounded by a constant multiple of ¢™"-1=¢) and hence it tends to zero
as ¢ — 0 because of (9). This proves that (in fact for all 0 < g < 00)

| To (Froeos fi) = T (F) oo, £59)]| 4 < Ee. (20)

where E. — 0 as ¢ — 0. Returning to (19) and using (18) and Holder’s inequality
we write

UTa<f1,...,fm>(x)g<x) dx

s ;o L “
= oy K sup | — )o@ P, (gl +)7 [T (A +¢)7
JE =1

m
+ Eellgl +Cle =™l o TT1A]
=1

I
Recalling (17) and using that each || flg’s ||L 0 remains bounded as ¢ — 0 we obtain

Vn(fl,.. f) g dx

< Cky k! sp ”(1 -

m
P
=1

by letting ¢ — 0. Taking the supremum over all functions g € L9 with || gy =1
yields the sought estimate (14) in Case L.

Case II: min(qy, q;) <1

@ Springer



The Hérmander multiplier theorem, lll: the complete bilinear... 747

Here we will make use of two following lemmas proved by Stein and Weiss [20].

Lemma3.2 ([20]) Let U : § —> R be an upper semi-continuous function of admis-
sible growth and subharmonic in the unit strip S. Then for zo = xo + iyg € S we
have

+00 +0
U(zo) < / U(i(yo + 1)1 — xo, 1)dt + / U(1+i(yo+ 1))w(xo, 1)dr,

where

sin T x

1
ol y) = 2cosmwx +coshmy’

Lemma3.3 ([20]) Let 0 < ¢ < 1 and let (M, 1) be a measure space with finite

measure. If a function V (z,-) is analytic from the unit strip S to L'(M, W), then
log fM |V (z, x)|° dw is subharmonic on S.

We now continue the proof of the second case. We fix functions f; as in the previous
case. Choose an integer p > 1 such that p > pmin(qo, q1) > ¢. Take an arbitrary
positive simple function g with |gl|,,» = 1. Assume that g = Z,}(V:] Ck XE;» Where
cx > 0 and Ej are pairwise disjoint measurable sets of finite measure and compact
support. For z € C, set

N
g¢ = ZCQ(Z)XE,{, where A(z)
k=1

1 —
s
P q0 q1

Now consider

G(2) =/ | To. (755 ,f;‘g)(x)|% g% (x)| dx

—Zf

Let V(z,x) = T, (f{°, ..., fiy")(x). Then V(z, x) can be represented as a finite
sum of terms of the form

L f,fﬁ)(x) " dx.

P(z)|(p (§)|’0(1 Z)-i‘,1 elArg(:pj)(I_A),

=z [eznixzf' (T80 (E)

Rmn
m

<[1Res )| @)eé,
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748 L. Grafakos, H. Van Nguyen

where h, are the smooth functions with compact support in (8) and P is a polynomial.
Setting

m
H(z, ;;_-',x) = - A)*%O(l7z)*S7'z[eZHiij'(ElJr"'Jrfn)a(é; 1_[ (2]&( ]

we note that H(z, E-‘ x) is analytic in z, smooth in £ and bounded in x, as long as
x remains in a compact set. Moreover H satisfies (13). Applying Lemma 2.3 we
obtain that for all (¢, x) the mapping H (-, E x) is analytic from S to LY(Ey, dx)
Then Lemma 3.3 applies and yields that log G is subharmonic on §. Using Holder’s
inequality with indices '030 and ( %)/ and the fact that the L”'-norm of g is equal to
1, we have

G(it) < {/
Rn

q
q oo m P
<C ((1 + |t|)%+l>ﬂ (KO sup ”g(zj.)l/, 0 1_[ £l |L1’l + g ) .

jezZ —1

T(I,'l(f]it“g’ f

q0 /’170
ax| ™ 16"l oy

Similarly, we can estimate

G(1+it)§{/
Rn

mn i .
=c(a+un®) (K1 sup o277

JjeZ

_q_
14 . q1 rq1
N T ] Sl T P

q
m o

H LAl +€) )

Applying Lemma 3.2 to U = log G (with yo = 0 and xop = 6) and using that for
0 < 6 < 1 we have

sm(n(l —0)) [ 1
s cosh(mt) + cos(n(l —0))

dt =1-86,

sm(n@)
/ dt 0,
00 cosh(m) + cos(r )

(see [3, Page 48]) we obtain
o :
G®) < C, (K(;—ez(f sup |02/ )9 ”LH 1fil2% + €))7 ) .
jezZ 5 1=1

Notice that as

P f )| g dx,

GO) = /
Rn
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inequality (21) implies that

0,e 0,e
| 0|
P
41q
= H A1
Lr
¢ 7
= sup{ P )| g dx s g = 0,g simple, gl = 1}
1-6 6 )
= (€7 Ky K] sup | [T+ )7 22)

Finally, we use

WTo (Ao fadlle < (U420 Iy (Fre o for) = To (£ £ 1
FITo FE e £ ]

and we note that for the second term we use (22), while the first term tends to zero, in
view of (20). Letting ¢ — 0, we deduce (14).

We now turn to the case where min(p?, pll) = oo for some (but not all) / in
{1,...,m}. Then we must have p; = oo for these /, and for these / we set ff‘s =f,
while for the remaining / the functions flz’g are defined as before; we notice that the
preceding argument works with only minor modifications.

Finally we consider the case where p? = pl1 = oo forall 1 <[ < m. Here we also
take f° = fj foralllin {1, ..., m}. Now (19) becomes

/RTg(fl,..-,fm)gdx=F(9)+/R To(fiveeos fi)g — 8°) dx. (23)

Hence, in Case I, when min(qo, g1) > 1, we have

‘/Ta(fl,...,fmxx)g(x) dx

1-6 10 s i\ ' I
< KK sup |1 = 3o @], (1l +¢)7 TT il
J€ =

m
+Cllg =" [T1Ail -
I=1

Passing the limit as ¢ — 0 to obtain

< CK} kY sup H (I —
J

'/ To(fis- s fm) g dx el [Tl
=1
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750 L. Grafakos, H. Van Nguyen

The result in Case II, which is when min(gqo, g;) < 1, can be obtained from that in
Case I by choosing p > 1 such that p min(qo, g1) > ¢ and by arguing as before,

replacing each term (| fill} + € )ﬁ by || fillec. This concludes the proof of the
theorem in all cases. O

Note that the proof of Theorem 3.1 is much simpler in the case ro = r; = 2, and
this was proved earlier in [8, Theorem 6.1, Step 1]; see also [9, Theorem 2.3]. In this
case, the domains can be arbitrary Hardy spaces. We state the theorem in this case
(without providing a proof):

Theorem 3.4 ([8]) Let p?, pll, P40, 91,4, 50,51, and 0 € (0, 1) be as in Theo-
rem 3.1 forl = 1,...,m. Assume that sg, s| > % p?, pl1 < oo for all I, and
that

1o CFis oo fi) ey = Kicsup [0 @7 |
JeZ

m
e E (R

for k = 0,1 where Ko, K1 are positive constants. Then we have the intermediate
estimate:

m
1o (i S sy = Co Ky K sup |lo@0® | T fillm e
JEZ Ls(Rmn) =1

for all Schwartz functions f; with vanishing moments of all orders, where C, depends
on all the indices, 0, and the dimension.

4 The proof of the main result via interpolation

We now turn to the proof of Theorem 1.1.

Proof (a) Assume n/2 < s < n and let

We will prove that

175 (f1, f2)llLr@®ny < C sup ||0(2j')@||L;(R2n)||f1IILPI(Rn)IIlelLPz(R") (24)
JEZ :

for every (%, i) € I'1, which is a convex set with vertices D, K, L, G, H and N (see
Fig. 1a below). By multilinear real interpolation [4, Corollary 7.2.4], we only need
to verify the boundedness of 7, at points in I'| near its vertices D, K, L, G, H, N
which do not lie in I'y.

As showed in [4,11], the Hormander condition sup ;. llo 2/ ~)@ | L7 (R is invari-

ant under duality. For 1 < p < oo, by duality, if 7, maps L?' x LP?> — LP”, then
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D I
3
A) 5 <s<n B)n<s<F

Fig. 1 Boundedness holds in the shaded regions and unboundedness in the white regions. The local L?
region is shaded in a lighter color

it also maps LP x LP> — LPi, Therefore, if T, is bounded near D, then T} is also
bounded near N by duality. By symmetry, if 75 is bounded near N, D and K then it
is bounded near H, G and L as well. From these reductions, it remains to prove (24)
at points in I'; near D and K.

With s; > % and rys1 > 2n, we recall the following [6, Theorem 1]:

1o (i )l ey = C50p 10 QIR 3 gan L fill o el oy 29
J

By duality it follows from (25) that when 51 > % and r1s; > 2n we have
ITaCfis 2y < € 50p o @) Bl gony L fill 2l foll e 26)
je

Theorem 1.1 in [17] (with s; = 57 in [17] being y below) implies that

175 (f1, f2)llLa @

r Ve N
< Csup (I — Ag) 2 — Agy) 2 [0 27 )W ]Il p2emy | fi | Lot oy Il f2ll o2 e
JEZL

for y > %,wherel < q1,q2 < 0, é = q1_1 +ql2 < 27" + %.Givensz > n, choose
y = % > % and observing the trivial estimate

Y Y N LA~
sup [[(1 = Ag) 2 (I = Agy) 2 [0 (27 ) W]l 2@any < Csupllo (27 ) W12 o),
jez jez 2

we obtain

1T (f1. f2)llLawny < Csup II6(2j-)®|ILg2(Rzn)IIf1IIqu @l 2llLewy 27
JEZL
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fora111<q1,q2§oo,ql=L+L<S72+%.

We now use Theorem 3.1 ‘tjo interpolate between (26) and (27) (for g; = g near
1 and g» = o0). We obtain (24) at points Dl(%, 0) with % < % which are near
the point D(%, 0). Similarly, interpolating between (25) and (27) (g1 near 1, g» = 2)
yields (24) at points K (%, %) with % < o near K (3, %). This yields (24) on I'; and
completes part (a).

(b) Assumen < s < 37” Since r > 2, the Kato—Poince inequality [10] implies that
sup ||a(2f'-)@||L3(Rzn) < sup ||O'(2j-)®||L§(R2n). (28)
JEL JjEZ ’

Combining estimates (28) and (27) yields (24) in the open pentagon O RSJ union
the open segments O/ and O J. This completes the second part of Theorem 1.1.
(c) In the last case when s > 31 notice that condition (7) reduces to p > % and

2 9’
since

sup [lo 2/ )Wl gony < sup o2/ )Wl o),
JEZ 7 J€EZ ’

the case in part (b) applies and yields (24) for every point in the entire rhombus OIT J
union the open segments O and O J. The proof of Theorem 1.1 is now complete. O

5 An application

We consider the following multiplier on R?": m, (&1, &) = ¥ (&1, &)|(&1, &)
NELEDI where a > 0,a #1,b > 0, and ¢ is a smooth function on R?" which
vanishes in a neighborhood of the origin and is equal to 1 in a neighborhood of infinity.
One can verify that m,_j satisfies (1) on R>" with s = b/a and any r > 2n/s.

The range of p’s for which m, , is a bounded bilinear multiplier on L?(R?")
can be completely described by the equation I% — %| < % (see Hirschman [12,
comments after Theorem 3c], Wainger [22, Part II], and Miyachi [16, Theorem 3]);
similar examples of multipliers of limited boundedness are contained in Miyachi and
Tomita [17, Section 7].

As a consequence of Theorem 1.1 we obtain that the bilinear multiplier operator
associated with m, j is bounded from L?'(R") x LP2(R") to L?(R") in the following
cases:

(i) whenn > b/a > n/2 and

1 b 1 b b 1 b 1

—_ _’1__<_ _ —_

’

P an’ pr  an an p an 2’

(ii) when 3n/2 > b/a > n and
p = an + 2 ;
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(iii) whenb/a > 3n/2inthe entire range of exponents 1 < pq, pr < oo,l < p < o00.
g p pi,p 5 <P

The boundedness of this specific bilinear multiplier is unknown to us outside the
above range of indices.
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