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Abstract
Wedevelop a specialmultilinear complex interpolation theorem that allows us to prove
an optimal version of the bilinear Hörmander multiplier theorem concerning symbols
that lie in the Sobolev space Lr

s(R
2n), 2 ≤ r < ∞, rs > 2n, uniformly over all annuli.

More precisely, given such a symbol with smoothness index s, we find the largest open
set of indices (1/p1, 1/p2) for which we have boundedness for the associated bilinear
multiplier operator from L p1(Rn) × L p2(Rn) to L p(Rn) when 1/p = 1/p1 + 1/p2,
1 < p1, p2 < ∞.

Keywords Multilinear operator · Multiplier operator · Interpolation

Mathematics Subject Classification 42B15 · 42B30

1 Introduction

Multipliers are linear operators of the form

Tσ ( f )(x) =
∫
Rn

f̂ (ξ)σ (ξ)e2π i x ·ξdξ ,
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736 L. Grafakos, H. Van Nguyen

where f is a Schwartz function on R
n and f̂ (ξ) = ∫

Rn f (x)e−2π i x ·ξdx is its Fourier
transform.

Let � be a Schwartz function whose Fourier transform is supported in the annulus
of the form {ξ : 1/2 < |ξ | < 2} which satisfies

∑
j∈Z �̂(2− jξ) = 1 for all ξ �= 0.

We denote by � the Laplacian and by (I − �)s/2 the operator given on the Fourier
transformbymultiplicationby (1+4π2|ξ |2)s/2; also for s > 0, andwedenote by Lr

s the
Sobolev space of all functions h on R

n with norm ‖h‖Lrs := ‖(I − �)s/2h‖Lr < ∞.

Extending an earlier result of Mikhlin [15], the optimal version of the Hörmander
multiplier theorem says that if

sup
k∈Z

∥∥�̂σ (2k ·)∥∥Lrs < ∞ (1)

and

∣∣∣ 1
p

− 1

2

∣∣∣ <
s

n
, (2)

then Tσ is bounded from L p(Rn) to itself for 1 < p < ∞. Hörmander’s [13] original
version of this theorem stated boundedness in the entire interval 1 < p < ∞ provided
s > n/2. A restriction on the indices first appeared in Calderón and Torchinsky [1],
while condition (2) appeared in [5]; this condition is sharp as examples are given in
[5] indicating that the theorem fails in general when

∣∣ 1
p − 1

2

∣∣ > s
n . Moreover, recently

Slavíková [19] provided an example showing that boundedness may also fail even on
the critical line

∣∣ 1
p − 1

2

∣∣ = s
n .

In this paper we provide bilinear analogues of these results. The study of the
Hörmander multiplier theorem in the multilinear setting was initiated by Tomita
[21] and was further studied by Fujita, Grafakos, Miyachi, Nguyen, Si, Tomita (see
[2,7,8,11,17,18]) among others. For a given function σ on R

2n we define a bilinear
operator

Tσ ( f1, f2)(x) =
∫
Rn

∫
Rn

f̂1(ξ1) f̂2(ξ2)σ (ξ1, ξ2)e
2π i x ·(ξ1+ξ2)dξ1dξ2

originally defined on pairs of C∞
0 functions f1, f2 on R

n . We fix a Schwartz function
� on R

2n whose Fourier transform is supported in the annulus 1/2 ≤ |(ξ1, ξ2)| ≤ 2
and satisfies

∑
j∈Z

�̂(2− j (ξ1, ξ2)) = 1, (ξ1, ξ2) �= 0.

The following theorem is the main result of this paper:

Theorem 1.1 Let 2 ≤ r < ∞, s > 2n
r , 1 < p1, p2 ≤ ∞ and let 1/p = 1/p1+1/p2 >

0.
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(a) Let n/2 < s ≤ n. Suppose that

1

p1
<

s

n
,

1

p2
<

s

n
, 1 − s

n
<

1

p
<

s

n
+ 1

2
. (3)

Then for all C∞
0 (Rn) functions f1, f2 we have

‖Tσ ( f1, f2)‖L p(Rn) ≤ C sup
j∈Z

‖σ(2 j ·)�̂‖Lrs (R2n)‖ f1‖L p1 (Rn)‖ f2‖L p2 (Rn). (4)

Moreover, if (4) holds for all f1, f2 ∈ C∞
0 and all σ satisfying (1), then we must

necessarily have

1

p1
≤ s

n
,

1

p2
≤ s

n
, 1 − s

n
≤ 1

p
≤ s

n
+ 1

2
. (5)

(b) Let n < s ≤ 3n/2 and satisfy
1

p
<

s

n
+ 1

2
. (6)

Then (4) holds. Moreover, if (4) holds for all f1, f2 ∈ C∞
0 and all σ satisfying (1),

then we must necessarily have

1

p
≤ s

n
+ 1

2
. (7)

(c) If s > 3n
2 then (4) holds for all 1 < p1, p2 < ∞ and 1

2 < p < ∞.

This theorem uses two main tools: First, the optimal n/2-derivative result in the
local L2-case contained in [6] and a special type of multilinear interpolation suitable
for the purposes of this problem (see Theorem 3.1 below). Figure 1 (Sect. 4), plotted
on a slanted (1/p1, 1/p2) plane, shows the regions of boundedness for Tσ in the two
cases n/2 < s ≤ n and n < s ≤ 3n/2. Note also that in the former case, the condition
1 − s

n < 1
p is only needed when p > 2.

Finally, we mention that the necessity of conditions (3), (5), and (7) in Theorem 1.1
are consequences of Theorems 2 and 3 in [6]; these say that if boundedness holds,
then we must necessarily have

1

p1
≤ s

n
,

1

p2
≤ s

n
,

1

p
≤ s

n
+ 1

2
.

Also, if Tσ maps L p1 × L p2 to L p and p > 2, then duality implies that Tσ maps
L p′ × L p2 to L p′

1 . Now p′ plays the role of p1 and so constraint 1
p1

≤ s
n becomes

1 − s
n ≤ 1

p . This proves (5). So the main contribution of this work is the sufficiency
of the conditions in (3) and (6).
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738 L. Grafakos, H. Van Nguyen

2 Preliminarymaterial for interpolation

In this section we briefly discuss three lemmas needed in our interpolation.

Lemma 2.1 Let 0 < p0 < p < p1 ≤ ∞ be related as in 1/p = (1 − θ)/p0 + θ/p1
for some θ ∈ (0, 1). Given f ∈ C∞

0 (Rn) and ε > 0, there exist smooth functions
hε
j , j = 1, . . . , Nε, supported in cubes with pairwise disjoint interiors, and nonzero

complex constants cε
j such that the functions

f z,ε =
Nε∑
j=1

|cε
j |

p
p0

(1−z)+ p
p1

z
hε
j (8)

satisfy

∥∥ f θ,ε − f
∥∥
L p0 < ε and

⎧⎪⎨
⎪⎩

∥∥ f θ,ε − f
∥∥
L p1 < ε if p1 < ∞

∥∥ f θ,ε
∥∥
L∞ ≤ ∥∥ f ∥∥L∞ + ε if p1 = ∞

(9)

and

‖ f i t,ε‖p0
L p0 ≤ ‖ f ‖p

L p + ε′ , ‖ f 1+i t,ε‖L p1 ≤ (‖ f ‖p
L p + ε′) 1

p1 ,

where ε′ depends on ε, p0, p1, p, ‖ f ‖L p and tends to zero as ε → 0.

Proof Given f ∈ C∞
0 (Rn) and ε > 0, by uniform continuity there are Nε cubes Qε

j
(with disjoint interiors) and nonzero complex constants cε

j such that

∥∥∥ f −
Nε∑
j=1

cεjχQε
j

∥∥∥min(1,p0)

L p0
<

εmin(1,p0)

2
,

∥∥∥ f −
Nε∑
j=1

cεjχQε
j

∥∥∥min(1,p1)

L p1
<

εmin(1,p1)

2
,

and ∥∥∥ f −
Nε∑
j=1

cε
jχQε

j

∥∥∥
L p

< ε. (10)

Find smooth functions gε
j satisfying 0 ≤ gε

j ≤ χQε
j
such that

∥∥∥ f −
Nε∑
j=1

cεj g
ε
j

∥∥∥min(1,p0)

L p0
<

εmin(1,p0)

2
and

∥∥∥ f −
Nε∑
j=1

cεj g
ε
j

∥∥∥min(1,p1)

L p1
<

εmin(1,p1)

2
,

where the last estimate is required only when p1 < ∞. We set hε
j = eiφ

ε
j gε

j , where
φε
j is the argument of the complex number cε

j . Then h
ε
j is that function claimed in (8).
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Observe that

f θ,ε =
Nε∑
j=1

|cε
j |hε

j =
Nε∑
j=1

cε
j g

ε
j

satisfies (9) when p1 < ∞; in the case p1 = ∞ we have

| f θ,ε| ≤
Nε∑
j=1

|cεj |χQε
j
=
∣∣∣∣
Nε∑
j=1

cεjχQε
j

∣∣∣∣ ≤
∣∣∣∣
Nε∑
j=1

cεjχQε
j
− f

∣∣∣∣ + | f | ≤ ε

2
+ | f | ≤ ε + ‖ f ‖L∞ .

Now we have

∥∥ f i t,ε∥∥p0
L p0 ≤

Nε∑
j=1

|cε
j |p|Qε

j | =
∥∥∥∥

Nε∑
j=1

cε
jχQε

j

∥∥∥∥
p

L p
≤
(
εmin(1,p) + ∥∥ f ∥∥min(1,p)

L p

) p
min(1,p)

,

having made use of (10).
Given a, c > 0 and ε > 0 set ε′ = ε′(ε, a, c) = (εa + ca)1/a − c. Then (εa +

ca)1/a ≤ ε′ + c and ε′ → 0 as ε → 0. Then for a suitable ε′ that only depends
on ε, p, p0, p1, ‖ f ‖L p , the preceding estimate gives: ‖ f i t,ε‖p0

L p0 ≤ ‖ f ‖p
L p + ε′ and

analogously ‖ f 1+i t,ε‖L p1 ≤ (‖ f ‖p
L p + ε′)1/p1 when p1 < ∞; notice that if p1 = ∞

then ‖ f 1+i t,ε‖L∞ ≤ 1 and the right hand side of the inequality is equal to 1, thus the
inequality is still valid. 	


Lemma 2.2 Given a domain � on the complex plane and (M, μ) a measure space, let
V : � × M → C be a function such that V (·, x) is analytic on � for almost every
x ∈ M. If the function

V ∗(z, x) = sup
w:|w−z|< 1

2 dist(z,∂�)

∣∣∣dV
dw

(w, x)
∣∣∣, x ∈ M (11)

is integrable over M for each z ∈ �, then the mapping z �−→ V (z, ·) is an analytic
function from � to the Banach space L1(M, dμ).

Proof Fix z ∈ � and denote rz = 1
2dist(z, ∂�). It is enough to show that

lim
h→0

∥∥∥V (z + h, ·) − V (z, ·)
h

− dV

dz
(z, ·)

∥∥∥
L1(M,dμ)

= 0. (12)

The assumption yields that for some set M0 with μ(M\M0) = 0, we have

lim
h→0

V (z + h, x) − V (z, x)

h
= dV

dz
(z, x)
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740 L. Grafakos, H. Van Nguyen

for all x ∈ M0. Thus for each x ∈ M0 and h ∈ C with |h| < rz we can write

∣∣∣V (z + h, x) − V (z, x)

h
− dV

dz
(z, x)

∣∣∣ =
∣∣∣1
h

∫ h

0

dV

dw
(w, x)dw − dV

dz
(z, x)

∣∣∣
≤ 2 sup

w:|w−z|<rz

∣∣∣dV
dw

(w, x)
∣∣∣

= 2V ∗(z, x).

Since V ∗(z, ·) is integrable on M0, the Lebesgue dominated convergence theorem
yields

lim
h→0

∫
M0

∣∣∣V (z + h, x) − V (z, x)

h
− dV

dz
(z, x)

∣∣∣dμ(x)

=
∫
M0

lim
h→0

∣∣∣V (z + h, x) − V (z, x)

h
− dV

dz
(z, x)

∣∣∣dμ(x) = 0.

This yields (12) and completes the proof, as the last integral is over the entire space
M . 	

Lemma 2.3 Given 0 < a < b < ∞, � = {z ∈ C : a < (z) < b}, and a measure
space (M, μ) of finite measure, let H : � × R

d × M → C be a measurable function
so that H(·, ξ, x) be analytic on � and continuous on � for each (ξ, x) ∈ R

d × M .

Suppose that

sup
w∈�

∣∣∣H(w, ξ, x)
∣∣∣ + sup

w∈�

∣∣∣dH
dw

(w, ξ, x)
∣∣∣ ≤ C(1 + |ξ |)−d−1 (13)

for all (ξ, x) ∈ R
d × M. If ϕ be a bounded measurable function on R

d , then the
mapping z �−→ V (z, ·), defined by

V (z, x) =
∫
Rd

|ϕ(ξ)|zei Arg(ϕ(ξ))H(z, ξ, x)dξ,

is an analytic function from � to the Banach space L1(M, dμ) and is continuous on
�.

Proof Let K = {ξ ∈ R
d : ϕ(ξ) �= 0}. By assumption, for each x ∈ M we have

dV

dz
(z, x) =

∫
K

|ϕ(ξ)|z ln(|ϕ(ξ)|)ei Arg(ϕ(ξ))H(z, ξ, x)dξ

+
∫
K

|ϕ(ξ)|zei Arg(ϕ(ξ)) dH

dz
(z, ξ, x)dξ.

As for each z ∈ � we have

∣∣ |ϕ(ξ)|z ln(|ϕ(ξ)|)∣∣ ≤ sup
|t |≤1

|t |a log 1

|t | + (1 + ‖ϕ‖L∞)b log(1 + ‖ϕ‖L∞) = c < ∞
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The Hörmander multiplier theorem, III: the complete bilinear... 741

and H satisfies assumption (13), the associated function V ∗(z, ·) defined in (11) is
bounded and thus integrable over M . Therefore, using Lemma 2.2 we deduce that
z �−→ V (z, ·) is analytic from � to L1(M, dμ).

Using Lebesgue’s dominated convergence theorem and the fist part of assumption
(13) we easily deduce that V (z, ·) is continuous up to the boundary of �. 	


Lemma 2.4 [3] Let F be analytic on the open strip S = {z ∈ C : 0 < (z) < 1} and
continuous on its closure. Assume that for all 0 ≤ τ ≤ 1 there exist functions Aτ on
the real line such that

|F(τ + i t)| ≤ Aτ (t) for all t ∈ R,

and suppose that there exist constants A > 0 and 0 < a < π such that for all t ∈ R

we have

0 < Aτ (t) ≤ exp
{
Aea|t |} .

Then for 0 < θ < 1 we have

|F(θ)| ≤ exp

{
sin(πθ)

2

∫ ∞

−∞

[
log |A0(t)|

cosh(π t) − cos(πθ)
+ log |A1(t)|

cosh(π t) + cos(πθ)

]
dt

}
.

In calculations it is crucial to note that

sin(πθ)

2

∫ ∞
−∞

dt

cosh(π t) − cos(πθ)
= 1 − θ ,

sin(πθ)

2

∫ ∞
−∞

dt

cosh(π t) + cos(πθ)
= θ.

3 Multilinear interpolation

In this section we prove the main tool needed to derive Theorem 1.1 by interpolation.
We denote by �ξ = (ξ1, . . . , ξm) elements of R

mn , where ξ j ∈ R
n . We fix a Schwartz

function� onR
mn whose Fourier transform is supported in the annulus 1/2 ≤ |�ξ | ≤ 2

and satisfies

∑
j

�̂(2− j �ξ ) = 1, 0 �= �ξ ∈ R
mn .

Theorem 3.1 Let 0 < p01, . . . , p
0
m ≤ ∞, 0 < p11, . . . , p

1
m ≤ ∞, 0 < q0, q1 ≤ ∞,

0 ≤ s0, s1 < ∞, 1 < r0, r1 < ∞, 0 < θ < 1, and let

1

pl
= 1 − θ

p0l
+ θ

p1l
,

1

q
= 1 − θ

q0
+ θ

q1
,

1

r
= 1 − θ

r0
+ θ

r1
, s = (1 − θ)s0 + θs1

123



742 L. Grafakos, H. Van Nguyen

for l = 1, . . . ,m. Assume r0s0 > mn, and r1s1 > mn and that for all fl ∈ C∞
0 (Rn),

l = 1, . . . ,m, we have

‖Tσ ( f1, . . . , fm)‖Lqk (Rn) ≤ Kk sup
j∈Z

∥∥∥σ(2 j ·)�̂
∥∥∥
L
rk
sk (Rmn)

m∏
l=1

‖ fl‖
L pkl (Rn)

for k = 0, 1 where K0, K1 are positive constants. Then the intermediate estimate
holds:

‖Tσ ( f1, . . . , fm)‖Lq (Rn) ≤ C∗ K 1−θ
0 K θ

1 sup
j∈Z

∥∥∥σ(2 j ·)�̂
∥∥∥
Lrs (R

mn)

m∏
l=1

‖ fl‖L pl (Rn)

(14)
for all fl ∈ C∞

0 (Rn), where C∗ depends on all the indices, on θ , and on the dimension.
Consequently, if pl < ∞ for all l ∈ {1, . . . ,m}, then Tσ admits a bounded extension

from L p1 × · · · × L pm to Lq that satisfies (14).

Proof Fix a smooth function �̂ on R
mn such that supp(�) ⊂ { 1

4 ≤ |�ξ | ≤ 4
}
and

�̂ ≡ 1 on the support of the function �̂. Denote ϕ j = (I −�)
s
2 [σ(2 j ·)�̂] and define

σz(�ξ ) =
∑
j∈Z

(I − �)−
s0(1−z)+s1z

2

[
|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

]
(2− j �ξ )�̂(2− j �ξ ). (15)

This sum has only finitely many terms and we now estimate its L∞ norm. 	


Fix �ξ ∈ R
mn . Then there is a j0 such that |�ξ | ≈ 2 j0 and there are only

two terms in the sum in (15). For these terms we estimate the L∞ norm of

(I − �)−
s0(1−z)+s1z

2
[|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

]
. For z = τ + i t with 0 ≤ τ ≤ 1, let

sτ = (1 − τ)s0 + τ s1 and 1/rτ = (1 − τ)/r0 + τ/r1. By the Sobolev embedding
theorem we have

∥∥∥(I − �)−
s0(1−z)+s1z

2
[|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

]∥∥∥
L∞(Rmn)

≤ C(rτ , sτ ,mn)

∥∥∥(I − �)−
s0(1−z)+s1z

2
[|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

]∥∥∥
Lrτsτ (Rmn)

≤ C(rτ , sτ , n)

∥∥∥(I − �)i t
s0−s1

2
[|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

]∥∥∥
Lrτ (Rmn)

≤ C ′(rτ , sτ ,mn)(1 + |s0 − s1| |t |)mn/2+1
∥∥∥|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

∥∥∥
Lrτ (Rmn)

≤ C ′′(r0, r1, s0, s1, τ,mn)(1 + |t |)mn/2+1
∥∥∥|ϕ j |r(

1−τ
r0

+ τ
r1

)
∥∥∥
Lrτ (Rmn)

= C ′′(r0, r1, s0, s1, τ,mn)(1 + |t |)mn/2+1
∥∥ϕ j

∥∥r/rτ
Lr (Rmn)

.
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The Hörmander multiplier theorem, III: the complete bilinear... 743

It follows from this that

‖στ+i t‖L∞(Rmn) ≤ C ′′(r0, r1, s0, s1, τ,mn)(1 + |t |)mn/2+1
(
sup
j∈Z

∥∥σ(2 j ·)�̂∥∥
Lrs (R

mn)

)r/rτ
.

(16)
Let Tσz be the family of operators associated to the multipliers σz . Let ε be given.
Suppose first that min(p0l , p

1
l ) < ∞ for all l ∈ {1, . . . ,m}. This forces pl < ∞

for all l.

Case I: min(q0, q1) > 1 This assumption implies that q > 1, hence q ′, q ′
0, q

′
1 < ∞.

Fix fl , g ∈ C∞
0 (Rn). For given ε > 0, for every l ∈ {1, . . . ,m}, by Lemma 2.1 there

exist functions f z,εl and gz,ε of the form (8) such that

‖ f θ,ε
l − fl‖

L p1l
< ε, ‖ f θ,ε

l − fl‖
L p0l

< ε, ‖gθ,ε−g‖
Lq′

0
< ε, ‖gθ,ε−g‖

Lq′
1

< ε,

(17)
when max(p0l , p

1
l ) < ∞, while one of the first two inequalities is replaced by

‖ f θ,ε
l ‖L∞ ≤ ‖ fl‖

L pkl
+ ε = ‖ fl‖L∞ + ε when pkl = max(p0l , p

1
l ) = ∞, and

that

‖ f i t,εl ‖
L p0l

≤ ( ‖ fl‖pl
L pl + ε′) 1

p0l , ‖ f 1+i tε
l ‖

L p1l
≤ ( ‖ fl‖pl

L pl + ε′) 1
p1l ,

‖git,ε‖
Lq′

0
≤ ( ‖g‖q ′

Lq′ + ε′) 1
q′
0 ,

∥∥∥g1+i t,ε
∥∥∥
Lq′

1
≤ ( ‖g‖q ′

Lq′ + ε′) 1
q′
1 .

Define

F(z) =
∫
Rn

Tσz ( f
z,ε
1 , . . . , f z,εm )gz,ε dx

=
∫
Rmn

σz(�ξ )̂f z,ε1 (ξ1) · · ·̂f z,εm (ξm )̂gz,ε(−(ξ1 + · · · + ξm)) d�ξ

=
∑
j∈Z

∫
Rmn

(I − �)−
s0(1−z)+s1z

2

[
|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

]
(2− j ξ)�̂(2− j �ξ )

×
( m∏
l=1

̂f z,εl (ξl )
)̂
gz,ε(−(ξ1 + · · · + ξm)) d�ξ

=
∑
j∈Z

∫
Rmn

[
|ϕ j |r(

1−z
r0

+ z
r1

)
eiArg (ϕ j )

]
(2− j �ξ )

× (I − �)−
s0(1−z)+s1z

2

[
�̂(2− j �ξ )

( m∏
l=1

̂f z,εl (ξl )
)̂
gz,ε(−(ξ1 + · · · + ξm))

]
(�ξ ) d�ξ .

Notice that

(I − �)−
s0(1−z)+s1z

2

[
�̂(2− j �ξ )

( m∏
l=1

̂f z,εl (ξl)
)̂
gz,ε(−(ξ1 + · · · + ξm))

]
(�ξ )
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is equal to a finite sum (over k1, . . . , km, l) of terms of the form

|cε
k1 |

p1
p01

(1−z)+ p1
p11

z · · · |cε
km |

pm
p0m

(1−z)+ pm
p1m

z |dε
l |

q′
q′
0

(1−z)+ q′
q′
1
z
(I − �)−

s0(1−z)+s1 z
2

[
�̂(2− j ·)ζk1,...,km ,l

]
(�ξ ),

which we call H(z, �ξ ), where ζk1,...,km ,l are Schwartz functions. Thus H(z, �ξ ) is an
analytic function in z. Moreover H(z, �ξ ) can be thought of as a function of three
variables H(z, �ξ, x0), being constant in the variable x0, where {x0} is a measure space
of one element equipped with counting measure. With this interpretation, it is not hard
to verify that H(z, �ξ, x0) satisfies (13).

Lemma 2.3 guarantees that F(z) is analytic on the strip 0 < (z) < 1 and contin-
uous up to the boundary. Furthermore, by Hölder’s inequality,

|F(i t)| ≤
∥∥∥Tσi t ( f

i t,ε
1 , . . . , f i t,εm )

∥∥∥
Lq0

∥∥gε
i t

∥∥
Lq′

0
,

and noting that only the terms with j = k − 1, k, k + 1 survive in the sum in (15)
for σi t (2k ·)�̂, the Kato–Ponce inequality [10,14] applied as ‖(I − �)s/2(F�̂)‖Lr0 ≤
C‖(I − �)s/2(F)‖Lr0 yields

‖Tσi t ( f
i t,ε
1 , . . . , f i t,εm )‖Lq0

≤ K0 sup
k∈Z

∥∥∥σi t (2k ·)�̂
∥∥∥
L
r0
s0

m∏
l=1

‖ f i t,εl ‖
L p0l

≤ Cn,r0,s0K0 sup
k∈Z

∥∥(I − �)
s0
2 (I − �)−

s0(1−i t)+s1i t
2

[|ϕk |r(
1−i t
r0

+ i t
r1

)
eiArg (ϕk )

]∥∥
Lr0

×
m∏
l=1

‖ f i t,εl ‖
L p0l

≤ C(m, n, r0, s0)(1 + |s1 − s0| |t |)mn
2 +1K0 sup

j∈Z
‖ϕ j‖

r
r0
Lr

m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

p0l

= C(m, n, r0, s0, s1)(1 + |t |)mn
2 +1K0 sup

j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)�̂]

∥∥∥
r
r0

Lr

×
m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

p0l .

Thus, for some constant C = C(m, n, r0, s0, s1) we have

|F(i t)| ≤ C(1 + |t |)mn
2 +1K0 sup

j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)�̂]

∥∥∥
r
r0

Lr

( ‖g‖q ′
Lq′ + ε′) 1

q′
0

×
m∏
l=1

( ‖ fl‖pl
L pl + ε′) pl

p0l .
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Similarly, we can choose the constant C = C(m, n, r1, s0, s1) above large enough so
that

|F(1 + i t)| ≤ C(1 + |t |)mn
2 +1K1 sup

j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)�̂]

∥∥∥
r
r1

Lr

( ‖g‖q ′
Lq′ + ε′) 1

q′
1

×
m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

p1l .

Note that F(z) is a combination of finite terms of the form

�k1,...,km ,l(z)
∫
Rmn

σz(�ξ )
̂h1,εj1 (ξ1) · · ·̂hm,ε

jm
(ξm)ĝε

j (−(ξ1 + · · · + ξm)) d�ξ,

where

�k1,...,km ,l(z) = |cε
k1 |

p1
p01

(1−z)+ p1
p11

z · · · |cε
km |

pm
p0m

(1−z)+ pm
p1m

z |dε
l |

q′
q′
0
(1−z)+ q′

q′
1
z
,

and h1,εj1 , gε
j are smooth functions with compact support. Thus for z = τ + i t , t ∈ R

and 0 ≤ τ ≤ 1 it follows from (16) and from the definition of F(z) that

|F(z)| ≤ C(τ, ε, f1, . . . , fm , g, rl , pl , q0, q1)(1 + |t |)mn
2 +1

(
sup
j∈Z

∥∥∥σ(2 j ·)�̂
∥∥∥
Lrs

) r
rτ = Aτ (t).

As Aτ (t) ≤ exp(Aea|t |), the admissible growth hypothesis of Lemma 2.4 is satisfied.
Applying Lemma 2.4 we obtain

|F(θ)| ≤ C K 1−θ
0 K θ

1 sup
j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)ψ̂ ]

∥∥∥
Lr

( ‖g‖q ′
Lq′ + ε′) 1

q′
m∏
l=1

( ‖ fl‖plL pl + ε′) 1
pl .

(18)
But

F(θ) =
∫
Rn

Tσ ( f θ,ε
1 , . . . , f θ,ε

m ) gθ,ε dx

and then we have

∫
Rn

Tσ ( f1, . . . , fm) g dx = F(θ) +
∫
Rn

[
Tσ ( f1, . . . , fm) − Tσ ( f θ,ε

1 , . . . , f θ,ε
m )

]
g dx

+
∫
Rn

Tσ ( f θ,ε
1 , . . . , f θ,ε

m )
(
g − gθ,ε

)
dx .

(19)
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746 L. Grafakos, H. Van Nguyen

A telescoping identity yields

|Tσ ( f1, . . . , fm) − Tσ ( f θ,ε
1 , . . . , f θ,ε

m )| ≤
m∑
l=1

|Tσ ( f1, . . . , fl−1, fl − f θ,ε
l , f θ,ε

l+1, . . . , f θ,ε
m )|.

For every fixed l, applying the hypothesis that Tσ is bounded from L pk1 × · · · × L pkm

to Lqk for k = 0, 1 we obtain

∥∥Tσ ( f1, . . . , fl−1, fl − f θ,ε
l , f θ,ε

l+1, . . . , f θ,ε
m )

∥∥
Lqk �

∥∥ fl − f θ,ε
l

∥∥
L pkl

∏
j �=l

(‖ f j‖p j

L
pkj

+ ε′) 1
p j .

In view of the inequality ‖h‖Lq ≤ ‖h‖1−θ
Lq0 ‖h‖θ

Lq1 these estimates yield

∥∥Tσ ( f1, . . . , fl−1, fl − f θ,ε
l , f θ,ε

l+1, . . . , f θ,ε
m )

∥∥
Lq �

∥∥ fl − f θ,ε
l

∥∥1−θ

L p0l

∥∥ fl − f θ,ε
l

∥∥θ

L p1l∏
j �=l

(‖ f j‖p j

L
pkj

+ ε′) 1
p j .

As 0 < θ < 1 and one of p0l or p1l is strictly less than infinity, the expression on the
right above is bounded by a constant multiple of εmin(θ,1−θ) and hence it tends to zero
as ε → 0 because of (9). This proves that (in fact for all 0 < q < ∞)

∥∥Tσ ( f1, . . . , fm) − Tσ ( f θ,ε
1 , . . . , f θ,ε

m )
∥∥
Lq ≤ Eε, (20)

where Eε → 0 as ε → 0. Returning to (19) and using (18) and Hölder’s inequality
we write
∣∣∣∣
∫

Tσ ( f1, . . . , fm)(x) g(x) dx

∣∣∣∣
≤ CK 1−θ

0 K θ
1 sup

j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)ψ̂ ]

∥∥∥
Lr

( ‖g‖q ′
Lq′ + ε′) 1

q′
m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

pl

+ Eε

∥∥g∥∥Lq′ + C
∥∥g − gθ,ε

∥∥
Lq′

0

m∏
l=1

∥∥ f θ,ε
l

∥∥
L p0l

Recalling (17) and using that each ‖ f θ,ε
l ‖

L p0l
remains bounded as ε → 0 we obtain

∣∣∣∣
∫

Tσ ( f1, . . . , fm) g dx

∣∣∣∣ ≤ CK 1−θ
0 K θ

1 sup
j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)ψ̂ ]

∥∥∥
Lr

‖g‖Lq′
m∏
l=1

‖ fl‖L pl

by letting ε → 0. Taking the supremum over all functions g ∈ Lq ′
with ‖g‖Lq′ = 1

yields the sought estimate (14) in Case I.

Case II: min(q0, q1) ≤ 1
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The Hörmander multiplier theorem, III: the complete bilinear... 747

Here we will make use of two following lemmas proved by Stein and Weiss [20].

Lemma 3.2 ([20]) Let U : S −→ R be an upper semi-continuous function of admis-
sible growth and subharmonic in the unit strip S. Then for z0 = x0 + iy0 ∈ S we
have

U (z0) ≤
∫ +∞

−∞
U
(
i(y0 + t)

)
ω(1 − x0, t)dt +

∫ +∞

−∞
U
(
1 + i(y0 + t)

)
ω(x0, t)dt,

where

ω(x, y) = 1

2

sin πx

cosπx + cosh π y
.

Lemma 3.3 ([20]) Let 0 < c ≤ 1 and let (M, μ) be a measure space with finite
measure. If a function V (z, ·) is analytic from the unit strip S to L1(M, μ), then
log

∫
M |V (z, x)|c dμ is subharmonic on S.

We now continue the proof of the second case.We fix functions fl as in the previous
case. Choose an integer ρ > 1 such that ρ ≥ ρ min(q0, q1) > q. Take an arbitrary
positive simple function g with ‖g‖Lρ′ = 1. Assume that g = ∑N

k=1 ckχEk , where
ck > 0 and Ek are pairwise disjoint measurable sets of finite measure and compact
support. For z ∈ C, set

gz =
N∑

k=1

cλ(z)
k χEk , where λ(z)

= ρ′
[
1 − q

ρ

(
1 − z

q0
+ z

q1

)]
.

Now consider

G(z) =
∫
Rn

∣∣Tσz ( f
z,ε
1 , . . . , f z,εm )(x)

∣∣ qρ ∣∣gz(x)∣∣ dx

=
N∑

k=1

∫
Ek

∣∣∣∣c
ρ
q λ(z)

k Tσz ( f
z,ε
1 , . . . , f z,εm )(x)

∣∣∣∣
q
ρ

dx .

Let V (z, x) = Tσz ( f
z,ε
1 , . . . , f z,εm )(x). Then V (z, x) can be represented as a finite

sum of terms of the form

∫

Rmn

eP(z)|ϕ j (�ξ )| r
r0

(1−z)+ r
r1
z
eiArg (ϕ j )(I − �)−

s0(1−z)+s1z
2

[
e2π i x2

j ·(∑m
κ=1 ξκ )�̂(�ξ )

×
m∏

κ=1

ĥε
κ (2 jξκ)

]
(�ξ )d�ξ,
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748 L. Grafakos, H. Van Nguyen

where hε
κ are the smooth functions with compact support in (8) and P is a polynomial.

Setting

H(z, �ξ, x) = (I − �)−
s0
2 (1−z)− s1

2 z
[
e2π i2

j x ·(ξ1+···+ξn)�̂(�ξ )

m∏
κ=1

ĥε
κ (2 jξκ)

]
,

we note that H(z, �ξ, x) is analytic in z, smooth in ξ and bounded in x , as long as
x remains in a compact set. Moreover H satisfies (13). Applying Lemma 2.3 we
obtain that for all (�ξ, x) the mapping H(·, �ξ, x) is analytic from S to L1(Ek, dx)
Then Lemma 3.3 applies and yields that logG is subharmonic on S. Using Hölder’s
inequality with indices ρq0

q and
(ρq0

q

)′ and the fact that the Lρ′
-norm of g is equal to

1, we have

G(i t) ≤
{∫

Rn

∣∣∣Tσi t ( f
i t,ε
1 , . . . , f i t,εm )(x)

∣∣∣q0 dx
} q

ρq0 ∥∥git∥∥
L

(
ρq0
q )′

≤C
(
(1 + |t |)mn

2 +1
) q

ρ

(
K0 sup

j∈Z

∥∥∥σ(2 j ·)ψ̂
∥∥∥

r
r0

Lrs

m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

pl

) q
ρ

.

Similarly, we can estimate

G(1 + i t) ≤
{∫

Rn

∣∣∣Tσi t ( f
1+i t,ε
1 , . . . , f 1+i t,ε

m )(x)
∣∣∣q1 dx

} q
ρq1 ∥∥g1+i t

∥∥
L

(
ρq1
q )′

≤C
(
(1 + |t |)mn

2 +1
) q

ρ

(
K1 sup

j∈Z

∥∥∥σ(2 j ·)ψ̂
∥∥∥

r
r1

Lrs

m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

pl

) q
ρ

.

Applying Lemma 3.2 to U = logG (with y0 = 0 and x0 = θ ) and using that for
0 < θ < 1 we have

sin(π(1 − θ))

2

∫ +∞

−∞
1

cosh(π t) + cos(π(1 − θ))
dt = 1 − θ,

sin(πθ)

2

∫ +∞

−∞
1

cosh(π t) + cos(πθ)
dt = θ,

(see [3, Page 48]) we obtain

G(θ) ≤ C ′∗

(
K 1−θ
0 K θ

1 sup
j∈Z

∥∥∥σ(2 j ·)ψ̂
∥∥∥
Lrs

m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

pl

) q
ρ

. (21)

Notice that as

G(θ) =
∫
Rn

∣∣∣Tσ ( f θ,ε
1 , . . . , f θ,ε

m )(x)
∣∣∣
q
ρ
g(x) dx,
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The Hörmander multiplier theorem, III: the complete bilinear... 749

inequality (21) implies that

∥∥∥Tσ ( f θ,ε
1 , . . . , f θ,ε

m )

∥∥∥
Lq

=
∥∥∥∥
∣∣∣Tσ ( f θ,ε

1 , . . . , f θ,ε
m )

∣∣∣
q
ρ

∥∥∥∥
ρ
q

Lρ

= sup

{∫ ∣∣∣Tσ ( f θ,ε
1 , . . . , f θ,ε

m )(x)
∣∣∣
q
ρ
g(x) dx : g ≥ 0, g simple, ‖g‖Lρ′ = 1

} ρ
q

≤ (C ′∗)
ρ
q K 1−θ

0 K θ
1 sup

j∈Z

∥∥∥σ(2 j ·)ψ̂
∥∥∥
Lrs

m∏
l=1

( ‖ fl‖pl
L pl + ε′) 1

pl . (22)

Finally, we use

‖Tσ ( f1, . . . , fm)‖Lq ≤ (1 + 2
1
q −1

)
[‖Tσ ( f1, . . . , fm) − Tσ ( f θ,ε

1 , . . . , f θ,ε
m )‖Lq

+‖Tσ ( f θ,ε
1 , . . . , f θ,ε

m )‖Lq
]

and we note that for the second term we use (22), while the first term tends to zero, in
view of (20). Letting ε → 0, we deduce (14).

We now turn to the case where min(p0l , p
1
l ) = ∞ for some (but not all) l in

{1, . . . ,m}. Then we must have pl = ∞ for these l, and for these l we set f z,εl = f ,
while for the remaining l the functions f z,εl are defined as before; we notice that the
preceding argument works with only minor modifications.

Finally we consider the case where p0l = p1l = ∞ for all 1 ≤ l ≤ m. Here we also
take f z,εl = fl for all l in {1, . . . ,m}. Now (19) becomes

∫
Rn

Tσ ( f1, . . . , fm) g dx = F(θ) +
∫
Rn

Tσ ( f1, . . . , fm)
(
g − gθ,ε

)
dx . (23)

Hence, in Case I, when min(q0, q1) > 1, we have

∣∣∣∣
∫

Tσ ( f1, . . . , fm)(x) g(x) dx

∣∣∣∣
≤ CK 1−θ

0 K θ
1 sup

j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)ψ̂ ]

∥∥∥
Lr

( ‖g‖q ′
Lq′ + ε′) 1

q′
m∏
l=1

‖ fl‖L∞

+ C
∥∥g − gθ,ε

∥∥
Lq′

0

m∏
l=1

∥∥ fl∥∥L∞ .

Passing the limit as ε → 0 to obtain

∣∣∣∣
∫

Tσ ( f1, . . . , fm) g dx

∣∣∣∣ ≤ CK 1−θ
0 K θ

1 sup
j∈Z

∥∥∥(I − �)
s
2 [σ(2 j ·)ψ̂ ]

∥∥∥
Lr

‖g‖Lq′
m∏
l=1

‖ fl‖L∞ .
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750 L. Grafakos, H. Van Nguyen

The result in Case II, which is when min(q0, q1) ≤ 1, can be obtained from that in
Case I by choosing ρ > 1 such that ρ min(q0, q1) > q and by arguing as before,

replacing each term
( ‖ fl‖pl

L pl + ε′) 1
pl by ‖ fl‖L∞ . This concludes the proof of the

theorem in all cases. 	

Note that the proof of Theorem 3.1 is much simpler in the case r0 = r1 = 2, and

this was proved earlier in [8, Theorem 6.1, Step 1]; see also [9, Theorem 2.3]. In this
case, the domains can be arbitrary Hardy spaces. We state the theorem in this case
(without providing a proof):

Theorem 3.4 ([8]) Let p0l , p
1
l , pl , q0, q1, q, s0, s1, s and θ ∈ (0, 1) be as in Theo-

rem 3.1 for l = 1, . . . ,m. Assume that s0, s1 > mn
2 , p0l , p

1
l < ∞ for all l, and

that

‖Tσ ( f1, . . . , fm)‖Lqk (Rn) ≤ Kk sup
j∈Z

∥∥∥σ(2 j ·)�̂
∥∥∥
L2
sk

(Rmn)

m∏
l=1

‖ fl‖
H pkl (Rn)

for k = 0, 1 where K0, K1 are positive constants. Then we have the intermediate
estimate:

‖Tσ ( f1, . . . , fm)‖Lq (Rn) ≤ C∗ K 1−θ
0 K θ

1 sup
j∈Z

∥∥∥σ(2 j ·)�̂
∥∥∥
L2
s (R

mn)

m∏
l=1

‖ fl‖H pl (Rn)

for all Schwartz functions fl with vanishing moments of all orders, where C∗ depends
on all the indices, θ , and the dimension.

4 The proof of themain result via interpolation

We now turn to the proof of Theorem 1.1.

Proof (a) Assume n/2 < s ≤ n and let

�1 =
{( 1

p1
,
1

p2

)
: 1

p1
<

s

n
,
1

p2
<

s

n
, 1 − s

n
<

1

p
= 1

p1
+ 1

p2
<

s

n
+ 1

2

}
.

We will prove that

‖Tσ ( f1, f2)‖L p(Rn) ≤ C sup
j∈Z

‖σ(2 j ·)�̂‖Lrs (R2n)‖ f1‖L p1 (Rn)‖ f2‖L p2 (Rn) (24)

for every ( 1
p1

, 1
p2

) ∈ �1, which is a convex set with vertices D, K , L,G, H and N (see
Fig. 1a below). By multilinear real interpolation [4, Corollary 7.2.4], we only need
to verify the boundedness of Tσ at points in �1 near its vertices D, K , L,G, H , N
which do not lie in �1.

As showed in [4,11], the Hörmander condition sup j∈Z ‖σ(2 j ·)�̂‖Lrs (R2n) is invari-
ant under duality. For 1 ≤ p < ∞, by duality, if Tσ maps L p1 × L p2 → L p, then
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N

H

D

E

F
G

K

L

P

Q

B

A

C

TJ

O I

1
p2

1
p1

(A) n
2 < s ≤ n

R

P

Q

B

A

C

TJ

O I

S

1
p2

1
p1

(B) n < s ≤ 3n
2

Fig. 1 Boundedness holds in the shaded regions and unboundedness in the white regions. The local L2

region is shaded in a lighter color

it also maps L p′ × L p2 → L p′
1 . Therefore, if Tσ is bounded near D, then Tσ is also

bounded near N by duality. By symmetry, if Tσ is bounded near N , D and K then it
is bounded near H ,G and L as well. From these reductions, it remains to prove (24)
at points in �1 near D and K .

With s1 > n
2 and r1s1 > 2n, we recall the following [6, Theorem 1]:

‖Tσ ( f1, f2)‖L1(Rn) ≤ C sup
j∈Z

‖σ(2 j ·)�̂‖Lr1s1 (R2n)
‖ f1‖L2(Rn)‖ f2‖L2(Rn). (25)

By duality it follows from (25) that when s1 > n
2 and r1s1 > 2n we have

‖Tσ ( f1, f2)‖L2(Rn) ≤ C sup
j∈Z

‖σ(2 j ·)�̂‖Lr1s1 (R2n)
‖ f1‖L2(Rn)‖ f2‖L∞(Rn). (26)

Theorem 1.1 in [17] (with s1 = s2 in [17] being γ below) implies that

‖Tσ ( f1, f2)‖Lq (Rn)

≤ C sup
j∈Z

‖(I − �ξ1)
γ
2 (I − �ξ2)

γ
2
[
σ(2 j ·)�̂]‖L2(R2n)‖ f1‖Lq1 (Rn)‖ f2‖Lq2 (Rn)

for γ > n
2 , where 1 < q1, q2 ≤ ∞, 1

q = 1
q1

+ 1
q2

<
2γ
n + 1

2 . Given s2 > n, choose
γ = s2

2 > n
2 and observing the trivial estimate

sup
j∈Z

‖(I − �ξ1)
γ
2 (I − �ξ2)

γ
2
[
σ(2 j ·)�̂]‖L2(R2n) ≤ C sup

j∈Z
‖σ(2 j ·)�̂‖L2

s2
(R2n),

we obtain

‖Tσ ( f1, f2)‖Lq (Rn) ≤ C sup
j∈Z

‖σ(2 j ·)�̂‖L2
s2

(R2n)‖ f1‖Lq1 (Rn)‖ f2‖Lq2 (Rn) (27)
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for all 1 < q1, q2 ≤ ∞, 1
q = 1

q1
+ 1

q2
< s2

n + 1
2 .

We now use Theorem 3.1 to interpolate between (26) and (27) (for q1 = q near
1 and q2 = ∞). We obtain (24) at points D1(

1
p1

, 0) with 1
p1

< s
n which are near

the point D( sn , 0). Similarly, interpolating between (25) and (27) (q1 near 1, q2 = 2)
yields (24) at points K1(

1
p1

, 1
2 ) with

1
p1

< s
n near K ( sn , 1

2 ). This yields (24) on �1 and
completes part (a).

(b) Assume n < s ≤ 3n
2 . Since r ≥ 2, the Kato–Poince inequality [10] implies that

sup
j∈Z

‖σ(2 j ·)�̂‖L2
s (R

2n) � sup
j∈Z

‖σ(2 j ·)�̂‖Lrs (R2n). (28)

Combining estimates (28) and (27) yields (24) in the open pentagon OI RSJ union
the open segments OI and OJ . This completes the second part of Theorem 1.1.

(c) In the last case when s > 3n
2 , notice that condition (7) reduces to p > 1

2 and
since

sup
j∈Z

‖σ(2 j ·)�̂‖Lr3n
2

(R2n) ≤ sup
j∈Z

‖σ(2 j ·)�̂‖Lrs (R2n),

the case in part (b) applies and yields (24) for every point in the entire rhombus OIT J
union the open segments OI and OJ . The proof of Theorem 1.1 is now complete. 	


5 An application

We consider the following multiplier on R
2n : ma,b(ξ1, ξ2) = ψ(ξ1, ξ2)|(ξ1, ξ2)|−b

ei |(ξ1,ξ2)|a where a > 0, a �= 1, b > 0, and ψ is a smooth function on R
2n which

vanishes in a neighborhood of the origin and is equal to 1 in a neighborhood of infinity.
One can verify that ma,b satisfies (1) on R

2n with s = b/a and any r > 2n/s.
The range of p’s for which ma,b is a bounded bilinear multiplier on L p(R2n)

can be completely described by the equation | 1p − 1
2 | ≤ b/a

2n (see Hirschman [12,
comments after Theorem 3c], Wainger [22, Part II], and Miyachi [16, Theorem 3]);
similar examples of multipliers of limited boundedness are contained in Miyachi and
Tomita [17, Section 7].

As a consequence of Theorem 1.1 we obtain that the bilinear multiplier operator
associated withma,b is bounded from L p1(Rn)× L p2(Rn) to L p(Rn) in the following
cases:

(i) when n ≥ b/a > n/2 and

1

p1
<

b

an
,

1

p2
<

b

an
, 1 − b

an
<

1

p
<

b

an
+ 1

2
.

(ii) when 3n/2 ≥ b/a > n and

1

p
<

b

an
+ 1

2
;
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(iii) whenb/a > 3n/2 in the entire range of exponents 1 < p1, p2 ≤ ∞, 12 < p < ∞.

The boundedness of this specific bilinear multiplier is unknown to us outside the
above range of indices.
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