

The Hörmander multiplier theorem, III: the complete bilinear case via interpolation

Loukas Grafakos¹ · Hanh Van Nguyen2

Received: 15 November 2018 / Accepted: 22 May 2019 / Published online: 3 June 2019 © Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract

We develop a special multilinear complex interpolation theorem that allows us to prove an optimal version of the bilinear Hörmander multiplier theorem concerning symbols that lie in the Sobolev space $L_s^r(\mathbb{R}^{2n})$, $2 \le r < \infty$, $rs > 2n$, uniformly over all annuli. More precisely, given such a symbol with smoothness index *s*, we find the largest open set of indices $(1/p_1, 1/p_2)$ for which we have boundedness for the associated bilinear multiplier operator from $L^{p_1}(\mathbb{R}^n) \times L^{p_2}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ when $1/p = 1/p_1 + 1/p_2$, $1 < p_1, p_2 < \infty$.

Keywords Multilinear operator · Multiplier operator · Interpolation

Mathematics Subject Classification 42B15 · 42B30

1 Introduction

Multipliers are linear operators of the form

$$
T_{\sigma}(f)(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) \sigma(\xi) e^{2\pi i x \cdot \xi} d\xi,
$$

Communicated by G. Teschl.

The first author would like to thank the Simons Foundation.

 \boxtimes Loukas Grafakos grafakosl@missouri.edu

> Hanh Van Nguyen hvnguyen@ua.edu

¹ Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

² Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA

where *f* is a Schwartz function on \mathbb{R}^n and $\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx$ is its Fourier transform.

Let Ψ be a Schwartz function whose Fourier transform is supported in the annulus of the form $\{\xi : 1/2 < |\xi| < 2\}$ which satisfies $\sum_{j \in \mathbb{Z}} \widehat{\Psi}(2^{-j}\xi) = 1$ for all $\xi \neq 0$. We denote by Δ the Laplacian and by $(I - \Delta)^{s/2}$ the operator given on the Fourier transform by multiplication by $(1+4\pi^2|\xi|^2)^{s/2}$; also for $s > 0$, and we denote by L_s^r the Sobolev space of all functions *h* on \mathbb{R}^n with norm $||h||_{L_s^r} := ||(I - \Delta)^{s/2}h||_{L^r} < \infty$. Extending an earlier result of Mikhlin [\[15](#page-18-0)], the optimal version of the Hörmander multiplier theorem says that if

$$
\sup_{k\in\mathbb{Z}}\|\widehat{\Psi}\sigma(2^k\cdot)\|_{L^r_s}<\infty\tag{1}
$$

and

$$
\left|\frac{1}{p} - \frac{1}{2}\right| < \frac{s}{n},\tag{2}
$$

then T_{σ} is bounded from $L^p(\mathbb{R}^n)$ to itself for $1 < p < \infty$. Hörmander's [\[13](#page-18-1)] original version of this theorem stated boundedness in the entire interval $1 < p < \infty$ provided $s > n/2$. A restriction on the indices first appeared in Calderón and Torchinsky [\[1](#page-18-2)], while condition [\(2\)](#page-1-0) appeared in [\[5\]](#page-18-3); this condition is sharp as examples are given in [\[5](#page-18-3)] indicating that the theorem fails in general when $\left|\frac{1}{p} - \frac{1}{2}\right| > \frac{s}{n}$. Moreover, recently Slavíková [\[19\]](#page-18-4) provided an example showing that boundedness may also fail even on the critical line $\left|\frac{1}{p} - \frac{1}{2}\right| = \frac{s}{n}$.

In this paper we provide bilinear analogues of these results. The study of the Hörmander multiplier theorem in the multilinear setting was initiated by Tomita [\[21](#page-18-5)] and was further studied by Fujita, Grafakos, Miyachi, Nguyen, Si, Tomita (see [\[2](#page-18-6)[,7](#page-18-7)[,8](#page-18-8)[,11](#page-18-9)[,17](#page-18-10)[,18](#page-18-11)]) among others. For a given function σ on \mathbb{R}^{2n} we define a bilinear operator

$$
T_{\sigma}(f_1, f_2)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \widehat{f}_1(\xi_1) \widehat{f}_2(\xi_2) \sigma(\xi_1, \xi_2) e^{2\pi i x \cdot (\xi_1 + \xi_2)} d\xi_1 d\xi_2
$$

originally defined on pairs of C_0^{∞} functions f_1 , f_2 on \mathbb{R}^n . We fix a Schwartz function Ψ on \mathbb{R}^{2n} whose Fourier transform is supported in the annulus $1/2 \leq |(\xi_1, \xi_2)| \leq 2$ and satisfies

$$
\sum_{j\in\mathbb{Z}} \widehat{\Psi}(2^{-j}(\xi_1,\xi_2)) = 1, \quad (\xi_1,\xi_2) \neq 0.
$$

The following theorem is the main result of this paper:

Theorem 1.1 *Let* $2 \le r < \infty$, $s > \frac{2n}{r}$, $1 < p_1, p_2 \le \infty$ and let $1/p = 1/p_1 + 1/p_2 >$ 0*.*

(a) Let $n/2 < s \leq n$. Suppose that

$$
\frac{1}{p_1} < \frac{s}{n}, \; \frac{1}{p_2} < \frac{s}{n}, \; 1 - \frac{s}{n} < \frac{1}{p} < \frac{s}{n} + \frac{1}{2}.\tag{3}
$$

Then for all $C_0^{\infty}(\mathbb{R}^n)$ *functions* f_1 *,* f_2 *we have*

$$
||T_{\sigma}(f_1, f_2)||_{L^p(\mathbb{R}^n)} \leq C \sup_{j \in \mathbb{Z}} ||\sigma(2^j \cdot) \widehat{\Psi}||_{L^r_s(\mathbb{R}^{2n})} ||f_1||_{L^{p_1}(\mathbb{R}^n)} ||f_2||_{L^{p_2}(\mathbb{R}^n)}.
$$
 (4)

Moreover, if [\(4\)](#page-2-0) *holds for all* $f_1, f_2 \in C_0^{\infty}$ *and all* σ *satisfying* [\(1\)](#page-1-1)*, then we must necessarily have*

$$
\frac{1}{p_1} \le \frac{s}{n}, \ \frac{1}{p_2} \le \frac{s}{n}, \ 1 - \frac{s}{n} \le \frac{1}{p} \le \frac{s}{n} + \frac{1}{2}.
$$
 (5)

(b) Let $n < s < 3n/2$ and satisfy

$$
\frac{1}{p} < \frac{s}{n} + \frac{1}{2} \,. \tag{6}
$$

Then [\(4\)](#page-2-0) *holds. Moreover, if* (4) *holds for all* $f_1, f_2 \in C_0^\infty$ *and all* σ *satisfying* [\(1\)](#page-1-1)*, then we must necessarily have*

$$
\frac{1}{p} \le \frac{s}{n} + \frac{1}{2} \,. \tag{7}
$$

(c) If $s > \frac{3n}{2}$ then [\(4\)](#page-2-0) holds for all $1 < p_1, p_2 < \infty$ and $\frac{1}{2} < p < \infty$.

This theorem uses two main tools: First, the optimal *n*/2-derivative result in the local L^2 -case contained in [\[6\]](#page-18-12) and a special type of multilinear interpolation suitable for the purposes of this problem (see Theorem [3.1](#page-6-0) below). Figure [1](#page-16-0) (Sect. [4\)](#page-15-0), plotted on a slanted $(1/p_1, 1/p_2)$ plane, shows the regions of boundedness for T_{σ} in the two cases $n/2 < s \le n$ and $n < s \le 3n/2$. Note also that in the former case, the condition $1 - \frac{s}{n} < \frac{1}{p}$ is only needed when $p > 2$.

Finally, we mention that the necessity of conditions (3) , (5) , and (7) in Theorem [1.1](#page-1-2) are consequences of Theorems 2 and 3 in $[6]$ $[6]$; these say that if boundedness holds, then we must necessarily have

$$
\frac{1}{p_1} \le \frac{s}{n}, \quad \frac{1}{p_2} \le \frac{s}{n}, \quad \frac{1}{p} \le \frac{s}{n} + \frac{1}{2}.
$$

Also, if T_{σ} maps $L^{p_1} \times L^{p_2}$ to L^p and $p > 2$, then duality implies that T_{σ} maps $L^{p'} \times L^{p_2}$ to $L^{p'_1}$. Now *p'* plays the role of *p*₁ and so constraint $\frac{1}{p_1} \leq \frac{s}{n}$ becomes $1 - \frac{s}{n} \leq \frac{1}{p}$. This proves [\(5\)](#page-2-2). So the main contribution of this work is the sufficiency of the conditions in (3) and (6) .

2 Preliminary material for interpolation

In this section we briefly discuss three lemmas needed in our interpolation.

Lemma 2.1 *Let* $0 < p_0 < p < p_1 \le \infty$ *be related as in* $1/p = (1 - \theta)/p_0 + \theta/p_1$ *for some* $\theta \in (0, 1)$ *. Given* $f \in C_0^{\infty}(\mathbb{R}^n)$ *and* $\varepsilon > 0$ *, there exist smooth functions* h_j^{ε} , $j = 1, \ldots, N_{\varepsilon}$, supported in cubes with pairwise disjoint interiors, and nonzero $\emph{complex constants}$ c_j^{ε} *such that the functions*

$$
f^{z,\varepsilon} = \sum_{j=1}^{N_{\varepsilon}} |c_j^{\varepsilon}|^{\frac{p}{p_0}(1-z) + \frac{p}{p_1}z} h_j^{\varepsilon}
$$
 (8)

satisfy

$$
\|f^{\theta,\varepsilon} - f\|_{L^{p_0}} < \varepsilon \quad \text{and} \quad \begin{cases} \|f^{\theta,\varepsilon} - f\|_{L^{p_1}} < \varepsilon \quad \text{if } p_1 < \infty \\ \|f^{\theta,\varepsilon}\|_{L^{\infty}} \le \|f\|_{L^{\infty}} + \varepsilon \quad \text{if } p_1 = \infty \end{cases} \tag{9}
$$

and

$$
||f^{it,\varepsilon}||_{L^{p_0}}^{p_0} \leq ||f||_{L^p}^p + \varepsilon', \quad ||f^{1+it,\varepsilon}||_{L^{p_1}} \leq (||f||_{L^p}^p + \varepsilon')^{\frac{1}{p_1}},
$$

where ε' *depends on* ε , p_0 , p_1 , p , $\| f \|_{L^p}$ *and tends to zero as* $\varepsilon \to 0$ *.*

Proof Given $f \in C_0^{\infty}(\mathbb{R}^n)$ and $\varepsilon > 0$, by uniform continuity there are N_{ε} cubes Q_j^{ε} (with disjoint interiors) and nonzero complex constants c_j^{ε} such that

$$
\left\|f - \sum_{j=1}^{N_{\varepsilon}} c_j^{\varepsilon} \chi_{Q_j^{\varepsilon}} \right\|_{L^{p_0}}^{\min(1, p_0)} < \frac{\varepsilon^{\min(1, p_0)}}{2}, \qquad \left\|f - \sum_{j=1}^{N_{\varepsilon}} c_j^{\varepsilon} \chi_{Q_j^{\varepsilon}} \right\|_{L^{p_1}}^{\min(1, p_1)} < \frac{\varepsilon^{\min(1, p_1)}}{2},
$$

and

$$
\left\|f - \sum_{j=1}^{N_{\varepsilon}} c_j^{\varepsilon} \chi_{\mathcal{Q}_j^{\varepsilon}} \right\|_{L^p} < \varepsilon. \tag{10}
$$

Find smooth functions g_j^{ε} satisfying $0 \le g_j^{\varepsilon} \le \chi_{\mathcal{Q}_j^{\varepsilon}}$ such that

$$
\left\|f - \sum_{j=1}^{N_{\varepsilon}} c_j^{\varepsilon} g_j^{\varepsilon} \right\|_{L^{p_0}}^{\min(1, p_0)} < \frac{\varepsilon^{\min(1, p_0)}}{2} \quad \text{and} \quad \left\|f - \sum_{j=1}^{N_{\varepsilon}} c_j^{\varepsilon} g_j^{\varepsilon} \right\|_{L^{p_1}}^{\min(1, p_1)} < \frac{\varepsilon^{\min(1, p_1)}}{2},
$$

where the last estimate is required only when $p_1 < \infty$. We set $h_j^{\varepsilon} = e^{i\phi_j^{\varepsilon}} g_j^{\varepsilon}$, where ϕ_j^{ε} is the argument of the complex number c_j^{ε} . Then h_j^{ε} is that function claimed in [\(8\)](#page-3-0). Observe that

$$
f^{\theta,\varepsilon} = \sum_{j=1}^{N_{\varepsilon}} |c_j^{\varepsilon}| h_j^{\varepsilon} = \sum_{j=1}^{N_{\varepsilon}} c_j^{\varepsilon} g_j^{\varepsilon}
$$

satisfies [\(9\)](#page-3-1) when $p_1 < \infty$; in the case $p_1 = \infty$ we have

$$
|f^{\theta,\varepsilon}| \leq \sum_{j=1}^{N_{\varepsilon}}|c_j^{\varepsilon}| \chi_{\mathcal{Q}_j^{\varepsilon}} = \bigg|\sum_{j=1}^{N_{\varepsilon}}c_j^{\varepsilon} \chi_{\mathcal{Q}_j^{\varepsilon}}\bigg| \leq \bigg|\sum_{j=1}^{N_{\varepsilon}}c_j^{\varepsilon} \chi_{\mathcal{Q}_j^{\varepsilon}} - f\bigg| + |f| \leq \frac{\varepsilon}{2} + |f| \leq \varepsilon + \|f\|_{L^{\infty}}.
$$

Now we have

$$
\|f^{it,\varepsilon}\|_{L^{p_0}}^{p_0} \leq \sum_{j=1}^{N_{\varepsilon}}|c_j^{\varepsilon}|^p|Q_j^{\varepsilon}| = \bigg\|\sum_{j=1}^{N_{\varepsilon}}c_j^{\varepsilon}\chi_{Q_j^{\varepsilon}}\bigg\|_{L^p}^p \leq \bigg(\varepsilon^{\min(1,p)} + \|f\|_{L^p}^{\min(1,p)}\bigg)^{\frac{p}{\min(1,p)}},
$$

having made use of (10) .

Given $a, c > 0$ and $\varepsilon > 0$ set $\varepsilon' = \varepsilon'(\varepsilon, a, c) = (\varepsilon^a + c^a)^{1/a} - c$. Then $(\varepsilon^a +$ $(c^a)^{1/a} \leq \varepsilon' + c$ and $\varepsilon' \to 0$ as $\varepsilon \to 0$. Then for a suitable ε' that only depends on ε , p , p_0 , p_1 , $||f||_{L^p}$, the preceding estimate gives: $||f^{it,\varepsilon}||_{L^{p_0}}^{p_0} \leq ||f||_{L^p}^{p'} + \varepsilon'$ and analogously $||f^{1+it,s}||_{L^{p_1}} \le (||f||_{L^p}^p + \varepsilon')^{1/p_1}$ when $p_1 < \infty$; notice that if $p_1 = \infty$ then $||f^{1+it,\varepsilon}||_{L^{\infty}} \le 1$ and the right hand side of the inequality is equal to 1, thus the inequality is still valid. inequality is still valid.

Lemma 2.2 *Given a domain* Ω *on the complex plane and* (M, μ) *a measure space, let* $V : \Omega \times M \to \mathbb{C}$ *be a function such that* $V(\cdot, x)$ *is analytic on* Ω *for almost every* $x \in M$. If the function

$$
V^*(z, x) = \sup_{w:|w-z| < \frac{1}{2} \text{dist}(z, \partial \Omega)} \left| \frac{dV}{dw}(w, x) \right|, \quad x \in M \tag{11}
$$

is integrable over M for each $z \in \Omega$, then the mapping $z \mapsto V(z, \cdot)$ *is an analytic function from* Ω *to the Banach space* $L^1(M, d\mu)$ *.*

Proof Fix $z \in \Omega$ and denote $r_z = \frac{1}{2}$ dist(z , $\partial \Omega$). It is enough to show that

$$
\lim_{h \to 0} \left\| \frac{V(z+h, \cdot) - V(z, \cdot)}{h} - \frac{dV}{dz}(z, \cdot) \right\|_{L^1(M, d\mu)} = 0.
$$
 (12)

The assumption yields that for some set M_0 with $\mu(M \setminus M_0) = 0$, we have

$$
\lim_{h \to 0} \frac{V(z+h, x) - V(z, x)}{h} = \frac{dV}{dz}(z, x)
$$

for all $x \in M_0$. Thus for each $x \in M_0$ and $h \in \mathbb{C}$ with $|h| < r_z$ we can write

$$
\left| \frac{V(z+h,x) - V(z,x)}{h} - \frac{dV}{dz}(z,x) \right| = \left| \frac{1}{h} \int_0^h \frac{dV}{dw}(w,x) dw - \frac{dV}{dz}(z,x) \right|
$$

$$
\leq 2 \sup_{w: |w-z| < r_z} \left| \frac{dV}{dw}(w,x) \right|
$$

$$
= 2V^*(z,x).
$$

Since $V^*(z, \cdot)$ is integrable on M_0 , the Lebesgue dominated convergence theorem yields

$$
\lim_{h \to 0} \int_{M_0} \left| \frac{V(z+h, x) - V(z, x)}{h} - \frac{dV}{dz}(z, x) \right| d\mu(x)
$$

=
$$
\int_{M_0} \lim_{h \to 0} \left| \frac{V(z+h, x) - V(z, x)}{h} - \frac{dV}{dz}(z, x) \right| d\mu(x) = 0.
$$

This yields [\(12\)](#page-4-0) and completes the proof, as the last integral is over the entire space *M*.

Lemma 2.3 *Given* $0 < a < b < \infty$, $\Omega = \{z \in \mathbb{C} : a < \Re(z) < b\}$, and a measure *space* (M, μ) *of finite measure, let* $H : \Omega \times \mathbb{R}^d \times M \to \mathbb{C}$ *be a measurable function so that* $H(\cdot, \xi, x)$ *be analytic on* Ω *and continuous on* $\overline{\Omega}$ *for each* (ξ, x) $\in \mathbb{R}^d \times M$. *Suppose that*

$$
\sup_{w \in \overline{\Omega}} \left| H(w, \xi, x) \right| + \sup_{w \in \Omega} \left| \frac{dH}{dw}(w, \xi, x) \right| \le C \left(1 + |\xi| \right)^{-d-1} \tag{13}
$$

for all $(\xi, x) \in \mathbb{R}^d \times M$. If φ *be a bounded measurable function on* \mathbb{R}^d *, then the mapping* $z \mapsto V(z, \cdot)$ *, defined by*

$$
V(z,x) = \int_{\mathbb{R}^d} |\varphi(\xi)|^z e^{iArg(\varphi(\xi))} H(z,\xi,x) d\xi,
$$

is an analytic function from Ω *to the Banach space* $L^1(M, d\mu)$ *and is continuous on* $\overline{\Omega}$.

Proof Let $K = \{\xi \in \mathbb{R}^d : \varphi(\xi) \neq 0\}$. By assumption, for each $x \in M$ we have

$$
\frac{dV}{dz}(z,x) = \int_K |\varphi(\xi)|^z \ln(|\varphi(\xi)|) e^{iArg(\varphi(\xi))} H(z,\xi,x) d\xi
$$

$$
+ \int_K |\varphi(\xi)|^z e^{iArg(\varphi(\xi))} \frac{dH}{dz}(z,\xi,x) d\xi.
$$

As for each $z \in \Omega$ we have

$$
\left| |\varphi(\xi)|^z \ln(|\varphi(\xi)|) \right| \le \sup_{|t| \le 1} |t|^a \log \frac{1}{|t|} + (1 + \|\varphi\|_{L^\infty})^b \log(1 + \|\varphi\|_{L^\infty}) = c < \infty
$$

and *H* satisfies assumption [\(13\)](#page-5-0), the associated function $V^*(z, \cdot)$ defined in [\(11\)](#page-4-1) is bounded and thus integrable over *M*. Therefore, using Lemma [2.2](#page-4-2) we deduce that $z \mapsto V(z, \cdot)$ is analytic from Ω to $L^1(M, d\mu)$.

Using Lebesgue's dominated convergence theorem and the fist part of assumption [\(13\)](#page-5-0) we easily deduce that $V(z, \cdot)$ is continuous up to the boundary of Ω .

Lemma 2.4 [\[3\]](#page-18-13) Let F be analytic on the open strip $S = \{z \in \mathbb{C} : 0 < \Re(z) < 1\}$ and *continuous on its closure. Assume that for all* $0 < \tau < 1$ *there exist functions* A_{τ} *on the real line such that*

$$
|F(\tau + it)| \le A_{\tau}(t) \quad \text{for all } t \in \mathbb{R},
$$

and suppose that there exist constants A > 0 *and* 0 < a < π *such that for all t* $\in \mathbb{R}$ *we have*

$$
0 < A_{\tau}(t) \leq \exp\left\{Ae^{a|t|}\right\}.
$$

Then for $0 < \theta < 1$ *we have*

$$
|F(\theta)| \leq \exp\left\{\frac{\sin(\pi\theta)}{2} \int_{-\infty}^{\infty} \left[\frac{\log|A_0(t)|}{\cosh(\pi t) - \cos(\pi\theta)} + \frac{\log|A_1(t)|}{\cosh(\pi t) + \cos(\pi\theta)}\right] dt\right\}.
$$

In calculations it is crucial to note that

$$
\frac{\sin(\pi\theta)}{2} \int_{-\infty}^{\infty} \frac{dt}{\cosh(\pi t) - \cos(\pi\theta)} = 1 - \theta, \quad \frac{\sin(\pi\theta)}{2} \int_{-\infty}^{\infty} \frac{dt}{\cosh(\pi t) + \cos(\pi\theta)} = \theta.
$$

3 Multilinear interpolation

In this section we prove the main tool needed to derive Theorem [1.1](#page-1-2) by interpolation. We denote by $\vec{\xi} = (\xi_1, \ldots, \xi_m)$ elements of \mathbb{R}^{mn} , where $\xi_j \in \mathbb{R}^n$. We fix a Schwartz function Ψ on \mathbb{R}^{mn} whose Fourier transform is supported in the annulus $1/2 \leq |\vec{\xi}| \leq 2$ and satisfies

$$
\sum_{j} \widehat{\Psi}(2^{-j}\vec{\xi}) = 1, \qquad 0 \neq \vec{\xi} \in \mathbb{R}^{mn}.
$$

Theorem 3.1 *Let* $0 < p_1^0, \ldots, p_m^0 \le \infty, 0 < p_1^1, \ldots, p_m^1 \le \infty, 0 < q_0, q_1 \le \infty$, $0 \le s_0, s_1 < \infty, 1 < r_0, r_1 < \infty, 0 < \theta < 1,$ and let

$$
\frac{1}{p_l} = \frac{1-\theta}{p_l^0} + \frac{\theta}{p_l^1}, \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}, \quad \frac{1}{r} = \frac{1-\theta}{r_0} + \frac{\theta}{r_1}, \quad s = (1-\theta)s_0 + \theta s_1
$$

for $l = 1, \ldots, m$. Assume $r_0s_0 > mn$, and $r_1s_1 > mn$ and that for all $f_l \in C_0^{\infty}(\mathbb{R}^n)$, $l = 1, \ldots, m$, we have

$$
||T_{\sigma}(f_1,\ldots,f_m)||_{L^{q_k}(\mathbb{R}^n)} \leq K_k \sup_{j\in\mathbb{Z}} \left\|\sigma(2^j\cdot)\widehat{\Psi}\right\|_{L^{r_k}_{s_k}(\mathbb{R}^{mn})} \prod_{l=1}^m ||f_l||_{L^{p_l^k}(\mathbb{R}^n)}
$$

for $k = 0, 1$ *where* K_0, K_1 *are positive constants. Then the intermediate estimate holds:*

$$
\|T_{\sigma}(f_1,\ldots,f_m)\|_{L^q(\mathbb{R}^n)} \leq C_* K_0^{1-\theta} K_1^{\theta} \sup_{j\in\mathbb{Z}} \left\|\sigma(2^j\cdot)\widehat{\Psi}\right\|_{L^r_s(\mathbb{R}^{mn})} \prod_{l=1}^m \|f_l\|_{L^{p_l}(\mathbb{R}^n)}
$$
(14)

for all $f_l \in C_0^{\infty}(\mathbb{R}^n)$ *, where* C_* *depends on all the indices, on* θ *, and on the dimension. Consequently, if* $p_l < \infty$ *for all l* $\in \{1, ..., m\}$ *, then* T_{σ} *admits a bounded extension from* $L^{p_1} \times \cdots \times L^{p_m}$ *to* L^q *that satisfies* [\(14\)](#page-7-0)*.*

Proof Fix a smooth function $\widehat{\Phi}$ on \mathbb{R}^{mn} such that supp $(\Phi) \subset \{\frac{1}{4} \leq |\vec{\xi}| \leq 4\}$ and $\widehat{\Phi} \equiv 1$ on the support of the function $\widehat{\Psi}$. Denote $\varphi_j = (I - \Delta)^{\frac{s}{2}} [\sigma(2^j \cdot) \widehat{\Psi}]$ and define

$$
\sigma_{z}(\vec{\xi}) = \sum_{j \in \mathbb{Z}} (I - \Delta)^{-\frac{s_0(1-z) + s_1 z}{2}} \left[|\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{i \text{Arg}(\varphi_j)} \right] (2^{-j} \vec{\xi}) \widehat{\Phi}(2^{-j} \vec{\xi}). \quad (15)
$$

This sum has only finitely many terms and we now estimate its L^{∞} norm.

Fix $\vec{\xi} \in \mathbb{R}^{mn}$. Then there is a *j*₀ such that $|\vec{\xi}| \approx 2^{j_0}$ and there are only two terms in the sum in [\(15\)](#page-7-1). For these terms we estimate the L^{∞} norm of $(I - \Delta)^{-\frac{s_0(1-z)+s_1z}{2}} \left[|\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{iArg(\varphi_j)} \right]$. For $z = \tau + it$ with $0 \le \tau \le 1$, let $s_{\tau} = (1 - \tau)s_0 + \tau s_1$ and $1/r_{\tau} = (1 - \tau)/r_0 + \tau/r_1$. By the Sobolev embedding theorem we have

$$
\begin{split}\n\left\| (I - \Delta)^{-\frac{s_0(1-z) + s_1 z}{2}} \left[|\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{i \text{Arg }(\varphi_j)} \right] \right\|_{L^{\infty}(\mathbb{R}^{mn})} \\
&\leq C(r_{\tau}, s_{\tau}, mn) \left\| (I - \Delta)^{-\frac{s_0(1-z) + s_1 z}{2}} \left[|\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{i \text{Arg }(\varphi_j)} \right] \right\|_{L^{r_{\tau}}_{s_{\tau}}(\mathbb{R}^{mn})} \\
&\leq C(r_{\tau}, s_{\tau}, n) \left\| (I - \Delta)^{it \frac{s_0 - s_1}{2}} \left[|\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{i \text{Arg }(\varphi_j)} \right] \right\|_{L^{r_{\tau}}(\mathbb{R}^{mn})} \\
&\leq C'(r_{\tau}, s_{\tau}, mn) (1 + |s_0 - s_1| |t|)^{mn/2 + 1} \left\| |\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{i \text{Arg }(\varphi_j)} \right\|_{L^{r_{\tau}}(\mathbb{R}^{mn})} \\
&\leq C''(r_0, r_1, s_0, s_1, \tau, mn) (1 + |t|)^{mn/2 + 1} \left\| |\varphi_j|^{r(\frac{1-\tau}{r_0} + \frac{\tau}{r_1})} \right\|_{L^{r_{\tau}}(\mathbb{R}^{mn})} \\
&= C''(r_0, r_1, s_0, s_1, \tau, mn) (1 + |t|)^{mn/2 + 1} \left\| \varphi_j \right\|_{L^{r_{\tau}}(\mathbb{R}^{mn})}^{r/r_{\tau}}.\n\end{split}
$$

It follows from this that

$$
\|\sigma_{\tau+it}\|_{L^{\infty}(\mathbb{R}^{mn})} \leq C''(r_0, r_1, s_0, s_1, \tau, mn)(1+|t|)^{mn/2+1} \Big(\sup_{j\in\mathbb{Z}} \|\sigma(2^j \cdot)\widehat{\Psi}\|_{L_x^r(\mathbb{R}^{mn})}\Big)^{r/r_{\tau}}.
$$
\n(16)

Let T_{σ_z} be the family of operators associated to the multipliers σ_z . Let ε be given. Suppose first that $\min(p_l^0, p_l^1) < \infty$ for all $l \in \{1, ..., m\}$. This forces $p_l < \infty$ for all *l*.

Case I: $\min(q_0, q_1) > 1$ This assumption implies that $q > 1$, hence q' , q'_0 , $q'_1 < \infty$. Fix f_l , $g \in C_0^{\infty}(\mathbb{R}^n)$. For given $\varepsilon > 0$, for every $l \in \{1, ..., m\}$, by Lemma [2.1](#page-3-3) there exist functions $f_l^{z,\varepsilon}$ and $g^{\overline{z},\varepsilon}$ of the form [\(8\)](#page-3-0) such that

$$
\|f_l^{\theta,\varepsilon} - f_l\|_{L^{p_l^1}} < \varepsilon, \quad \|f_l^{\theta,\varepsilon} - f_l\|_{L^{p_l^0}} < \varepsilon, \quad \|g^{\theta,\varepsilon} - g\|_{L^{q_0'}} < \varepsilon, \quad \|g^{\theta,\varepsilon} - g\|_{L^{q_1'}} < \varepsilon,\tag{17}
$$

when $\max(p_l^0, p_l^1) < \infty$, while one of the first two inequalities is replaced by $||f_l^{\theta, \varepsilon}||_{L^{\infty}} \le ||f_l||_{L^{p_l^k}} + \varepsilon = ||f_l||_{L^{\infty}} + \varepsilon$ when $p_l^k = \max(p_l^0, p_l^1) = \infty$, and that

$$
\begin{aligned} \|f_l^{it,\varepsilon}\|_{L^{p_l^0}} &\leq \left(\|f_l\|_{L^{p_l}}^{p_l}+\varepsilon'\right)^{\frac{1}{p_l^0}}, \quad \|f_l^{1+its}\|_{L^{p_l^1}} &\leq \left(\|f_l\|_{L^{p_l}}^{p_l}+\varepsilon'\right)^{\frac{1}{p_l^1}},\\ \|g^{it,\varepsilon}\|_{L^{q_0'}} &\leq \left(\|g\|_{L^{q'}}^{q'}+\varepsilon'\right)^{\frac{1}{q_0^0}}, \quad \|g^{1+it,\varepsilon}\|_{L^{q_1'}} &\leq \left(\|g\|_{L^{q'}}^{q'}+\varepsilon'\right)^{\frac{1}{q_1^1}}.\end{aligned}
$$

Define

$$
F(z) = \int_{\mathbb{R}^n} T_{\sigma_z}(f_1^{z,\varepsilon}, \dots, f_m^{z,\varepsilon}) g^{z,\varepsilon} dx
$$

\n
$$
= \int_{\mathbb{R}^{mn}} \sigma_z(\vec{\xi}) \widehat{f_1^{z,\varepsilon}}(\xi_1) \cdots \widehat{f_m^{z,\varepsilon}}(\xi_m) \widehat{g^{z,\varepsilon}}(-(\xi_1 + \dots + \xi_m)) d\vec{\xi}
$$

\n
$$
= \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^{mn}} (I - \Delta)^{-\frac{s_0(1-z) + s_1 z}{2}} \left[|\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{i \text{Arg}(\varphi_j)} \right] (2^{-j} \xi) \widehat{\Phi}(2^{-j} \vec{\xi})
$$

\n
$$
\times \Big(\prod_{l=1}^m \widehat{f_l^{z,\varepsilon}}(\xi_l) \widehat{g^{z,\varepsilon}}(-(\xi_1 + \dots + \xi_m)) d\vec{\xi}
$$

\n
$$
= \sum_{j \in \mathbb{Z}} \int_{\mathbb{R}^{mn}} \Big[|\varphi_j|^{r(\frac{1-z}{r_0} + \frac{z}{r_1})} e^{i \text{Arg}(\varphi_j)} \Big] (2^{-j} \vec{\xi})
$$

\n
$$
\times (I - \Delta)^{-\frac{s_0(1-z) + s_1 z}{2}} \Big[\widehat{\Phi}(2^{-j} \vec{\xi}) \Big(\prod_{l=1}^m \widehat{f_l^{z,\varepsilon}}(\xi_l) \Big) \widehat{g^{z,\varepsilon}}(-(\xi_1 + \dots + \xi_m)) \Big] (\vec{\xi}) d\vec{\xi}.
$$

Notice that

$$
(I-\Delta)^{-\frac{s_0(1-z)+s_1z}{2}}\bigg[\widehat{\Phi}(2^{-j}\vec{\xi})\bigg(\prod_{l=1}^m\widehat{f_l^{z,\varepsilon}}(\xi_l)\bigg)\widehat{g^{z,\varepsilon}}(-(\xi_1+\cdots+\xi_m))\bigg](\vec{\xi})
$$

² Springer

is equal to a finite sum (over k_1, \ldots, k_m, l) of terms of the form

$$
|c_{k_1}^{\varepsilon}|^{\frac{p_1}{p_1^{n}}(1-z)+\frac{p_1}{p_1^{n}}z}\cdots |c_{k_m}^{\varepsilon}|^{\frac{p_m}{p_m^{n}}(1-z)+\frac{p_m}{p_m^{n}}z}|d_{l}^{\varepsilon}|^{\frac{q'}{q_0^{n}}(1-z)+\frac{q'}{q_1^{n}}z}(I-\Delta)^{-\frac{s_0(1-z)+s_1z}{2}}\left[\widehat{\Phi}(2^{-j}\cdot)\zeta_{k_1,\ldots,k_m,I}\right](\vec{\xi}),
$$

which we call $H(z, \vec{\xi})$, where $\zeta_{k_1,\dots,k_m,l}$ are Schwartz functions. Thus $H(z, \vec{\xi})$ is an analytic function in *z*. Moreover $H(z, \bar{\xi})$ can be thought of as a function of three variables $H(z, \tilde{\xi}, x_0)$, being constant in the variable x_0 , where $\{x_0\}$ is a measure space of one element equipped with counting measure. With this interpretation, it is not hard to verify that $H(z, \bar{\xi}, x_0)$ satisfies [\(13\)](#page-5-0).

Lemma [2.3](#page-5-1) guarantees that $F(z)$ is analytic on the strip $0 < \Re(z) < 1$ and continuous up to the boundary. Furthermore, by Hölder's inequality,

$$
|F(it)| \leq \left\| T_{\sigma_{it}}(f_1^{it,\varepsilon},\ldots,f_m^{it,\varepsilon}) \right\|_{L^{q_0}} \|g_{it}^{\varepsilon}\|_{L^{q'_0}},
$$

and noting that only the terms with $j = k - 1, k, k + 1$ survive in the sum in [\(15\)](#page-7-1) for $\sigma_{it}(2^k \cdot) \hat{\Psi}$, the Kato–Ponce inequality [\[10](#page-18-14)[,14\]](#page-18-15) applied as $||(I - \Delta)^{s/2} (F \hat{\Phi})||_{L^{r_0}} \le$ $C\|(I - \Delta)^{s/2}(F)\|_{L^{r_0}}$ yields

$$
\|T_{\sigma_{it}}(f_1^{it,s},\ldots,f_m^{it,s})\|_{L^{q_0}}
$$
\n
$$
\leq K_0 \sup_{k\in\mathbb{Z}} \left\| \sigma_{it}(2^k\cdot)\widehat{\Psi} \right\|_{L^{r_0}_{s_0}} \prod_{l=1}^m \|f_l^{it,s}\|_{L^{p_l^0}}
$$
\n
$$
\leq C_{n,r_0,s_0} K_0 \sup_{k\in\mathbb{Z}} \left\| (I-\Delta)^{\frac{s_0}{2}} (I-\Delta)^{-\frac{s_0(1-it)+s_1it}{2}} \left[|\varphi_k|^{r(\frac{1-it}{r_0}+\frac{it}{r_1})} e^{i \text{Arg }(\varphi_k)} \right] \right\|_{L^{r_0}}
$$
\n
$$
\times \prod_{l=1}^m \|f_l^{it,s}\|_{L^{p_l^0}}
$$
\n
$$
\leq C(m,n,r_0,s_0)(1+|s_1-s_0| |t|)^{\frac{mn}{2}+1} K_0 \sup_{j\in\mathbb{Z}} \|\varphi_j\|_{L^r}^{\frac{r}{r_0}} \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l^0}}
$$
\n
$$
= C(m,n,r_0,s_0,s_1)(1+|t|)^{\frac{mn}{2}+1} K_0 \sup_{j\in\mathbb{Z}} \left\| (I-\Delta)^{\frac{s}{2}} [\sigma(2^j\cdot)\widehat{\Psi}] \right\|_{L^r}^{\frac{r}{r_0}}
$$
\n
$$
\times \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l^0}}.
$$

Thus, for some constant $C = C(m, n, r_0, s_0, s_1)$ we have

$$
|F(it)| \leq C(1+|t|)^{\frac{mn}{2}+1} K_0 \sup_{j\in\mathbb{Z}} \left\| (I-\Delta)^{\frac{s}{2}} [\sigma(2^j \cdot) \widehat{\Psi}] \right\|_{L^r}^{\frac{r}{r_0}} (\|g\|_{L^{q'}}^{q'} + \varepsilon')^{\frac{1}{q'_0}} \times \prod_{l=1}^m (\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon')^{\frac{p_l}{p'_l}}.
$$

Similarly, we can choose the constant $C = C(m, n, r_1, s_0, s_1)$ above large enough so that

$$
|F(1+it)| \leq C(1+|t|)^{\frac{mn}{2}+1} K_1 \sup_{j\in\mathbb{Z}} \left\| (I-\Delta)^{\frac{s}{2}} [\sigma(2^j \cdot) \widehat{\Psi}] \right\|_{L^r}^{\frac{r}{r_1}} \left(\|g\|_{L^{q'}}^{q'} + \varepsilon' \right)^{\frac{1}{q_1'}} \times \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l}}.
$$

Note that *F*(*z*) is a combination of finite terms of the form

$$
\Lambda_{k_1,\ldots,k_m,l}(z)\int_{\mathbb{R}^{mn}}\sigma_z(\vec{\xi})\widehat{h_{j_1}^{1,\varepsilon}}(\xi_1)\cdots\widehat{h_{j_m}^{m,\varepsilon}}(\xi_m)\widehat{g_j^{\varepsilon}}(-(\xi_1+\cdots+\xi_m))\ d\vec{\xi},
$$

where

$$
\Lambda_{k_1,\ldots,k_m,l}(z)=|c_{k_1}^{\varepsilon}|^{\frac{p_1}{p_1^0}(1-z)+\frac{p_1}{p_1^1}z}\cdots|c_{k_m}^{\varepsilon}|^{\frac{p_m}{p_m^0}(1-z)+\frac{p_m}{p_m^1}z}|d_l^{\varepsilon}|^{\frac{q'}{q_0^{\prime}}(1-z)+\frac{q'}{q_1^{\prime}}z},
$$

and $h_{j_1}^{1,\varepsilon}$, g_j^{ε} are smooth functions with compact support. Thus for $z = \tau + it$, $t \in \mathbb{R}$ and $0 \le \tau \le 1$ it follows from [\(16\)](#page-8-0) and from the definition of $F(z)$ that

$$
|F(z)| \leq C(\tau,\epsilon,\,f_1,\,\ldots,\,f_m,\,g,\,r_l,\,p_l,\,q_0,\,q_1)(1+|t|)^{\frac{mn}{2}+1} \Big(\sup_{j\in\mathbb{Z}}\Big\|\sigma(2^j\cdot)\widehat{\Psi}\Big\|_{L^r_s}\Big)^{\frac{r}{r_t}} = A_\tau(t).
$$

As $A_{\tau}(t) \leq \exp(Ae^{a|t|})$, the admissible growth hypothesis of Lemma [2.4](#page-6-1) is satisfied. Applying Lemma [2.4](#page-6-1) we obtain

$$
|F(\theta)| \le C K_0^{1-\theta} K_1^{\theta} \sup_{j \in \mathbb{Z}} \left\| (I - \Delta)^{\frac{s}{2}} [\sigma(2^j \cdot) \widehat{\psi}] \right\|_{L^r} \left(\|g\|_{L^{q'}}^{q'} + \varepsilon' \right)^{\frac{1}{q'}} \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l}}. \tag{18}
$$

But

$$
F(\theta) = \int_{\mathbb{R}^n} T_{\sigma}(f_1^{\theta,\varepsilon}, \dots, f_m^{\theta,\varepsilon}) g^{\theta,\varepsilon} dx
$$

and then we have

$$
\int_{\mathbb{R}^n} T_{\sigma}(f_1, \dots, f_m) g \, dx = F(\theta) + \int_{\mathbb{R}^n} \left[T_{\sigma}(f_1, \dots, f_m) - T_{\sigma}(f_1^{\theta, \varepsilon}, \dots, f_m^{\theta, \varepsilon}) \right] g \, dx
$$

$$
+ \int_{\mathbb{R}^n} T_{\sigma}(f_1^{\theta, \varepsilon}, \dots, f_m^{\theta, \varepsilon}) (g - g^{\theta, \varepsilon}) \, dx.
$$
\n(19)

A telescoping identity yields

$$
|T_{\sigma}(f_1,\ldots,f_m)-T_{\sigma}(f_1^{\theta,\varepsilon},\ldots,f_m^{\theta,\varepsilon})|\leq \sum_{l=1}^m |T_{\sigma}(f_1,\ldots,f_{l-1},f_l-f_l^{\theta,\varepsilon},f_{l+1}^{\theta,\varepsilon},\ldots,f_m^{\theta,\varepsilon})|.
$$

For every fixed *l*, applying the hypothesis that T_{σ} is bounded from $L^{p_1^k} \times \cdots \times L^{p_m^k}$ to L^{q_k} for $k = 0, 1$ we obtain

$$
\|T_{\sigma}(f_1,\ldots,f_{l-1},f_l-f_l^{\theta,\varepsilon},f_{l+1}^{\theta,\varepsilon},\ldots,f_m^{\theta,\varepsilon})\|_{L^{q_k}} \lesssim \|f_l-f_l^{\theta,\varepsilon}\|_{L^{p_l^k}} \prod_{j\neq l} \left(\|f_j\|_{L^{p_j^k}}^{p_j} + \varepsilon'\right)^{\frac{1}{p_j}}.
$$

In view of the inequality $||h||_{L^q} \le ||h||_{L^{q_0}}^{1-\theta} ||h||_{L^{q_1}}^{\theta}$ these estimates yield

$$
\|T_{\sigma}(f_1,\ldots,f_{l-1},f_l-f_l^{\theta,\varepsilon},f_{l+1}^{\theta,\varepsilon},\ldots,f_m^{\theta,\varepsilon})\|_{L^q} \lesssim \|f_l-f_l^{\theta,\varepsilon}\|_{L^{p_l^0}}^{1-\theta} \|f_l-f_l^{\theta,\varepsilon}\|_{L^{p_l^1}}^{\theta}
$$

$$
\prod_{j\neq l} (\|f_j\|_{L^{p_j^k}}^{p_j}+\varepsilon')^{\frac{1}{p_j}}.
$$

As $0 < \theta < 1$ and one of p_l^0 or p_l^1 is strictly less than infinity, the expression on the right above is bounded by a constant multiple of $\varepsilon^{\min(\theta,1-\theta)}$ and hence it tends to zero as $\varepsilon \to 0$ because of [\(9\)](#page-3-1). This proves that (in fact for all $0 < q < \infty$)

$$
\left\|T_{\sigma}(f_1,\ldots,f_m)-T_{\sigma}(f_1^{\theta,\varepsilon},\ldots,f_m^{\theta,\varepsilon})\right\|_{L^q}\leq E_{\varepsilon},\tag{20}
$$

where $E_{\varepsilon} \to 0$ as $\varepsilon \to 0$. Returning to [\(19\)](#page-10-0) and using [\(18\)](#page-10-1) and Hölder's inequality we write

$$
\left| \int T_{\sigma}(f_1, ..., f_m)(x) g(x) dx \right|
$$

\n
$$
\leq C K_0^{1-\theta} K_1^{\theta} \sup_{j \in \mathbb{Z}} \left\| (I - \Delta)^{\frac{s}{2}} [\sigma(2^j \cdot) \widehat{\psi}] \right\|_{L^r} \left(\|g\|_{L^{q'}}^{q'} + \varepsilon' \right)^{\frac{1}{q'}} \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l}}
$$

\n
$$
+ E_{\varepsilon} \|g\|_{L^{q'}} + C \|g - g^{\theta, \varepsilon}\|_{L^{q'_0}} \prod_{l=1}^m \|f_l^{\theta, \varepsilon}\|_{L^{p'_l}}
$$

Recalling [\(17\)](#page-8-1) and using that each $|| f_l^{\theta, \varepsilon} ||_{L^{p_l^0}}$ remains bounded as $\varepsilon \to 0$ we obtain

$$
\left| \int T_{\sigma}(f_1, \ldots, f_m) g \ dx \right| \leq C K_0^{1-\theta} K_1^{\theta} \sup_{j \in \mathbb{Z}} \left\| (I - \Delta)^{\frac{s}{2}} [\sigma(2^j \cdot) \widehat{\psi}] \right\|_{L^r} \|g\|_{L^{q'}} \prod_{l=1}^m \|f_l\|_{L^{p_l}}
$$

by letting $\varepsilon \to 0$. Taking the supremum over all functions $g \in L^{q'}$ with $||g||_{L^{q'}} = 1$ yields the sought estimate [\(14\)](#page-7-0) in Case I.

Case II: $\min(q_0, q_1) \leq 1$

 $\textcircled{2}$ Springer

Here we will make use of two following lemmas proved by Stein and Weiss [\[20\]](#page-18-16).

Lemma 3.2 ([\[20](#page-18-16)]) *Let* $U : \overline{S} \longrightarrow \mathbb{R}$ *be an upper semi-continuous function of admissible growth and subharmonic in the unit strip S. Then for* $z_0 = x_0 + iy_0 \in S$ we *have*

$$
U(z_0) \leq \int_{-\infty}^{+\infty} U(i(y_0 + t))\omega(1 - x_0, t)dt + \int_{-\infty}^{+\infty} U(1 + i(y_0 + t))\omega(x_0, t)dt,
$$

where

$$
\omega(x, y) = \frac{1}{2} \frac{\sin \pi x}{\cos \pi x + \cosh \pi y}.
$$

Lemma 3.3 ([\[20](#page-18-16)]) Let $0 < c \le 1$ and let (M, μ) be a measure space with finite *measure. If a function* $V(z, \cdot)$ *is analytic from the unit strip S to* $L^1(M, \mu)$ *, then* $\log \int_M |V(z, x)|^c d\mu$ *is subharmonic on S.*

We now continue the proof of the second case. We fix functions f_l as in the previous case. Choose an integer $\rho > 1$ such that $\rho \ge \rho \min(q_0, q_1) > q$. Take an arbitrary positive simple function *g* with $||g||_{L^{\rho'}} = 1$. Assume that $g = \sum_{k=1}^{N} c_k \chi_{E_k}$, where c_k > 0 and E_k are pairwise disjoint measurable sets of finite measure and compact support. For $z \in \mathbb{C}$, set

$$
g^{z} = \sum_{k=1}^{N} c_{k}^{\lambda(z)} \chi_{E_{k}}, \text{ where } \lambda(z)
$$

$$
= \rho' \left[1 - \frac{q}{\rho} \left(\frac{1-z}{q_{0}} + \frac{z}{q_{1}} \right) \right].
$$

Now consider

$$
G(z) = \int_{\mathbb{R}^n} \left| T_{\sigma_z}(f_1^{z,\varepsilon}, \dots, f_m^{z,\varepsilon})(x) \right|^{\frac{q}{\rho}} \left| g^z(x) \right| dx
$$

=
$$
\sum_{k=1}^N \int_{E_k} \left| c_k^{\frac{\rho}{q} \lambda(z)} T_{\sigma_z}(f_1^{z,\varepsilon}, \dots, f_m^{z,\varepsilon})(x) \right|^{\frac{q}{\rho}} dx.
$$

Let $V(z, x) = T_{\sigma_z}(f_1^{z, \varepsilon}, \dots, f_m^{z, \varepsilon})(x)$. Then $V(z, x)$ can be represented as a finite sum of terms of the form

$$
\int_{\mathbb{R}^{mn}} e^{P(z)} |\varphi_j(\vec{\xi})|^{\frac{r}{r_0}(1-z)+\frac{r}{r_1}z} e^{i \text{Arg }(\varphi_j)} (I-\Delta)^{-\frac{s_0(1-z)+s_1z}{2}} \Big[e^{2\pi i x 2^j \cdot (\sum_{\kappa=1}^m \xi_{\kappa})} \widehat{\Phi}(\vec{\xi})
$$
\n
$$
\times \prod_{\kappa=1}^m \widehat{h_{\kappa}^{\varepsilon}} (2^j \xi_{\kappa}) \Big] (\vec{\xi}) d\vec{\xi},
$$

where h_{κ}^{ε} are the smooth functions with compact support in [\(8\)](#page-3-0) and *P* is a polynomial. Setting

$$
H(z, \vec{\xi}, x) = (I - \Delta)^{-\frac{s_0}{2}(1-z) - \frac{s_1}{2}z} \Big[e^{2\pi i 2^j x \cdot (\xi_1 + \dots + \xi_n)} \widehat{\Phi}(\vec{\xi}) \prod_{\kappa=1}^m \widehat{h_{\kappa}^{\varepsilon}}(2^j \xi_{\kappa}) \Big],
$$

we note that $H(z, \vec{\xi}, x)$ is analytic in *z*, smooth in ξ and bounded in *x*, as long as *x* remains in a compact set. Moreover *H* satisfies [\(13\)](#page-5-0). Applying Lemma [2.3](#page-5-1) we obtain that for all $(\vec{\xi}, x)$ the mapping $H(\cdot, \vec{\xi}, x)$ is analytic from *S* to $L^1(E_k, dx)$ Then Lemma [3.3](#page-12-0) applies and yields that log *G* is subharmonic on *S*. Using Hölder's inequality with indices $\frac{\rho q_0}{q}$ and $\left(\frac{\rho q_0}{q}\right)'$ and the fact that the $L^{\rho'}$ -norm of *g* is equal to 1, we have

$$
G(it) \leq \left\{ \int_{\mathbb{R}^n} \left| T_{\sigma_{it}}(f_1^{it,\varepsilon},\ldots,f_m^{it,\varepsilon})(x) \right|^{q_0} dx \right\}^{\frac{q}{pq_0}} \left\| g^{it} \right\|_{L^{(\frac{\rho q_0}{q})'}}\right\|_{L^{(\frac{\rho q_0}{q})'}}\newline \leq C \left((1+|t|)^{\frac{mn}{2}+1} \right)^{\frac{q}{\rho}} \left(K_0 \sup_{j\in Z} \left\| \sigma(2^j \cdot) \widehat{\psi} \right\|_{L^r_s}^{\frac{m}{r_0}} \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l}} \right)^{\frac{q}{\rho}}.
$$

Similarly, we can estimate

$$
G(1 + it) \leq \left\{ \int_{\mathbb{R}^n} \left| T_{\sigma_{it}}(f_1^{1+it,\varepsilon}, \dots, f_m^{1+it,\varepsilon})(x) \right|^{q_1} dx \right\}^{\frac{q}{pq_1}} \|g^{1+it}\|_{L^{(\frac{\rho q_1}{q})'}} \\
\leq C \left((1 + |t|)^{\frac{mn}{2} + 1} \right)^{\frac{q}{\rho}} \left(K_1 \sup_{j \in Z} \left\| \sigma(2^j \cdot) \widehat{\psi} \right\|_{L^r_s}^{\frac{r}{r_1}} \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l}} \right)^{\frac{q}{\rho}}.
$$

Applying Lemma [3.2](#page-12-1) to $U = \log G$ (with $y_0 = 0$ and $x_0 = \theta$) and using that for $0 < \theta < 1$ we have

$$
\frac{\sin(\pi(1-\theta))}{2} \int_{-\infty}^{+\infty} \frac{1}{\cosh(\pi t) + \cos(\pi(1-\theta))} dt = 1 - \theta,
$$

$$
\frac{\sin(\pi\theta)}{2} \int_{-\infty}^{+\infty} \frac{1}{\cosh(\pi t) + \cos(\pi\theta)} dt = \theta,
$$

(see $[3, Page 48]$ $[3, Page 48]$) we obtain

$$
G(\theta) \le C'_{*} \left(K_0^{1-\theta} K_1^{\theta} \sup_{j \in \mathbb{Z}} \left\| \sigma(2^{j} \cdot) \widehat{\psi} \right\|_{L^r_s} \prod_{l=1}^m \left(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon' \right)^{\frac{1}{p_l}} \right)^{\frac{q}{\rho}}. \tag{21}
$$

Notice that as

$$
G(\theta) = \int_{\mathbb{R}^n} \left| T_{\sigma}(f_1^{\theta,\varepsilon}, \ldots, f_m^{\theta,\varepsilon})(x) \right|^{\frac{q}{\rho}} g(x) dx,
$$

inequality [\(21\)](#page-13-0) implies that

$$
\begin{split}\n\left\|T_{\sigma}(f_{1}^{\theta,\varepsilon},\ldots,f_{m}^{\theta,\varepsilon})\right\|_{L^{q}} \\
&= \left\|T_{\sigma}(f_{1}^{\theta,\varepsilon},\ldots,f_{m}^{\theta,\varepsilon})\right|^{\frac{q}{\rho}}\right\|_{L^{\rho}}^{\frac{\rho}{q}} \\
&= \sup\left\{\int\left|T_{\sigma}(f_{1}^{\theta,\varepsilon},\ldots,f_{m}^{\theta,\varepsilon})(x)\right|^{\frac{q}{\rho}}g(x)\,dx : g \geq 0, g \text{ simple},\|g\|_{L^{\rho'}}=1\right\}^{\frac{\rho}{q}} \\
&\leq (C'_{*})^{\frac{\rho}{q}}K_{0}^{1-\theta}K_{1}^{\theta}\sup_{j\in Z}\left\|\sigma(2^{j}\cdot)\widehat{\psi}\right\|_{L_{s}^{r}}\prod_{l=1}^{m}\left(\|f_{l}\|_{L^{p_{l}}}^{p_{l}}+\varepsilon'\right)^{\frac{1}{p_{l}}}. \end{split} \tag{22}
$$

Finally, we use

$$
||T_{\sigma}(f_1, ..., f_m)||_{L^q} \le (1 + 2^{\frac{1}{q}-1}) [||T_{\sigma}(f_1, ..., f_m) - T_{\sigma}(f_1^{\theta,\varepsilon}, ..., f_m^{\theta,\varepsilon})||_{L^q}
$$

$$
+ ||T_{\sigma}(f_1^{\theta,\varepsilon}, ..., f_m^{\theta,\varepsilon})||_{L^q}]
$$

and we note that for the second term we use [\(22\)](#page-14-0), while the first term tends to zero, in view of [\(20\)](#page-11-0). Letting $\varepsilon \to 0$, we deduce [\(14\)](#page-7-0).

We now turn to the case where $\min(p_l^0, p_l^1) = \infty$ for some (but not all) *l* in $\{1, \ldots, m\}$. Then we must have $p_l = \infty$ for these *l*, and for these *l* we set $f_l^{z,\varepsilon} = f$, while for the remaining *l* the functions $f_l^{z,\varepsilon}$ are defined as before; we notice that the preceding argument works with only minor modifications.

Finally we consider the case where $p_l^0 = p_l^1 = \infty$ for all $1 \le l \le m$. Here we also take $f_l^{z,\varepsilon} = f_l$ for all *l* in $\{1,\ldots,m\}$. Now [\(19\)](#page-10-0) becomes

$$
\int_{\mathbb{R}^n} T_{\sigma}(f_1,\ldots,f_m) g\ dx = F(\theta) + \int_{\mathbb{R}^n} T_{\sigma}(f_1,\ldots,f_m) \big(g - g^{\theta,\varepsilon}\big) \ dx. \tag{23}
$$

Hence, in Case I, when $\min(q_0, q_1) > 1$, we have

$$
\left| \int T_{\sigma}(f_1, ..., f_m)(x) g(x) dx \right|
$$

\n
$$
\leq C K_0^{1-\theta} K_1^{\theta} \sup_{j \in \mathbb{Z}} \left\| (I - \Delta)^{\frac{s}{2}} [\sigma(2^j \cdot) \widehat{\psi}] \right\|_{L^r} \left(\|g\|_{L^{q'}}^{q'} + \varepsilon' \right)^{\frac{1}{q'}} \prod_{l=1}^m \|f_l\|_{L^{\infty}} \n+ C \|g - g^{\theta, \varepsilon} \|_{L^{q'_0}} \prod_{l=1}^m \|f_l\|_{L^{\infty}}.
$$

Passing the limit as $\varepsilon \to 0$ to obtain

$$
\left|\int T_{\sigma}(f_1,\ldots,f_m)\,g\,dx\right|\leq CK_0^{1-\theta}K_1^{\theta}\sup_{j\in\mathbb{Z}}\left\|(I-\Delta)^{\frac{s}{2}}[\sigma(2^j\cdot)\widehat{\psi}\,]\right\|_{L^r}\|g\|_{L^{q'}}\prod_{l=1}^m\|f_l\|_{L^{\infty}}.
$$

The result in Case II, which is when $\min(q_0, q_1) \leq 1$, can be obtained from that in Case I by choosing $\rho > 1$ such that $\rho \min(q_0, q_1) > q$ and by arguing as before, replacing each term $(\|f_l\|_{L^{p_l}}^{p_l} + \varepsilon')^{\frac{1}{p_l}}$ by $\|f_l\|_{L^{\infty}}$. This concludes the proof of the theorem in all cases.

Note that the proof of Theorem [3.1](#page-6-0) is much simpler in the case $r_0 = r_1 = 2$, and this was proved earlier in [\[8,](#page-18-8) Theorem 6.1, Step 1]; see also [\[9,](#page-18-17) Theorem 2.3]. In this case, the domains can be arbitrary Hardy spaces. We state the theorem in this case (without providing a proof):

Theorem 3.4 ([\[8](#page-18-8)]) Let p_l^0 , p_l^1 , p_l , q_0 , q_1 , q , s_0 , s_1 , s and $\theta \in (0, 1)$ be as in Theo*rem* [3.1](#page-6-0) *for* $l = 1, ..., m$. Assume that $s_0, s_1 > \frac{mn}{2}, p_l^0, p_l^1 < \infty$ *for all l, and that*

$$
\|T_{\sigma}(f_1,\ldots,f_m)\|_{L^{q_k}(\mathbb{R}^n)} \leq K_k \sup_{j\in\mathbb{Z}} \left\|\sigma(2^j\cdot)\widehat{\Psi}\right\|_{L^2_{s_k}(\mathbb{R}^{mn})} \prod_{l=1}^m \|f_l\|_{H^{p_l^k}(\mathbb{R}^n)}
$$

for $k = 0, 1$ *where* K_0, K_1 *are positive constants. Then we have the intermediate estimate:*

$$
||T_{\sigma}(f_1,\ldots,f_m)||_{L^q(\mathbb{R}^n)} \leq C_* K_0^{1-\theta} K_1^{\theta} \sup_{j\in\mathbb{Z}} \left||\sigma(2^j \cdot)\widehat{\Psi}\right||_{L_s^2(\mathbb{R}^{mn})} \prod_{l=1}^m ||f_l||_{H^{p_l}(\mathbb{R}^n)}
$$

for all Schwartz functions fl with vanishing moments of all orders, where C[∗] *depends on all the indices,* θ*, and the dimension.*

4 The proof of the main result via interpolation

We now turn to the proof of Theorem [1.1.](#page-1-2)

Proof (a) Assume $n/2 < s < n$ and let

$$
\Gamma_1 = \Big\{ \Big(\frac{1}{p_1}, \frac{1}{p_2}\Big) \, : \, \frac{1}{p_1} < \frac{s}{n}, \frac{1}{p_2} < \frac{s}{n}, 1 - \frac{s}{n} < \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} < \frac{s}{n} + \frac{1}{2} \Big\}.
$$

We will prove that

$$
||T_{\sigma}(f_1, f_2)||_{L^p(\mathbb{R}^n)} \leq C \sup_{j \in \mathbb{Z}} ||\sigma(2^j \cdot) \widehat{\Psi}||_{L^r_s(\mathbb{R}^{2n})} ||f_1||_{L^{p_1}(\mathbb{R}^n)} ||f_2||_{L^{p_2}(\mathbb{R}^n)}
$$
(24)

for every $(\frac{1}{p_1}, \frac{1}{p_2}) \in \Gamma_1$, which is a convex set with vertices *D*, *K*, *L*, *G*, *H* and *N* (see Fig. [1a](#page-16-0) below). By multilinear real interpolation [\[4,](#page-18-18) Corollary 7.2.4], we only need to verify the boundedness of T_{σ} at points in Γ_1 near its vertices *D*, *K*, *L*, *G*, *H*, *N* which do not lie in Γ_1 .

As showed in [\[4](#page-18-18)[,11\]](#page-18-9), the Hörmander condition $\sup_{j\in\mathbb{Z}} \|\sigma(2^j \cdot)\widehat{\Psi}\|_{L^r_{\lambda}(\mathbb{R}^{2n})}$ is invariant under duality. For $1 \leq p < \infty$, by duality, if T_{σ} maps $L^{p_1} \times L^{p_2} \to L^p$, then

Fig. 1 Boundedness holds in the shaded regions and unboundedness in the white regions. The local *L*² region is shaded in a lighter color

it also maps $L^{p'} \times L^{p_2} \to L^{p'_1}$. Therefore, if T_{σ} is bounded near *D*, then T_{σ} is also bounded near *N* by duality. By symmetry, if T_{σ} is bounded near *N*, *D* and *K* then it is bounded near *H*, *G* and *L* as well. From these reductions, it remains to prove [\(24\)](#page-15-1) at points in Γ_1 near *D* and *K*.

With $s_1 > \frac{n}{2}$ and $r_1 s_1 > 2n$, we recall the following [\[6](#page-18-12), Theorem 1]:

$$
||T_{\sigma}(f_1, f_2)||_{L^1(\mathbb{R}^n)} \leq C \sup_{j \in \mathbb{Z}} ||\sigma(2^j \cdot) \widehat{\Psi}||_{L^{r_1}_{s_1}(\mathbb{R}^{2n})} ||f_1||_{L^2(\mathbb{R}^n)} ||f_2||_{L^2(\mathbb{R}^n)}.
$$
 (25)

By duality it follows from [\(25\)](#page-16-1) that when $s_1 > \frac{n}{2}$ and $r_1 s_1 > 2n$ we have

$$
||T_{\sigma}(f_1, f_2)||_{L^2(\mathbb{R}^n)} \leq C \sup_{j \in \mathbb{Z}} ||\sigma(2^j \cdot) \widehat{\Psi}||_{L^{r_1}_{s_1}(\mathbb{R}^{2n})} ||f_1||_{L^2(\mathbb{R}^n)} ||f_2||_{L^{\infty}(\mathbb{R}^n)}.
$$
 (26)

Theorem 1.1 in [\[17\]](#page-18-10) (with $s_1 = s_2$ in [17] being γ below) implies that

$$
\|T_{\sigma}(f_1, f_2)\|_{L^q(\mathbb{R}^n)}\leq C \sup_{j\in\mathbb{Z}} \|(I-\Delta_{\xi_1})^{\frac{\gamma}{2}}(I-\Delta_{\xi_2})^{\frac{\gamma}{2}}[\sigma(2^j\cdot)\widehat{\Psi}]\|_{L^2(\mathbb{R}^{2n})}\|f_1\|_{L^{q_1}(\mathbb{R}^n)}\|f_2\|_{L^{q_2}(\mathbb{R}^n)}
$$

for $\gamma > \frac{n}{2}$, where $1 < q_1, q_2 \le \infty$, $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} < \frac{2\gamma}{n} + \frac{1}{2}$. Given $s_2 > n$, choose $\gamma = \frac{s_2}{2} > \frac{n}{2}$ and observing the trivial estimate

$$
\sup_{j\in\mathbb{Z}}\|(I-\Delta_{\xi_1})^{\frac{\gamma}{2}}(I-\Delta_{\xi_2})^{\frac{\gamma}{2}}\big[\sigma(2^j\cdot)\widehat{\Psi}\big]\|_{L^2(\mathbb{R}^{2n})}\leq C\sup_{j\in\mathbb{Z}}\|\sigma(2^j\cdot)\widehat{\Psi}\|_{L^2_{s_2}(\mathbb{R}^{2n})},
$$

we obtain

$$
||T_{\sigma}(f_1, f_2)||_{L^q(\mathbb{R}^n)} \leq C \sup_{j \in \mathbb{Z}} ||\sigma(2^j \cdot) \widehat{\Psi}||_{L^2_{s_2}(\mathbb{R}^{2n})} ||f_1||_{L^{q_1}(\mathbb{R}^n)} ||f_2||_{L^{q_2}(\mathbb{R}^n)}
$$
(27)

² Springer

for all $1 < q_1, q_2 \le \infty$, $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} < \frac{s_2}{n} + \frac{1}{2}$.

We now use Theorem [3.1](#page-6-0) to interpolate between [\(26\)](#page-16-2) and [\(27\)](#page-16-3) (for $q_1 = q$ near 1 and $q_2 = \infty$). We obtain [\(24\)](#page-15-1) at points $D_1(\frac{1}{p_1}, 0)$ with $\frac{1}{p_1} < \frac{s}{n}$ which are near the point $D(\frac{s}{n}, 0)$. Similarly, interpolating between [\(25\)](#page-16-1) and [\(27\)](#page-16-3) (q_1 near 1, $q_2 = 2$) yields [\(24\)](#page-15-1) at points $K_1(\frac{1}{p_1}, \frac{1}{2})$ with $\frac{1}{p_1} < \frac{s}{n}$ near $K(\frac{s}{n}, \frac{1}{2})$. This yields (24) on Γ_1 and completes part (a).

(b) Assume $n < s \leq \frac{3n}{2}$. Since $r \geq 2$, the Kato–Poince inequality [\[10](#page-18-14)] implies that

$$
\sup_{j\in\mathbb{Z}} \|\sigma(2^j \cdot)\widehat{\Psi}\|_{L^2_s(\mathbb{R}^{2n})} \lesssim \sup_{j\in\mathbb{Z}} \|\sigma(2^j \cdot)\widehat{\Psi}\|_{L^r_s(\mathbb{R}^{2n})}.
$$
\n(28)

Combining estimates [\(28\)](#page-17-0) and [\(27\)](#page-16-3) yields [\(24\)](#page-15-1) in the open pentagon *OIRSJ* union the open segments *O I* and *O J* . This completes the second part of Theorem [1.1.](#page-1-2)

(c) In the last case when $s > \frac{3n}{2}$, notice that condition [\(7\)](#page-2-3) reduces to $p > \frac{1}{2}$ and since

$$
\sup_{j\in\mathbb{Z}}\|\sigma(2^j\cdot)\widehat{\Psi}\|_{L^r_{\frac{3n}{2}}(\mathbb{R}^{2n})}\leq \sup_{j\in\mathbb{Z}}\|\sigma(2^j\cdot)\widehat{\Psi}\|_{L^r_s(\mathbb{R}^{2n})},
$$

the case in part (b) applies and yields [\(24\)](#page-15-1) for every point in the entire rhombus *OITJ* union the open segments OI and OI . The proof of Theorem [1.1](#page-1-2) is now complete. \Box

5 An application

We consider the following multiplier on \mathbb{R}^{2n} : $m_{a,b}(\xi_1, \xi_2) = \psi(\xi_1, \xi_2)|(\xi_1, \xi_2)|^{-b}$ $e^{i|(\xi_1,\xi_2)|^a}$ where $a > 0$, $a \neq 1$, $b > 0$, and ψ is a smooth function on \mathbb{R}^{2n} which vanishes in a neighborhood of the origin and is equal to 1 in a neighborhood of infinity. One can verify that $m_{a,b}$ satisfies [\(1\)](#page-1-1) on \mathbb{R}^{2n} with $s = b/a$ and any $r > 2n/s$.

The range of *p*'s for which $m_{a,b}$ is a bounded bilinear multiplier on $L^p(\mathbb{R}^{2n})$ can be completely described by the equation $|\frac{1}{p} - \frac{1}{2}| \leq \frac{b/a}{2n}$ (see Hirschman [\[12,](#page-18-19) comments after Theorem 3c], Wainger [\[22,](#page-18-20) Part II], and Miyachi [\[16](#page-18-21), Theorem 3]); similar examples of multipliers of limited boundedness are contained in Miyachi and Tomita [\[17](#page-18-10), Section 7].

As a consequence of Theorem [1.1](#page-1-2) we obtain that the bilinear multiplier operator associated with $m_{a,b}$ is bounded from $L^{p_1}(\mathbb{R}^n) \times L^{p_2}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ in the following cases:

(i) when $n > b/a > n/2$ and

$$
\frac{1}{p_1} < \frac{b}{an}, \frac{1}{p_2} < \frac{b}{an}, \ 1 - \frac{b}{an} < \frac{1}{p} < \frac{b}{an} + \frac{1}{2}.
$$

(ii) when $3n/2 > b/a > n$ and

$$
\frac{1}{p} < \frac{b}{an} + \frac{1}{2};
$$

(iii) when $b/a > 3n/2$ in the entire range of exponents $1 < p_1, p_2 \le \infty, \frac{1}{2} < p < \infty$.

The boundedness of this specific bilinear multiplier is unknown to us outside the above range of indices.

References

- 1. Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution, II. Adv. Math. **24**, 101–171 (1977)
- 2. Fujita, M., Tomita, N.: Weighted norm inequalities for multilinear Fourier multipliers. Trans. Am. Math. Soc. **364**, 6335–6353 (2012)
- 3. Grafakos, L.: Classical Fourier Analysis, Graduate Texts in Mathematics, GTM 249, 3rd edn. Springer, New York (2014)
- 4. Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, GTM 250, 3rd edn. Springer, New York (2014)
- 5. Grafakos, L., He, D., Honzík, P., Nguyen, H.V.: The Hörmander multiplier theorem I: the linear case. Ill. J. Math. **61**, 25–35 (2017)
- 6. Grafakos, L., He, D., Honzík, P.: The Hörmander multiplier theorem II: the local *L*² case. Math. Zeit. **289**, 875–887 (2018)
- 7. Grafakos, L., Miyachi, A., Nguyen, H.V., Tomita, N.: Multilinear Fourier multipliers with minimal Sobolev regularity, II. J. Math. Soc. Japan **69**, 529–562 (2017)
- 8. Grafakos, L., Miyachi, A., Tomita, N.: On multilinear Fourier multipliers of limited smoothness. Can. J. Math. **65**, 299–330 (2013)
- 9. Grafakos, L., Nguyen, H.V.: Multilinear Fourier multipliers with minimal Sobolev regularity, I. Colloq. Math. **144**, 1–30 (2016)
- 10. Grafakos, L., Oh, S.: The Kato–Ponce inequality. Comm. PDE **39**, 1128–1157 (2014)
- 11. Grafakos, L., Si, Z.: The Hörmander multiplier theorem for multilinear operators. J. Reine Angew. Math. **668**, 133–147 (2012)
- 12. Hirschman Jr., I.I.: On multiplier transformations. Duke Math. J. **26**, 221–242 (1959)
- 13. Hörmander, L.: Estimates for translation invariant operators in L^p spaces. Acta Math. **104**, 93–139 (1960)
- 14. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. **41**, 891–907 (1988)
- 15. Mikhlin, S.G.: On the multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR (N.S.) **109**, 701–703 (1956)
- 16. Miyachi, A.: On some Fourier multipliers for $H^p(\mathbb{R}^n)$. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 157–179 (1980)
- 17. Miyachi, A., Tomita, N.: Minimal smoothness conditions for bilinear Fourier multipliers. Rev. Mat. Iberoam. **29**, 495–530 (2013)
- 18. Miyachi, A., Tomita, N.: Boundedness criterion for bilinear Fourier multiplier operators. Tohoku Math. J. **66**, 55–76 (2014)
- 19. Slavíková, L.: On the failure of the Hörmander multiplier theorem in a limiting case. Rev. Mat. Iberoamer **(to appear)**
- 20. Stein, E.M., Weiss, G.: On the interpolation of analytic families of operators acting on *H ^p*-spaces. Tohoku Math. J. **9**, 318–339 (1957)
- 21. Tomita, N.: A Hörmander type multiplier theorem for multilinear operators. J. Funct. Anal. **259**, 2028– 2044 (2010)
- 22. Wainger, S.: Special trigonometric series in k-dimensions. Mem. Am. Math. Soc. **59**, 1–102 (1965)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.