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Abstract
Considered herein is the persistence property of the solutions to the generalized two-
component integrable Dullin–Gottwald–Holm system, which was derived from the
Euler equation with nonzero constant vorticity in shallow water waves moving over a
linear shear flow. Firstly, the persistence properties of the system are investigated in
weighted L p-spaces for a large class of moderate weights. Then, we establish the new
local-in-space blow-up results simplifying and extending earlier blow-up criterion for
this system.
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1 Introduction

In 2001, Dullin, Gottwald, and Holm studied the following 1 + 1 quadratically non-
linear equation,

mt + c0ux + umx + 2mux + γ uxxx = 0, x ∈ R, t > 0, (1.1)
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where m = u − α2uxx is a momentum variable. This equation was derived using
asymptotic expansions directly in the Hamiltonian for Euler’s equation in the shallow
water regime, and it is completely integrable with a bi-Hamiltonian as well as with a
Lax pair [25].

Using the notating m = u − α2uxx , Eq. (1.1) can be written as

ut − α2utxx + 2ωux + 3ux + γ uxxx = α2(2uxuxx + uuxxx ), x ∈ R, t > 0, (1.2)

where ω and α are two positive constants. Formally, when α2 = 0, Eq. (1.2) becomes
the Korteweg–de-Vries(KdV) equation,

ut + 2ωux + 3uux + γ uxxx = 0, x ∈ R, t > 0. (1.3)

While when γ = 0 and α = 1, Eq. (1.1) turns into the Camassa–Holm equation [8,9],

ut + 2ωux − utxx + 3ux = 2uxuxx + uuxxx , x ∈ R, t > 0. (1.4)

The details concerning the hydrodynamical relevance of Camassa–Holm equation
were mathematically rigorously described in [14], where, in addition, authors investi-
gate in what sense model under consideration gives us insight into the wave breaking
phenomenon. Alternative derivations of Camassa–Holm equation as a equation for
geodesic flow on the diffeomorphism group of the circle were presented by Constantin
and Kolev [13] and Ionescu-Kruse [33]. The equation has bi-Hamiltonian structure
[27] and is completely integrable [2,9,15,16,24]. Note that local well-posedness for
the initial datum u0(x) ∈ Hs with s > 3

2 was proved by several authors (see, for
example, [17,37,40]. For the initial data with lower regularity, we refer to papers [7]
and [41]. Camassa–Holm equation possesses a solitary wave with discontinuous first
derivatives [8], which is named peakon (travelling wave solutions with a corner at their
peak).More importantly, the peakons are orbitally stable [19,36], whichmeans that the
shape of the peakons is stable so that these wave patterns are physically recognizable.
Wave breaking for a large class of initial data has been established in [17,18,37,45,46]
and in the recent paper [35], where, in particular, new and direct proof for the result
from [39] on the necessary and sufficient condition for wave breaking was presented.

The Camassa–Holm equation also admits many integrable multicomponent gener-
alizations. The most popular one is

{
mt − Aux + umx + 2mux + ρρx = 0,m = u − uxx
ρt + (uρ)x = 0,

(1.5)

Notice that the Camassa–Holm equation can be obtained via the obvious reduction
ρ ≡ 0 and A = 0. System (1.5) was derived in 1996 [43]. Recently, Constantin–
Ivanov [20] and Ivanov [34] established a rigorous justification of the derivation of
system (1.5). Mathematical properties of the system have also been studied further in
many works [1,11,12,22,26,28,29,31,32,38,42,44,47–49]. The reciprocal transforma-
tion between the two-component Camassa–Holm system and the first negative flow
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of the Ablowitz–Kaup–Newell–Segur hierarchy is established [12]. Escher, Lechten-
feld, andYin investigated localwell-posedness for the two-componentCamassa–Holm
system with initial data (u0, ρ0 − 1) ∈ Hs(R) × Hs−1(R) with s ≥ 2 and provided
some precise blow-up scenarios for strong solutions to the system (1.5) [26]. The
local well-posedness is improved in the Besov spaces (especially in the Sobolev space
Hs(R) × Hs−1(R) with s > 3

2 , and the finite time blow-up is determined by either
the slope of the first component u or the slope of the second component ρ [29]. Chen
and Liu have derived some conditions of blow-up solutions for the generalized two-
component Camassa–Holm system, which was recently derived in [11], following
Ivanovs modeling approach [34]. The blow-up criterion is made more precise in [38]
where the authors showed that the wave breaking in finite time only depends on the
slope u. In other words, the wave breaking in u must occur before that in ρ. This
blow-up criterion is further improved [28] to the lowest Sobolev space.

In this paper, we are concerned with the Cauchy problem of the generalized two-
component Dullin–Gottwald–Holm (DGH) system [10,30],

⎧⎪⎪⎨
⎪⎪⎩

mt − Aux + σ(2mux + umx ) + 3(1 − σ)uux + γ uxxx + ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

(1.6)

where m = u − uxx and σ is a real parameter. It is a model from the shallow water
theory with nonzero constant vorticity, where u(x, t) is the horizontal velocity and
ρ(t, x) is related to the free surface elevation from equilibrium with the boundary
assumptions, u → 0 and ρ → 1 as |x | → ∞. The scalar A > 0 characterizes a linear
underlying shear flow and hence the system (1.6) models wave-current interactions.
The real dimensionless constant σ is a parameter, which provides the competition,
or balance, in fluid convection between nonlinear steeping and amplification due to
stretching. System (1.6) can be written in terms of u and ρ,

⎧⎪⎪⎨
⎪⎪⎩

ut − utxx − Aux + 3uux − σ(2uxuxx + uuxxx ) + γ uxxx + ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R.

(1.7)

System (1.7) has the following two Hamiltonians:

H1 = 1

2

∫
R

(
u2 + u2x + (ρ − 1)2

)
dx,

H2 = 1

2

∫
R

(
u3 + σuu2x − Au2 − γ u2x + 2u(ρ − 1) + u(ρ − 1)2

)
dx .

The goal of the present paper is to study the persistence property of solutions and
derive some conditions of blow-up solutions for the initial value problem (1.6). And
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the main tool to study the persistence property is the method of characteristics, which
was initially used by Constantin and Escher [17,21,23] to investigate the question
of global existence and the blow-up mechanism for the Camassa–Holm equation. In
present paper, working with moderate weight functions that are commonly used in
time-frequency analysis [3], we generalized the persistence result on the solution to
Eq. (1.6) in the weighted L p

φ = L p(R, φ p(x)dx) space. The blow-up problem for the
system (1.6) has been addressed in [10,30]. The conditions on the initial datum u0
leading to theblow-up typically involves the computationof someglobal quantities (the
Sobolev norm ‖u0‖H1 , or some other integral expressions of u0). For σ = 1, γ = 0,
motivated by the recent paper [4–6], we establish a local-in-space blow-up criterion
for the system (1.6), i.e., a blow-up condition involving only the properties of u0 in a
neighborhood of a single point x0 ∈ R. Such criterion will be more general (and more
natural)than the earlier blow-up results. The details can be found in Theorem 3.1.

The remainder of the paper is organized as follows. In Sect. 2, we established per-
sistence properties and some unique continuous properties of the solution to Eq. (1.6)
in weighted L p

φ := L p(R, φ p(x)dx) spaces. Finally, we construct initial data which
leads to the local-in-space blow-up results.

Notation. In the sequel, we denote by ∗ the convolution. For 1 ≤ p < ∞, the

norms in the Lebesgue space L p(R) is ‖ f ‖p =
( ∫

R
| f (x)|pdx

) 1
p
, the space L∞(R)

consists of all essentially bounded, Lebesgue measurable functions f equipped with
the norm ‖ f ‖∞ = infμ(e)=0 supx∈R\e | f (x)|. For a function f in the classical Sobolev

spaces Hs(R) (s ≥ 0) the norm is denoted by ‖ f ‖Hs . We denote G(x) = 1
2e

−|x | the
fundamental solution of 1−∂2x onR, and define the two convolution operatorsG+, G−
as

G+ ∗ f (x) = e−x

2

∫ x

−∞
ey f (y)dy,

G− ∗ f (x) = ex

2

∫ ∞

x
e−y f (y)dy.

(1.8)

Then we have the relations G = G+ + G−,Gx = G− − G+.

2 Persistence property

In this section, we intend to find a large class of weight functions φ such that

sup
t∈[0,T )

(‖u(t)φ‖L p + ‖ux (t)φ‖L p + ‖ρ(t)φ‖L p ) < ∞,

this way we obtain a persistence results on solution (u, ρ) to Eq. (1.6) in the weight L p

space L p
φ := L p(R, φ p(x)dx). As a consequence and an application we determine the

spatial asymptotic behavior of certain solutions to Eq. (1.6). We will work with mod-
erate weight functions which appear with regularity in the theory of time-frequency
analysis and have led to optimal results for the Camassa–Holm equation in [3]. Firstly,
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we list some knowledge in time frequency analysis for later use, for the details see
[3].

Definition 2.1 An admissible weight function for system (1.6) is a local absolutely
continuous function φ : R → R such that, for some A > 0 and almost all x ∈
R, |φ′(x)| ≤ A|φ(x)|, and that is v − moderate for some sub-multiplicative function
v satisfying infR v > 0 and ∫

R

v(x)

e|x | dx < ∞. (2.1)

We can now state our main result on admissible weights.

Theorem 2.1 Assume that u0φ, u0,xφ, ρ0φ ∈ L p(R), 1 ≤ p ≤ ∞ for an admissible
weight function φ of Eq. (1.6). Let (u0, ρ0−1) ∈ Hs(R) × Hs−1(R) with s ≥ 2, and
T > 0 be the maximal existence time of the solution (u, ρ) to system (1.6) with the
initial data (u0, ρ0). Then, for all t ∈ [0, T ], there is a constant C > 0 depending
only on weight φ such that

‖u(t)φ‖L p + ‖ux (t)φ‖L p + ‖ρ(t)φ‖L p ≤ (‖u0φ‖L p + ‖u0,xφ‖L p

+‖ρ0φ‖L p ) exp{{C(1 + M)t},

where

M
.= sup

t∈[0,T ]
(‖u(t)‖L∞ + ‖ux (t)‖L∞ + ‖ρ(t)‖L∞) < ∞.

First, we present some standard definitions. In general a weight function is simple
a non-negative function. A weight function v : Rn → R is sub-multiplicative if

v(x + y) ≤ v(x)v(y), ∀x, y ∈ R
n . (2.2)

Given a sub-multiplicative function v : Rn → R, by definition a positive function φ

is v-moderate if

∃C0 > 0 : φ(x + y) ≤ C0v(x)φ(y),∀x, y ∈ R
n . (2.3)

If φ is v-moderate for some sub-multiplicative function v, then we say that φ is
moderate. Let us recall the most standard examples of such weights.

Example 2.1 ([3]) let φ(x) = φa,b,c,d = ea|x |b(1 + |x |)c log(e + |x |)d . Then
(1) For a, c, d > 0 and 0 ≤ b ≤ 1, such weight is sub-multiplicative.
(2) For |a| ≤ α, b ≤ β, |c| ≤ γ and |d| ≤ δ, φa,b,c,d is φα,β,γ,δ − moderate.
If v and φ are continuous, then they admit the following properties, which may shed
some light on Definition 2.1.
(1) If v 
= 0 is an even sub-multiplicative weight function, then in fRv ≥ 1.
(2) Every nontrivial sub-multiplicative ormoderate weight grows and decays not faster
than exponentially: there exists a ≥ 0 such that

e−ae−a|x | ≤ φ(x) ≤ eaea|x |. (2.4)
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(3) Let φ be a locally continuous v− moderate weight such that C0v(0) = 1 (where
C0 is the constant in (2.8). If v has both left and right derivatives at the origin, then
for a.e. y ∈ R,

|φ′(y)| ≤ Aφ(y) (2.5)

where A = C0 max{|v′(0−)|, |v′(0+)|}.
The interest of imposing the sub-multiplicativity condition on a weight function is
also made clear by the following proposition:

Proposition 2.1 ([3]) Let v : Rn → R
+ and C0 > 0. Then the following conditions

are equivalent:
(1) ∀x, y : v(x + y) ≤ C0v(x)v(y).
(2) For all 1 ≤ p, q, r ≤ ∞ and for any measurable function f1, f2 : Rn → C the
weighted Young inequality hold:

‖( f1 ∗ f2)v‖r ≤ C0‖ f1v‖p‖ f2v‖q , 1 + 1

r
= 1

p
+ 1

q
. (2.6)

The moderateness of a weight function is the good condition for weighed Young
inequalities with two different weights.

Proposition 2.2 ([3]) Let 1 ≤ p ≤ ∞ and v be a sub-multiplicative weight on R
n.

Then the following two conditions are equivalent:
(1) φ is v− moderate weight function (with constant C0).
(2) For all measurable function f1 and f2 the weighted Young estimate holds

‖( f1 ∗ f2)φ‖p ≤ C0‖ f1v‖1‖ f2φ‖p. (2.7)

Definition 2.2 An admissible weight function for the problem (1.6) is a locally abso-
lutely continuous function φ : R → R s.t. for some A > 0 and a.e. x ∈ R, |φ′(t)| ≤
A|φ|, and that is v − moderate, for some sub-multiplicative weight function v satis-
fying inf x∈R v > 0 and

ve−|·| ∈ L p(R). (2.8)

Now, we give the needed results to pursue our goal. The DGH system (1.6) can be
written in the following “transport” type:

⎧⎪⎪⎨
⎪⎪⎩

ut + (σu − γ )ux = −∂xG ∗ [ 3−σ
2 u2 + σ

2 u
2
x + (γ − A)u + 1

2ρ
2
]
, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R.

(2.9)

The local well-posedness results for the system (1.6) has been established in the
Sobolev space Hs × Hs−1, let us recall it as
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Theorem 2.2 [30] If (u0, ρ0 − 1) ∈ Hs(R) × Hs−1(R), s ≥ 2, then there exists a
maximal time T = T (‖(u0, ρ0−1)‖Hs×Hs−1) > 0 and a unique solution (u, ρ − 1)
of system (1.6) in C([0, T ); Hs(R) × Hs−1(R)) ∩C1([0, T ); Hs−1(R) × Hs−2(R))

with (u, ρ − 1)|t=0 = (u0, ρ0 − 1). Moreover, the solution depends continuously on
the initial data, and T is independent of s.

As introduced in the introduction, we consider the following two associated
Lagrangian scales of the generalized two component system (1.6):

{
∂q1
∂t = u(t, q1), 0 < t < T ,

q1(0, x) = x, x ∈ R
(2.10)

and

{
∂q2
∂t = σu(t, q2) − γ, 0 < t < T ,

q2(0, x) = x, x ∈ R,
(2.11)

where u ∈ C1([0, T ), Hs−1) is the first component of the solution (u, ρ) to Eq. (1.6)
with initial data (u0, ρ0) and T > 0 is the maximal time of existence.

A direct calculation shows

q1,t x (t, x) = ux (t, q1(t, x))q1,x (t, x)

and

q2,t x (t, x) = σux (t, q2(t, x))q2,x (t, x).

Thus for t > 0, x ∈ R

q1,x (t, x) = exp

(∫ t

0
ux (τ, q1(τ, x))

)
dτ > 0, (t, x) ∈ [0, T ) × R

and

q2,x (t, x) = exp

(∫ t

0
σux (τ, q2(τ, x))

)
dτ > 0, (t, x) ∈ [0, T ) × R,

indicating that q1(t, ·) : R → R and q2(t, ·) : R → R are diffeomorphisms of the line
for each t ∈ [0, T ). Hence, the L∞ norm of any function v(t, ·) ∈ L∞(R), T ∈ [0, t)
is preserved under the family of diffeomorphisms q1(t, ·) and q2(t, ·) with t ∈ [0, T ),
that is

‖v(t, ·)‖L∞(R) = ‖v(t, q1(t, ·))‖L∞(R) = ‖v(t, q2(t, ·))‖L∞(R), t ∈ [0, T ).

(2.12)
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Similarly, we obtain

inf
x∈R v(t, x) = inf

x∈R v(t, q1(t, x)) = inf
x∈R v(t, q2(t, x)), t ∈ [0, T ) (2.13)

and

sup
x∈R

v(t, x) = sup
x∈R

v(t, q1(t, x)) = sup
x∈R

v(t, q2(t, x)), t ∈ [0, T ). (2.14)

Lemma 2.1 ([26]) Let (u0, ρ0−1) ∈ Hs(R) × Hs−1(R) with s ≥ 2, and T > 0 be
the maximal existence time of the solution (u, ρ) to system (1.6) with the initial data
(u0, ρ0).

ρ(t, q(t, x))qx (t, x) = ρ0(x), (t, x) ∈ [0, T ) × R. (2.15)

Moreover, if there exists x0 ∈ R such that ρ0(x0) = 0, then ρ(t, q(t, x0)) = 0 for all
t ∈ [0, T ).

Proof of Theorem 2.1. Let (u, ρ) be the solution to Eq. (1.6) with the initial data
(u0, ρ0), and T be the maximal existence times of the solution (u, ρ), which is guar-
anteed by Theorem 2.2.

From the solution (u, ρ) ∈ C([0, T ), Hs(R)) × C([0, T ), Hs−1), s ≥ 2. The
Sobolev’s embedding theorem yields

M ≡ sup
t∈[0,T ]

(‖u(t, ·)‖L∞ + ‖ux (t, ·)‖∞ + ‖ρ(t, ·)‖L∞) < ∞. (2.16)

For any N ∈ Z+, let us consider the N-trancations of φ(x) : f (x) = fN (x) =
min{φ(x), N }, then f : R → R is a locally absolutely function such that ‖ f ‖∞ ≤
N , | f ′(x)| ≤ A| f (x)| a.e on R.

In addition, if C1 = max{C0, α
−1}, where α = infx∈R v(x) > 0, then

f (x + y) ≤ C1v(x) f (y), ∀x, y ∈ R.

Moreover, as shown in [3], the N−trunctions f of a v−moderate weight φ are uni-
formly v− moderate with respect to N .

We rewrite Eq. (1.6) as the following form

⎧⎪⎪⎨
⎪⎪⎩

ut + (σu − γ )ux = −∂xG ∗ P(u, ρ), t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

(2.17)

where P(u, ρ)
.= [ 3−σ

2 u2 + σ
2 u

2
x + (γ − A)u + 1

2ρ
2] and G(x) = 1

2e
−|x |.
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Let us start from the case 1 ≤ p < ∞, multiplying the first equation in Eq. (2.17)
by |u f |p−1sgn(u f ) f and integrating it lead to

∫
R

|u f |p−1sgn(u f )(∂t u f )dx =
∫
R

|u f |p−1sgn(u f ) f (σu − γ )uxdx

−
∫
R

|u f |p−1sgn(u f ) f ∂x (G ∗ P(u, ρ))dx .

(2.18)

The first term on the left hand of (2.18) reads

∫
R

|u f |p−1sgn(u f )(∂t u f )dx = 1

p

d

dt
‖u f ‖p

L p = ‖u f ‖p−1
L p = ‖u f ‖p−1

L p
d

dt
‖u f ‖L p .

Then, the Hölder inequality is followed by the estimate

|
∫
R

|u f |p−1sgn(u f )(σu − γ )ux f dx | ≤ ‖u f ‖p−1
L p ‖(σu − γ )ux f ‖L p

≤ (|σM | + |γ |)‖u f ‖p−1
L p ‖ux f ‖L p .

For the nonlocal term, we have

|
∫
R

|u f |p−1sgn(u f )( f ∂x (G ∗ P(u, ρ)))dx |

≤ ‖u f ‖p−1
L p ‖ f ∂x (G ∗ P(u, ρ))‖L p

≤ Cα,b,k‖u f ‖p−1
L p {‖(∂xG)v‖L1‖ f · (u + u2 + u2x + ρ2)‖L p }

≤ C(1 + M)‖u f ‖p−1
L p (‖u f ‖L p + ‖ux f ‖L p + ‖ρ f ‖L p ).

where the Hölder’s inequality, Propositions 3.1 and 3.2 in [3], and condition (2.1) are
applied in the first inequality, the second one, and the last one, respectively, and the
constant C only depends on v and φ. From Eq. (2.18) one may get

d

dt
‖u f ‖L p ≤ C(1 + M)(‖u f ‖L p + ‖ux f ‖L p + ‖ρ f ‖L p ). (2.19)

Let us now give the estimate on ux f . Differentiating the first equation in Eq. (2.17)
with respect to the variable x and then multiplying by f , we may arrive at

∂t (ux f ) + σu2x f + uuxx f + f ∂2x (G ∗ P(u, ρ)) = 0.

which yields

∫
R

|ux f |p−1sgn(ux f )∂t (ux f )dx = ‖ux f ‖p−1
L p

d

dt
‖ux f ‖L p ,
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|
∫
R

|ux f |p−1sgn(ux f ) f u
2
xdx | ≤ ‖ux f ‖p−1

L p ‖ux f ux‖L p ≤ M‖ux f ‖p−1
L p ‖ux f ‖L p

and

|
∫
R

|ux f |p−1sgn(ux f )[ f ∂2x (G ∗ P(u, ρ))]dx |

≤ ‖ux f ‖p−1
L p ‖ f ∂2x (G ∗ P(u, ρ))‖L p

≤ C(1 + M)‖ux f ‖p−1
L p (‖u f ‖L p + ‖ux f ‖L p + ‖ρ f ‖L p ).

For the second order derivative term, we have

|
∫
R

|ux f |p−1sgn(ux f )uuxx f dx | = |
∫
R

|ux f |p−1sgn(ux f )u[∂x (ux f ) − ux fx ]dx |

= |
∫
R

u∂x

( |ux f |p
p

)
dx

−
∫
R

|ux f |p−1sgn(ux f )uux fxdx |
≤ M(1 + A)‖ux f ‖p

L p

where the inequality | fx (x)| ≤ A f (x) for a.e. x is applied. Thus, it follows that

d

dt
‖ux f ‖L p ≤ C3(1 + M)(‖u f ‖L p + ‖ux f ‖L p + ‖ρ f ‖L p ). (2.20)

We now multiply the second equation in Eq. (2.17) with |ρ f |p−1sgn(ρ f ) f and inte-
grate to obtain the identity

1

p

d

dt
‖ρ f ‖p

L p +
∫
R

|ρ f |p−1sgn(ρ f ) f uρxdx +
∫
R

|ρ f |p−1sgn(ρ f ) f uxρdx = 0.

As above, we get

∫
R

|ρ f |p−1sgn(ρ f ) f uxρdx | ≤ ‖ρ f ‖p−1
L p ‖ f uxρ‖L p ≤ M‖ρ f ‖p−1

L p ‖ρ f ‖L p ,

and

∫
R

|ρ f |p−1sgn(ρ f ) f uρxdx | = |
∫
R

|ρ f |p−1sgn(ρ f )u[∂x (ρ f ) − ρ fx ]dx |

= |
∫
R

u∂x

( |ρ f |p
p

)
dx −

∫
R

|ρ f |p−1sgn(ρ f )uρ fx dx |
≤ M(1 + A)‖ρ f ‖pL p ,

this yields
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d

dt
‖ρ f ‖L p ≤ C4M‖ρ f ‖L p . (2.21)

Based on the inequalities (2.19)–(2.21), by Gronwall’s inequality

‖u(t) f ‖L p + ‖ux (t) f ‖L p + ‖ρ(t) f ‖L p

≤ (‖u0 f ‖L p + ‖u0,x f ‖L p + ‖ρ0 f ‖L p ) exp(C(1 + M)t),

for all t ∈ [0, T ). Since f (x) = fN (x) ↑ φ(x) as N → ∞ for a.e. x ∈ R and
u0φ, u0,xφ, ρ0φ ∈ L p(R) the assertionof the theorem follows for the case p ∈ [1,∞).
Since ‖ · ‖L∞ = lim p→∞ ‖ · ‖L p it is clear that the theorem also applies for p = ∞. ��
Corollary 2.1 Let 1 ≤ p ≤ ∞ and φ be a v − moderate weight function as
in Definition 2.1 satisfying ve−|·| ∈ L p(R). Assume that u0φ, u0,xφ, ρ0φ ∈
L p(R) and u0φ

1
2 , u0,xφ

1
2 , ρ0φ

1
2 ∈ L2(R). Let also (u, ρ) ∈ C([0, T ), Hs(R)) ×

C([0, T ), Hs−1(R)), s ≥ 2 be the strong solution of the Cauchy problem for Eq. (1.6)
emanating from (u0, ρ0). Then

sup
t∈[0,T )

(‖u(t)φ‖L p + ‖ux (t)φ‖L p + ‖ρ(t)φ‖L p ) < ∞

and

sup
t∈[0,T )

(‖u(t)φ1/2‖L p + ‖ux (t)φ1/2‖L p + ‖ρ(t)φ1/2‖L p ) < ∞.

Proof As explained in [3], if the function φ is a v−moderate weight function,

then the function φ
1
2 is also a v1/2−moderate weight satisfying |(φ1/2)′(x)| ≤

A
2 φ1/2(x), inf v1/2 > 0 and v1/2e−|·| ∈ L1(R). We use Theorem 2.1 with p = 2
to the weight φ1/2 and obtain

‖u(t)φ1/2‖L2 + ‖ux (t)φ1/2‖L2 + ‖ρ(t)φ1/2‖L2

≤ (‖u0(t)φ1/2‖L2 + ‖u0,x (t)φ1/2‖L2 + ‖ρ0(t)φ1/2‖L2) exp(C(1 + M)t). (2.22)

In view of Proposition 3.2 in [3], noticing f (x) = fN (x) = min{φ(x), N } admits

‖ f ∂x (G ∗ P(u, ux ))‖L p

≤ Cα,κ,b‖ f ∂x (G(x) ∗ (u + u2 + u2x + ρ2))‖L p

≤ C‖ f ∂xG(x)‖L p‖ f (u + u2 + u3 + u4 + u2x )‖L1

≤ C‖ f e−|x |‖L p (‖ f u‖L1 + ‖ f 1/2u‖2L2 + ‖ f 1/2ux‖2L2 + ‖ f 1/2ρ‖2L2)

≤ C1 exp(C2(1 + M)t), (2.23)

where we used (2.22) and Theorem 2.1 with p = 1.
Similarly, noticing ∂2x G = G − δ reveals
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‖ f ∂2x (G ∗ P(u, ux ))‖L p

≤ C1 exp(C2(1 + M)t) + C3(1 + M)(‖u f ‖L p + ‖ f ux‖L p + ‖ f ρ‖L p ), (2.24)

where the constants on the right-hand side of Eqs. (2.23) and (2.24) are independent
of N .

By using the procedure as shown in the proof of Theorem 2.1, we can readily obtain

d

dt
‖u f ‖L p ≤ C(1 + M)‖u f ‖L p + ‖ f ∂x (G ∗ P(u, ux ))‖L p (2.25)

and

d

dt
‖ux f ‖L p ≤ C(1 + M)‖ux f ‖L p + ‖ f ∂2x (G ∗ P(u, ux ))‖L p (2.26)

for 1 ≤ p < ∞. Plugging Eqs. (2.23) and (2.24) into Eqs. (2.25) and (2.26), respec-
tively, and summing up them, we obtain

d

dt
(‖u(t) f ‖L p + ‖ux (t) f ‖L p + ‖ρ(t) f ‖L p )

≤ K1(1 + M)(‖u0 f ‖L p + ‖u0,x f ‖L p + ‖ρ0 f ‖L p ) + C1 exp(C2(1 + M)t),

which is taken integration and limit N → ∞ to get the conclusion in the case 1 ≤ p <

∞. The constants throughout the proof are independent of p. Therefore, for p = ∞
one can rely on the result established for the finite exponents q and then let q → ∞.
The argument is fully similar to that of Theorem 2.1. ��

3 Blow-up

For σ = 1, γ = 0, we investigate the precise blow-up scenario of strong solution to
system (1.6). Firstly, we present the following convolution estimates, which is the key
technical issue for the blow-up analysis.

Lemma 3.1 Let −1 ≤ a ≤ 3,−1 ≤ β ≤ 1. Then

(G ± β∂xG) ∗
(
a

2
u2 + 3 − a

2
u2x − γ u

)
≥ δa

(
u − γ

a

)2 − γ 2

2a
, (3.1)

where δa =
√
3−a
4 (

√
3(1 + a) − √

3 − a).

Proof We denote by + and − the characteristic function of R+ and R− respectively.
Then, we obtain
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G+ ∗
(
a

2
u2 + 3 − a

2
u2x − γ u

)
= G+ ∗

(
a

2
(u2 − 2γ

a
u) + 3 − a

2
u2x

)

= G+ ∗
(
a

2
(u − γ

a
)2 + 3 − a

2
u2x

)
− γ 2

4a

= 3 − a

2
G+ ∗

(
a

3 − a
(u − γ

a
)2 + u2x

)
− γ 2

4a
.

Let r ∈ R, using Cauchy inequality, we have

G+ ∗
(
r2

(
u − γ

a

)2 + u2x

)
= e−x

2

∫ x

−∞
eξ

(
r2

(
u − γ

a

)2 + u2x

)
dξ

≥ re−x
∫ x

−∞

(
u − γ

a

)
uxe

ξdξ

= r

2

(
u − γ

a

)2 − rG+ ∗
(
u − γ

a

)2
.

This leads to

G+ ∗
(

(r2 + r)
(
u − γ

a

)2 + u2x

)
≥ r

2

(
u − γ

a

)2
.

Similarly, we get

G− ∗
(

(r2 + r)
(
u − γ

a

)2 + u2x

)
≥ r

2

(
u − γ

a

)2
.

Choose r such that r2 + r = a
3−a . This is indeed possible if −1 ≤ a < 3( if a = 3,

the proposition is trivial and there is nothing to prove). So,

G+ ∗
(
a

2
u2 + 3 − a

2
u2x − γ u

)
≥ δa

2

(
u − γ

a

)2 − γ 2

4a
, (3.2)

G− ∗
(
a

2
u2 + 3 − a

2
u2x − γ u

)
≥ δa

2

(
u − γ

a

)2 − γ 2

4a
, (3.3)

where δa =
√
3−a
4 (

√
3(1 + a) − √

3 − a).
If −1 ≤ β ≤ 1, then from (3.2) and (3.3), we deduce

(G ± β∂xG) ∗
(
a

2
u2 + 3 − a

2
u2x − γ u

)
≥ δa

(
u − γ

a

)2 − γ 2

2a
. (3.4)

This completes the proof of Lemma 3.1. ��
The blow-up of solution will rely on the following basic property:
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Lemma 3.2 ([5]) Let 0 < T ∗ ≤ ∞ and f , g ∈ C1([0, T ∗],R) be such that, for some
constant c > 0 and all t ∈ [0, T ∗],

d f

dt
(t) ≥ c f (t)g(t),

dg

dt
(t) ≥ c f (t)g(t).

If f (0) > 0 and g(0) > 0, then

T ∗ ≤ 1

c
√

f (0)g(0)
.

Next, we give the wave-breaking criterion for σ 
= 0.

Theorem 3.1 [30] (Wave-breaking criterion for σ 
= 0). Let (u0, ρ0−1) ∈ Hs(R) ×
Hs−1(R) with s ≥ 2, and T > 0 be the maximal existence time of the solution (u, ρ)

to system (1.6) with the initial data (u0, ρ0). Then the solution blows up in finite time
if and only if

lim
t→T− inf

x∈R σux (t, x) = −∞.

We are now in a position to give the following local-in-space criterion for finite
time blow-up mechanism to system (1.6).

Theorem 3.2 Let (u0, ρ0−1) ∈ Hs(R) × Hs−1(R) with s ≥ 2, and T > 0 be the
maximal existence time of the solution (u, ρ) to system (1.6) with the initial data
(u0, ρ0). Assume that there exists x0 ∈ R, such that

ρ0(x0) = 0

and

u0,x (x0) < −|u0(x0) − A

2
|, (3.5)

then the corresponding solution (u, ρ) of system (1.6) arising from (u0, ρ0) blows up
in finite time. More precisely, the following upper bound estimate for T ∗ holds:

T ∗ ≤ 2√
(u0,x (x0))2 − (u0(x0) − A

2 )2
. (3.6)

Proof First, differentiating the equation

ut + uux = −∂xG ∗
[
u2 + 1

2
u2x − Au + 1

2
ρ2

]
, (3.7)
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with respect to x variable and applying the identity G ∗ f − ∂2x G ∗ f = f , we have

utx + uuxx + u2x

= 1

2
ρ2 + u2 + 1

2
u2x − Au − G ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)
. (3.8)

When σ = 1 and γ = 0 the two characteristics q1(t, x) defined in (2.10) and
q2(t, x) defined in (2.11) coincide, sowe can carry out the analysis along the trajectory.

Denote

ω(t) = u(t, q(t; x0)), n(t) = ux (t, q(t; x0)), ξ(t) = ρ(t, q(t; x0)).

Then, we use (3.7), (3.8) and the second equation of (3.1) to obtain the following time
derivatives along the flow q(t, x0),

dω(t)

dt
= − ∂xG ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)
, (3.9)

dn(t)

dt
= − 1

2
n(t)2 + ω(t)2 + 1

2
ξ(t) − Aω(t) − G ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)
,

(3.10)

dξ(t)

dt
= − n(t)ξ(t). (3.11)

From the last equation above and the initial conditions on ρ0, we get

ξ(t) = ξ(0)e− ∫ t
0 n(τ )dτ = ρ0(x0)e

− ∫ t
0 n(τ )dτ = 0. (3.12)

Let us introduce the two C1 functions of the time variable depending on β,

A(t) =
(

β

(
ω(t) − A

2

)
− n(t)

)
(t, q1(t, x0)) (3.13)

and

B(t) =
(

−β

(
ω(t) − A

2

)
− n(t)

)
(t, q1(t, x0)). (3.14)

Differentiating with respect to t and using (3.9), (3.10), we obtain

At (t) = βω(t)t − n(t)t

= β

[
−∂xG ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)]
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−
[
−1

2
n(t)2 + ω(t)2 − Aω(t) − G ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)
(t, q1(t; x0))

]

= 1

2
n(t)2 − ω(t)2 + Aω(t) + (G − β∂xG) ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)
(t, q1(t; x0))

(3.15)

and

Bt (t) = − βω(t)t − n(t)t

= − β

[
−∂xG ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

]

−
[
−1

2
n(t)2 + ω(t)2 − Aω(t) − G ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)
(t, q1(t; x0))

]

=1

2
n(t)2 − ω(t)2 + Aω(t) + (G + β∂xG) ∗

(
u2 + 1

2
u2x − Au + 1

2
ρ2

)
(t, q1(t; x0)).

(3.16)

Choose β = 1, it follows from Lemma 3.1 and the fact G± ∗ 1
2ρ

2 ≥ 0 that

At (t) ≥ 1

2

(
n(t)2 −

(
ω(t) − A

2

)2
)

+ (G − ∂xG) ∗ 1

2
ρ2

≥ 1

2

[
n(t)2 −

(
ω(t) − A

2

)2
]

= 1

2
(AB)(t, x0), (3.17)

and

Bt (t) ≥ 1

2

(
n(t)2 −

(
ω(t) − A

2

)2
)

+ (G + ∂xG) ∗ 1

2
ρ2

≥ 1

2

[
n(t)2 −

(
ω(t) − A

2

)2
]

= 1

2
(AB)(t, x0). (3.18)

By our assumption on the initial conditions made in Theorem 3.2,

u0,x (x0) < −|u0(x0) − A

2
|,

or, equivalently, as

A(0, x0) > 0 and B(0, x0) > 0.
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It follows from Lemma 3.2 that the corresponding solution (u, ρ) of system (1.6)
arising from (u0, ρ0) blows up in finite time and the following upper bound estimate
for T ∗ holds:

T ∗ ≤ 2√
(u0,x (x0))2 − (u0(x0) − A

2 )2
.
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symmetries. Phys. D, 4, 47–66 (1981/1982)

28. Gui, G., Liu, Y.: On the Cauchy problem for the two-component Camassa-Holm system. Math. Z. 268,
45–46 (2011)

29. Gui, G., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa–
Holm system. J. Funct. Anal. 258, 4251–78 (2010)

30. Han, Y., Guo, F., Gao, H.: On solitary waves and wave-breaking phenomena for a generalized two-
component integrable Dullin–Gottwald–Holm system. J. Nonlinear Sci. 23, 617–656 (2013)

31. Henry, D.: Infinite propagation speed for a two component Camassa–Holm equation. Discrete Contin.
Dyn. Syst. Ser. B 12, 597–606 (2009)

32. Himonas, A.A., Misiolek, G., Ponce, G., Zhou, Y.: Persistencee properties and unique continuation of
solutions of the Camassa–Holm equation. Commun. Math. Phys. 271, 511C522 (2007)

33. Ionescu-Kruse, D.: Variational derivation of the Camassa–Holm equation. J. Nonlinear Math. Phys.
14, 303–312 (2007)

34. Ivanov, R.: Two-component integrable systems modelling shallow water waves: the constant vorticity
case. Wave Motion 46, 389–396 (2009)

35. Jiang, Z., Ni, L., Zhou, Y.: Wave breaking of the Camassa–Holm equation. J. Nonlinear Sci 22(2),
235–245 (2012)

36. Lenells, J.: A variational approach to the stablity of periodic peakons. J. Nonlinear Math. Phys. 11,
151–163 (2004)

37. Liu, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinear dispersive model
wave equation. J. Differ. Equ. 162, 27–63 (2000)

38. Liu, Y., Zhang, P.: Stability of solitary waves and wave-breaking phenomena for the two-component
Camassa–Holm system. Int. Math. Res. Not. 11, 1981–2021 (2010)

39. McKean, H.P.: Breakdown of a shallow water equation. Asian J. Math 2(4), 867–874 (1998)
40. Misiolek, G.: Classical solutions of the periodic Camassa–Holm equation. Geom. Funct. Anal. 12(5),

1080–1104 (2002)
41. Molinet, L.: On well-posedness results for Camassa–Holm equation on the line: a survey. J. Nonlinear

Math. Phys. 11(4), 521–533 (2004)
42. Mustafa, O.: On smooth traveling waves of an integrable two-component Camassa–Holm shallow

water system. Wave Motion 46, 397–402 (2009)
43. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solution having

compact support. Phys. Rev. E 53, 1900–1906 (1996)
44. Wang, Y., Zhu, M.: Blow-up issues for a two-component system modelling water waves with constant

vorticity. Nonlinear Anal. 172, 163–179 (2018)
45. Zhou, Y.: Wave breaking for a periodic shallow water equation. J. Math. Anal. Appl. 290, 591–604

(2004)
46. Zhou, Y.: Wave breaking for a shallow water equation. Nonlinear Anal. 57(1), 137–152 (2004)
47. Zhu, M., Junxiang, X.: On the wave-breaking phenomena for the periodic two-component Dullin–

Gottwald–Holm system. J. Math. Anal. Appl. 391, 415–428 (2012)
48. Zhu,M., Junxiang, X.: On the Cauchy problem for the two-component b-family system.Math. Method

Appl. Sci. 36, 2154–2173 (2013)
49. Zhu, M., Junxiang, X.: On the wave-breaking phenomena and global existence for the periodic two-

component b-family system. Electron. J. Differ. Equ. 44, 1–27 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On the persistence and blow up for the generalized two-component Dullin–Gottwald–Holm system
	Abstract
	1 Introduction
	2 Persistence property
	3 Blow-up
	Acknowledgements
	References




