
Monatshefte für Mathematik (2019) 188:717–751
https://doi.org/10.1007/s00605-019-01271-z

Zeta function and negative beta-shifts

Florent Nguema Ndong1

Received: 4 July 2017 / Accepted: 1 February 2019 / Published online: 13 February 2019
© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract
Given a real number β > 1, we study the associated (−β)-shift introduced by Ito
and Sadahiro. We compare some aspects of the (−β)-shift to the β-shift. When the
expansion in base −β of − β

β+1 is periodic with odd period or when β is less than the
golden ratio, the (−β)-shift cannot be coded because its language is not transitive.
This intransitivity of words explains the existence of gaps in the interval [− β

β+1 ,
1

β+1 ).
We observe that an intransitive word appears in the (−β)-expansion of a real number
taken in the gap. Furthermore, we determine the Zeta function ζ−β of the (−β)-
transformation and the associated lap-counting function LT− β . These two functions
are related by ζ−β = (1 − z2)LT− β . We observe some similarities with the zeta
function of the β-transformation. The function ζ−β has a simple pole at 1

β
and no

other singularities z such that |z| = 1
β
. We also note an influence of gaps (β less than

the golden ratio) on the zeta function.
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1 Introduction

The β-transformation has been extensively studied since the seminal paper of Rényi
in 1957 (see [10]). There is a huge amount of literature on the map itself and on the
associated symbolic dynamics. Over the past decade, people became interested in the
(−β)-transformation, changing the slope of themap frompositive to negative. Various
studies have focused on the similarities and differences between the two maps from
several points of view. This paper fits in this last line of research.

Communicated by A. Constantin.

B Florent Nguema Ndong
florentnn@yahoo.fr

1 Université des Sciences et Techniques de Masuku, Franceville, Gabon

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-019-01271-z&domain=pdf
http://orcid.org/0000-0002-4222-5844


718 F. Nguema-Ndong

The paper compares two aspects of the (−β)-shift to the β-shift. For the β-shift it is
known that a prefix code always exists. The paper first investigates whether or not the
same is true for the (−β)-shift. By (−β)-shift (respectively β-shift) we understand
the closure of the set of expansions in base −β (respectively β). The conclusion is
stated in Theorem 1, which says that a prefix code exists in the negative case only
under certain conditions, namely if and only if β is bigger than the golden ratio and
the orbit of the left endpoint of the domain of the (−β)-transformation is not periodic
with odd period. It turns out that the discovered prefix codes are recurrent. Even though
the codes can be complicated, the zeta functions apparently have a very simple form
(see Theorem 6) and it can be noted the similarities with that of the positive parameter
determined in [1,5,7].

Rényi introduced the β-expansion of positive real numbers in [10]: for a fixed real
β > 1, all non-negative real number x has one representation in base β. He defined
the β-transformation Tβ from [0, 1) into [0, 1) by

Tβ(y) = β y − �β y�

where �x� denotes the largest integer less than x . We can find a sequence of positive

integers (xi )i≥−n+1 such that x = ∑
i≥−n+1

xi
β i

where xi ∈ {0, 1, . . . , �β�}, x−n+i =
�βT i−1

β ( x
βn )� and n is the smallest positive integer for which x

βn belongs to the interval
[0, 1). Various topics about β-expansion have been studied.

Let b be an integer strictly bigger than 1. It is well-known that any number can be
representedwithout a sign in base− b thanks to digits of the alphabet {0, 1, . . . , b − 1}.
In 2009, Ito and Sadahiro in [6] generalized this approach for all negative base (integer
or not). They defined a (−β)-transformation T−β , the map from the interval Iβ =
[− β

β+1 ,
1
β
) into itself such that

T−β(x) = −βx −
⌊

−βx + β

β + 1

⌋

.

The expansion in base−β of a real x (denoted by d(x,−β)) is given by the following
algorithm:

– if x belongs to Iβ , d(x,−β) = .x1x2 . . . , where

xi =
⌊

−βT i−1
−β (x) + β

β + 1

⌋

;

– if x /∈ Iβ , one finds the smallest integer n for which one has x
(−β)n

∈ Iβ . In this
case, the expansion is d(x,−β) = x−n+1 · · · x0.x1x2 · · · , where

x−n+i =
⌊

−βT i−1
−β

(
x

(−β)n

)

+ β

β + 1

⌋

, i ≥ 1.
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Zeta function and negative beta-shifts 719

In both cases, x = ∑
i≥−n+1

∑ xi
(−β)i

. If there is nomixup,weoften denoted(x,−β)

by (xi )i≥−n+1.

1.1 Alternating lexicographic order

Definition 1 Let A = {0, 1, . . . , k} be an alphabet. A word on A is a concatenation
of elements of A. Let x = x1x2 . . . xn be a word on A, we call sub-word (or factor)
of x all word which appears in x . A∗ denotes the set of words on A.

Let A = {0, 1, . . . , d1}. We endow A∗ with the order ≺ defined as follows: for a pair
of words Xn = x1x2 . . . xn and Yn = y1y2 . . . yn , n ∈ N

∗

Xn ≺ Yn ⇔ ∃k, x1 . . . xk−1 = y1 . . . yk−1 and (−1)k(xk − yk) < 0.

We say Xn is less than Yn with respect to ≺. Comparison is also possible for words of
distinct lengths (see [9]).

The order “≺” is called alternating lexicographic order. With this order, we have
the following property: let u, v and w be three words on A,

u ≺ v ⇒

⎧
⎪⎨

⎪⎩

wu ≺ wv if |w| is even
wv ≺ wu if |w| is odd ,

uw ≺ vw in all cases.

(1)

1.2 The (−ˇ)-shift

The (−β)- shift is the closure of the set of expansions in base −β. The sequence
d(− β

β+1 ,−β) plays an important role in the characterization of this set. In the fol-
lowing,

d(lβ,−β) = ·d1d2 · · ·
with lβ = − β

β+1 , rβ = 1
β+1 , d0 = 0 and

(d∗
i )i≥1 =

{
(d1, . . . , d2ni−2, d2n−1 − 1, 0) if (di )i≥1 = (d1, . . . , d2n−1)

(di )i≥1 otherwise
(2)

where t = t t t · · · is the purely periodic sequence with period |t |.

S−β = {xkxk+1 · · · x0 · x1 · · · |(di )i≥1 � (xi )i≥m � (d∗
i−1)i≥1,∀m ≥ k,∀k}. (3)

2 Coded negative beta-shift

Let us start by giving the definitions of the main terms used throughout this paper.
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720 F. Nguema-Ndong

2.1 Definitions

Definition 2 Let A = {0, 1, . . . , k} be an alphabet. A language L on A is a set of
words on A (or the set of finite sequences on A).

A language L is extendable if for all word x1x2 · · · xn in L , there exist two letters
a and b in A such that ax1x2 · · · xnb belongs to L . It is said transitive if ∀v,w ∈ L ,
there exists u such that vuw ∈ L .

Let A = {0, 1, . . . , k} be a finite alphabet. One endows AN (or AZ) with the
topology product of the discrete topology on A. Let σ be the map from AN (or AZ)
into itself defined by σ((xn)n∈N) = (xn+1)n∈N. The closed σ -invariant subsets ofAN

are called sub-shifts.

Definition 3 Let S be a sub-shift on A. The pair (S, σ ) is called symbolic dynamical
system. (S, σ ) will be denoted by S whenever there is no risk of mixup.

A language LS of a dynamical system S is the set of factors of words of S. The
system is transitive if its language is transitive.

Definition 4 A code Y on A is a language such that, for any equality

x1 · · · xn = y1 · · · yp
with xi , yi ∈ Y , one has n = p and xi = yi .

Let L be a language onA. In the following, L∗ denotes the concatenations of words
of L .

Definition 5 A prefix code is a language C for which no word is the beginning of
another.

∀x, y ∈ C, x = yz ⇒ x = y and z = ε

where ε is the empty word.
If in C, no word ends by another, then the language C is a suffix code.
The symbolic dynamical system S is said coded by the prefix code C if LS is the

set of factors of words contained in C∗.

Definition 6 Let L be a language on A. The radius ρL of the power series∑
n≥1 card(L ∩ An)zn is called radius of convergence of L .
A prefix code C is said recurrent positive if

∑

x∈C
ρ

|x |
C∗ = 1 and

∑

x∈C
|x |ρ|x |

C∗ < ∞.

2.2 Constructing of a code

Let β be a real number bigger than 1 and Sβ the associated β-shift. If (ai )i≥1 denotes
the expansion of 1 in base β, the β-shift, Sβ is coded by the prefix code Yβ defined as
follows:

Yβ = {a1a2 · · · an j; j < an+1,∀n ∈ N} . (4)
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Zeta function and negative beta-shifts 721

Hence, all β-shift is coded. It is one of the differences between β-shifts and (−β)-
shifts. In fact, the (−β)-shifts, given in (3) are not always coded. One of the natural
and important question is whether the (−β)-shift is coded. In this section, we shall
provide some contributions to this question. Furthermore, when it is coded, it is not
easy to find a set of words coding its language. We distinguish two cases: for all i ≥ 1,
0 ≤ d2i < d1 and d2i = d1 for some i .

Throughout in the rest of this paper, Lβ denotes the language of the (−β)-shift.
The following theorem states the conditions on the parameter β to have a coded

(−β)-shift.

Theorem 1 Let β be a real number greater than 1. The associated (−β)-shift S−β is
coded if only if β is greater than or equal to the golden ratio and d(lβ,−β) is not
periodic with odd period.

Lemma 1 Let β > 1 and (di )i≥1 the (−β)-expansion of − β
β+1 . If for all integer

i ≥ 1, d2i < d1, then β is bigger than or equal to the golden ratio.

Proof Let γ0 be the golden ratio. To prove this lemma, it is enough to determine the
(− γ0)-expansion of lγ0 = − γ0

1+γ0
. In fact, if we consider two real numbers β and α

strictly greater than 1 then,

d(lα,−α) ≺ d(lβ,−β) ⇔ β < α.

We obtain the equivalence above thanks to Lemma 3 of [9].

d(lγ0 ,− γ0) = ·10.

We assume that β < γ0 and d(lβ,−β) = (di )i≥1. Then,

10 ≺ d1d2d3 · · · .

That means there exists n such that −(−1)ndn < 0 and d1d2 · · · dn−1 = 10 · · · 0.
Thus, dn = 1 and n is even. So, there exists i0 such that n = 2i0 and d2i0 = 1 = d1.
Thus, if d2i < d1 for all i ≥ 1, β ≥ γ0. ��
Proposition 1 Let β be a real number greater than 1. We denote by S−β the associated
(−β)-shift, (di )i≥1 the (−β)-expansion of lβ = − β

β+1 . If (di )i≥1 is periodic with

odd period or β < 1+√
5

2 then, S−β is not transitive.

Proof • Assume β < 1+√
5

2 . By Lemma 1, there exists i0 such that

d1 · · · d2i0 = 1(0)2(i0−1)1.

In the admissible words, after 1, the length of the longest sequence of zeros is
2(i0 − 1).

1(0)2i0−1 ≺ 1(0)2(i0−1)1.

It follows that for all w ∈ Lβ , 1w(0)2i0−1 /∈ Lβ (1 ∈ Lβ and (0)n ∈ Lβ for all
n ∈ N

∗). Thus, S−β is not transitive for β < γ0.
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722 F. Nguema-Ndong

• Assume that d(lβ,−β) = d1d2 · · · d2n−1. Consider a word x1x2 · · · xk ∈ Lβ such
that

d1d2 · · · d2n−1x1x2 · · · xk ∈ Lβ.

Then,
d1 · · · d2n−1d1 · · · dk � d1 · · · d2n−1x1 · · · xk .

there exists an integer m, 1 ≤ m ≤ k such that xi = di for 1 ≤ i < m and
(−1)2n−1+m(dm − xm) ≤ 0. That is (−1)m(xm − dm) ≤ 0. In other words,

x1x2 · · · xk � d1d2 · · · dk .

In fact, uv ≺ uw implies that v ≺ w if |u| is even and w ≺ v if |u| is odd.
But, x1 · · · xk ∈ Lβ . Thus, d1 · · · dk � x1 · · · xk . Hence, it follows that
x1x2 · · · xk = d1d2 · · · dk . Then, for all X = d1d2 · · · dp−1 j ∈ Lβ , with
(−1)p(dp − j) < 0 (we have d1 · · · d|X | ≺ X ) there does not exist Y ∈ Lβ

such that d1d2 · · · d2n−1Y X ∈ Lβ . This implies that S−β is not transitive.
��

Remark 1 It is well-known that all coded system is transitive (see [4]). That is, a non
transitive system cannot be coded. Thus, the previous proposition allows us to observe
that for all β such that d(− β

β+1 ,−β) is periodic with odd period or β is less than the
golden ratio γ0, S−β is not a coded system.

Any word of the code of the β-shift (given in (4)) accepts at right any word of the
language of the β-shift. We want to construct a code in the signed parameter case
−β with this property. To do that, if d(lβ,−β) = (di )i≥1, we start by storing these
sequences in two groups: at first those for which for all integer i ≥ 1, d2i < d1, and
secondly, the sequences for which there exists an integer i such that d2i = d1.

– If for all i ≥ 1, d2i < d1 then, we observe that all concatenation of words of the
type d1 · · · d2n−1 (n ∈ N

∗) is admissible. Moreover we can add at right of such a
word any sequence starting by d1. Therefore, d1 · · · dn−1 j (with 0 ≤ j < d1 and
(−1)n(dn − j) < 0) can be extended at right by any admissible word.

– Suppose there exists an integer i such that d2i = d1. So, d(lβ,−β) is defined
thanks to sequences of positive integers (ni )i≥1 (increasing) and (pi )i≥1 such
that:

d(lβ,−β) = d1d2 · · · d2n1−1d1 · · · dp1d2n1+p1 · · · d2n2−1d1 · · · dp2d2n2+p2 · · · .

(5)
In d(lβ,−β), d2ni−1+k = dk for all integer k satisfying 1 ≤ k ≤ pi . If pi =
2ni − 1, d(lβ,−β) is periodic with odd period. If (di )i≥1 is not periodic with odd
period, pi satisfies both following conditions: pi < 2ni −1 and (− 1)pi+1(dpi+1−
d2ni+pi ) < 0 since d1 · · · dpi d2ni+pi is an admissible word.
Note that if (5) is satisfied, all concatenation of words d1 · · · d2n−1 is no longer
admissible like in the previous item.
We assume (di )i≥1 non periodic with odd period and we set

Bi = d1 · · · d2ni−1.
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Zeta function and negative beta-shifts 723

Remark 2 The word X = Bk1 · · · Bkt over {0, 1, . . . , d1} is admissible if and only if
pki ≤ 2nki+1 − 1, with 1 ≤ i ≤ t − 1.

The words d1 · · · d2k−1 such that

2ni + pi ≤ 2k − 1 ≤ 2ni+1 − 3 (6)

for some integer i (we suppose that 2n0 + p0 = 0), and

Bk1Bk2 · · · Bkmd1 · · · d2k−1 (7)

can be extended at right by any sequence starting by d1 when pki ≤ 2nki+1 − 1 for
1 ≤ i ≤ m − 1, 2k − 1 satisfying (6) and 2k − 1 > pkm . We set

Δ0
odd = {d1 · · · d2n−1, 2ni + pi ≤ 2n − 1 < 2ni+1 − 1|i ∈ N

∗ or n < n1}, (8)

Δ1
odd =

{
Bk1 · · · Bkm X |pki < 2nki+1 − 1, X ∈ Δ0

odd , |X | > pkm
}

, (9)

Moreover, if we want the word d1 · · · dn−1 j such that for all x ∈ Lβ ,
d1 · · · dn−1 j x ∈ Lβ , it is necessary to require the following conditions on j :

{
(− 1)n(dn − j) < 0, 0 ≤ j < d1
2ni + pi + 1 ≤ n ≤ 2ni+1 − 1, i ∈ N

(10)

with 2n0 + p0 = 0. If n = 2ni + pi for some positive integer i ,

d1 · · · dn−1 j = d1 · · · d2ni−1d1 · · · dpi j;

the admissibility of this word implies that:

d1 · · · d2ni−1d1 · · · dpi d2ni+pi � d1 · · · d2ni−1d1 · · · dpi j

and
d1 · · · dpi dpi+1 ≺ d1 · · · dpi j,

and thus: {
(− 1)2ni+pi (d2ni+pi − j) < 0, 0 ≤ j < d1
(− 1)pi+1(dpi+1 − j) < 0.

(11)

That is
(− 1)pi dpi+1 > (−1)pi j > (−1)pi d2ni+pi . (12)

So, we define the sets Γ0, Γ
′
0, Γ1 and Γ

′
1 as follows:

x ∈ Γ0 ⇔

⎧
⎪⎨

⎪⎩

x = d1 · · · dn j, with n ∈ N

(− 1)n+1(dn+1 − j) < 0, with 0 ≤ j < d1,

2ni + pi ≤ n ≤ 2ni+1 − 2, i ∈ N, n0 = p0 = 0.

(13)
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724 F. Nguema-Ndong

In Γ
′
0, we have words of the type d1 · · · d2ni+pi−1 j with j satisfying (12).

x ∈ Γ
′
0 ⇔

{
x = d1 · · · d2ni+pi−1 j, with i ∈ N

∗,
(−1)pi dpi+1 > (−1)pi j > (−1)pi d2ni+pi ;

(14)

x ∈ Γ1 ⇔

⎧
⎪⎨

⎪⎩

x = Bk1 · · · Bkm y with y ∈ Γ0, |y| ≥ pkm + 2;
k1, · · · , km ∈ N

∗

pki < 2nki+1 − 1, 1 ≤ i ≤ m − 1.

(15)

We denote by Γ
′
1 the set of admissible words of the form

Bk1 · · · Bkm−1Bkmd1 · · · dpkm j,

with j satisfying (12) and for 1 ≤ i ≤ m−1, pki < 2nki+1−1. In fact, Bkmd1 · · · dpkm j

is just a word of Γ
′
0 having a length greater than pkm−1 . So,

x ∈ Γ
′
1 ⇔

⎧
⎪⎨

⎪⎩

x = Bk1 · · · Bkm−1 y

y ∈ Γ
′
0 with |y| ≥ pkm−1 + 1,

pki < 2nki+1 − 1 with 1 ≤ i ≤ m − 2.

(16)

If (di )i≥1 is periodic with odd period, we use the sequence (d∗
i )i≥1 in the definition

of Δ0
odd , Δ

1
odd , Γ0, Γ

′
0, Γ1 and Γ

′
1 instead of (di )i≥1.

We set

Δodd =
{

Δ0
odd ∪ Δ1

odd if (5) is satisfied

{d1 · · · d2k+1|k ∈ N} if d2i < d1,∀i ∈ N
∗ , (17)

and

Γ =
{

Γ0 ∪ Γ
′
0 ∪ Γ1 ∪ Γ

′
1 if (5) holds

{d1 · · · dn−1 j |(−1)n(dn − j) < 0, 0 ≤ j < d1, n ∈ N
∗} otherwise.

(18)
In (18), if n = 1, d1 · · · dn−1 = ε (the empty word) and thus, d1 · · · dn−1 j = j .

Example 1 If d1d2 · · · = 3021, we have

Δodd = {3, 302, 30211, 3021111, · · · }
Γ = {0, 1, 2, 31, 32, 300, 301, 3022, 30210, 302112, · · · }.

Example 2 Let β be the algebraic integer satisfying β4 + 2β3 + β2 − β − 1 = 0;

d(lβ,−β) = 20121.

The sequence (ni )i≥1 is finite: 2n1−1 = 3, p1 = 1, and thus we have d1 · · · d2n1−1 =
201, d1 · · · dp1 = 2, and d2n1+p1 = 1.
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Zeta function and negative beta-shifts 725

Now, we can give a language of admissible words with properties similar to those of
the code of the β-shift.

At right of a word ofΔodd , we can add any admissible word starting by d1.Thus the
free monoid Δ∗

odd generated by Δodd is a subset of Lβ . Moreover all concatenation
of a word of Δ∗

odd and a word of Γ starting by d1 is admissible. Let C be the language
defined by:

C = {xy|x ∈ Δ∗
odd , y ∈ Γ , |y| ≥ 2} ∪ Γ . (19)

By definition of Γ , it is obvious to see that at right of each element of C, we can add
any admissible word.

If β is less than or equal to the golden ratio γ0, C = {0}. However if β > γ0, by
construction, C is a prefix code on A = {0, 1, · · · , d1}.

Let Δ0
evn and Δ1

evn be the sets defined as follows:

Δ0
evn = {d1 · · · d2n|n ∈ N}, (20)

Δ1
evn = {Bk1 · · · Bkm X |pki < 2nki+1 − 1, X ∈ Δ0

evn}, (21)

When n = 0, d1 · · · d2n is the empty word ε. We set

Δevn =
{

Δ0
evn ∪ Δ1

evn if (5) is satisfied

{d1 · · · d2n|n ∈ N} if d2i < d1,∀i ∈ N
∗ . (22)

Lemma 2 For all (k1, · · · , kt ) ∈ N
∗t , 1 ≤ n ≤ pkt , pki < 2nki+1 − 1 with 1 ≤ i ≤

t − 1,
Bk1 · · · Bkt d1 · · · dn ∈ Δevn .

Proof It is enough to see that for 1 ≤ n ≤ pi , for all i ∈ N
∗,

d1 · · · d2ni−1+n = d1 · · · d2ni−1d1 · · · dn .

If n is odd, 2ni − 1 + n is even and then, d1 · · · d2ni−1+n ∈ Δ0
evn ⊂ Δevn .

If n is even, d1 · · · d2ni−1+n can be seen as a concatenation of d1 · · · d2ni−1 and
d1 · · · dn . So,

d1 · · · d2ni−1+n = d1 · · · d2ni−1d1 · · · dn ∈ Δ1
evn ⊂ Δevn .

��
From Lemma 2, we can see Δevn as the set of admissible concatenations of words
of the type Bi eventually extended at right by d1 · · · dn with n even. So, if x is an
admissible word:

– x begins by a word of C, or
– x is an admissible concatenation of words of the type d1 · · · d2k+1 eventually
extended at right by d1 · · · d2n .
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726 F. Nguema-Ndong

If we set

D = {
xy|x ∈ Δ∗

odd ∪ {ε}, y ∈ Δevn
}

= {xy|x ∈ Δodd , y ∈ D} ∪ Δevn, (23)

then, the language Lβ is given by:

Lβ = {
uv|u ∈ C, v ∈ Lβ

} ∪ D. (24)

Remark 3 From Theorem 3 of [9], if β > γ0 (that is (di )i≥1 ≺ 10), all sequence
between d1(d1 − 1)0 and (d1 − 1)0 cannot be an expansion of − β

β+1 for some β > 1

except d1. Then, there exists y ∈ Γ1 such that |y| ≥ 2. Indeed,

[
(di )i≥1 = d(lβ,−β) and β > γ0

] ⇒ (di )i≥1 ≺ d1(d1 − 1)0.

So, we can find n ∈ N such that d1(d1 − 1)0
n
or d1(d1 − 1)0

n
(d1 − 1) belongs to Γ1.

Theorem 2 Let β > γ0 and d(− β
β+1 ,−β) = (di )i≥1. We assume that (di )i≥1 is not

periodic with odd period. Then for all n, d1 · · · dn ∈ LC∗ .

Lemma 3 Let β > 1. We assume that (di )i≥1 = d(lβ,−β) is not periodic with
odd period and it satisfies (5). If there exists an integer i0 such that for all t ≥ i0,
d2nt · · · d2nt+1−1 � d2ni0 · · · d2ni0+1−1, then

d1 · · · d2ni0−1d2ni0 · · · d2ni0+1−1 � (di )i≥1 ≺ d2ni0 · · · d2ni0+1−1. (25)

Proof We set u = d1 · · · d2ni0−1 and v = d2ni0 · · · d2ni0+1−1. Since (di )i≥1 is not
periodic with odd period, we have u ≺ v. Since (di )i≥1 starts by u, it becomes
obvious that (di )i≥1 ≺ v.

If (di )≥1 �= uv, (di )i≥2ni0
�= v. There exists a non negative integer m such that

(di )i≥2ni0
=
{

vmd2nt · · · d2nt+1−1d2nt+1 · · · d2nt+2−1 · · ·
d2nt · · · d2nt+1−1 ≺ v.

(26)

Since the length of v is even, it follows that (di )i≥2ni0
≺ v. We obtain the result by

adding at left of both words u = d1 · · · d2ni0−1 which is of odd length 2ni0 − 1 and
using the property of the alternating order given in (1). ��
Proof of Theorem 2 From Remark 3, if β > γ0, Γ1 contains at least one word y such
that |y| ≥ 2.

If d2i < d1 for all i ≥ 1, d1 · · · d2n−1y ∈ C for all n ∈ N
∗ and y ∈ Γ with |y| ≥ 2.

Thus, for all n ∈ N
∗, d1 · · · dn is the beginning of a word of C.

We assume (5) satisfied and (di )i≥1 is not periodic with odd period. Suppose
d1 · · · dn /∈ LC∗ .
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Let k0 be the smallest integer such that d1 · · · dk0 /∈ LC∗ and i > 0 such that
2ni − 1 ≤ k0 < 2ni+1 − 1. Note that for all n ≥ k0, d1 · · · dn /∈ LC∗ . Then, for all
t ≥ i , d1 · · · dpt d2nt+pt and d1 · · · dpt+1 are consecutive (with respect to the alternating
order). It follows that

d2nt+pt = dpt+1 − (−1)pt , (27)

otherwise, d1 · · · d2nt+pt−1(dpt+1 − (−1)pt ) ∈ C. Also, there does not exist an integer
k such that 2nt + pt ≤ 2k −1 < 2nt+1 −1, otherwise d1 · · · d2k−1y ∈ C for all y ∈ C
with |y| ≥ 2. Therefore

2nt+1 − 1 =
{
2nt + pt if pt is odd

2nt + pt + 1 if pt is even.

If pt is even, d2nt+pt+1 = 0, otherwise d1 · · · d2nt−1d1 · · · dpt d2nt+pt 0 ∈ Γ1 ⊂ C. So

d1 · · · d2nt+1−1 =
{
d1 · · · d2nt−1d1 · · · dpt (dpt+1 + 1) if pt is odd

d1 · · · d2nt−1d1 · · · dpt (dpt+1 − 1)0 if pt is even .
(28)

Observe that if d1 · · · dpt+1 is the beginning of a word of C, automatically
d1 · · · d2nt−1d1 · · · dpt+1 is the beginning of a word of C. Thus, d1 · · · d2nt−1 /∈ LC∗
implies that d1 · · · dpt+1 /∈ LC∗ . Since (di )i≥1 is not periodic with odd period,
pi < 2ni − 1. But, k0 is supposed to be greater than 2ni − 1. Thus we have pi < k0,
and then for any integer t ≥ i , pi < k0 ≤ pt + 1. That is pi ≤ pt . In particular
pi < 2ni − 1 ≤ k0 ≤ pi + 1 (and then, pi + 1 = 2ni − 1).

If pt = pi , (28) requires d2ni · · · d2ni+1−1 = d2nt · · · d2nt+1−1. If pt > pi , we have

d2nt · · · d2nt+1−1 ≺ d2ni · · · d2ni+1−1.

Then,
d1 · · · dpi dpi+1dpi+2 = d1 · · · d2ni−2d2ni−1d1.

We set

U0 = d1 · · · d2ni−1

V0 = d2ni · · · d2ni+1−1 = d1 · · · dpi d2ni+pi · · · d2ni+1−1.

V0 is such that:
V0 = d1 · · · d2ni−2(d2ni−1 − 1)0. (29)

From Lemma 3, U0V0 � (di )i≥1 ≺ V0. From Proposition 9 and Theorem 3 of [9],
the unique sequence between U0V0 and V0 which is the (−β)-expansion of lβ , for
some β > γ0 is U0. This is absurd, since (di )i≥1 = d(lβ,−β) is supposed to be
non-periodic with odd period and (di )i≥1 � �= V0 because (di )i≥1 starts byU0. Then the
assumption n ≥ 2ni − 1, d1 · · · dn is not the beginning of a word of C is inaccurate. ��
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From Proposition 9 of [9], when V0 ≺ 10, the sub-shift of infinite words for which
all sub-words is bigger than U0V0 and the sub-shift of infinite words for which all
sub-words is bigger than V0 have the same entropy. We denote by ψ the map from
{U0, V0} into {U0, V0}∗ defined by ψ(U0) = U0V0 = U1 and ψ(V0) = U0U0 = V1.
The limit of non-periodic infinite words (di )i≥1 such that U0V0 � (di )i≥1 � V0 and
(di )i≥1 ≺ (di )i≥k for all k > 1 (not necessary the (−β)-expansion of lβ for some
β > γ0) is ψ∞(U0) = limn �→∞ ψn(U0).

ψ∞(U0) = U0V0U0U0U0V0U0V0U0V0U0U0U0V0U0U0 · · · . (30)

In fact, if ψ∞(U0) ≺ (di )i≥1 ≺ V0, then there exists n ∈ N
∗ such that (di )i≥1 =

ψn(U0).
If U0 = d1 · · · d2ni−1 = 1, V0 = 00, β ≤ γ0.

ψ∞(1) = 1001110010010011100111001110010010011100100 · · · .

In this case, the (−β)-expansion of lβ is between U0V0 = 100 and ψ∞(1).

ψ∞(1) = lim
β �→1

d(lβ,−β).

Lemma 4 Let β be a real number bigger than the golden ratio γ0 and d(lβ,−β)

non-periodic with odd period. Then, the (−β)-shift S−β is coded by C.

Proof Suppose β > γ0. Then, C is a prefix code. From Theorem 2, for all n ∈ N
∗,

d1 · · · dn ∈ LC∗ . It follows that D ⊂ LC∗ . To conclude, it suffices to observe that
(since the empty word ε belongs to D):

{xy|x ∈ C, y ∈ Lβ} = {xy|x ∈ C∗ and y ∈ D}.

��
From the proof of Theorem 2, if β > γ0 and d(lβ,−β) = d1 · · · d2ni−1, we

have d2ni−1 �= 0 and the word d1 · · · d2ni−1 is intransitive. The (−β)-shift, as
defined in (3), is not coded, but contains a coded sub-shift: the dynamical system
of words for which, in the meaning of alternating order, all sub-word is bigger than
d1 · · · d2ni−2(d2ni−1 − 1)0. Moreover, both systems have the same entropy (see [9]).

If we consider the definition of the (−β)-shift given in the introduction in the case
where β is integer, that is, the expansion of− β

β+1 is periodic with period 1, we obtain

S−β =
{
(xi )i∈Z;β � (xi )i≥n � (0, β − 1),∀n

}
.

But in this special case, the definition given by S. Ito and T. Sadahiro is

S−β =
{
(xi )i∈Z; (β − 1, 0) � (xi )i≥n,∀n

}
. (31)
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In fact, all sequence (xi )i∈Z of S−β satisfies, for all n

lim
y→l+β

d(y,−β) � xnxn+1 · · · � lim
y→r−

β

d(y,−β) (32)

with lβ = − β
β+1 and rβ = 1

β+1 . Using Lemma 6 of [6], limy→l+β
d(y,−β) =

(β − 1, 0) and limy→r−
β
d(y,−β) = (0, β − 1). In this form, S−β is coded. Gener-

ally, the symbolic dynamical system S−β contains a sub-shift coded by a prefix code
and which is the support of the maximal entropymeasure.When d(lβ,−β) is periodic
with odd period 2n−1, we introduce the sub-shift S̃−β (corrected (−β)-shift) defined
by:

Definition 7
S̃−β = {

(xi )i∈Z; d∗
1d

∗
2 · · · � xkxk+1 . . . ,∀k}

with

(d∗
i )i≥1 =

{
(d1, . . . , d2n−2, d2n−1 − 1, 0) if (di )i≥1 = (d1, . . . , d2n−1)

(di )i≥1 otherwise .

UsingLemma6of [6],we see easily that (d∗
1 , d∗

2 , . . .) = limx→l+β
d(x,−β) (corrected

(−β)-expansion of lβ ).

All real has a representation in S̃−β since
∑

i≥1
d∗
i

(−β)i
= lβ (see the proof of

Proposition 8 of [9]). We find more convenient to use S̃−β as (−β)-shift instead of
S−β . In fact, the sequence (d∗

i )i≥1 plays the role of 0.9999999 · · · in base 10. For
instance, 0.9999999 · · · is the representation of 1 in base 10.

1 = 0.9999999999 · · ·

Now, we are ready to yield the proof of Theorem 1.

Proof of Theorem 1 When β = γ0, it is easy to see that the system is coded byΔodd =
{1, 100, 10000, . . .}. But this code is not optimal. Indeed, this language is obtained
owing to two words: 1 and 00. Thus, we code Sγ0 by {1, 00}. To complete the proof
of Theorem 1, it is enough to use Lemma 4 and Proposition 1. ��

FromTheorem1, S̃−β is a coded (byCdefined in (19)) if only ifβ ≥ γ0. Throughout
the rest of this paper, we focus our interest in the study of S̃−β instead of S−β .

2.3 Recurrent positive code

We have seen in the previous subsection that when β > γ0, the symbolic dynamical
system S̃−β is coded by the language C and D is a subset of LC∗ . In fact, S̃−β can be
seen as the support of the maximal entropy measure. If furthermore d2i < d1 for all
integer i > 0, C and Δodd allow us to characterize words of Lβ .
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When (5) is satisfied, it becomes increasingly unclear because of the non admis-
sibility of certain concatenations of Bi (see Remark 2). In particular, for β < γ0,
we know that S̃−β (and then S−β ) is not transitive and C = {0}. This implies that
the support of the maximal entropy measure is included in D. It may asked: what is
this support? With a view to determining this support, we study in detail hereafter
the conditions of admissibility of product of Bi and also, we get another formulation
of the set D. We exhibit different codes for the writing of these concatenations. If a
language Ω is one of these codes, any concatenation in Ω is admissible.

Remark 4 Let X = Bk1 · · · Bkm be an admissible word of a code, XX ∈ Lβ . From
Remark 2, pki ≤ 2nki+1 − 1 with 1 ≤ i ≤ m − 1, and pkm ≤ 2nk1 − 1. If 2ni − 1 <

ptm ≤ 2ni+1 for some i , X can be extended at right by any word starting by Bi+1.

We set
J (0) = {t, pt ≤ 2n1 − 1}, (33)

and for all i ≥ 1,
J (i) = {t, 2ni − 1 ≤ pt < 2ni+1 − 1}. (34)

Let Δ(i) be the sets such that:

x ∈ Δ(i) ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = Bt1 · · · Btm ,

ptk ≤ 2ntk+1 − 1, ptm < 2nt1 − 1

tm ∈ J (i),

tk ∈ J (l) for k �= m and l ≥ i + 1.

(35)

Let us explain a little bit the definition of the set Δ(i). Consider an element x =
Bt1 · · · Btm of Δ(i).

– The condition tk ∈ J (l) with l ≥ i + 1 involves that tk /∈ J (i) and then x cannot
be a concatenation of words of Δ(i). That is Δ(i) is a (prefix or suffix) code.

– ptk ≤ 2ntk+1 − 1 allows to have x admissible, but when ptm < 2nt1 − 1, the word
generates a periodic expansion.

– For the condition l ≥ i + 1, if we suppose t1 ∈ J (l) with l < i , the word
Bt2 · · · Btm Bt1 ∈ Δ(l) and it is a result of a permutation of x . In fact, if t1 ∈ J (l)
with l < i , x is a word of the language of the free monoid generated by Δ(l). Thus
l ≥ i + 1 ensures the fact that two words x ∈ Δ(i) and y ∈ Δ(i) cannot generate
the same periodic orbit.

From Remark 2, (Δ(i))∗ ⊂ Lβ .

Lemma 5 Let x ∈ Δ(i) and y ∈ Δ( j), with i ≤ j . Then, xy ∈ Lβ .

Proof Let x = Bt1 · · · Bts ∈ Δ(i) and y = Bts+1 · · · Bs+m ∈ Δ( j). From (35), 2ni−1 <

pts < 2ni+1 − 1. Since nts+1 ≥ nn j+1 , we have

i ≤ j ⇒ 2nts+1 − 1 ≥ 2n j+1 − 1 ≥ 2ni+1 − 1 > pts

and we find hence that xy ∈ Lβ . ��
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Now, we know the different sub-languages necessary to characterize words of Lβ :
C, Δodd , Δ(i) for all i ∈ N

∗ if the corrected (−β)-expansion of lβ satisfies (5); or C
and Δodd if (5) does not hold.

Let β be a real number bigger than 1. In the previous paragraph, we constructed a
prefix code of the (−β)-shift. But, if a code is recurrent positive, it is more interesting
above all if the system is intrinsically ergodic with entropy logβ. Start by giving the
following definition:

Definition 8 Let X be a symbolic dynamical system and t = t1 · · · tn a word of LX .
We denotes by [t], the set of infinite words (xi )i≥1 starting by t . That is:

x1x2 · · · xn = t1t2 · · · tn .

Consider a symbolic dynamical system X . In fact, the existence of a recurrent
positive prefix code C implies that there exists a probability measure ν on the space
W (C), closure CZ defined as:

ν([x]) = 1

β |x | , for all x ∈ C,

with logβ the entropy of X endowed with the shift. We have W (C) = ⋃
x∈C[x]; for

(x, y) ∈ C2, x �= y, [x] ∩ [y] = ∅. Thus,

ν(W (C)) =
∑

x∈C
ν([x])

=
∑

x∈C

1

β |x |

= 1.

The entropy hν of the probability ν is:

hν = −
∑

x∈C
ν([x]) log ν([x])

=
(
∑

x∈C

|x |
β |x |

)

logβ.

This expression exists since
∑

x∈C
|x |
β |x | < +∞ when the code is recurrent positive.

Thus, the maximal entropy measure μ is given by:

μ =
(
∑

x∈C

|x |
β |x |

)−1

ν.

See for example [2,4] for more explanations.
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Using the formal power series, the following result establishes a link between Lβ ,
Δodd and Δ(i), i ≥ 1.

Theorem 3 Let β be a real number (β > 1), Lβ the language of the corrected (−β)-
shift S̃−β , C, Δodd and Δ(i) be the sets defined in (19), (17), and (35) respectively. In
the meaning of the formal power series, we have the following relations:

∑

n≥0

zn = (1+ z)

(

1 −
∑

x∈C
z|x |

)⎛

⎝1 −
∑

x∈Δodd

z|x |
⎞

⎠
∏

i≥1

⎛

⎝1 −
∑

x∈Δ(i)

z|x |
⎞

⎠
∑

x∈L S̃− β

z|x |

(36)
if (5) occurs, or

∑

n≥0

zn = (1 + z)

(

1 −
∑

x∈C
z|x |

)⎛

⎝1 −
∑

x∈Δodd

z|x |
⎞

⎠
∑

x∈Lβ

z|x |

if d∗
2i < d∗

1 , ∀i ∈ N
∗ and where (d∗

i )i≥1 is the corrected (−β)-expansion of lβ =
− β

β+1 .

Proof In the following, Hn , cn , an and δn denote respectively the number of words of
length n in Lβ , C, Δodd and D (given in (23)).

We have seen that aword ofC can be extended at right by anyword of Lβ . Therefore,
at right of a word of Δodd can be added any word of D. So, from (24)

∑

n≥0

Hnz
n =

⎛

⎝
∑

n≥1

cnz
n

⎞

⎠
∑

n≥0

Hnz
n +

∑

n≥0

δnz
n . (37)

Let us explain a little bit the equation above. The coefficients of the formal power
series

(∑
n≥1 cnz

n
)∑

n≥0 Hnzn count admissible finite sequence starting by a word
of C.

We denote by
∑

n≥1 bi,nz
n the formal power series for which the coefficients count

the words of Δevn which start by a word of Δ( j) with j ≥ i . So, the coefficients of∑
n≥1 b0,nz

n count all words of Δevn .

∑

n≥0

δnz
n =

⎛

⎝
∑

n≥1

anz
n

⎞

⎠

⎛

⎝
∑

n≥0

δnz
n

⎞

⎠ +
∑

n≥1

b0,nz
n + 1. (38)

This equation means that in D, we have admissible strings starting by words of Δodd

and those belonging to Δevn . We set

∑

x∈Δ(i)

z|x | = Pi .
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From Lemmas 2, 5 and Remark 4

∑

n≥1

b0,nz
n =

⎧
⎪⎨

⎪⎩

∑

n≥1
z2n + ∑

n≥1
b1,nzn if (5) occurs ;

∑

n≥1
z2n if d∗

2i < d∗
1 ,∀i (39)

and for all i ≥ 1,

∑

n≥1

bi,nz
n = Pi

⎛

⎝
∑

n≥0

z2n +
∑

n≥1

bi,nz
n

⎞

⎠ +
∑

n≥1

bi+1,nz
n . (40)

From (38), (39) and (40), we have

∑

n≥0

z2n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

1 − ∑

n≥1
anzn

)
∏

i≥1
(1 − Pi )

∑

n≥0
δnzn if (5) occurs

(

1 − ∑

n≥1
anzn

)
∑

n≥0
δnzn if d∗

2i < d∗
1 ,∀i ∈ N

∗
(41)

Thus, to obtain (36), it is enough to multiply (41) by 1 + z and use (37). ��
The following corollaries are the consequences of Theorem 3 and Lemma 1 of [9].

Corollary 1 In the disk b(0, 1
β
) of center 0 and radius 1

β
, we have:

1 −
∑

n≥1

(d∗
n−1 − d∗

n )(−z)n

= (1 + z)

(

1 −
∑

x∈C
z|x |

)⎛

⎝1 −
∑

x∈Δodd

z|x |
⎞

⎠
∏

i≥1

⎛

⎝1 −
∑

x∈Δ(i)

z|x |
⎞

⎠ (42)

with
∑

x∈Δ(i) z|x | = 0 when d∗
2i < d∗

1 for all i ≥ 1.

Proof Let Hn be the number of words of length n in Lβ . From [9], we know that the
formula for the factor complexity of the corrected (−β)-shift (or the language Lβ ) is
given by:

Hn =
n∑

k=1

(−1)k(d∗
k−1 − d∗

k )Hn−k + 1

with (di )i≥1 = d(lβ,−β), d0 = 0 and H0 = 1. By simple calculus in the sense of
power formal series,

∑

x∈L S̃− β

z|x | =
∑

n≥0 z
n

1 − ∑
n≥1(−1)n(d∗

n−1 − d∗
n )zn

.

123



734 F. Nguema-Ndong

We conclude by using Theorem 3. ��
Corollary 2 The expansion d(lβ,−β) is supposed to be periodic with odd period
2p − 1. Then, in the sense of formal power series,

∑

x∈Lβ

z|x | = (1 − z2p)
∑

n≥0 z
n

1 − ∑
n≥1(−1)n(dn−1 − dn)zn

. (43)

Proof Any word (xi )i≥1 in the (−β)-shift S−β satisfies

(di )i≥1 � (xi+n)i≥1 � (d∗
i−1)i≥1,∀n ∈ N.

According to Lemma 1 of [9], the formula for the factor complexity of the (−β)-shift
is:

H̃n =
n∑

k=1

(−1)k(d∗
k−1 − dk)H̃n−k + 1 (44)

where H̃n denotes the number of words of length n in the language of the (−β)-shift.
We obtain (43) by using the definition of (d∗

i )i≥1 given in (2). ��
From (42) and (43),

∑
n≥0 Hnzn and

∑
n≥0 H̃nzn have at pole at 1

β
and it is the

smallest pole in modulus. In fact, 1
β
si the smallest zero in modulus of

1 −
∑

k≥1

(−1)k(d∗
k−1 − dk)z

k

However, if β is less than the golden ratio, both inclusions can not hold. Indeed,
C = {0} and then LC∗ = {0n, n ∈ N

∗}. The support of the maximal entropy mea-
sure is coded by Δodd (in this case

∑
x∈Δodd

1
β |x | = 1) or by Δ(i) for some i (and

∑
x∈Δ(i)

1
β |x | = 1).

Recall that the morphism ψ on {0, 1} is given by ψ(0) = 1, ψ(1) = 100 and
define the sequences (un)n≥0 and (vn)n≥0 by u0 = 1, v0 = 00 and for n ≥ 1,
un = un−1vn−1 = ψn(1), vn = un−1un−1. From Lemma 2 of [9], |un| is odd and |vn|
is even. In fact,

|un| = |vn| + (−1)n .

Moreover, note that there is no word between uk = uk−1uk−2uk−2 and vk =
uk−1uk−1. Indeed, from the definition of uk , we observe easily that

uk =
{
uk−1uk−2uk−3 · · · u1u01 if k is even,

uk−1uk−2uk−3 · · · u1u000 if k is odd

and

vk =
{
uk−1uk−2uk−3 · · · u1u000 if n is even,

uk−1uk−2uk−3 · · · u1u01 if n is odd .
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Let γn be the real number such that

d(lγn ,− γn) = unvn .

γn is the largest number satisfying:

1 = 1

γ
|un |
n

+ 1

γ
|vn |
n

,

that is, γn is the largest root of Xln − X − 1, where ln = max(|un|, |vn|). The
sequence (γn)n≥0 decreases until 1 (see Proposition 5 and 6 of [9]) and we have
limn→+∞ d(lγn ,− γn) = ψ∞(1).

The following proposition gives us a writing of d(lβ,−β) for β less than the golden
ratio.

Proposition 2 Let β be a real number such that 1 < β < γ0. Then, there exists a
sequence of integers (ki )i≥1 and n ∈ N such that

d(lβ,−β) = unvn
k1+1unvn

k2unvn
k3 · · · , (45)

or
d(lβ,−β) = unvn(unun)

k1vn(un)
k2vn(un)

k3vn · · · . (46)

Proof Let β be a real number and suppose 1 < β < γ0. Since (γn)n≥0 decreases until
1, there exists an integer n such that γn+1 ≤ β < γn . So,

d(lγn ,− γn) ≺ d(lβ,−β) � d(lγn+1 ,− γn+1).

This means
unvn ≺ d(lβ,−β) � unvnun .

It is easy to see that uk ≺ vk and there is noword between uk and vk . In an infiniteword,
uk is followed by vk or by uk . We obtain (45) by using the fact that unvn ≺ d(lβ,−β).
To obtain (46), we interpret the fact that d(lβ,−β) � unvnun . ��

Ito and Sadahiro determined the unique T−β -invariant measure with maximal
entropy on Iβ = [− β

β+1 ,
1

β+1 ). Note that the structure of the one-side (right)
(−β)-shift endowed with the shift σ is transported to Iβ endowed with the (−β)-
transformation. For β taken in the open interval delimited by 1 and the golden ratio,
we know that the system is not coded, and then the support of the measure of maxi-
mal entropy is a coded subsystem strictly included in the (−β)-shift. The images by
T : (xi )i≥1 ∈ Sr−β �→ ∑

n≥1
xi

(−β)n
∈ Iβ of subsystems non included in the support

of the intrinsic ergodic measure correspond to gaps on Iβ . This phenomenon has been
closely studied by L. Liao and W. Steiner in [8].

The gaps on Iβ are the intervals Ak,i defined as followed:

Ak,i =
{

[s|uk |+i , s|uk |+|uk−1|+i ) if i is even

[s|uk |+|uk−1|+i , s|uk |+i ) if i is odd
(47)
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with k < n, i < |uk−1| and st = T t−β(lβ). Note that

un = ukuk−1uk−1ukuk · · · un−2un−2.

From (45),

d(s|uk |+i ,−β) = σ i (uk−1)uk−1ukuk · · · un−2un−2vn
k1unvn

k2unvn
k3 · · ·

and

d(s|uk |+|uk−1|+i ,−β) = σ i (uk−1)ukuk · · · un−2un−2vn
k1unvn

k2unvn
k3 · · · .

Thus, the (−β)-expansions of real numbers which belong to gaps start by σ i (uk−1)

uk−1uk−1 or σ i (uk−1)ukuk .
If β belongs to [γn+1, γn[, d(lβ,−β) satisfies (5). As given in (29)

vk =
{
d1 · · · d|uk |−1(d|uk | − 1)0 if d|uk | = 1

d1 · · · d|uk |−2(d|uk |−1 + 1) if d|uk | = 0.

Thus, for 1 ≤ i ≤ n, d1 · · · d2ni−1 = ui and d1 · · · dpi dpi+2ni = vi if i is odd or
d1 · · · dpi dpi+2ni 0 = vi if i is even.

In fact, Δodd or one of Δ(i) codes the support of the maximal entropy measure on
S−β endowed with the shift σ . That is, the support is the closure of ΔZ

odd or Δ(i0)Z

for some i0.

Remark 5 We assume that (5) is satisfied. If there exists an integer i such that

d1 · · · dn−1(dn + (−1)n) /∈ Lβ,∀n, n ≥ 2ni − 1 (48)

then, (di )i≥1 is periodic with odd period. Indeed, at first, note that

d1 · · · d2ni−1d1d2d3d4 · · ·

is the upper (with respect to the alternating order) sequence starting by the string
d1 · · · d2ni−1. Thus, for any integer n greater than 2ni , d1 · · · dn−1(dn + (−1)n) /∈ Lβ

means that there is no word between d1 · · · d2ni−1d1d2d3 · · · and (di )i≥1. That is, for
any n ≥ 1, dn = d2ni−1+n .

Remark 6 Let β be the real number such that γ1 < β ≤ γ0, and (di )i≥1 is supposed
to be non periodic with odd period. If (di )i≥1 satisfied (5), d2 · · · d2n1−1 is the longest
sequence of zero. It exists in Δodd a word starting by d1 · · · d2n1−1. Indeed, from
Proposition 2,

d(lβ,−β) = 100(11)k100(1)k200(1)k300 · · · .

• If k1 �= 0, d1 · · · d2n1−1 = 100 and 100(11)k1 ∈ Δodd .
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• If k1 = 0, we can write (di )i≥1 on the form

(di )i≥1 = 1(00)t11(00)t21(00)t31 · · · , (49)

with t1 ≥ 2 (we use the fact that d(lγ0 ,− γ0) ≺ (di )i≥1). One has:

d1 · · · d2n1−1 = 1(00)t1 .

When t3 �= 0, 1(00)t11(00)t21 belongs to Δodd . If t3 = 0, we have

1(00)t11(00)t2100 ∈ Δodd .

In both cases, there exists in Δodd a word starting by d1 · · · d2n1−1.

Lemma 6 Let β be a real number such that γ1 < β ≤ γ0. ThenΔodd codes the support
of the maximal entropy measure and Δ(i)∗ ⊂ LΔ∗

odd
.

Proof From Remark 5, if (di )i≥1 is not periodic with odd period, for any integer k,
we can find n ≥ 1 such that d1 · · · dn−1(dn + (−1)n) ∈ Lβ .

If n is even, dn + 1 = 1. That is, dn = 0. From Remark 6, there is a word y ∈ Δodd

starting by d1 · · · d2n1−1. The sequence d1 · · · dn−1y ∈ LΔ∗
odd

. If n is odd, dn − 1 = 0.
That is dn = 1. Note that, (di )i≥1 is a concatenation of 1 and 00. The word d1 · · · dn
and by a string of the type 1(00)t1 and (00)t is not the longest sequence of zero.

d1 · · · dn = d1 · · · dn−2t−21(00)
t1. (50)

It follows that d1 · · · dn−2t−2y ∈ LΔ∗
odd

since this word end by a word of
Δodd . Thus, for any admissible concatenation Bk1 · · · Bkm , for all n, n ≥ pkm ,
Bk1 · · · Bkmd1 · · · dn ∈ LΔ∗

odd
. That is Bk1 · · · Bkm ∈ LΔ∗

odd
. ��

Lemma 7 Let β be a real number such that for all n in N
∗, γn+1 ≤ β < γn, the

support of the maximal entropy measure is coded by Δ(n).

Proof Note that Δodd = {1}, Δ(i) = {ui } (with i < n). Therefore, d(lβ,−β) ∈
{un, vn}∗ and satisfies (46). That is

d(lβ,−β) = unnvn(unun)
k1vn(un)

k2vn(un)
k3vn · · · .

We obtain the same result as in Lemma 6 by changing the alphabet {1, 00} to {un, vn}.
So the language which codes the support of the maximal entropy of the σ -invariant
measure contains un . Thus, the right choice is Δ(n). For i > n, Δ(i)∗ ⊂ LΔ(n)∗ . But
this inclusion can not hold for i < n. ��

Each set C, Δodd , Δ(i), i < n defines a class of words forbidden in the language
of the support of the maximal entropy measure. These words are: ukukukuk and
ukuk+1uk+2 with −1 ≤ k < n and u−1 = 0. In the one side right (−β)-shift, we add
σ i (uk)ukukuk and σ i (uk)uk+1uk+2 (with i < |uk |). It easy to see that one of these
sequences appears in the expansion of a real taken in a gap.
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3 Lap counting function

The lap counting function of a continuous map T whose consists of a finite number
of monotone segments (called laps) is the formal power series

LT (z) =
∑

n≥0

Ln(T )zn (51)

in which L0(T ) = 1 and for all n ≥ 1, Ln(T ) counts the number of laps of the iterate
T n . This function was been introduced byMilnor and Thurston. It is another approach
to computing the zeta function.

Let β > 1. In this section, we give lap-counting function of the (−β)- transfor-
mation and its classical properties. In the following, Sr−β denotes the one-side right
(−β)-shift ((−β)-representations of real belonging to Iβ ).

Theorem 4 Let consider a real β > 1 and T−β , (−β)-transformation. We set
d(lβ,−β) = (di )i≥1. Then, the lap counting function LT− β of T−β is given by:

LT− β (z) = 1

(1 − z)
(
1 − ∑

n≥1(−1)n(d∗
n−1 − d∗

n )zn
) ; (52)

where (d∗
i )i≥1 is defined in (2).

Remark 7 For a fixed real non integer β > 1, the graph of T−β consists of �β� + 1
segments. Indeed, we can see Iβ as union of �β� + 1 intervals Ik defined by I0 =
(− 1

β
+ rβ, rβ), Ik = (− k+1

β
+ rβ,− k

β
+ rβ ] with 0 < k < �β� − 1, and I�β� =

[lβ,− �β�
β

+ rβ ].
Lemma 8 The (−β)-transformation T−β is affine on each interval Ik . Moreover, x ∈
Ik if only if d(x,−β) starts by k.

Proof Let x ∈ Iβ .

x ∈ Ik ⇐⇒ − k + 1

β
+ rβ < x ≤ − k

β
+ rβ.

⇐⇒ k ≤ −βx − lβ < k + 1

⇐⇒ �−βx − lβ� = k.

We set (xi )i≥1 = d(x,−β). We know that xi = �−βT i−1
−β (x) − lβ� (see [6]). So,

we have proved that for all x ∈ Ik , x1 = �−βx − lβ� = k and T−β(x) = −βx − k,
0 ≤ k ≤ �β�. ��

Note that, if β ∈ N, I�β� = {lβ}. In this case, the graph of the (−β)- transformation
is given by β segments.

From the previous lemma, T−β has �β� + 1 laps if β /∈ N and β laps otherwise.

d

(

− k + 1

β
+ rβ,−β

)

= ·(k + 1)d1d2 · · · , (53)
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with 0 ≤ k < d1 and d(lβ,−β) = (di )i≥1. It is easy to see that ·kd1d2 · · · is the
maximum (with respect to the alternating order) in the family of words of Sβ starting
by k.

Throughout the rest of this section, we set Ia1a2···an = {T k−1
−β (x) ∈ Iak , 1 ≤ k ≤ n}.

Remark 8 Let T be the map from S−β to Iβ defined by

T ((xi )i≥1) =
∑

n≥1

xn
(−β)n

.

Themap T is increasing in the sense of the alternating order (see [6]). It is easy to verify
that the words X = x1 · · · xn−1(xn +1)d1d2 · · · and Y = x1 · · · xn−1xn0d1d2 · · · have
same image by T .

Indeed,

T (X) − T (Y ) = 1

(−β)n
(1 + lβ − rβ)

= 0

We have the same result if in Remark 8, we replace (di )i≥1 by (d∗
i )i≥1.

Lemma 9 Let Ia1a2···an = {T k−1
−β (x) ∈ Iak , 1 ≤ k ≤ n}. It is the interval of real num-

bers of Iβ for which the (−β)-expansions begins by the admissible word a1a2 · · · an.

Proof Let x ∈ Ia1a2···an . For 1 ≤ k ≤ n, T k−1
−β (x) ∈ Iak . From the previous corollary,

�−βT k−1
−β (x) − lβ� = ak, (54)

that is d(x,−β) begins by a1a2 · · · an .
Furthermore, consider the set of (−β)-expansions of reals of Ia1···an .

(a) If a1 · · · an ends by a word of the type d1 · · · dn−1 j with (−1)n(dn − j) < 0
and j �= d1, the (−β)-expansions of Ia1···an endpoints are a1a2 · · · and1d2 · · ·
and a1 · · · an−1(an + 1)d1d2 · · · . In fact, a1 · · · an0d∗

1d
∗
2d

∗
3 · · · is one of the end-

points (−β)-representations starting by a1a2 · · · an . But, this word cannot be an
expansion. From Remark 8, both words

a1 · · · an−1(an + 1)d1d2 · · ·

and

a1 · · · an0d∗
1d

∗
2d

∗
3 · · ·

have the same image by T .
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(b) We assume that d2i < d1 for all integer i ≥ 1 and a1 · · · an ends by a sequence
of the type d1 · · · dk , we set a1 · · · an = a1 · · · an−kd1 · · · dk . Thus, the word
a1 · · · an−kd(lβ,−β) is a endpoint (−β)-expansion. The maximum in S−β start-
ing by d1 · · · dk is d1 · · · dkd(lβ,−β) if k is odd and d1 · · · dk0d∗

1d
∗
2d

∗
3 · · · if k is

even. This last word is not a (−β)-expansion. We replace it by

a1 · · · an−kd1 · · · dk−1(dk + 1)d(lβ,−β).

(c) Now, we assume that a1 · · · an ends by a sequence of the type d1 · · · dk , k even
and dk = d1, then, the endpoints have expansions a1 · · · an−kd(lβ,−β) and
a1 · · · an−kd1 · · · dk−1d(lβ,−β).

This last case implies that d(lβ,−β) satisfies (5). In the language of S−β , we
know that d1 · · · d2ni−1 is always followed by d1 · · · dpi . Thus, if 2ni ≤ k ≤
2ni + pi − 1, the endpoints of Ia1···an have expansions a1 · · · an−kd(lβ,−β)

and a1 · · · an−kd1 · · · d2ni−1d(lβ,−β). That is, for all t, r and s in N, such that
2ni ≤ r , s ≤ 2ni + pi − 1,

Ia1···at d1···dr = Ia1···at d1···ds .

Suppose d(lβ,−β) periodic with odd period 2n − 1. There exists i such that d2ni =
d2n = d1 and d1 · · · dpi = 2n − 1 = 2ni − 1. (c) allows us to say that Ia1···akd1···d2n−1

is reduced to the singleton {T (a1 · · · ak) + lβ
(−β)k

}. It is not an interval. In fact, in an
infinite admissible word, d1 · · · d2n−1 is always followed by itself. ��

Remark 9 Let β be a real number strictly bigger than 1 and Lβ the language of the
words (xi )i≥1 such that

(d∗
i )i≥1 � (xi+n)i≥1 ≺ (d∗

i−1)i≥1,∀n ≥ 0 and d∗
0 = 0.

From the previous corollary, one has for all fixed integer n > 0,

Iβ =
⋃

x∈Lβ
|x |=n

Ix . (55)

Rather than counting intervals, one can just count words of the language of S−β . This
approach allows to obtain the laps of T n−β , for all n ∈ N

∗.

Proof of Theorem 4 Let β > 1. We recall that d(lβ,−β) = (di )i≥1. From the formula
for the factor complexity of the corrected (−β)-shift given in Sect. 2 (we can also see
in [3,9]), and from Lemmas 8, 9, and Remark 9, one has

Ln =
n∑

i=1

(−1)i (d∗
i−1 − d∗

i )Ln−i + 1.
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In fact, Ln counts the number of words of length n in the language of S̃−β . Then, by
simple calculus in the open unit disk except in 1

β
,

LT− β (z) =
⎛

⎝
∑

n≥1

(−1)n(d∗
n−1 − d∗

n )zn

⎞

⎠ LT− β (z) +
∑

n≥0

zn .

Hence the result follows. ��
Example 3 The following figures represent the graphs of T− 2.5, T 2− 2.5 and T 3− 2.5

respectively in I2.5 = [− 2.5
3.5 ,

1
3.5 ) (Figs. 1, 2, 3).

We set d(lβ,−β) = (di )i≥1 and we verify easily that d1 = 2, d2 = 1 and d3 = 1.
The laps of T i−β correspond to the number of oblique segments in the different graphs.

Fig. 1 T− β for β = 2.5

Fig. 2 T 2− β for β = 2.5

Fig. 3 T 3− β for β = 2.5
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742 F. Nguema-Ndong

These oblique segments allow to determine the number of words of length i in the
(− 2.5)-shift language.

– For i = 1, we have three laps (oblique segments) and three admissible words of
length 1: 0, 1 and 2 (d1 = 2).

– If i = 2, d1d2 = 21; there are 8 oblique lines and then 8 admissible words of
length 2: 21, 22, 10, 11, 12, 00, 01, 02.

– When i = 3, d1d2d3 = 211; we count twenty laps, then there exist 20 admissible
words of length 3: 211, 210, 222, 221, 102, 101, 100, 112, 111, 110, 122, 121,
002, 001, 000, 012, 011, 010, 022, 021.

4 Zeta function

The notion of dynamical zeta function was been introduced byM. Artin and B. Mazur
in 1965.We consider a diffeomorphism δ on a compact space such that all of its iterates
δn have isolated fixed points. The zeta function associated to δ is given by:

ζδ(z) = exp

⎛

⎝
∑

k≥1

�Fix(δk)

k
zk

⎞

⎠ (56)

where �Fix(δk) counts the number of fixed points of δk , by analogywith the geometric
zeta function.

In 1994, Flatto et al. (see [5]) dealt with the zeta function of the β-transformation.
They consider the application from [0, 1) to [0, 1) defined by:

Tβ : x �→ {βx} for β > 1

where {x} denotes the fractional part of x . The associated zeta function is:

ζβ(z) = exp

⎛

⎝
∑

k≥1

pk
k
zk

⎞

⎠ (57)

where pk counts the number of fixed points of T k
β . In other words, pk is the number

of periodic admissible sequences .x1x2 · · · with period k. We denote by dβ(x) the
expansion of x in base β.

x1x2 · · · = dβ(x), T k
β (x) = x ⇒ dβ(x) = dβ

(
T k

β (x)
)

.

And then, (xk+i )i≥1 = (xi )i≥1 since the expansion is unique for each number and all
sub-words of an admissible word is an expansion.

After the introduction of the (−β)-expansion in 2009 by Ito and Sadahiro in [6], in
the following sentences, we focus our study on the determination of the zeta functions
of the (−β)-transformation and the one of the (−β)-shift endowed with the shift.
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4.1 Zeta function of symbolic dynamical system defined by an exhaustive prefix
code

Let X be a symbolic dynamical system. Suppose X coded by C .

Definition 9 The code C is said exhaustive if all periodic word P can be written
uniquely as:

P = a1a2 · · · asx1,1x1,2 · · · x1,k1x2,1 · · · x2,k2 · · · xh−1,1 · · · xh−1,kh−1b1 · · · br

where

x1 = x1,1 · · · x1,k1 ∈ C

x2 = x2,1 · · · x2,k2 ∈ C

...

xh−1 = xh−1,1 · · · xh−1,kh−1 ∈ C

xh = b1b2 · · · bra1a2 · · · as ∈ C .

P and x1x2 · · · xh have the same orbit.

Theorem 5 Let X be a coded system defined by an exhaustive prefix code C. Then, if
pn counts the number of periodic words of period n in X the associated zeta function
is defined by

ζX (t) = exp

⎛

⎝
∑

n≥1

pn
n
tn

⎞

⎠

= 1

1 − ∑
n≥1 bnt

n
(58)

where bn counts the number of words of length n in C.

Proof Observe that, in the meaning of formal power series,

log
1

1 − ∑
n≥1 bnt

n
= − log

⎛

⎝1 −
∑

n≥1

bnt
n

⎞

⎠

=
∑

n≥1

bnt
n + 1

2

⎛

⎝
∑

n≥1

bnt
n

⎞

⎠

2

+ 1

3

⎛

⎝
∑

n≥1

bnt
n

⎞

⎠

3

+ · · ·

=
∑

k≥1

1

k

⎛

⎝
∑

n≥1

bnt
n

⎞

⎠

k

.
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Let (δn,k)n≥k≥1 be the sequence of positive integers such that δn,k counts the number
of periodic words of length n having the same orbit than a product of k pieces of the
exhaustive prefix code. Thus, pn = ∑n

k=1 δn,k . In the sense of formal power series,
we rewrite

∑
n≥1

pn
n tn as:

∑

n≥1

pn
n
tn =

∑

n≥1

δn,1

n
tn + · · · +

∑

n≥k

δn,k

n
tn + · · · .

Let x1, x2, . . . , xk k pieces of C with |x1x2 · · · xk | = n and p, h two integers such that
x1x2 · · · xk = (x1x2 · · · xp)h where p is minimal, that is x1 · · · xp denotes the smallest
word (in size) with orbit x1x2 · · · xk .

k = hp and |x1x2 · · · xk | =
k∑

i=1

|xi | = h
p∑

i=1

|xi |.

Then,

δn,k =
∑

(i1,i2,···i p )

h
∑p

j=1 i j=n
ph=k

⎛

⎝
p∑

j=1

i j

⎞

⎠ (bi1 · · · bip )h

=
∑

(i1,i2,···i p )

h
∑p

j=1 i j=n
ph=k

n

h
(bi1 · · · bip )h .

Thus,

∑

n≥k

1

n
δn,k t

n =
∑

n≥k

∑

(i1,i2,···i p )

h
∑p

j=1 i j=n
ph=k

1

h
(bi1 · · · bip )htn

= 1

k

∑

n≥k

∑

(i1,i2,···i p )

h
∑p

j=1 i j=n
ph=k

k

h
(bi1 · · · bip )htn

= 1

k

∑

n≥k

∑

(i1,i2,···i p )

h
∑p

j=1 i j=n
ph=k

p(bi1 · · · bip )htn

pminimal, ph = k and h
∑p

j=1 i j = n, the integer p(bi1 · · · bip )h counts the periodic
words resulting to the circular permutations of concatenations of k monotonic piece-
wises of the code. Then, regardless of the commutative property of the multiplication
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in R, and in the sense of formal power series,

∑

n≥k

1

n
δn,k t

n = 1

k

∑

n≥k

∑

k∑

j=1
i j=n

bi1 · · · bik tn,

but

∑

n≥k

∑

k∑

i=1
i j=n

bi1 · · · bik tn =
⎛

⎝
∑

n≥1

bnt
n

⎞

⎠

k

.

That is,

∑

n≥k

1

n
δn,k t

n = 1

k

⎛

⎝
∑

n≥1

bnt
n

⎞

⎠

k

.

Hence,

∑

n≥1

pn
n
tn =

∑

n≥1

bnt
n + 1

2

⎛

⎝
∑

n≥1

bnt
n

⎞

⎠

2

+ 1

3

⎛

⎝
∑

n≥1

bnt
n

⎞

⎠

3

+ · · ·

��
Theorem 5 reveals an important property of coded systems: the density of the set

of periodic points.

Example 4 Let β be a real number, β > 1. Let Xβ be the β-shift and (ai )i≥1 the
expansion of 1 in base β. We assume that β is not a simple β-number and we set
Cβ = {a1 · · · aki, k ∈ N, 0 ≤ i ≤ ak+1 − 1}.

The β-shift Xβ is coded by Cβ which is an exhaustive prefix code. The integer ak
counts the number of pieces of length k in Cβ . Thus, the zeta function associated to
Xβ is given by:

ζXβ (z) = 1

1 − ∑

n≥1
anzn

.

4.2 Zeta function of the negative beta-transformation

We consider a real number β > 1. Recall that the (−β)-transformation T−β denotes
the map from Iβ = [ −β

β+1 ,
1

β+1 ) into itself defined by:

T−β(x) = −βx −
⌊

−βx + β

β + 1

⌋

.

The aim of this section is to determine the zeta function ζ−β of the map T−β . We
know that each number has a (−β)-representation in S̃−β . Moreover, it is easy to see
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that a real x is a fixed point of T k−β if only if the (−β)-representation of x in S̃−β is
periodic with period dividing k.

Theorem 6 Let β be a real number strictly greater than 1, (di )i≥1 the (−β)-expansion
of lβ = − β

β+1 and ζ−β the Zeta function of the (−β)-transformation. Then, in the

ball of radius 1
β
and center 0,

– if (di )i≥1 is not periodic

ζ−β(z) = 1 + z

1 − ∑
n≥1(−1)n(dn−1 − dn)zn

;

– if (di )i≥1 is periodic with period k,

ζ−β(z) = 1 + z

(1 − zk)
(
1 − ∑

n≥1(d
∗
n−1 − d∗

n )(−z)n
) .

If we consider a real β > 1 and (ai )i≥1 the β-expansion of 1, the zeta function of
the β-shift, determined by Flatto et al. [5], is given by

ζβ(z) = 1

1 − ∑
n≥1 anz

n
.

So, we remark some similarities between this zeta function and that of the (−β)-shift
given in the previous theorem. For instance, 1

β
is a pole of these both functions.

Lemma 10 Let β > 1 and d(lβ,−β) = (di )i≥1 periodic with period h.

d(lβ,−β) = ·d1 · · · dh .

Then, dh �= 0.

Proof Suppose dh = 0. Since (dh+i )i≥1 = (di )i≥1

T n−β(lβ) =
∑

n≥1

dn+i

(−β)i
⇒

∑

i≥1

dh+i

(−β)i
= lβ.

Furthermore,
dh−1 =

⌊
−βT h−2

−β (lβ) − lβ
⌋

.

Since T h−2
−β (lβ) = ∑

i≥1
dh−2+i
(−β)i

and dh = 0, it follows that

dh−1 =
⎢
⎢
⎢
⎣dh−1 − 1

β

∑

i≥1

dh+i

(−β)i
− lβ

⎥
⎥
⎥
⎦ .

Thus, dh−1 = dh−1 + 1. This is absurd. Then, dh �= 0. ��
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As consequence, (di−1)i≥1 (with d0 = 0 ) is not periodic. Then, in addition to
periodic words listed in the previous paragraphs, if d(lβ,−β) is periodic with even
period, we should take account of circular permutations of (d1d2 · · · d2p)k . For each
integer k, there are 2p words.

Let Xr−β be the set of (−β)-expansions of real numbers which belongs to Iβ . We
know that the correspondence Xr−β ↔ Iβ is one to one. In fact, each real number has
one and only one (−β)-expansion.Moreover, Xr−β is invariant by the shift (all infinite
sub-word of a (−β)-expansion is a (−β)-expansion). Let x ∈ Iβ and d(x,−β) =
(xi )i≥1. Then, d(T n−β(x),−β) = (xi+n)i≥1. So, if x is a fixed point of T n−β , then
d(x,−β) is periodic with period dividing n. The number of fixed points of T n−β

equals the number of periodic orbits in Xr−β with period dividing n.

Note that in Sd−β , the sequences which are not (−β)-expansions end by (d∗
i−1)i≥1

(with d∗
0 = 0).

When (di )i≥1 is not periodic with odd period (d∗
i−1)i≥1 = (di−1)i≥1 is not periodic.

In this case, the periodic orbits of Sr−β belong to Xr−β .
When (di )i≥1 is periodic with odd period, (d∗

i−1)i≥1 is periodic. The periodic orbits
of Sr−β belong to Xr−β except (d∗

i−1)i≥1.

Remark 10 In Sect. 2, we distinguished in S̃−β three types of admissible concatena-
tions and then three types of periodic words:

– at first, there are the concatenations in C;
– secondly, the concatenations of words of Δodd ;
– and finally, there are products of words of Δ(i), for all positive integer i .

In other hands, the periodic orbits of S̃−β are circular permutations of sequences of
CZ∪ΔZ

odd∪(
⋃

i≥1Δ
(i)Z), if (d∗

i )i≥1 not periodic.When (di )i≥1 is periodicwith period
2p, we add the circular permutations of (di )i≥1. If the period of (di )i≥1 is 2p − 1,
(di )i≥1 does not belong to S̃−β . Let P(X) be the set of periodic orbit of X . One has:

P(S̃−β) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CZ ∪ ΔZ

odd ∪
(
⋃

i≥1
Δ(i)Z

)

if (d∗
i )i≥1 is not periodic

CZ ∪ ΔZ

odd ∪
(
⋃

i≥1
Δ(i)Z

)

∪ {(d∗
i )i≥1} if (d∗

i )i≥1 is periodic

(59)

P(Xr−β)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CZ ∪ ΔZ

odd ∪
(
⋃

i≥1
Δ(i)Z

)

if (di )i≥1 is not periodic

CZ ∪ ΔZ

odd ∪
(
⋃

i≥1
Δ(i)Z

)

∪ {(di )i≥1} if (di )i≥1 is periodic

(60)

Let pn be number of fixed points of σ n in S̃−β and qn the number of fixed points of
T n−β , according to the previous remark, pn = qn if (di )i≥1 is not periodic with odd
period. If (di )i≥1 is periodic with odd period
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748 F. Nguema-Ndong

qn =
pn, if 2p − 1 � |n, 2p � |n,

pn + 2p − 1, if 2p − 1|n, 2p � |n,

pn − 2p, if 2p − 1 � |n, 2p|n,

pn − 1, if 2p − 1|n, 2p|n.

(61)

According to (61), when (di )≥1 is periodic with odd period, we have the following
relation between the zeta fonction of T−β (denoted by ζ−β ) and that of S̃−β (denoted
by ζS̃− β

):

(1 − t2p−1)ζ−β(t) = (1 − t2p)ζS̃− β
(t). (62)

We use the fact that

∑

n≥1

qn
n
tn =

∑

n≥1

pn
n
tn −

∑

k≥1
2p−1�|k

1

k
t2pk +

∑

k≥1
2p �|k

1

k
t (2p−1)k −

∑

k≥1

1

2p(2p − 1)k
t2p(2p−1)k

(63)
and

∑

k≥1

1

2p(2p − 1)k
t2p(2p−1)k =

∑

k≥1
2p−1|k

1

k
t2pk −

∑

k≥1
2p|k

1

k
t (2p−1)k . (64)

Proof of Theorem 6 The setsCZ,ΔZ

odd andΔ(i)Z are coded byC,Δodd andΔ(i) respec-
tively. Let qn , pC,n , p0,n and pi,n count the number of fixed points T n

β , σ
n in CZ,ΔZ

odd

and Δ(i)Z respectively. If (d∗
i )i≥1 is not periodic,

qn = pC,n + p0,n +
∑

i≥1

pi,n; (65)

if (di )i≥1 is periodic with period 2p,

qn =

⎧
⎪⎨

⎪⎩

pC,n + p0,n + ∑

i≥1
pi,n if 2p � |n

pC,n + p0,n + ∑

i≥1
pi,n + 2p if 2p|n.

(66)

If (di )i≥1 is periodic with period odd 2p − 1,

qn =

⎧
⎪⎨

⎪⎩

pC,n + p0,n + ∑

i≥1
pi,n if 2p − 1 � |n

pC,n + p0,n + ∑

i≥1
pi,n + 2p − 1 if 2p − 1|n.

(67)

Thus, ζ−β is product of elementary Zeta functions of CZ, ΔZ

odd , Δ(i)Z and also
{d1 · · · dk}Z (if (di )i≥1 is periodic with period k ). From Theorem 5,

ζ−β(z) = 1

1 − ∑
x∈C z|x |

1

1 − ∑
x∈Δodd

z|x |

⎛

⎝
∏

i≥1

1

1 − ∑
x∈Δ(i) z|x |

⎞

⎠ (68)
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if (di )i≥1 is not periodic; or

ζ−β(z) = 1

1 − ∑
x∈C z|x |

1

1 − ∑
x∈Δodd

z|x |

⎛

⎝
∏

i≥1

1

1 − ∑
x∈Δ(i) z|x |

⎞

⎠ 1

1 − zk
(69)

if (di )i≥1 is periodic with period k. We conclude thanks to (42). ��
From (59), if (di )i≥1 is periodic with odd period 2p − 1,

ζS̃− β
(z) = 1

1 − ∑
x∈C z|x |

1

1 − ∑
x∈Δodd

z|x |

⎛

⎝
∏

i≥1

1

1 − ∑
x∈Δ(i) z|x |

⎞

⎠ 1

1 − z2p
.

(70)
With (70) and (69), we find again the relation given in (62).

The previous theorem can be proved also just using the Lap-counting function.
Indeed, from the Eq. (42) and the formula of the factor complexity, the coefficients
of the power series expansions of 1

1−∑
x∈C z|x | ,

1
1−∑

x∈Δodd
z|x | and

1
1−∑

x∈Δ(i) z|x |
for all

i , count the fixed points of iterates of T−β except the orbit of the left end point of Iβ
when its expansion is periodic.

Furthermore, (68) and (69) provide us an interesting information on the influence

of gaps in the interval on the (−β)-transformation zeta function for β < 1+√
5

2 . They
correspond to factors in the denominator of the zeta function.

Remark 11 From Sect. 3 and Theorem 6, we have the following relation between the
zeta-function of the (−β)-transformation and its lap-counting function:

ζ−β(z) = (1 − z2)LT− β if d(lβ,−β) is non-periodic
(1 − zk)ζ−β(z) = (1 − z2)LT− β if d(lβ,−β) is periodic with period k.

Example 5 Letγ0 be the golden ratio:γ0 = 1+√
5

2 ,d(lγ0 ,− γ0) = 10. The zeta function
is given by two types of periodic words: the sequences of zero and words x1x2 · · · xn
such that xi ∈ {102n, n ∈ N}. |0| = 1, |102n| = 2n + 1. Moreover, the (− γ0)-shift
and the (− γ0)-transformation have the same zeta function, since d(lγ0 ,− γ0) is not
periodic. Thus

ζ− γ0(z) = 1

(1 − z|0|)
(
1 − ∑

n≥0 z
|102n |)

= 1 + z

1 − z − z2
.

Moreover,
∑

n≥1(−1)n(dn−1 − dn)zn = z + z2. Then,

LT− γ0
(z) = 1

(1 − z)(1 − z − z2)
.
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750 F. Nguema-Ndong

We verify easily that ζ− γ0 = (1 − z2)LT− γ0
.

The previous remark allows to observe that the relation between the zeta function of
T−β and its lap-counting function differs a little bit from that of the β-transformation
and the associated lap-counting function. Indeed, denote by ζβ and LTβ the zeta
function and the lap-counting function of the β-transformation, according to [5],
ζβ = (1 − z)LTβ if β is not simple β-number.

4.3 Zeta-function of the negative beta-shift

Consider a real number β > 1. We have seen that when d(lβ,−β) is not periodic
with odd period, (d∗

i−1)i≥1 is not periodic and for a periodic orbit x1x2 · · · xn ,

d1d2 · · · ≺ xkxk+1 · · · xnx1 · · · xk−1 ≺ 0d∗
1d

∗
2 · · · ∀k, 1 ≤ k ≤ n.

In other words, all periodic word is a (−β)-expansion. And then, S−β and T−β have
the same zeta function.

However, if (di )i≥1 is periodic with odd period p, 0d∗
1d

∗
2 · · · is periodic too (with

period p + 1). But, it is not an expansion in base −β. Let pn counts the number of
fixed points of T n−β and p̃n the number of periodic words with period dividing n in
S−β . We have the following result

p̃n =
{
pn if p + 1 � |n
pn + (p + 1) if p + 1|n.

p + 1 counts the circular permutations of the sequences d1 · · · dp−1(dp − 1)0. We
denote by ζ̃−β the zeta function of the (−β)-shift. Then,

(1 − z p+1)ζ̃−β(z) = ζ−β(z). (71)

In short, ∀z ∈ B(0, 1
β
),

ζ−β(z) =
{

(1 − z p+1)ζ̃−β(z) if d(lβ,−β) = d1 · · · dp, p odd

ζ̃−β(z) otherwise.

5 Conclusion

Finally, we have seen that for a real number β > 1, the associated (−β)-shift is

coded if only if β ≥ 1+√
5

2 and the (−β)-expansion of lβ = − β
β+1 is not periodic

with odd period. The non-coded case is due to the existence of intransitive words
in the language of the system. In the periodic case with odd period, shall we say
d(lβ,−β) = d1 · · · d2p−1, theword d1 · · · d2p−1 is intransitive. For γn ≥ β, ukukukuk

123



Zeta function and negative beta-shifts 751

is an intransitive word, with k < n − 1, where d(lγn ,− γn) = unun−1, uk = φk(1),
φ(1) = 100, and φ(0) = 1.

Moreover, the zeta-functions of the (−β)- shift and β- shift (determined by Flatto
et al. [5]) have some similarities: 1

β
is a pole for these both functions.

However, if we consider S̃−β as (−β)-shift, S̃−β is coded if only if β is greater
than or equal to the golden ratio γ0. But, if β less than the golden ratio, the systems
S−β or S̃−β contains coded sub-shift with maximal entropy logβ.
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