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Abstract

Given a real number 8 > 1, we study the associated (— f)-shift introduced by Ito
and Sadahiro. We compare some aspects of the (— 8)-shift to the S-shift. When the
expansion in base — 8 of — % is periodic with odd period or when B is less than the
golden ratio, the (— $)-shift cannot be coded because its language is not transitive.
This intransitivity of words explains the existence of gaps in the interval [ — %, #).
We observe that an intransitive word appears in the (— 8)-expansion of a real number
taken in the gap. Furthermore, we determine the Zeta function ¢_g of the (— B)-
transformation and the associated lap-counting function Lz_,. These two functions
are related by ¢_g = (1 — 2Ly - We observe some similarities with the zeta
function of the B-transformation. The function {_ g has a simple pole at % and no

other singularities z such that |z| = % We also note an influence of gaps (8 less than
the golden ratio) on the zeta function.

Keywords Negative bases - -Expansions - Coded system - Zeta function

Mathematics Subject Classification 11A63 - 11B05 - 11M06 - 37E05

1 Introduction

The B-transformation has been extensively studied since the seminal paper of Rényi
in 1957 (see [10]). There is a huge amount of literature on the map itself and on the
associated symbolic dynamics. Over the past decade, people became interested in the
(— B)-transformation, changing the slope of the map from positive to negative. Various
studies have focused on the similarities and differences between the two maps from
several points of view. This paper fits in this last line of research.
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The paper compares two aspects of the (— 8)-shift to the B-shift. For the g-shiftitis
known that a prefix code always exists. The paper first investigates whether or not the
same is true for the (— B)-shift. By (— B)-shift (respectively g-shift) we understand
the closure of the set of expansions in base — 8 (respectively B). The conclusion is
stated in Theorem 1, which says that a prefix code exists in the negative case only
under certain conditions, namely if and only if S is bigger than the golden ratio and
the orbit of the left endpoint of the domain of the (— 8)-transformation is not periodic
with odd period. It turns out that the discovered prefix codes are recurrent. Even though
the codes can be complicated, the zeta functions apparently have a very simple form
(see Theorem 6) and it can be noted the similarities with that of the positive parameter
determined in [1,5,7].

Rényi introduced the B-expansion of positive real numbers in [10]: for a fixed real
B > 1, all non-negative real number x has one representation in base . He defined
the B-transformation Ty from [0, 1) into [0, 1) by

Tg(y) = By — LByl

where |x] denotes the largest integer less than x. We can find a sequence of positive

integers (x;);>—n+1 such thatx = Ziz—n-s-l % wherex; € {0, 1, ..., [Bl}, x—nti =
LB Té_l (2:)] and n is the smallest positive integer for which ,3)6_" belongs to the interval
[0, 1). Various topics about -expansion have been studied.

Let b be an integer strictly bigger than 1. It is well-known that any number can be
represented without a sign in base — b thanks to digits of the alphabet {0, 1, ..., b — 1}.
In 2009, Ito and Sadahiro in [6] generalized this approach for all negative base (integer
or not) They defined a (— B)-transformation 7_ g, the map from the interval Ig =

=751 £ ﬁ) into itself such that

T_g(x) =—pBx — L ﬂx—l—LJ.
The expansion in base — B of areal x (denoted by d(x, — B)) is given by the following

algorithm:

— if x belongs to Ig, d(x, — B) = .x1x2..., where

mztﬂ ﬂm+ﬁiJ

— if x ¢ Ig, one finds the smallest integer n for which one has (*XW € Ig. In this
case, the expansionis d(x, — ) = X_,41 - - - X0.X1X2 - - - , Where

x ':{—ﬂTi_l< * >+ P J i>1
o NGOV TN
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Zeta function and negative beta-shifts 719

Inbothcases, x = Ziz—n+l Z(Xﬁ If there is no mixup, we often denote d (x, — )
by (xi)i>—n+1-

1.1 Alternating lexicographic order

Definition1 Let A = {0, 1, ..., k} be an alphabet. A word on 4 is a concatenation
of elements of A. Let x = x1x3...x, be a word on A, we call sub-word (or factor)
of x all word which appears in x. A* denotes the set of words on .A.

Let A={0,1,...,d;}. We endow A* with the order < defined as follows: for a pair
of words X,, = xjx3...x,and Y, = y1y2...y,, n € N*

Xy <Y, 3k, x1...X—1=Yy1...Yk—1 and (—l)k(xk —yx) < 0.

We say X, is less than Y,, with respect to <. Comparison is also possible for words of
distinct lengths (see [9]).

The order “<” is called alternating lexicographic order. With this order, we have
the following property: let u, v and w be three words on A,

wu < wv if |w]|is even
U<v= {wv < wu if |w|isodd, (1)

uw < vw in all cases.

1.2 The (— B)-shift

The (— B)-shift is the closure of the set of expansions in base — 8. The sequence
d(— ﬂiﬂ — B) plays an important role in the characterization of this set. In the fol-
lowing,

dlg,—B) = -didy - -

_ di,...,dop;—2,dop—1 —1,0) if (dj)i=1=1,...,dowp-1) @)
- (di)i>1 otherwise

where f = rtt - - - is the purely periodic sequence with period |z|.

S_p = {xxxpq1 - x0 - X1 [(di)iz1 X (D)izm 2 (d))i=1,Ym = k,Vk}.  (3)

2 Coded negative beta-shift

Let us start by giving the definitions of the main terms used throughout this paper.
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720 F. Nguema-Ndong

2.1 Definitions

Definition2 Let A = {0, 1, ..., k} be an alphabet. A language L on A is a set of
words on A (or the set of finite sequences on A).

A language L is extendable if for all word x1x3 - - - x;, in L, there exist two letters
a and b in A such that ax;x; - - - x,b belongs to L. It is said transitive if Yv, w € L,
there exists u such that vuw € L.

Let A = {0,1,...,k} be a finite alphabet. One endows AN (or .A%) with the
topology product of the discrete topology on .A. Let o be the map from AN (or .A%)
into itself defined by o ((x;,)neN) = (Xn+1)nen. The closed o -invariant subsets of AN
are called sub-shifts.

Definition 3 Let S be a sub-shift on .A. The pair (S, o) is called symbolic dynamical
system. (§, o) will be denoted by S whenever there is no risk of mixup.

A language Lg of a dynamical system S is the set of factors of words of S. The
system is transitive if its language is transitive.

Definition 4 A code Y on A is a language such that, for any equality

_x]..._xn:yl...yp

with x;, y; € Y,one hasn = p and x; = y;.

Let L be alanguage on A. In the following, L* denotes the concatenations of words
of L.

Definition 5 A prefix code is a language € for which no word is the beginning of
another.
Vx,yeC x=yz=x=yandz=¢

where ¢ is the empty word.

If in €, no word ends by another, then the language € is a suffix code.

The symbolic dynamical system S is said coded by the prefix code € if Ly is the
set of factors of words contained in €*.

Definition6 Let L be a language on A. The radius p; of the power series
2 ns1card(L N A™)Z" is called radius of convergence of L.
A prefix code € is said recurrent positive if

Zplé*‘ = 1land Z |x|p|¢x*‘ < 00.

xe€ xe€

2.2 Constructing of a code

Let B be a real number bigger than 1 and Sg the associated S-shift. If (a;);>1 denotes
the expansion of 1 in base 8, the -shift, Sg is coded by the prefix code Yz defined as
follows:

Yg={aiaz---anj; j < any1,Yn € N}. 4)
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Zeta function and negative beta-shifts 721

Hence, all B-shift is coded. It is one of the differences between S-shifts and (— 8)-
shifts. In fact, the (— B)-shifts, given in (3) are not always coded. One of the natural
and important question is whether the (— g)-shift is coded. In this section, we shall
provide some contributions to this question. Furthermore, when it is coded, it is not
easy to find a set of words coding its language. We distinguish two cases: for all i > 1,
0 < dy < djand dy; = d; for some i.
Throughout in the rest of this paper, Lg denotes the language of the (— f)-shift.
The following theorem states the conditions on the parameter 8 to have a coded
(— B)-shift.
Theorem 1 Let B be a real number greater than 1. The associated (— B)-shift S_ g is
coded if only if B is greater than or equal to the golden ratio and d(lg, — B) is not
periodic with odd period.

Lemma?l Let B > 1 and (d;)i>1 the (— B)-expansion of — % If for all integer
i > 1, dyi < d, then B is bigger than or equal to the golden ratio.

Proof Let y; be the golden ratio. To prove this lemma, it is enough to determine the
(— yo)-expansion of [, = — 1_’;—‘;/0 In fact, if we consider two real numbers § and «
strictly greater than 1 then,

d(ly,—a) <d(lg, —p) & B < a.

We obtain the equivalence above thanks to Lemma 3 of [9].
d(lyy, — o) = -10.

We assume that 8 < yp and d(lg, — B) = (d;)i>1. Then,
10 < ddads - - - .

That means there exists n such that —(—1)"d,, < 0 and didp---d,—1 = 10---0.

Thus, d, = 1 and n is even. So, there exists io such that n = 2ip and do;, = 1 = d;.

Thus, if dy; < d; foralli > 1, 8 > . O

Proposition 1 Let B be a real number greater than 1. We denote by S_ g the associated

(— B)-shift, (d;)i>1 the (— B)-expansion of lg = — ﬁiﬂ If (d;)i>1 is periodic with
1+5

odd period or B < TS then, S_ g is not transitive.

Proof e Assume f8 < HT‘E By Lemma 1, there exists ip such that
dy - dyiy = 1(0)20~ D1,

In the admissible words, after 1, the length of the longest sequence of zeros is

23ip — 1).
1(0)%0~1 < 1(0)2to=D,

It follows that for all w € Lg, 1w(0)*0~! ¢ Ly (1 € Lg and (0)" € Lg for all
n € N¥). Thus, S_ g is not transitive for 8 < yp.
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722 F. Nguema-Ndong

o Assume thatd(lg, — ) = didy - - - dpp—1. Consider a word x1x3 - - - x; € Lg such
that
didy -+ -dop_1x1%2--- X € Lg.

Then,
dy---dyrdy - -dy 2 dy - dyp_1 X1 Xk

there exists an integer m, | < m < k such that x; = d; for 1 < i < m and
(—=D)2=m(d, — x,,) <0. Thatis (—1)" (x,, — d,y) < 0. In other words,

X1x - xp X didy - - - dy.

In fact, uv < uw implies that v < w if |u| is even and w < v if |u| is odd.
But, xy---xx € Lg. Thus, dy---dy =< xi---x;. Hence, it follows that
X1xp---xx = dydp---di. Then, for all X = didy---dpy—1j € Lg, with
(=P, — j) < 0 (we have d; ---d|x| < X) there does not exist ¥ € Lg
such that dyd - - - dp,—1Y X € Lg. This implies that S_ g is not transitive.

O

Remark 1 1t is well-known that all coded system is transitive (see [4]). That is, a non
transitive system cannot be coded. Thus, the previous proposition allows us to observe
that for all 8 such that d(— ﬁiH — B) is periodic with odd period or f is less than the
golden ratio yp, S— g is not a coded system.

Any word of the code of the B-shift (given in (4)) accepts at right any word of the
language of the B-shift. We want to construct a code in the signed parameter case
— B with this property. To do that, if d(Ig, — B) = (d;);>1, we start by storing these
sequences in two groups: at first those for which for all integer i > 1, dp; < d, and
secondly, the sequences for which there exists an integer i such that dp; = d.

— Ifforalli > 1, d»; < dj then, we observe that all concatenation of words of the
type dy - - - dpy—1 (n € N*) is admissible. Moreover we can add at right of such a
word any sequence starting by d;. Therefore, d; - - - d,—1j (With 0 < j < d; and
(=1)"*(d, — j) < 0) can be extended at right by any admissible word.

— Suppose there exists an integer i such that do; = dj. So, d(lg, — B) is defined
thanks to sequences of positive integers (n;);> (increasing) and (p;);>1 such
that:

d(lg,—B) =didy---doyyy1dy - -~ dpydony 1 py -+ - dony—1d1 -+ - dpydon, 1 py - -

%)

In d(lg, — B), don;—14+k = di for all integer k satisfying 1 < k < p;. If p; =

2n; —1,d(lg, — B) is periodic with odd period. If (d;);>1 is not periodic with odd

period, p; satisfies both following conditions: p; < 2n; —1 and (— 1)Pi+1(dpl.+1 -

don;+p;) < 0sinced; - - - dp,dop;+p; 18 an admissible word.

Note that if (5) is satisfied, all concatenation of words d; - - - d>,—1 is no longer

admissible like in the previous item.

We assume (d;);>1 non periodic with odd period and we set

By =dy---dy; 1.
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Zeta function and negative beta-shifts 723

Remark 2 The word X = By, --- By, over {0, 1, ..., d} is admissible if and only if
Di; <2np,, — 1, withl <i <r—1.

The words d - - - dyr—1 such that
2ni + pi <2k—1<2nj41 -3 (6)
for some integer i (we suppose that 2ng + pg = 0), and
By, Br, - - - Bi, di - - - dog—1 (N

can be extended at right by any sequence starting by d; when pi, < 2ng,,, — 1 for
1 <i <m—1,2k — 1 satisfying (6) and 2k — 1 > py,,. We set

A =1dy - dop1,2ni +pi <2n—1<2n4 —1li eN*orn <n}, (8)

Abga = {Bkl +o Br, Xk, < 2nk,, — 1, X € Ay, IX| > pkm}’ &)
Moreover, if we want the word dj---dy,—1j such that for all x € Lg,

dy---dy_1jx € Lg, itis necessary to require the following conditions on j:

(= 1) (dy = ) <0, 0<j<d (10)
2ni+pi+1<n<2n;—-1 1i€eN
with 2ng + po = 0. If n = 2n; + p; for some positive integer i,
di---dy_1j=d1--dy,—1d1---dp, J;
the admissibility of this word implies that:
dy---doy,1dy - dpdop g p; 2 dy - dop;—1dy - dp, ]
and
di---dpdpy1 <di---dpj,
and thus:
(— 1)211,'+[7i (d2ni+pi —j) <0, 0<j<d (a0
(= DPitdp 11 — j) <.
That is
(= DPidp 1 > (=D j > (=D)Pdop; 1 p;. (12)
So, we define the sets I, F(;, I't and Fl/ as follows:
x=dy--dyj, withn € N
xelys { (=D dy —j) <0, with0 < j < dj, (13)

2”i+l7i§”§2"i+1—2, I.EN,H():[)O:O.
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724 F. Nguema-Ndong

In Fo/» we have words of the type d - - - dap; 1 p;—1j With j satisfying (12).

x=dy - dopipi—1], with i € N*,
(=DPidp, 41 > (=DPj > (=D)Pidoy, 4 p;;
X=Bk1"'Bkmy WithyEFOv|y|2pkm+2;
xell & ki, -, ky € N* (15)

Dy <2np,, —1, 1<i<m-—1.

xel) o (14)

i+1
We denote by Fl/ the set of admissible words of the form
By, -+ By, Br,di -+ dy,,

with j satisfying (12)andfor 1 <i <m—1, px; < 2nk,,, —1.Infact, By, di -~ -dp, J
is just a word of F(; having a length greater than py, ,. So,

X = Bkl T Bkm—ly
xel} & yeF(; with |y| > pk,_, + 1, (16)
DPr; < 2np, — 1 withl <i <m —2.
If (di)i>1 is periodic with odd period, we use the sequence (dl?k)iz 1 in the definition
of Agdd, A(l)dd, Iy, F(;, Il and Fl/ instead of (d;);>1-

We set
Agy = Ab ual ?f (3) is satisﬁ.ed ’ a7
{di---dos1lk € N} if dr; < dj,Vi € N*
and
_|nuryunurn if (5) holds
 dy o de1jl(=D)"(dy — j) <0,0 < j <di,neN*}  otherwise.
(18)

In (18),ifn =1,d; - - -d,—1 = ¢ (the empty word) and thus, dy - - -dp,—1j = j.
Example 1 If did> - - - = 3021, we have

Apaa = {3,302,30211, 3021111, ---}
I ={0,1,2,31, 32,300, 301, 3022, 30210, 302112, - - - }.

Example 2 Let B be the algebraic integer satisfying 8* + 283+ 2 - —1=0;
d(lg, — B) = 20121.

The sequence (n;);>1 is finite: 2n1 — 1 = 3, p; = 1, and thus we have d; - - - dp,,—1 =
201,dy ---dp, =2,and dyp 4p, = 1.

@ Springer



Zeta function and negative beta-shifts 725

Now, we can give a language of admissible words with properties similar to those of
the code of the S-shift.

Atright of a word of A,44, we can add any admissible word starting by d;.Thus the
free monoid A: 4q generated by A,gq is a subset of Lg. Moreover all concatenation
of a word of A%, and a word of I" starting by d is admissible. Let € be the language
defined by:

C={xylxe A, yel,|ly|>=2}Ur. (19)

By definition of I, it is obvious to see that at right of each element of ¢, we can add
any admissible word.

If B is less than or equal to the golden ratio yp, € = {0}. However if 8 > yp, by
construction, € is a prefix code on A = {0, 1, --- , d1}.

Let A%, and Al be the sets defined as follows:
AL, = {d - dauln € N}, (20)
Al = 1B -+ B, X|pr, <2ng,, —1,X € A2}, 1)

Whenn =0, d - - - d, is the empty word e. We set
Ay — A0 ual if (5) is satisfied 2

{dy---doy|n € N} ifdy < dp,Vi e N*

Lemma?2 Forall (ky,--- k) € N*, 1 <n < py, pr; < 2nk
t—1,

g — 1lwithl <i <

By, --- Bk,dl coody € Agyn.

Proof 1t is enough to see that for 1 < n < p;, foralli € N*,
dl t 'd2n,-—l+n = dl v 'd2n,-—ld1 o 'dn-

If nis odd, 2n; — 1 + n is even and then, di - - - dop, 110 € A%, C Appn.
If n is even, dj - - - d2,;—14n can be seen as a concatenation of dj - - - dap;—1 and
dy---dy.So,

dy---douyj—14n =di - dog;—1d1 -+ dy € A, C Aevn-

evn
]

From Lemma 2, we can see A.,, as the set of admissible concatenations of words
of the type B; eventually extended at right by d; - - - d, with n even. So, if x is an
admissible word:

— x begins by a word of €, or
— x is an admissible concatenation of words of the type dj - - - dor+1 eventually
extended at right by d - - - doy,.
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726 F. Nguema-Ndong

If we set

D= {xy|x € A:dd Ulel, ye Aevn}
= {xylx € Apga, ¥y € D}U Ay, (23)

then, the language Lg is given by:
Lg = {uvlu e €, veLgfuUD. (24)

Remark 3 From Theorem 3 of [9], if B > yp (that is (d;)i>1 < 10), all sequence
between d1 (d; — 1)0 and (d; — 1)0 cannot be an expansion of — % for some 8 > 1

except d1. Then, there exists y € I such that |y| > 2. Indeed,

[(d)i=1 =d(g, — B) and B > y| = (di)i=1 < di(d; — 1)0.

So, we can find n € N such that d;(dy — 1)0" ordi(d; — 1)0 (d; — 1) belongs to I7.

Theorem2 Let B > yp and d(— % —B) = (di)i>1. We assume that (d;)i>1 is not

periodic with odd period. Then for alln, dy - - -d, € Lg=.

Lemma3 Let B > 1. We assume that (d;);i>1 = d(lg, — B) is not periodic with
odd period and it satisfies (5). If there exists an integer iy such that for all t > i,
don, -+ - danyy—1 = dopy - - dopg -1, then

dy---don—1don; - dong -1 2 (di)iz1 < dopg - dong gy -1 (25)

Proof We set u = dj -- ~d2,,l.0_1 and v = dzn,.o "'d2ni0+1—1- Since (d;)i>1 is not
periodic with odd period, we have u < v. Since (d;);> starts by u, it becomes
obvious that (d;);>1 < v.

If (di)>1 # uv, (d;)i>2n io # v. There exists a non negative integer m such that

vdon, - dony—1dangy s dongp -1

(di)izon;,, =
= d2n,"'d2n,+1—1 < v.

(26)

Since the length of v is even, it follows that (di)iEZniO < v. We obtain the result by
adding at left of both words u = d - - ’dZniofl which is of odd length 2n;, — 1 and
using the property of the alternating order given in (1). O

Proof of Theorem 2 From Remark 3, if 8 > yy, I} contains at least one word y such
that |y| > 2.

Ifdy; <djforalli >1,dy---dy,—1y € €foralln € N*and y € I with |y| > 2.
Thus, for all n € N*, d - - - d,, is the beginning of a word of €.

We assume (5) satisfied and (d;);>1 is not periodic with odd period. Suppose
di---dy ¢ Lex.
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Zeta function and negative beta-shifts 727

Let ko be the smallest integer such that dy ---dy, ¢ Le¢+ and i > 0 such that
2n;i — 1 < kg < 2n;4+1 — 1. Note that for all n > kg, dy ---d, ¢ Lex. Then, for all
t >i,dy---dp,doy,+p, andd; - - - dp, 41 are consecutive (with respect to the alternating
order). It follows that

d2n,+[7; = d[?t+1 - (_I)Pt’ 27

otherwise, di - - - doy,4-p,—1(dp,+1 — (—=1)P1) € €. Also, there does not exist an integer
k such that 2n; 4+ p; < 2k —1 < 2ns41 — 1, otherwise dy - - - dyr—1y € Cforally € €
with |y| > 2. Therefore

2”[ + Pt if Pt is odd
2nt+1 —1= . .
2n; + p; + 1 if p; is even.

If p; is even, dop, 1 p,+1 = 0, otherwise dy - - - day,—1d1 - - - dp,dop,+p,0 € I'T C €. So

di---dag—1dy - dp (dp 1 + 1) if py is odd

. (28)
dy---dy,—1dy - - -dp,(dp, 41 — 1)0 if p;iseven.

dy--dop, -1 = {

Observe that if dy---dp,41 is the beginning of a word of €, automatically
dy---doy,—1dy - - - dp,41 is the beginning of a word of €. Thus, dy - - -dyp,—1 ¢ L~
implies that dy ---dp,+1 ¢ Leg+. Since (d;);>1 is not periodic with odd period,
pi < 2n; — 1. But, ko is supposed to be greater than 2n; — 1. Thus we have p; < ko,
and then for any integer ¢t > i, p; < ko < p; + 1. Thatis p; < p;. In particular
pi <2n;i — 1 <ko < p; +1(and then, p; + 1 = 2n; — 1).

If p; = pi, (28) requires day; - - - don;, 1 = don, - - - don,, —1. If pr > p;, we have

dop, - don,—1 < dop; -+ dopg 1.
Then,
dy-dpdpy1dp42 =dy - dop—2dop;,—1d1.

We set

Up=d--dom;—1
Vo =dan; -+ - don -1 = di -+ dpdonyp; - - dongy -1

Vo is such that:
Vo =di -+ dop;—2(dan;—1 — 1)0. (29)

From Lemma 3, UyVy < di)i=1 < Vo. From Proposition 9 and Theorem 3 of [9],
the unique sequence between UyV, and Vj which is the (— B)-expansion of /g, for
some B > yp is Up. This is absurd, since (di)i=1 = d(lg, — B) is supposed to be
non-periodic with odd period and (d;);>1 # Vo because (d;) i>1 starts by Up. Then the
assumption n > 2n; — 1, dj - - - dy, is not the beginning of a word of € is inaccurate. O
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728 F. Nguema-Ndong

From Proposition 9 of [9], when Vo < 10, the sub-shift of infinite words for which
all sub-words is bigger than Uy Vy and the sub-shift of infinite words for which all
sub-words is bigger than Vg have the same entropy. We denote by v the map from
{Uo, Vp} into {Up, Vo}* defined by vy (Up) = UgVy = Uy and ¥ (Vy) = UpUy = V.
The limit of non-periodic infinite words (d;);>1 such that UgVo < (d;) i>1 = Vo and
(di)i>1 < (d;)i>k for all k > 1 (not necessary the (— f)-expansion of /g for some
B > o) is Y (Uo) = limysoo ¥ (Vo).

V' (Uo) = UoVoUoUoUoVoUo VoUo VoUoUoUo VoUoUp - - - (30)
In fact, if ¥*°(Up) < (d;)i>=1 < Vo, then there exists n € N* such that (d;);>; =

Y (Uo).
IfUy=di---doy—1 =1, Vo =00, B < yo.

¥ (1) = 1001110010010011100111001110010010011100100 - - - .
In this case, the (— B)-expansion of /g is between UOVO = 100 and v (1).

) = ﬁli;nld(lﬁ, —B).

Lemma4 Let B be a real number bigger than the golden ratio yy and d(lg, — B)
non-periodic with odd period. Then, the (— B)-shift S_ g is coded by €.

Proof Suppose B > yp. Then, € is a prefix code. From Theorem 2, for all n € N*,
dy---d, € Leg+. It follows that D C Lg+. To conclude, it suffices to observe that
(since the empty word ¢ belongs to D):

{xylx e €,y € Lg} = {xy|x € €* and y € D}.

O

From the proof of Theorem 2, if B > yy and d(lg, —B) = di---doy,—1, We
have d,;—1 # O and the word d - - - dp,;—1 is intransitive. The (— B)-shift, as
defined in (3), is not coded, but contains a coded sub-shift: the dynamical system
of words for which, in the meaning of alternating order, all sub-word is bigger than
dy -+ - dop;—2(doy;—1 — 1)0. Moreover, both systems have the same entropy (see [9]).

If we consider the definition of the (— f)-shift given in the introduction in the case
where f is integer, that is, the expansion of — BT is periodic with period 1, we obtain

S_pg= {(xl')iEZ;B = (xi)izn = (0,8 — 1),Vn} :

But in this special case, the definition given by S. Ito and T. Sadahiro is
S—p = iz B=1,0) = (xi)iz, Vi } (3D
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In fact, all sequence (x;);ez of S_ g satisfies, for all n

lim d(y, — B) < xXpXpy1--+- 2 lim d(y, — B) (32)
v—)l y—)rﬂ_
with [g = — ﬂiﬂ and rg = ﬁ Using Lemma 6 of [6], 1imyﬁl; dly,—pB) =

(B—1,0) and limy_)r/; d(y,—B) = (0, B —1). In this form, S_ g is coded. Gener-
ally, the symbolic dynamical system S_ g contains a sub-shift coded by a prefix code
and which is the support of the maximal entropy measure. When d(Ig, — B) is periodic
with odd period 2n — 1, we introduce the sub-shift S_ g (corrected (— B)-shift) defined
by:
Definition 7

S_p = {Giez: dfds -+ = xkxpsr ..., Vk}

with

w1, .. d—2,dop—1 — 1,0) if (di)iz1 = (d1, ..., d2wm—1)

d)i=1 = .
(di)i>1 otherwise .

Using Lemma 6 of [6], we see easily that (d}, d5, ...) = limx_)l; d(x, — B) (corrected
(— B)-expansion of lg).
i>1 (_d—jg),. = Ig (see the proof of
Proposition 8 of [9]). We find more convenient to use S_ g as (— f)-shift instead of
S_ . In fact, the sequence (d;);>1 plays the role of 0.9999999 - - - in base 10. For
instance, 0.9999999 - . - is the representation of 1 in base 10.

All real has a representation in S_ g since Y

1 =0.9999999999 . . .

Now, we are ready to yield the proof of Theorem 1.

Proof of Theorem T When 8 = yy, it is easy to see that the system is coded by A,qq =
{1, 100, 10000, ...}. But this code is not optimal. Indeed, this language is obtained
owing to two words: 1 and 00. Thus, we code S, by {1, 00}. To complete the proof
of Theorem 1, it is enough to use Lemma 4 and Proposition 1. O

From Theorem 1, S_ pisacoded (by €definedin (19))if onlyif 8 > yp. Throughout
the rest of this paper, we focus our interest in the study of S_ g instead of S_g.

2.3 Recurrent positive code

We have seen in the previous subsection that when 8 > yp, the symbolic dynamical
system S_ is coded by the language ¢ and D is a subset of L. In fact, S_ g can be
seen as the support of the maximal entropy measure. If furthermore d»; < d; for all
integer i > 0, € and A,y allow us to characterize words of Lg.
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When (5) is satisfied, it becomes increasingly unclear because of the non admis-
sibility of certain concatenations of B; (see Remark 2). In particular, for 8 < yyp,
we know that S_ g (and then S_ g) is not transitive and € = {0}. This implies that
the support of the maximal entropy measure is included in D. It may asked: what is
this support? With a view to determining this support, we study in detail hereafter
the conditions of admissibility of product of B; and also, we get another formulation
of the set D. We exhibit different codes for the writing of these concatenations. If a
language £2 is one of these codes, any concatenation in £2 is admissible.

Remark 4 Let X = By, --- By, be an admissible word of a code, XX € Lg. From
Remark 2, py; < 2ny,, —1with1 <i <m —1,and pg, <2n —1.1f2n; — 1 <
Di,, < 2n;41 for some i, X can be extended at right by any word starting by B; ;.

We set
JO) ={t, py <2ny -1}, (33)
and for alli > 1,
J@) =1{,2n — 1 < py < 2041 — 1), (34)

Let AD be the sets such that:

x=B,---B,,
Py <2n4. — 1, py, <2n4y —1
tm € J (@),

treJ(l)fork #mand!l >i+ 1.

xeAD e (35)

Let us explain a little bit the definition of the set A®_ Consider an element x =
By --- By, of AD.

— The condition #; € J(I) with [ > i + 1 involves that t; ¢ J (i) and then x cannot
be a concatenation of words of A® . That is A® is a (prefix or suffix) code.

— Py < 2ny4,, — 1 allows to have x admissible, but when p;,, < 2n; — 1, the word
generates a periodic expansion.

— For the condition / > i + 1, if we suppose t; € J(I) with [ < i, the word
B, ---B;, B € AD and it is a result of a permutation of x. In fact, if 1; € J(I)
with [ < i, x is a word of the language of the free monoid generated by A®). Thus
| > i + 1 ensures the fact that two words x € A® and y € A® cannot generate
the same periodic orbit.

From Remark 2, (A®)* ¢ Lg.
Lemma5 Letx € AD andy € AV, withi < j. Then, xy € Lg.

Proof Letx = B;, --- By, € ADandy = By, - Bsim € AY From (35),2n;—1 <
D1, < 2niy1 — 1. Since ng > Nnjyys WE have

i<j=2n,,—-1>2n;11—-1>2n41—-1> py
and we find hence that xy € Lg. O
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Now, we know the different sub-languages necessary to characterize words of Lg:
¢, Apga, AD for all i € N* if the corrected (— B)-expansion of /g satisfies (5); or €
and A,4q4 if (5) does not hold.

Let B be a real number bigger than 1. In the previous paragraph, we constructed a
prefix code of the (— §)-shift. But, if a code is recurrent positive, it is more interesting
above all if the system is intrinsically ergodic with entropy log 8. Start by giving the
following definition:

Definition 8 Let X be a symbolic dynamical system and t = #1 - - -, a word of L.
We denotes by [¢], the set of infinite words (x;);>; starting by . That is:

X1X2 Xy =1y 1y.

Consider a symbolic dynamical system X. In fact, the existence of a recurrent
positive prefix code ¢ implies that there exists a probability measure v on the space
W (&), closure ¢Z defined as:

v([x]) =

1
——, forallx € €,
ﬂlxl

with log B the entropy of X endowed with the shift. We have W(€) = [, .¢[x]; for
(x.y) € €, x #y,[x]N[y] = @. Thus,

V(W(@) = v(Ix])

xed

1
_); BI*!

=1

The entropy #,, of the probability v is:

hy ==Y v(lx]) log v([x])

xe€

- (Z ;ﬁ) log B.

xe¢

This expression exists since ) < + oo when the code is recurrent positive.

|x|
xe€ glxl
Thus, the maximal entropy measure j is given by:

(2"

xe€

See for example [2,4] for more explanations.
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Using the formal power series, the following result establishes a link between Lg,
Apgqg and AD i > 1.

Theorem 3 Let B be a real number (B > 1), Lg the language of the corrected (— B)-
shift S’,Ig, €, Apga and AD be the sets defined in (19), (17), and (35) respectively. In
the meaning of the formal power series, we have the following relations:

Zz"=(1+z)<l—zzx|> = 3 T - 2 Y e

n>0 xe€ x€Apdd i>1 xeA® xeLS,_ﬁ
(36)

if (5) occurs, or

Y "=(+2) (1 - Zz"'> DL DL

n>0 xe€ x€Aopdd xelg

ifdy; < di, Vi € N* and where (d}");i>1 is the corrected (— B)-expansion of lg =
B

~ BT

Proof 1In the following, H,, c,, a, and §,, denote respectively the number of words of

lengthnin Lg, €, Ayqq and D (given in (23)).

We have seen that a word of € can be extended at right by any word of L g. Therefore,
at right of a word of A,44 can be added any word of D. So, from (24)

YoH =Y end | Y Hat Y 82" (37)

n>0 n>1 n>0 n>0

Let us explain a little bit the equation above. The coefficients of the formal power
series (3", en2") D=0 Ha2" count admissible finite sequence starting by a word
of €.

We denote by >, bi »,z" the formal power series for which the coefficients count

the words of A,,, which start by a word of AV with Jj > i. So, the coefficients of
> _n>1bo.nz" count all words of Agyy.

oo =Y | D 8" |+ D bond" + 1. (38)

n>0 n>1 n>0 n>1

This equation means that in D, we have admissible strings starting by words of A4
and those belonging to A.,,. We set

Z = p,.

xeA®
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From Lemmas 2, 5 and Remark 4

Y2+ Y biat" if (5) occurs ;

b Zn _ n>1 n>1 39
; o z 2 if df, < df, Vi 9
> Z

and foralli > 1,

Y b =P D D i |+ bisiad" (40)

n>1 n>0 n>1 n>1

From (38), (39) and (40), we have

(1 - anZ") _l_[ (1—P) Y 8,2" if (5) occurs
Z Z2n — n>1 ) i>1 n>0 @1

n=0 1= > a7 | . 8,7" if d5; < df,Vi e N*

n>1 n>0

Thus, to obtain (36), it is enough to multiply (41) by 1 + z and use (37). O

The following corollaries are the consequences of Theorem 3 and Lemma 1 of [9].

Corollary 1 In the disk b(0, %) of center 0 and radius % we have:

L= (dyy —dp)(=2)"

n>1

=(1+z)<1—2z'x) = - D0 M @

xe€ X€Apdd i>1 xeA®

with )" . c At 2l =0 when dy; < df foralli > 1.

Proof Let H, be the number of words of length n in Lg. From [9], we know that the
formula for the factor complexity of the corrected (— B)-shift (or the language Lg) is
given by:

n
Hy =Y (=D*d}_, —di)Hy i + 1
k=1

with (d;)i>1 = d(lg, — B), dp = 0 and Hy = 1. By simple calculus in the sense of
power formal series,

1 - anl(_l)n(d:—l —dy)z

XELs._

n
x| anOZ
2, =
B
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We conclude by using Theorem 3. O

Corollary 2 The expansion d(lg, — B) is supposed to be periodic with odd period
2p — 1. Then, in the sense of formal power series,

1 — 2p n
Zz‘xlzl (=) 20 : 43)

xelLg a anl(_l)n(dnfl —dp)z"

Proof Any word (x;);>1 in the (— B)-shift S_ g satisfies
(d)i=1 X (Xign)i=1 = (d_))i=1,Vn € N.

According to Lemma 1 of [9], the formula for the factor complexity of the (— g)-shift
is:

n
Hy =Y (=D*d}_; — di)Hyi + 1 (44)
k=1
where H, denotes the number of words of length # in the language of the (— 8)-shift.
We obtain (43) by using the definition of (dl?“ )i>1 given in (2). O

From (42) and (43), > _,-o H,2" and ), ¢ H,z" have at pole at % and it is the

smallest pole in modulus. In fact, % si the smallest zero in modulus of

1= (=D* g, — doit

k>1

However, if B is less thaIl the golden ratio, both inclusions can not hold. Indeed,
¢ = {0} and then Lg+ = {0",n € N*}. The support of the maximal entropy mea-
sure is coded by A,gg4 (in this case = 1) or by A® for some i (and

Ycean g =1

Recall that the morphism ¥ on {0, 1} is given by ¥ (0) = 1, ¢(1) = 100 and
define the sequences (u,),>0 and (vy)p>0 by uo = 1, vo = 00 and for n > 1,
Uy = Up—1Vp—1 = Y" (1), v, = uy—1uy—1. From Lemma 2 of [9], |u,| is odd and |v,,|
is even. In fact,

1
XEAodd ’m

lunl = lval + (=D

Moreover, note that there is no word between uy = wup_jur—our—» and vy =
ug—1ug—1. Indeed, from the definition of uy, we observe easily that

Uk Uj—pUj—3 - ujlgl if k is even,
Uy = p
Uk Ug—2Uj—3 - - u1up00 if k is odd
and
Uk Uj—2Uj—3 - - u1up00 if n is even,
Vg = . .
Uk Uj—pUj—3 - Uil if nisodd.
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Let y,, be the real number such that

d(ly,,v — Vi) = UnVy.
¥y 18 the largest number satisfying:

1 1

= — 4 —
[t | [vnl”?

Vn Vn

that is, y, is the largest root of X — X — 1, where [, = max(|uy,|, |va|). The
sequence (y,)n>0 decreases until 1 (see Proposition 5 and 6 of [9]) and we have
lim;, s 100 d(ly,ls —vn) = ¥2().

The following proposition gives us a writing of d(Ig, — B) for 8 less than the golden
ratio.

Proposition2 Let 8 be a real number such that 1 < B < yo. Then, there exists a
sequence of integers (k;i)i>1 and n € N such that

d(lg, — B) = un 0w, 0 2w, 0 - (45)

or
d(lﬁ’ -B) = unvn(unun)kl Un (un)kzvn (un)k3Un . (46)

Proof Let 8 be a real number and suppose 1 < B < yp. Since (y¥,),>0 decreases until
1, there exists an integer n such that y,,11 < 8 < y». So,

d(ly,, —yn) <d(g, —B) 2d(ly,., — Vnt1)-

This means
U vy, < d(lg, — B) X upvyity.

Itis easy to see that uy < vg and there is no word between uy and vg. In an infinite word,
uy is followed by vy or by u;. We obtain (45) by using the fact thatu, v, < d(lg, — B).
To obtain (46), we interpret the fact that d(Ig, — B) < u,v,ity,. O

Ito and Sadahiro determined the unique 7_ g-invariant measure with maximal
entropy on Ig = [— %, ﬁ). Note that the structure of the one-side (right)
(— B)-shift endowed with the shift o is transported to /g endowed with the (— B)-
transformation. For § taken in the open interval delimited by 1 and the golden ratio,
we know that the system is not coded, and then the support of the measure of maxi-
mal entropy is a coded subsystem strictly included in the (— g)-shift. The images by
T: (xi)i=1 € S" P g anl (_"W € E of subsystems non included in the support
of the intrinsic ergodic measure correspond to gaps on /. This phenomenon has been
closely studied by L. Liao and W. Steiner in [8].

The gaps on /g are the intervals Ay ; defined as followed:

) ISt +is Stug|+Hug—y1+i) - if i is even

Ak = e (47)
[Sluk|+|uk,1|+i, Sluk|+i) if i is odd
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withk < n,i < |ux—1| and s; = Tiﬁ(lﬁ). Note that
Up = Uglg— ] Uk— | URUE * * Up—2Up—2.
From (45),
d( . — 5t ki, =—ka, ——k3
Slug|+i> — B) = o' (Uk—D)ug—1ugity - Up—2Up 2V ' Uy Dy *UpVy > - -

and

i —k —k —k
d (S| +ug_r |+i» — B) = " Ur— DUl - - - Up—2Up 20" UpVy 2 Up V> - -

Thus, the (— B)-expansions of real numbers which belong to gaps start by ol (ug—1)
Ug—1Ug—1 OF 0" (Ug—1)UgUk.
If B belongs to [yyt1, vul, d(lg, — B) satisfies (5). As given in (29)

o = dy - diug—1djyy — DO if dpy, =1
dy - -dyy 2y -1+ 1) ifdy,) =0.
Thus, for 1 <i < n,dy---dyy,—1 = u; and dy ---dp,dp, 12, = v; if i is odd or
dy---dpdp,+20,0 = v; if i is even.
In fact, A,qq or one of A®) codes the support of the maximal entropy measure on
S_ 4 endowed with the shift 0. That is, the support is the closure of AZ, , or AWZ
for some ij.

Remark 5 We assume that (5) is satisfied. If there exists an integer i such that
di--dy—1(dy +(=1)") ¢ Lg,Vn,n > 2n; — 1 (48)
then, (d;);>1 is periodic with odd period. Indeed, at first, note that
dy - dop,—1d1dadzdy - - -

is the upper (with respect to the alternating order) sequence starting by the string
dy - - - doy,—1. Thus, for any integer n greater than 2n;, dy - - - dp—1(dp + (=1)") & Lg
means that there is no word between d| - - - dap; —1d1dad3 - - - and (d;);>1. That is, for
any n > 1,d, = dyp,—14n.

Remark 6 Let B be the real number such that y; < B < yp, and (d;);>1 is supposed
to be non periodic with odd period. If (d;);> satisfied (5), d> - - - d2,,—1 is the longest
sequence of zero. It exists in A,4q a word starting by dj - - - da,,—1. Indeed, from
Proposition 2,

d(lg, — B) = 100(11)100(1)*200(1)*300- - - .

o Ifky #0,d;---dyy,—1 = 100 and 100(11)¥1 € Ayyy.
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e If k1 = 0, we can write (d;);>1 on the form
(d)i=1 = 1(00)"11(00)21(00)"1 - - -, (49)
with 71 > 2 (we use the fact that d(l,,,, — y0) < (d;)i>1). One has:
dy - dop,—1 = 1(00)".
When #3 # 0, 1(00)"11(00)21 belongs to Aygg. If 13 = 0, we have
1(00)"11(00)2100 € Apgg.

In both cases, there exists in A,gq a word starting by dy - - - day, 1.

Lemma6 Let B be a real number suchthat yy < B < yo. Then Aoqa codes the support
of the maximal entropy measure and AYV* C L At

Proof From Remark 5, if (d;);>1 is not periodic with odd period, for any integer &,
we can find n > 1 such thatdy ---d,_(d, + (—1)") € Lg.

Ifniseven,d, +1 = 1. Thatis, d, = 0. From Remark 6, there is a word y € A,qq
starting by dj - - - d,,,—1. The sequence d; - - - d,—1y € LAZLM' Ifnisodd,d, — 1 =0.
That is d, = 1. Note that, (d;);>1 is a concatenation of 1 and 00. The word d; - - - d,
and by a string of the type 1(00)’1 and (00) is not the longest sequence of zero.

di---dy=dy - dy_2-21(00)1. (50)

It follows that dj---d,—2;—2y € L A% since this word end by a word of
Aodq. Thus, for any admissible concatenation By, --- By, for all n, n > py,.,
By, -+ By,dy---dy € LAzdd' Thatis By, - - By, € LA:dd' |

Lemma7 Let B be a real number such that for all n in N*, y,11 < B < y,, the
support of the maximal entropy measure is coded by A™.

Proof Note that Apgq = {1}, A = {u;} (with i < n). Therefore, d(lg, — B) €
{un, v,}* and satisfies (46). That is

d(lg, — B) = u vy (tn )1 v ()20 ()P0, - -

We obtain the same result as in Lemma 6 by changing the alphabet {1, 00} to {u,, v,}.
So the language which codes the support of the maximal entropy of the o -invariant
measure contains u,. Thus, the right choice is A®. Fori > n, AD* C L yu.. But
this inclusion can not hold for i < n. O

Each set €, Ayqq, AY, i < n defines a class of words forbidden in the language
of the support of the maximal entropy measure. These words are: upuyuguy and
UpU+1Ug+2 With —1 <k < nand u_; = 0. In the one side right (— g)-shift, we add
o (up)ugugug and o (u)upp1urs2 (With i < |ug]). It easy to see that one of these
sequences appears in the expansion of a real taken in a gap.
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3 Lap counting function

The lap counting function of a continuous map 7" whose consists of a finite number
of monotone segments (called laps) is the formal power series

Lr@) =Y Lu(T)" (51)

n>0

in which Lo(T) = 1 and for all n > 1, L,,(T) counts the number of laps of the iterate
T". This function was been introduced by Milnor and Thurston. It is another approach
to computing the zeta function.

Let B > 1. In this section, we give lap-counting function of the (— §)- transfor-
mation and its classical properties. In the following, S” P denotes the one-side right
(= B)-shift ((— B)-representations of real belonging to Ig).

Theorem 4 Let consider a real B > 1 and T_g, (— p)-transformation. We set
d(lg, — B) = (di)i=1. Then, the lap counting function L1_, of T— p is given by:
1

; 52
=0 (1 = Sy D, —dpe) e

Ly ,(2) =

where (d}')i>1 is defined in (2).

Remark 7 For a fixed real non integer 8 > 1, the graph of 7_ g consists of [B] + 1

segments. Indeed, we can see Ig as union of |B] + 1 intervals I defined by Iy =
— 5 g k= (=5 g, — 5 +rglwith 0 < k < [B] — 1, and I 1) =
lg, — £+ rpl.

Lemma 8 The (— B)-transformation T_ g is affine on each interval I,. Moreover, x €
I if only if d(x, — B) starts by k.

Proof Letx € Ig.

k+1 k
erk<:>—T+rﬂ<x§—E+rﬂ.

= k<—-Bx—lg<k+1
— |- Bx —lg] =k.
We set (x;);>1 = d(x, — ). We know that x; = |— ,BT:S1 (x) — lg] (see [6]). So,

we have proved that for all x € [y, x; = |- Bx —lg] =kand T_g(x) = — Bx — k,
0<k=<IB] o

Note that,if 8 € N, 1|5 = {lg}. In this case, the graph of the (— f8)- transformation
is given by B segments.
From the previous lemma, 7_ g has [B] + 1 laps if 8 ¢ N and g laps otherwise.

1
d(—k%—i-rﬁ,—ﬂ)=-(k+1)d1d2~-~, (53)
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with 0 < k < dy and d(lg, — B) = (d;)i>1. It is easy to see that -kdd, - - - is the
maximum (with respect to the alternating order) in the family of words of Sg starting
by k.

Throughout the rest of this section, we set 14, 4y...q, = {Tf/_g1 (x) € Iy, 1 <k <nj}.

Remark 8 Let T be the map from S_ g to I defined by

Xn
T((xi)iz1) = e
; (=B)

The map T is increasing in the sense of the alternating order (see [6]). It is easy to verify
thatthe words X = xq---x,_1(x,+1)dido--- andY = x1 -+ - x,_1x,0d1d> - - - have
same image by 7.

Indeed,

TX)—-TY)=——(0+1g—1rp)
= ﬁw e
=0
We have the same result if in Remark 8, we replace (d;);>1 by (d;"),-z 1-

Lemma9 Let I4,4y...a, = {qu (x) € Iy, 1 <k < n}. It is the interval of real num-
bers of 1g for which the (— B)-expansions begins by the admissible word aya; - - - ay

Proof Letx € I4,4y...a,- For 1 <k <n, T 1(x) € Iy, . From the previous corollary,

=BT 0) = 1g) = ., (54)

that iS d(x, — ,3) begins by aiap - - ay
Furthermore, consider the set of (— f8)-expansions of reals of 1,,...q,.

(a) If a; ---a, ends by a word of the type d; - --d,_1j with (—=1)"(d, — j) < O
and j # dj, the (— B)-expansions of I,,...,, endpoints are ajaz - --a,didz - - -
and ay - --ap—1(ay + Dddy - - - . In fact, ay - - - a,0d{d5d5 - - - is one of the end-
points (— B)-representations starting by aja; - - - a,. But, this word cannot be an
expansion. From Remark 8, both words

ap---ap_1(ap + Ddydp - -
and
- a,0didyds - - -

have the same image by 7.
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(b) We assume that dp; < dj for all integer i > 1 and a; - - - a, ends by a sequence
of the type dy ---dy, we set ay---a, = ay---ay—,d; ---d. Thus, the word
ay ---ay—xd(lg, — B) is a endpoint (— B)-expansion. The maximumin S_ g start-
ingby dy---dyisdy---dyd(lg, — B) if k is odd and d - - - drOd{d5d5 - - - if k is
even. This last word is not a (— 8)-expansion. We replace it by

ay---ap—idy - - - dy—1(di + 1)d(lg, — B).

(c) Now, we assume that a; - - - a, ends by a sequence of the type d - - - di, k even

and dy = di, then, the endpoints have expansions ai ---a,—rd(lg, — ) and
ay---apkdy - -dr—1d(lg, — B).
This last case implies that d(lg, — B) satisfies (5). In the language of S_ g, we
know that dj - - - doy;—1 is always followed by di ---d),. Thus, if 2n; < k <
2n; + p; — 1, the endpoints of I,,..,, have expansions aj ---a,_xd(lg, — B)
and ay - - -ap_pdy - - - dop,—1d(lg, — B). That is, for all ¢, 7 and s in N, such that
2n; <r,s <2n; +p;i — 1,

lay-ardyd, = layaydy-ds-

Suppose d(lg, — B) periodic with odd period 2n — 1. There exists i such that d,;, =
doy =dyand dy ---dp, =2n — 1 =2n; — 1. (c) allows us to say that Iy, ...qpd; -y,

is reduced to the singleton {7 (ay - - - ax) + (_l% }. It is not an interval. In fact, in an
infinite admissible word, d - - - d2,,—1 is always followed by itself. O

Remark 9 Let B be a real number strictly bigger than 1 and Lg the language of the
words (x;);>1 such that

(d?)i=1 = (Xign)i=1 < (d7_))i=1,Yn > 0and dj = 0.

From the previous corollary, one has for all fixed integer n > 0,

5= 1. (55)

xeLlp

|x|=n

Rather than counting intervals, one can just count words of the language of S_ g. This
approach allows to obtain the laps of 7" p-foralln € N*,

Proof of Theorem 4 Let f > 1. We recall that d(Ig, — B) = (d;);>1. From the formula
for the factor complexity of the corrected (— 8)-shift given in Sect. 2 (we can also see
in [3,9]), and from Lemmas 8, 9, and Remark 9, one has

n
Ly =Y (=D(d} | —d)Lpi + 1.
i=1
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In fact, L, counts the number of words of length n in the language of S_ g- Then, by
simple calculus in the open unit disk except in %

Ly, =Y (=" —dD" | L1, + Y _ 2"

n>1 n>0

Hence the result follows. O

Example 3 The following figures represent the graphs of T_55, T2 ,5 and T3 25
respectively in b5 = [— %, %) (Figs. 1, 2, 3).

We setd(lg, — B) = (d;)i>1 and we verify easily thatd; =2,d, = 1 and d3 = 1.
The laps of T* 8 correspond to the number of oblique segments in the different graphs.

Fig.1 7_ g for g =2.5

N N A AN/

o .= =Y =3 o

Fig. 2 TEﬁ for B = 2.5

-

=

Fig. 3 Tﬁﬁ for B = 2.5
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These oblique segments allow to determine the number of words of length i in the
(— 2.5)-shift language.

— Fori = 1, we have three laps (oblique segments) and three admissible words of
length 1: 0, 1 and 2 (d; = 2).

— Ifi = 2, didy = 21; there are 8 oblique lines and then 8 admissible words of
length 2: 21, 22, 10, 11, 12, 00, 01, 02.

— When i = 3, did>d3 = 211; we count twenty laps, then there exist 20 admissible
words of length 3: 211, 210, 222, 221, 102, 101, 100, 112, 111, 110, 122, 121,
002, 001, 000, 012, 011, 010, 022, 021.

4 Zeta function

The notion of dynamical zeta function was been introduced by M. Artin and B. Mazur
in 1965. We consider a diffeomorphism é on a compact space such that all of its iterates
8" have isolated fixed points. The zeta function associated to § is given by:

.ok
0 = exp | Y (56)

k>1

where # Fi x (8¥) counts the number of fixed points of 8%, by analogy with the geometric
zeta function.

In 1994, Flatto et al. (see [5]) dealt with the zeta function of the B-transformation.
They consider the application from [0, 1) to [0, 1) defined by:

Tg :x+— {Bx} for B > 1
where {x} denotes the fractional part of x. The associated zeta function is:
Pk i
= — 57
(p@) =exp | Y e (57)
k>1
where py counts the number of fixed points of TX. In other words, py is the number

of periodic admissible sequences .xix; - -- with period k. We denote by dg(x) the
expansion of x in base f.

X1 = dg(0), TH) = x = dp(x) = dy (Th)).

And then, (xx4+i)i>1 = (x;)i>1 since the expansion is unique for each number and all
sub-words of an admissible word is an expansion.

After the introduction of the (— f)-expansion in 2009 by Ito and Sadahiro in [6], in
the following sentences, we focus our study on the determination of the zeta functions
of the (— B)-transformation and the one of the (— g)-shift endowed with the shift.
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4.1 Zeta function of symbolic dynamical system defined by an exhaustive prefix
code

Let X be a symbolic dynamical system. Suppose X coded by C.

Definition 9 The code C is said exhaustive if all periodic word P can be written
uniquely as:

P=ajay - agx11x12 - X1 X2,1 " X2 ky =+ " X 1,1 * * Xp—1 ky_ D1+ - - by
where
X1 =X1,1" X1,k eC
X2 = X2,1 " X2 ky eC
Xp—| = Xp—1,1 " Xh—1kp_ eC
xp =biby---brajas - - - ag e C.

P and x1x3 - - - x5, have the same orbit.

Theorem 5 Let X be a coded system defined by an exhaustive prefix code C. Then, if
Ppn counts the number of periodic words of period n in X the associated zeta function
is defined by

_ Pn
tx(@0) =exp |t
n>1

1
= (58)
1— an1 b,t"

where b,, counts the number of words of length n in C.

Proof Observe that, in the meaning of formal power series,

1
10g—=—10g 1-— but"
1 — anl bntn ; n
2 3
1 1
— n n n
= ant + E ant + 5 ant + M
n>1 n>1 n>1
k
— 1 b, t"
=2 i 2m
k>1 n>1
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Let (8, k)n>k>1 be the sequence of positive integers such that §,, x counts the number
of periodic words of length n having the same orbit than a product of k pieces of the
exhaustive prefix code. Thus, p, = > y_; 8,.k. In the sense of formal power series,

we rewrite ), | 241" as:
S Py 3Ol Dk
n n n '
n>1 n>1 n>k
Let x1, x2, ..., x; k pieces of C with |x1x2 - - - x¢| = n and p, h two integers such that

X1x2 - Xk = (x1x2 - - ~xp)h where p is minimal, thatis x; - - - x,, denotes the smallest
word (in size) with orbit x1x; - - - Xx.

k P
k=hpand xixy -l =)l =h)lxl.

i=1 i=1

Then,

P
Suk= Y |\ D_ij| G0
j=1

“]jz,_jp)
P i
th=1 tj=n
ph=k

= Z :l_l(bil b )

(i1,ig,ip)
o
hZJ-:] ij=n
ph=k

Thus,

Z%Sn,kf"=z > ;%(bf""bip)hf"

n>k n>k (iy.ip.ip)
P
hZ,-=1 tj=n

ph=k

T e

n=k (iy.ig,~ip)

P

hzj=| ij=n
ph=k

n>k (ij.ip.ip)
P .
hy iy ij=n
ph=k

p minimal, ph = k and h Zle i; = n,theinteger p(b;, - - - bip)h counts the periodic

words resulting to the circular permutations of concatenations of k monotonic piece-
wises of the code. Then, regardless of the commutative property of the multiplication
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in R, and in the sense of formal power series,

1 1
—On, "= i1 0Ot
E n51kt kE E b bi t"

n>k n>k k
2 ij=n
j=1
but
k
5 i = (S
n>k k n>1
D ij=n
i=1
That is,
k
1
n>k n>1
Hence,
2 3
Pn n __ n 1 n 1 n
L= S5 | S| +5(Xmer) -
n>1 n>1 n>1 n>1

O

Theorem 5 reveals an important property of coded systems: the density of the set
of periodic points.

Example4 Let § be a real number, 8 > 1. Let Xg be the B-shift and (a;);>1 the
expansion of 1 in base 8. We assume that § is not a simple S-number and we set
Cg={ar-ai,keN,0=<i<a —1}.

The B-shift X g is coded by Cg which is an exhaustive prefix code. The integer ay
counts the number of pieces of length k in Cg. Thus, the zeta function associated to
Xg is given by:

1
{x B (z) = 1—2:—%2”'

n>1

4.2 Zeta function of the negative beta-transformation

We consider a real number 8 > 1. Recall that the (— 8)-transformation 7_ g denotes
the map from /g = [;3__+ﬁl’ /3+r1) into itself defined by:

Tﬂx):—ﬂx—{—ﬂx—k%]

The aim of this section is to determine the zeta function {_ g of the map 7_ . We
know that each number has a (— B)-representation in S_ g. Moreover, it is easy to see
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746 F. Nguema-Ndong

that a real x is a fixed point of TX 8 if only if the (— j)-representation of x in S_ g 1s
periodic with period dividing k.

Theorem 6 Let 8 be a real number strictly greater than 1, (d;);i>1 the (— B)-expansion
oflg = — % and {_ g the Zeta function of the (— B)-transformation. Then, in the

ball of radius % and center 0,

— if (d;i)i>1 is not periodic

14z .
1= (=D (dpoy — dn)z"

(- p(z) =

— if (di)i>1 is periodic with period k,

1+z
A=) (1= 3,1l —dD(=2)")

{_p(2) =

If we consider areal 8 > 1 and (a;);>1 the B-expansion of 1, the zeta function of
the B-shift, determined by Flatto et al. [5], is given by

LR ST

So, we remark some similarities between this zeta function and that of the (— 8)-shift
given in the previous theorem. For instance, llg is a pole of these both functions.

Lemma 10 Let B > 1 and d(lg, — B) = (d;)i>1 periodic with period h.
d(lg,—B) = -dy---dp.

Then, dj, # 0.
Proof Suppose dj, = 0. Since (dj+i)i=1 = (di)i>1
dnti dp+i
T' g =) — =y =
p\B — — B
o (=B 1 (= B)

Furthermore,
diy = |~ BT" ) ~ 1.

Since Tf;z(zﬁ) =Y dh=2+1 and ), = 0, it follows that

(=B
1 dpyi
dp1 = |dp_1 — = - —1
B ; —p
Thus, dj,—1 = dj—1 + 1. This is absurd. Then, dj, # 0. O
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As consequence, (d;—1)i>1 (with dp = 0 ) is not periodic. Then, in addition to
periodic words listed in the previous paragraphs, if d(lg, — ) is periodic with even
period, we should take account of circular permutations of (did> - - - d» p)k. For each
integer k, there are 2 p words.

Let X" p be the set of (— pB)-expansions of real numbers which belongs to /5. We
know that the correspondence X’ g Ig is one to one. In fact, each real number has
one and only one (— f8)-expansion. Moreover, X" P is invariant by the shift (all infinite
sub-word of a (— )-expansion is a (— B)-expansion). Let x € Ig and d(x, — B) =
(xi)i>1. Then, d(Tfﬂ(x), —B) = (Xign)i>1. So, if x is a fixed point of Tfﬁ, then
d(x, — pB) is periodic with period dividing n. The number of fixed points of 7" 8
equals the number of periodic orbits in X" 8 with period dividing n.

Note that in §¢ e the sequences which are not (— 8)-expansions end by (dl.*_ Dix1
(with dj = 0).

When (d;);>1 is not periodic with odd period (dl?il )i>1 = (di—1)i>11s not periodic.
In this case, the periodic orbits of S” ; belong to X" e

When (d;);>1 is periodic with odd period, (dl.*_l) i>1 1s periodic. The periodic orbits
of Siﬁ belong to Xiﬂ except (d_})i>1.

Remark 10 In Sect. 2, we distinguished in S_ g three types of admissible concatena-
tions and then three types of periodic words:

— at first, there are the concatenations in €;
— secondly, the concatenations of words of A,;4;
— and finally, there are products of words of A®, for all positive integer i.

In other hands, the periodic orbits of S_ g are circular permutations of sequences of
¢PUAL, U= AD?), if (d})i=1 not periodic. When (d;); =1 is periodic with period
2p, we add the circular pe{mutations of (d;)i>1. If the period of (d;)i>1 is 2p — 1,
(d;)i>1 does not belong to S_ g. Let P(X) be the set of periodic orbit of X. One has:

eZyaAL, v (U ADL if (d})i=1 is not periodic
P(S',}g) _ i>1
¢ty Az, U (U ADZ) U{(df)i=1)  if (dF)i=1 is periodic
i>1
(59)
eZyat, vl yahz if (d;)i>1 is not periodic
P(X" ) =
e2uAZ, Ul JUADZ) U{(d)iz1} if (d;)is1 is periodic
i>1
(60)

Let p, be number of fixed points of ¢ in S_ g and g, the number of fixed points of
T" PE according to the previous remark, p, = g, if (d;);>1 is not periodic with odd
period. If (d;);>1 is periodic with odd period
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Pn> if2p—1 [n,2p jn,
 pnt2p—1, if2p—1in,2p fn, 6D
" pa—2p, if2p —1 fn,2p|n,
pn—1, if 2p — 1|n, 2p|n.

According to (61), when (d;). 1 is periodic with odd period, we have the following
relation between the zeta fonction of 7 g (denoted by ¢ g) and that of S_ g (denoted

by &5 )

(1= Ne_p() = (1= 1255 (1), (62)
We use the fact that
4dn .n Pn n L ook 1 Q2p-Dk 1 2pQ2p—Dk
D D D I AUED DR Py e
n>1 n n>1 n k>1 k k>1 k =1 2p2p — Dk
2p—1jk 2plk
(63)
and : | |
L ap@p—Dk _ Z Loopk Z_ @p—1)k
Z t = t t . (64)
k>1 2p2p — Dk k>1 k k>1 k
2p—1lk 2plk

Proof of Theorem 6 The sets €%, AZ,  and A2 are coded by €, A,qq and A® respec-
tively. Let g, pe n. po.n and p; , count the number of fixed points 75, " in ¢z, Afdd
and AOZ respectively. If (d7)i>1 is not periodic,

qn = pe.n + pon + Zpi,n; (65)

i>1

if (d;);>1 is periodic with period 2p,

pen + pon + Z Pi.n if 2p fn
i>1
qn = - : (66)
! pe.n+ pon + Z Pin +2p if2p|n.
i>1

If (d;)i>1 is periodic with period odd 2p — 1,

Pe.n + Po,n + Z Pi.n 1f2p -1 /{/n
i>1
Gn = = . (67)
" pen+pon+ Y pPin+2p—1 if2p—1n.
i>1

Thus, ¢ g is product of elementary Zeta functions of ¢z, A%d d ADZ and also
{dy-- -dk}Z (if (d;);i>1 is periodic with period k ). From Theorem 5,

1 1 |
r_p(2) = (68)
b =% e I=3 2 [ T S

i>1
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if (d;);i>1 is not periodic; or

£ p@) ! ! . I,
— ,5 ) =

P2 ree d 1= Dren, M \joi 1= Lrean 2 | 1 =2
if (d;);i>1 is periodic with period k. We conclude thanks to (42). o

From (59), if (d;);>1 is periodic with odd period 2p — 1,

I 1 1 1—[ 1 1
< (2) = )
S5 1- er@z‘xl 1- ZXGAodd . i>1 - ZxEA(i) 21— 2%
(70)

With (70) and (69), we find again the relation given in (62).

The previous theorem can be proved also just using the Lap-counting function.
Indeed, from the Eq. (42) and the formula of the factor complexity, the coefficients

: : 1 1 1

of the power series expansions of e T Toes and = S for all

i, count the fixed points of iterates of 7_ g except the orbit of the left end point of /g
when its expansion is periodic.
Furthermore, (68) and (69) provide us an interesting information on the influence

of gaps in the interval on the (— B)-transformation zeta function for 8 < # They
correspond to factors in the denominator of the zeta function.

Remark 11 From Sect. 3 and Theorem 6, we have the following relation between the
zeta-function of the (— f)-transformation and its lap-counting function:

(@) =10~ zz)Lr_ﬁ if d(lg, — B) is non-periodic
(1-2¢p) =1 - zz)LLﬁ if d(lg, — p) is periodic with period k.

Example 5 Let yg be the goldenratio: yy = HT‘E, d(ly,, —yo) = 10. The zeta function
is given by two types of periodic words: the sequences of zero and words x1x2 - - - X,
such that x; € {10*",n € N}. [0] = 1, |10%*| = 2n + 1. Moreover, the (— yp)-shift
and the (— yp)-transformation have the same zeta function, since d(l,,, — yo) is not
periodic. Thus

1

(1 — zlon (1 _ anoz\]ozn‘)
R
T l-z-=2

é‘— Y0 (Z) =

Moreover, } o1 (=D)"(dy—1 — dn)Z" =z + z2. Then,

LT‘"’(Z) - (1-2)(1—-z-23"
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We verify easily that ¢, = (1 —z%)L7_,, .

The previous remark allows to observe that the relation between the zeta function of
T_ g and its lap-counting function differs a little bit from that of the B-transformation
and the associated lap-counting function. Indeed, denote by (g and L7, the zeta
function and the lap-counting function of the S-transformation, according to [5],
¢p = (1 — z) Ly, if B is not simple B-number.

4.3 Zeta-function of the negative beta-shift

Consider a real number 8 > 1. We have seen that when d(lg, — B) is not periodic
with odd period, (di"L1 )i>1 is not periodic and for a periodic orbit X1x3 -+ - X,

didy - -+ < XpXp41 - Xpxp - Xk—1 < 0djdy---Vk,1 <k <n.

In other words, all periodic word is a (— B)-expansion. And then, S_ g and 7_ g have
the same zeta function.

However, if (d;);>1 is periodic with odd period p, 0d{dj - - - is periodic too (with
period p + 1). But, it is not an expansion in base — 8. Let p, counts the number of
fixed points of T” p and Pn the number of periodic words with period dividing n in
S_ . We have the following result

= Pn iftp+1 jn
"T et ifp+ 1.

p + 1 counts the circular permutations of the sequences dj ---dp—1(dp — 1)0. We
denote by c_ g the zeta function of the (— B)-shift. Then,

(1 — 2P p(2) = ¢ p(2). (71)

In short, Vz € B(0, %),

(1—zP*Ye_g(z)  if d(g,—B)=d;---d,, podd
t-p2) otherwise.

{_p(2) = {

5 Conclusion

Finally, we have seen that for a real number § > 1, the associated (— f8)-shift is

coded if only if 8 > 1+T‘6 and the (— B)-expansion of Ig = — % is not periodic
with odd period. The non-coded case is due to the existence of intransitive words
in the language of the system. In the periodic case with odd period, shall we say
d(lg,—B) =di---dap—1,thewordd, - - - dyp_1 isintransitive. For y, > B, upupuuy
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is an intransitive word, with k < n — 1, where d(l,,,, — v») = uplty_1, ux = ¢>k(1),
¢ (1) =100, and ¢ (0) = 1.

Moreover, the zeta-functions of the (— §)- shift and 8- shift (determined by Flatto

et al. [5]) have some similarities: % is a pole for these both functions.

However, if we consider S_ g as (— B)-shift, S_ g is coded if only if B is greater

than or equal to the golden ratio yp. But, if f less than the golden ratio, the systems
S_p or S_ g contains coded sub-shift with maximal entropy log .
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