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Abstract
We introduce the notion of Lipschitz p-compact operators. We show that they can
be seen as a natural extension of the linear p-compact operators of Sinha and Karn
and we transfer some properties of the linear case into the Lipschitz setting. Also, we
introduce the notions of Lipschitz-free p-compact operators and Lipschitz locally p-
compact operators. We compare all these three notions and show different properties.
Finally, we exhibit examples to show that these three notions are different.

Keywords Lipschitz operators · Lipschitz p-compact operators · Lipschitz-free
p-compact mappings · Locally p-compact mappings
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1 Introduction

Since the work of Farmer and Johnson [8], where the notion of p-summing Lipschitz
functions was introduced, there was an increasing interest in the study of different

Communicated by G. Teschl.

B Pablo Turco
paturco@dm.uba.ar

Dahmane Achour
dachourdz@yahoo.fr

Elhadj Dahia
hajdahia@gmail.com

1 Laboratoire d’Analyse Fonctionnelle et Géométrie des Espaces, University of M’sila,
28000 M’sila, Algeria

2 Ecole Normale Supérieure de Bousaada, 28001 Bousaada, Algeria

3 IMAS-UBA-CONICET, CONICET and Universidad de Buenos Aires, Pab I. Facultad de Ciencias
Exactas y Naturales, UBA, 1428 Buenos Aires, Argentina

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-018-1252-1&domain=pdf
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classes of Lipschitz functions between (pointed) metric spaces and Banach spaces.
Most of them, can be seen as a generalization of different linear operators ideals
between Banach spaces. Recently, the first author, Rueda et al. [1] and, independently,
Cabrera–Padilla et al. [4] introduced the notion of Lipschitz operator ideals in the
same spirit of linear operator ideals. It turns out that almost all of the new classes of
Lipschitz mappings studied fit in the framework of Lipschitz operator ideals.

On the other hand, in the theory of linear operator ideals, some classes are charac-
terized by the nature of their image on some neighborhoods of the origin of a Banach
space. For example the classes of compact and weakly compact linear operators. In
2002, Sinha and Karn [21] introduced the p-compact sets in Banach spaces, which
can be seen as a refinement of the notion of compact sets. Associated with the concept
of p-compact sets, they define and begin the study of p-compact linear operators. A
linear operator between Banach spaces is p-compact if maps a neighborhood of the
origin into a relatively p-compact set. The p-compact sets and operators deserved the
attention of many authors in the last years, not only in the linear case but also in the
non-linear case.

The aim of this work is to study Lipschitz operators between pointed metric spaces
and Banach spaces which are determined by p-compact sets. For this, we introduce
three different notions of Lipschitz operators related with p-compact sets: the Lip-
schitz p-compact operators, the Lipschitz free-p-compact operators, and the locally
p-compact Lipschitz operators.

The article is organized as follows. After fixing some notation and establishing
the basics of the theory of Lipschitz operators and p-compact sets that we will use
throughout the manuscript, in Sect. 3 we focus in the study of Lipschitz p-compact
operators. We show that this type of operators fits in the theory of composition Banach
Lipschitz operator ideal. This allows us to extend to the Lipschitz mappings setting
the majority of the results obtained in the linear case. For instance, we show that the
Lipschitz p-compact operators are a regular, but not an injective Banach Lipschitz
operator ideal. Also, from the factorization of linear p-compact operators, we get a
suitable factorization of the Lipschitz p-compact operators. Section 4 is devoted to
the Lipschitz free-p-compact operators and the locally p-compact Lipschitz operators.
We compare all these three notions which are, in particular, different.

2 Notation and preliminaries

As usual, X and Y will be pointed metric spaces with a base point denoted by 0 and
metric will be denoted by d. For x0 ∈ X and ε > 0, we denote by Bε(x0) the open ball
centered at x0 with radius ε, meanwhile BX denotes the closure of the ball centered
at 0 with radius 1. Also, E and F will stand for Banach spaces over the same field K

(either R or C) with dual spaces E∗ and F∗. A Banach space E will be considered as
pointed metric spaces with distinguished point 0 and distance d(x, x ′) = ‖x − x ′‖.
With Lip0(X; Y ) we denote the set of all Lipschitz mappings from X to Y such that
maps 0 to 0. In particular, Lip0(X , E) is the Banach space of all Lipschitz mappings
T from X to E that vanish at 0, under the Lipschitz norm
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Lipschitz p-compact mappings 597

Lip (T ) = inf{C > 0 : ∥∥T (x) − T (x ′)
∥
∥ ≤ Cd(x, x ′); ∀x, x ′ ∈ X}.

When E = K, Lip0(X , K) is denoted by X# and it is called the Lipschitz dual of
X . The space of all linear operators from E to F is denoted by L(E, F) and it is a
Banach space with the usual supremum norm. It is clear that L(E, F) is a subspace of
Lip0(E, F) and, in particular, E∗ is a subspace of E#. One of the main tools that we
will use is the Lipschitz-free Banach space of a metric space X , F(X) (also known as
the Arens–Ells space). For x ∈ X , denote by δx the function δx : X# −→ K defined as

δx ( f ) = f (x), f ∈ X#.

Then F(X) is the closed linear span of {δx , x ∈ X} in
(

X#
)∗
. The Dirac map

δX : X → F(X) is defined as δX (x)( f ) = δx ( f ) for all x ∈ X and f ∈ X#. In
[10] or [11], it is proved that F(R) is isometric to L1(R). We summarize some basic
properties concerning Lipschitz-free Banach spaces in the following lemma. This can
be found for instance in [14]. Will use it without further mentioning.

Lemma 2.1 Let X , Y be pointed metric spaces and E be a Banach space.

(1) The dual space of F(X) is isometrically isomorphic to X# through the mapping
QX : X# → F(X)∗ given by

QX ( f )(γ ) = γ ( f ), f ∈ X#, γ ∈ F(X).

(2) For any Lipschitz mapping T ∈ Lip0(X ,Y ) there exists a unique linear map
T̂ : F(X) → F(Y ) such that T̂ ◦ δX = δY ◦ T . That is, the following diagram
commutes

X
T

δX

Y

δY

F(X)
T̂ F(Y ).

Moreover, ‖T̂ ‖ = Lip(T ).
(3) There exists a quotient map βE : F(E) → E such that βE ◦ δE = I dE .
(4) For any Lipschitz operator T ∈ Lip0(X , E) there exists a unique linear map

TL : F(X) −→ E such that T = TL ◦ δX .That is, the following diagram
commutes

X T

δX

E

F(X).

TL

Moreover, ‖TL‖ = Lip(T ).
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In particular, from (2) and (3) we can deduce (4) with TL = βE T̂ . The map
βE : F(E) → E is called the barycenter map. For T ∈ Lip0(X , E), we will
consider the Lipschitz adjoint (or dual) of T , defined by Sawashima [20]. That is,
T # ∈ L(E#, X#) is the linear operator given by T #(g) = g ◦ T for all g ∈ E#.
The restriction of T # to E∗ is called the Lipschitz transpose map of T and is denoted
here by T t . Is clear that QX ◦ T t = T ∗

L , where T
∗
L denotes the transpose map of the

linearization of T and also that T̂ ∗ ◦ QY = QX ◦ T #.
For p ≥ 1, and p∗ the conjugate index of p (i.e. 1/p + 1/p∗ = 1 with the

convention 1/∞ = 0), a sequence (xi )∞i=1 in E is p-summable if

∥
∥(xi )

∞
i=1

∥
∥
p =

( ∞
∑

i=1

‖xi‖p

) 1
p

< ∞.

We denote by �p(E) the space of all p-summable sequences in E . This space is a
Banach space if we endow it with the norm ‖·‖p. Also, c0(E) and �∞(E) are the
spaces of null sequences and bounded sequences of E . Both spaces, endowed with the
supremum norm are Banach spaces.

For 1 ≤ p < ∞, p-compact sets and linear operators were introduced by Sinha and
Karn [21] and deeply studied in [2,6,9,15,18] among others. Recall that the p-convex
hull of a sequence (xi )∞i=1

∈ �p (E) is defined by

p − conv
{

(xi )
∞
i=1

} :=
{ ∞
∑

i=1

ai xi : (ai )
∞
i=1 ∈ B�p∗

}

⊂ E,

where �p∗ = c0 if p = 1. Note that ∞-conv{(xi )∞i=1
} = �({(xi )∞i=1

}), the closed
absolutely convex hull of {(xi )∞i=1

}. A set K ⊂ E is said to be relatively p-compact
if there exists a sequence (xi )∞i=1

∈ �p(E) such that K ⊂ p−conv{(xi )∞i=1
}. Such a

sequence is not unique, so Lassalle and the third author in [15] defined the measure
of the size of the p-compact set K as

mp(K , E) = inf
{∥
∥(xi )

∞
i=1

∥
∥
p : K ⊂ p-conv

{

(xi )
∞
i=1

}}

and mp(K , E) = ∞ if K is not p-compact. When the context K ⊂ E is understood,
we simply write mp(K ) instead of mp(K , E). From Grothendieck’s classical charac-
terization of compact sets (see [12, Chapter I, p. 112]), we have that a set K ⊂ E
is relatively compact if and only if there exists a sequence (xi )∞i=1 ∈ c0(E) such that
K ⊂ ∞-conv

{

(xi )∞i=1

}

and also m∞(K , E) = supx∈K ‖x‖.
A linear operator T ∈ L(E, F) is said to be p-compact if T (BE ) is a relatively

p-compact set. The space of all p-compact linear operators from E to F is denoted
by Kp(E, F) and it becomes a Banach space if we endow it with the norm

kp(T ) = mp(T (BE )).
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Lipschitz p-compact mappings 599

We refer to the reader to Weaver’s book [22] for the basics of Lipschitz operators
and to the book of Pietsch [16] for linear operator ideals.

3 The composition ideal of Lipschitz p-compact operators

We start with the Lipschitz p-compact operators which, as in the linear case, can be
seen as a refinement of Lipschitz compact operators. Recall that, for a pointed metric
space X , a Banach space E and T ∈ Lip0(X , E), Jiménez–Vargas, Sepulcre and
Villegas–Vallecillos defined in [13] the Lipschitz image of T as

ImLip(T ) =
{
T (x) − T (y)

d(x, y)
: x, y ∈ X , x = y

}

.

Definition 3.1 Let X be a pointed metric space, E a Banach space and let p ≥ 1.
A Lipschitz operator T ∈ Lip0(X , E) is Lipschitz p-compact if its Lipschitz image
is relatively p-compact. We denote by KL

p (X , E) the set of all Lipschitz p-compact
mappings from X to E . Moreover, if T ∈ KL

p (X , E), then we set

kLp (T ) = mp(ImLip(T )).

If p = ∞, then KL∞(X , E) = Lip0K (X , E), the space of Lipschitz compact
operators defined and studied in [13].

The Lipschitz p-compact operators can be seen as an extension of the linear p-
compact operators. Indeed, for E and F Banach spaces, for any linear operator
T : E → F we have that the absolutely convex hull of ImLip(T ) coincides with
T (BE ). Then, since a set is p-compact if and only if its absolutely convex hull is
also p-compact with the same measure (see the bottom of [15, p. 1205]), we have the
following result.

Proposition 3.2 Let E and F be Banach spaces. Then a linear operator T ∈ L(E, F)

is p-compact if and only if it is Lipschitz p-compact. Moreover, we have

kLp (T ) = kp(T ).

It is well-known that, if 1 ≤ p ≤ q ≤ ∞, then every relatively p-compact set is
relatively q-compact. Therefore, we immediately get the following inclusion results.

Proposition 3.3 Let 1 ≤ p ≤ q ≤ ∞, X be a pointed metric and E be a Banach
space. Then the Lipschitz p-compact operators are q -compact, and kLq (T ) ≤ kLp (T )

for any T ∈ KL
p (X , E). In particular, the Lipschitz p-compact operators are Lipschitz

compact.

Mimicking the proof of [13, Proposition 2.1], we have the following result.

Theorem 3.4 Let X be a pointed metric space, E a Banach space and let p ≥ 1.
An operator T ∈ Lip0(X , E) is Lipschitz p-compact if and only if its linearization
TL : F(X) → E is linear p-compact. Moreover, we have

123



600 D. Achour et al.

kLp (T ) = kp(TL). (1)

Proof In the proof of [13, Proposition 2.1] it is shown that, for T ∈ Lip0(X , E),

ImLip(T ) ⊂ TL(BF(X)) ⊂ �
(

ImLip(T )
)

. (2)

Then, by [15, p. 1205], we get that

mp(ImLip(T )) = mp(TL(BF(X))) = mp(�
(

ImLip(T )
)

),

and the result follows. ��
Recently, the notion of Banach Lipschitz operator ideal was introduced by the first

author, Rueda et al. [1] and, independently, Cabrera–Padilla et al. [4] (this last under the
name of generic Banach Lipschitz operator ideal). This can be seen as an extension of
the linear Banach operator ideal. A Lipschitz operator ideal ILip is a subclass of Lip0
such that for every pointed metric space X and every Banach space E the components

ILip(X , E) := Lip0(X , E) ∩ ILip

satisfy

(i) ILip(X , E) is a linear subspace of Lip0(X , E).
(ii) vg ∈ ILip(X , E) for v ∈ E and g ∈ X#.
(iii) The ideal property: if S ∈ Lip0(Y , X), T ∈ ILip(X , E) and w ∈ L(E, F), then

the composition wT S is in ILip(Y , F).

A Lipschitz operator ideal ILip is a normed (Banach) Lipschitz operator ideal if there
is ‖.‖ILip

: ILip −→ [0,+∞[ that satisfies
(i’) For every pointed metric space X and every Banach space E , the pair

(ILip(X , E), ‖.‖ILip
) is a normed (Banach) space and Lip(T ) ≤ ‖T ‖ILip for

all T ∈ ILip(X , E).
(ii’) ‖I dK : K −→ K, I dK(λ) = λ‖ILip

= 1.
(iii’) If S ∈ Lip0(Y , X), T ∈ ILip(X , E) and w ∈ L(E, F), then ‖wT S‖ILip

≤
Lip(S) ‖T ‖ILip

‖w‖.
Following [1, Definition 3.1], there is a way to construct a (Banach) Lipschitz

operator ideal from a (Banach) linear operator ideal, called composition method. Let
A be a (Banach) linear operator ideal. A Lipschitz mapping T ∈ Lip0(X , E) belongs
to the composition Lipschitz idealA◦Lip0 if there exists a Banach space F, aLipschitz
operator S ∈ Lip0(X , F) and a linear operator u ∈ A(F, E) such that T = u ◦ S. If
(A, ‖.‖A) is a Banach operator ideal we write

‖T ‖A◦Lip0 = inf ‖u‖A Lip(S),

where the infimum is taken over all u and S as above.
In [1], the authors establish a criterion to decide whenever a Lipschitz operator

ideal is of composition or not.
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Lipschitz p-compact mappings 601

Proposition 3.5 [1, Proposition 3.2] Let X be a pointed metric space, E a Banach
space and A an operator ideal. A Lipschitz operator T ∈ Lip0(X , E) belongs to
A ◦ Lip0(X , E) if and only if its linearization TL belongs to A(F(X), E).

Furthermore, if (A, ‖·‖A) is a Banach operator ideal then (A◦Lip0, ‖·‖A◦Lip0) is
Banach Lipschitz operator ideal with

‖T ‖A◦Lip0 = ‖TL‖A .

By Theorem 3.4 and the above criterion, we have the following.

Proposition 3.6 The classKL
p is the Banach Lipschitz operator ideal generated by the

composition method from the Banach operator ideal Kp. In other words

KL
p (X , E) = Kp ◦ Lip0(X , E) isometrically

for every pointed metric space X and every Banach space E .

At the light of Propositions 3.2 and 3.6, the ideal of Lipschitz p-compact operators
can be seen as an extension of the ideal of p-compact linear operators. Moreover, the
nature of this extension allow us to transfer some properties of the ideal of p-compact
linear operators to the Lipschitz case, such as the regularity and the injectivity. Recall
that, for normed Lipschitz operator ideal ILip it is said to be injective if for every
linear isometric embedding I : E ↪→ F and every T ∈ Lip0(X , E) it follows
from I ◦ T ∈ ILip(X , F) that T ∈ ILip(X , E) and ‖T ‖ILip

= ‖IE ◦ T ‖ILip
where

IE : E ↪→ �∞(BE∗) is the natural inclusion (see [1]). On the other hand, ILip is said
to be regular if for every T ∈ Lip0(X , E) we have T ∈ ILip(X , E) if and only if
JE ◦ T ∈ ILip(X , E∗∗) and ‖T ‖ILip

= ‖JE ◦ T ‖ILip
, where JE : E ↪→ E∗∗ is

the canonical embedding (see [4]). The next proposition follows directly from the
definitions and we omit the proof.

Proposition 3.7 The operator ideal I is injective or regular if and only if the corre-
sponding composition Lipschitz ideals I ◦ Lip0 is.

As a consequence of the above and the regularity of the ideal of p-compact lin-
ear operators [9, Theorem 2.5] or [18, Theorem 5] and the non injectivity of it [9,
Proposition 3.4], we obtain the following.

Proposition 3.8 Let 1 ≤ p < ∞. The Banach Lipschitz operator ideal of p-compact
operators is regular but not injective.

The characterization of Lipschitz p-compact operators obtained in Theorem 3.4
allow us to translate some known properties of the Banach operator ideal Kp to the
Banach Lipschitz operator ideal KL

p .
From the factorization of p-compact operators obtained in [9, Proposition 2.9], we

get a factorization of the p-compact Lipschitz operators through a p-compact linear
operator from a quotient of �p∗ to a separable space.
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602 D. Achour et al.

Proposition 3.9 Let X be a pointed metric space and E a Banach space. For 1 ≤
p < ∞, a mapping T ∈ Lip0(X , E) is Lipschitz p-compact if and only if there
exist a closed subspace M ⊂ �p∗ , a separable Banach space Z, a linear p-compact
operator u ∈ Kp(�p∗/M, Z), a Lipschitz compact mapping S ∈ Lip0K(X , �p∗/M)

and a linear compact operator w ∈ K(Z , E) such that T = w ◦ u ◦ S.
Moreover, kLp (T ) = inf{Lip(S)kp(u)‖w‖}, where the infimum is taken over all

factorizations as above.

Proof If a Lipschitz operator T ∈ KL
p (X , E) has such factorization, by Proposi-

tion 3.6, the mapping u ◦ S is Lipschitz p-compact. Consequently, T = w ◦ u ◦ S
is also Lipschitz p-compact by the ideal property. For the converse, suppose that
T ∈ KL

p (X , E). By Theorem 3.4, its linearization TL belongs to Kp(F(X), E) with
kLp (T ) = kp(TL). Applying [9, Proposition 2.9] to the operator TL , for ε > 0, we
may find a closed subspace M ⊂ �p∗, a separable Banach space Z , linear oper-
ators u ∈ Kp(�p∗/M, Z), w ∈ K(Z , E) and w̃ ∈ K(F(X), �p∗/M) such that
TL = w ◦ t ◦ w̃, and ‖w‖kp(u)‖w̃‖ ≤ kp(TL) + ε. Denoting S = w̃ ◦ δX , we
get that S ∈ Lip0K(X , �p∗/M) with Lip0K(S) ≤ ‖w̃‖ and the result follows. ��

Cabrera-Padilla et al. introduce the maximal hull of a Lipschitz Banach operator
ideal by extending that of the linear case (see [7, Definition 17.2] for the definition).
Roughly speaking, for a Lipschitz Banach operator ideal ILip, its maximal hull Imax

Lip is
thebiggestBanachLipschitz operator ideal that satisfiesILip(X0; N ) = Imax

Lip (X0; N )

isometrically, for every finite metric space X0 and any finite dimensional space N (see
[4, Definition 2.5]). To characterize the maximal hull ofKL

p , we appeal to the Banach
Lipschitz operator idealDL

st,p of strongly Lipschitz p-summing mappings, introduced
by the first author, Yahi et al. in [23]. By [1, Example 3.4] we haveDL

st,p = Dp ◦Lip0,
where Dp stands for the Banach operator ideal of strongly p-summing operators
introduced by Cohen in [5]. The p-compact and strongly p-summing operators ideals
are related as Kmax

p = Dp (see [9, Corollary 3.6] or [18, Theorem 12]). The same
relation can be extended to the Lipschitz case and it is a consequence of the following
theorem.

Theorem 3.10 Let A and B Banach operator ideals such that Amax = B. Then (A ◦
Lip0)max = B ◦ Lip0 isometrically.

Proof Since B is a maximal Banach operator ideal, using the Representation Theorem
for maximal operators ideals [7, Sect. 17.5], combining [19, Corollary 3.3] and [4,
Corollary 5.2], we get that B ◦ Lip0 is a maximal Lipschitz Banach operator ideal.
To conclude the proof, as a consequence of [4, Lemma 2.4], it is enough to see that
for every finite pointed metric space X0 and every finite-dimensional space E0, A ◦
Lipo(X0, E0) = B ◦ Lip0(X0, E0) isometrically. Now, if X0 is a finite pointed metric
space, then F(X0) is a finite dimensional space. If E0 is a finite dimensional space,
then

A(F(X0), E0) = B(F(X0), E0)

123



Lipschitz p-compact mappings 603

isometrically. Thus, by Theorem 3.4 and [23, Proposition 3.2], for T ∈ Lip0(X0, E0)

we have the equalities

‖T ‖A◦Lip0 = ‖TL‖A = ‖TL‖B = ‖T ‖B◦Lip0 ,

and the proof conclude. ��
Theorem 3.11 For 1 ≤ p < ∞, (KL

p )
max = DL

st,p isometrically.

To finish this section, we give a characterization of the Lipschitz p-compact opera-
tors in terms of its transpose. For this, we appeal again to some results obtained in the
linear case. Before proceeding, recall that following [17], an operator u ∈ L(E, F) is
quasi p-nuclear if and only if there is a sequence (x∗

i )∞i=1 ∈ �p∗(E∗) such that

‖u(x)‖ ≤
( ∞
∑

i=1

∣
∣
〈

x, x∗
i

〉∣
∣
p

) 1
p

, (3)

for all x ∈ X . The Banach ideal of such operators is denoted by QNp with the ideal
norm

νQ
p (u) = inf

{∥
∥(x∗

i )∞i=1

∥
∥
p : (x∗

i )∞i=1 satisfying(3)
}

.

Delgado et al. showed in [6, Proposition 3.8] that a linear operator is p-compact if and
only if its adjoint is quasi p-nuclear. The isometry was obtained in [9, Corollary 2.7]
and in [18, Theorem 6] independently. The next proposition extend these results for
the Lipschitz case.

Proposition 3.12 Let X be a pointed metric space, E a Banach space. For 1 ≤ p <

∞, a mapping T ∈ Lip0(X , E) is Lipschitz p-compact if and only if its Lipschitz
transpose T t : E∗ −→ X# is a quasi p-nuclear operator. Moreover, in this case,
κL
p (T ) = ν

Q
p (T t ).

Proof ByTheorem3.4we know that T belongs toKL
p (X , E) if and only if its lineariza-

tion TL : F(X) −→ E is linear p-compact with kp(TL) = kLp (T ). By [6, Proposition
3.8], the operator T ∗

L : E∗ → F(X)∗ is quasi p-nuclear operator and, by [9, Corollary
2.7] or [18, Theorem 6], νQ

p (T ∗
L ) = kp(TL). On the other hand, as it was noticed after

Lemma 2.1 we have the equality T ∗
L = QX ◦ T t where QX : X# −→ F(X)∗ is the

canonical isometric isomorphism. It follows that T ∗
L is quasi p-nuclear if and only if

T t = Q−1
X ◦ T ∗

L ∈ QNp(E∗, X#) with ν
Q
p (T t ) = ν

Q
p (T ∗

L ). The result follows. ��
Proposition 3.13 Let X and Z be pointed metric spaces and E a Banach space. Let
T ∈ Lip0(X , E) and S ∈ Lip0(Z , E∗). For 1 ≤ p < ∞, if TL is p-summing and S
is Lipschitz compact; then T t ◦ S is Lipschitz p-compact with

kLp (T t ◦ S) ≤ πp(TL)Lip0(S)
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604 D. Achour et al.

Proof Take T ∈ Lip0(X , E) such that TL is a p-summing operator and S ∈
Lip0(Z , E∗) a Lipschitz compact operator. By [13, Proposition 2.1], the lineariza-
tion of S, SL , is a compact linear operator. Consequently, by [6, Proposition 3.13] the
linear mapping T ∗

L ◦ SL = QX ◦ T t ◦ SL is linear p-compact with kp
(

T ∗
L ◦ SL

) ≤
πp(TL) ‖SL‖. Then T t ◦ SL is linear p-compact which, by Proposition 3.2 is Lipschitz
p-compact with kLp (T t ◦ S) = kp(T t ◦ S). Furthermore,

kLp (T t ◦ S) = kp(Q
−1
X ◦ T ∗

L ◦ SL) ≤ πp(TL) ‖SL‖ = πp(TL)Lip0(S),

concluding the proof. ��

4 Lipschitz-free and locally p-compact mappings

This section is devoted to another two classes of Lipschitz mappings related with
p-compact sets. The first class we discuss is motivated by notion of Lipschitz-free
compact operators, recently introduced by Cabrera–Padilla and Jiménez–Vargas in
[3]. Note that, in particular, this class can be defined for Lipschitz operators between
metric spaces.

Definition 4.1 Let X and Y be pointed metric spaces and p ≥ 1. A Lipschitz operator
T ∈ Lip0(X ,Y ) is called Lipschitz-free p-compact if the mapping δY ◦ T : X →
F(Y ) is a Lipschitz p-compact operator. The set of all Lipschitz-free p-compact
operators between X and Y will be denoted by FKL

p(X ,Y ).

Note that the Lipschitz-free ∞-compact mappings coincide with the Lipschitz-free
compact operators of Cabrera–Padilla and Jiménez–Vargas. The first result that we
present of the Lipschitz-free p-compact operators can be seen as an extension of [3,
Theorem 2.3]. We sketch the proof.

Theorem 4.2 Let X and Y be pointed metric spaces and T ∈ Lip0(X ,Y ). For p ≥ 1,
the following are equivalent

(1) T is Lipschitz-free p-compact.
(2) The operator T̂ : F(X) → F(Y ) is p-compact.
(3) The operator T # : Y # → X# is quasi p-nuclear.

Proof Applying Theorem 3.4, we get that T is Lipschitz-free p-compact if and only if
(δY ◦ T )L : F(X) → F(Y ) is a p-compact operator. Then, the equivalence between
(1) and (2) follows by noticing that the operator (δY ◦T )L coincides with the operator
T̂ . That (2) is equivalent to (3) follows since a linear operator is p-compact if and
only if its transpose is quasi p-nuclear [6, Proposition 3.8] and from the equality
T̂ ∗ = QX ◦ T # ◦ (QY )−1 (for this last equality, see the remarks after Lemma 2.1). ��

The other class that we will deal in this section is the class of Lipschitz locally
p-compact operators, whose definition arise in a natural way.
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Definition 4.3 Let X be a pointed metric space, E a Banach space and let p ≥ 1. A
Lipschitz operator T ∈ Lip0(X , E) is called Lipschitz locally p-compact at x0 ∈ X
if there exists ε > 0 such that T (Bε(x0)) is a relatively p-compact set in E . The
operator T is said to be Lipschitz locally p-compact if it is locally p-compact at x0 for
every x0 ∈ X . We denote by KLoc

p (X , E) the set of all locally Lipschitz p-compact
operators.

Remark 4.4 Note that a linear operator between Banach spaces is p-compact if and
only if maps bounded sets into relatively p-compact sets. Then, every linear operator
is p-compact if and only if is Lipschitz locally p-compact.

Remark 4.5 Since every relatively p-compact set is q-compact whenever 1 ≤ p ≤
q ≤ ∞, we have that FKL

p ⊂ FKL
q and KLoc

p ⊂ KLoc
q .

The next result describes the relationship between the three classes of Lipschitz
operators that we introduced.

Proposition 4.6 Let p ≥ 1. Then FKL
p ⊂ KL

p ⊂ KLoc
p and these inclusions are strict.

Proof Fix a pointed metric space X and a Banach space E and take T ∈ FKL
p(X; E).

Then δE ◦ T is a Lipschitz p-compact operator. That is, the Lipschitz image of δE ◦ T
is a relatively p-compact set in F(E). As in the proof of [3, Proposition 2.2], we have
the equality ImLip(T ) = βE (ImLip(δE ◦ T )), where βE is the barycenter map. Thus
ImLip(T ) is a relatively p-compact set in E and, in particular, T is a Lipschitz p-
compact operator. Then,we showed thatFKL

p ⊂ KL
p . To see that this inclusion is strict,

by Proposition 3.6 the Lipschitz p-compact operators are a Lipschitz Banach ideal. In
particular, the identity map of R, I dR, is a Lipschitz p-compact operator. However,
if I dR were Lipschitz-free p-compact, by Theorem 4.2, Î dR ∈ Kp(F(R),F(R)).

Since, by [10] or [11], F(R) = L1 and Î dR = I dL1(R), we get that the identity map
of an infinite dimensional space is a compact operator, which can not occur.

For the other inclusion, if S ∈ KL
p (X; E), then its linearization is a p-compact

operator. Then, for any x ∈ X and any ε > 0, we have T (Bε(x)) = TL(δX (Bε(x))).
Since δX (Bε(x)) is a bounded set ofF(X), we conclude that T (Bε(x)) is a p-compact
set. Thus KL

p ⊂ KLoc
p . The next example show that this inclusion is strict. ��

Example 4.7 There exists f ∈ Lip0(R, �1) which is Lipschitz locally 1-compact
which is not Lipschitz compact. As a consequence, f is Lipschitz locally p-compact
but not Lipschitz p-compact for all 1 ≤ p < ∞.

Proof Consider the function f : R → �1

f (t) =
⎧

⎨

⎩

0 if t ≤ 0
sin(t)en if t ∈ [2(n − 1)π, (2n − 1)π [ for some n ∈ N

∗
0 if t ∈ [(2n − 1)π, 2nπ [ for some n ∈ N

∗

where (en)∞n=1 stands for unit vector basis of �1. First we check that f ∈ Lip0(R, �1)

with Lip( f ) ≤ 2/π . Clearly f (0) = 0. Now, take t0 and t1 in R with t0 = t1.
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If t0 ≤ 0 or t0 ∈ [(2n − 1)π, 2nπ ] for some n ∈ N
∗ and t1 ≤ 0 or t1 ∈ [(2m −

1)π, 2mπ ] for some m ∈ N
∗, then

‖ f (t0) − f (t1)‖
|t0 − t1| = 0.

Now suppose that t0 ∈ [2(n − 1)π, (2n − 1)π ] for some m ∈ N
∗ and t1 ∈ [2(m −

1)π, (2m − 1)π ] for some m ∈ N
∗.

If n = m, then

‖ f (t0) − f (t1)‖
|t0 − t1| = ‖(sin(t0) − sin(t1))en‖

|t0 − t1| = | sin(t0) − sin(t1)|
|t0 − t1| ≤ 1.

If n = m, note that π ≤ |t0 − t1|. Thus,
‖ f (t0) − f (t1)‖

|t0 − t1| = ‖ sin(t0)en − sin(t1)em‖
|t0 − t1| ≤ 2

|t0 − t1| ≤ 2

π
.

Finally, if t0 ∈ [2(n−1)π, (2n−1)π ] for some n ∈ N
∗ and t1 ∈ [(2m−1)π, 2mπ ]

for somem ∈ N. There exists 0 ≤ μ0 ≤ π such that t0 = 2(n−1)π +μ0. If μ0 = π ,
then | f (t0)| = 0. If not, since |t0 − t1| ≥ μ0 > 0, we have

‖ f (t0) − f (t1)‖
|t0 − t1| ≤ ‖ f (t0)‖

μ0
= | sin(t0)|

μ0
= | sin(2(n − 1)π + μ0)|

μ0
≤ 1.

With this, we get that f ∈ Lip0(R, �1). To see that f is locally 1-compact, take t0 ∈ R.
Then, easy to see that for any t ∈ [t0 − π/4, t0 + π/4] there exist some n ∈ N such
that f (t0) = λen with −1 ≤ λ ≤ 1. Thus f ([t0 − π/4, t0 + π/4]) ⊂ 1-conv{(en)n},
implying that f is Lipschitz locally 1-compact. Finally, to show that f is not Lipschitz
compact, we show that the Lipschitz image of f is not a relatively compact set. For
any n ∈ N we have f (2(n − 1)π + π/2) = en and f (2(n − 1)π) = 0. Thus

en
2π

= f (2(n − 1)π + π/2) − f (2(n − 1)π)

2π
.

Then, the sequence (
1

2π
en)n ⊂ ImLip( f ) and the result follows. ��

Is not difficult to see that the Lipschitz locally p-compact operators are a Lips-
chitz ideal, and in particular, satisfy the ideal property. This also happens with the
Banach ideal of Lipschitz p-compact operators. However, the class of Lipschitz-free
p-compact operators is not an ideal since, as we see in the proof of Proposition 4.6,
the identity of R is not Lipschitz-free p-compact. Despite this, we have the following
result.

Theorem 4.8 (The strong ideal property) Let p ≥ 1. For all pointed metric spaces
X ,Y , Z ,W , if R ∈ Lip0(X ,Y ), T ∈ FKL

p(Y , Z) and S ∈ Lip0(Z ,W ) then S ◦ T ◦
R ∈ FKL

p(X ,W ).
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Proof We have to prove that ̂S ◦ T ◦ R : F(X) → F(W ) is a p-compact operator.
It is straightforward to check that ̂S ◦ T ◦ R = Ŝ ◦ T̂ ◦ R̂. The result follows since
T̂ : F(Y ) → F(Z) is a p-compact linear operator. ��

Before finishing, we give a brief discussion of the Lipschitz images of the Lipschitz
locally p-compact operators. For this, given x0 ∈ X and 0 < η < ε ≤ ∞ we define

ImLip(T )(x0; η, ε) =
{
T (x) − T (x0)

d(x, x0)
: η < d(x, x0) < ε

}

.

Note that ImLip(T ) =⋃x0∈X ImLip(T )(x0; 0,∞).

Proposition 4.9 Let p ≥ 1, T ∈ Lip0(X , E) and fix x0 ∈ X. Then

(1) If T is Lipschitz locally p-compact at x0, then there exists ε > 0 such that, for all
0 < η < ε the set ImLip(T )(x0; η, ε) is relatively p-compact. Moreover, there
exists C > 0 such that

m p(ImLip(T )(x0; η, ε)) ≤ C

η
.

(2) If there exists ε > 0 such that ImLip(T )(x0; 0, ε) is a relatively p-compact set
in E, then T is Lipschitz locally p -compact at x0. Moreover, there exists C > 0
such that

m p(T (Bε(x0)) − T (x0)) ≤ Cε.

Proof Suppose that T is Lipschitz locally p-compact at x0, there exists ε > 0 such that
T (Bε(x0)) is relatively p -compact. Then, for every η > 0, the set {T (x)−T (x0) : η <

d(x, x0) < ε} is relatively p-compact. If we show that

ImLip(T )(x0; η, ε) ⊂ 1

η
�{T (x) − T (x0) : η < d(x, x0) < ε}

then (1) follows. Indeed, if z ∈ ImLip(T )(x0; η, ε), then there exists x ∈ X with
η < d(x, x0) < ε such that z = T (x)−T (x0)

d(x,x0)
. As z = η

d(x,x0)
1
η
(T (x) − T (x0)) and

η
d(x,x0)

< 1, the claim follows.
The proof of (2) follows if we show that for any ε > 0, the inclusion

1

ε
{T (x) − T (x0) : d(x, x0) < ε} ⊂ �(ImLip(T )(x0; 0, ε)).

holds. Take x ∈ X such that 0 < d(x, x0) < ε. As

1

ε
(T (x) − T (x0)) = d(x, x0)

ε d(x, x0)

(

T (x) − T (x0)
) = d(x, x0)

ε

(
T (x) − T (x0)

d(x, x0)

)

,

since
(
T (x)−T (x0)

d(x,x0)

)

∈ ImLip(T )(x0; 0, ε) and d(x,x0)
ε

< 1, then the claim is proved. ��
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Proposition 4.10 Let X be a compact pointed metric space and E a Banach space.
Let p ≥ 1 and T ∈ Lip0(X , E). If T is Lipschitz locally p-compact, then for
every 0 < η < supx,y∈X d(x, y), the set

⋃

x0∈X ImLip(T )(x0; η,∞) is relatively
p-compact. Moreover, there exists C > 0 such that

m p

⎛

⎝
⋃

x0∈X
ImLip(T )(x0; η,∞)

⎞

⎠ ≤ C

η
.

Proof Note that since f is Lipschitz locally p-compact and X is compact, T (X) is
a p-compact set. Fix η > 0 and we will show that

⋃

x0∈X ImLip(T )(x0; η,∞) ⊂
2
η
�(T (X)). With this, the result follows. If z ∈ ⋃

x0∈X ImLip(T )(x0; η,∞), then

there exist x, y ∈ X , with η < d(x, y) such that z = 1
d(x,y) (T (x) − T (y)). Then

z = 1
η

η
d(x,y) (T (x) − T (y)) and, since η

d(x,y) < 1, then we have the inclusion that we
needed. ��
Acknowledgements The authors want to thank the referee for his/her careful reading and useful sugges-
tions. P. Turco was supported in part by CONICET PIP 0483, ANPCyT PICT-2015-2299 and UBACyT
1-474.

References

1. Achour, D., Rueda, P., Sánchez-Pérez, E.A., Yahi, R.: Lipchitz operator ideals and the approximation
property. J. Math. Anal. Appl. 436, 217–236 (2016)

2. Ain, K., Lillemets, R., Oja, E.: Compact operators which are defined by �p-spaces. Quaest. Math. 35,
145–159 (2012)

3. Cabrera-Padilla, M., Jiménez-Vargas, A.: A new approach on Lipschitz compact operators. Topol.
Appl. 203, 22–31 (2016)

4. Cabrera-Padilla, M., Chávez-Domínguez, A., Jiménez-Vargas, A., Villegas-Vallecillos, M.: Maximal
Banach ideals of Lipschitz maps. Ann. Funct. Anal. 7, 593–608 (2016)

5. Cohen, J.S.: Absolutely p-summing, p-nuclear operators and their conjugates. Math. Ann. 201, 177–
200 (1973)

6. Delgado, J.M., Piñeiro, C., Serrano, E.: Operators whose adjoints are quasi p-nuclear. Stud. Math.
197, 291–304 (2010)

7. Defant, A., Floret, K.: Tensor norms and operators ideal. North Holland Publishing Co., Amsterdam
(1993)

8. Farmer, J., Johnson,W.: Lipschitz p-summing operators. Proc. Am.Math. Soc. 137, 2989–2995 (2009)
9. Galicer, D., Lassalle, S., Turco, P.: The ideal of p-compact operators: a tensor product approach. Stud.

Math. 2828, 269–286 (2012)
10. Godard, A.: Tree metrics and their Lipschitz-free spaces. Proc. Am. Math. Soc. 138(12), 4311–4320

(2010)
11. Godefroy, G.: A survey on Lipschitz-free Banach spaces. Comment. Math. 55(2), 89–118 (2015)
12. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc.

1955(16), 140 (1955). (French)
13. Jiménez-Vargas, A., Sepulcre, J.M., Villegas-Vallecillos, M.: Lipschitz compact operators. J. Math.

Anal. Appl. 415, 889–901 (2014)
14. Kalton, N.J.: Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55,

171–217 (2004)
15. Lassalle, S., Turco, P.: On p-compact mappings and the p-approximation properties. J. Math. Anal.

Appl. 389, 1204–1221 (2012)

123



Lipschitz p-compact mappings 609

16. Pietsch,A.:Operator Ideals.Deutsch.VerlagWiss., Berlin, 1978;North-Holland,Amsterdam–London-
New York–Tokyo (1980)

17. Persson, A., Pietsch, A.: p-nuklear und p-integrale Abbildungen in Banachräumen. Stud. Math. 33,
19–62 (1969)

18. Pietsch, A.: The ideal of p-compact operators and its maximal hull. Proc. Am. Math. Soc. 142(2),
519–530 (2014)

19. Saadi, K.: On the composition ideals of Lipschitz mappings. Banach J.Math. Anal. 11, 825–840 (2017)
20. Sawashima, I.: Methods of Lipschitz Duals. Lecture Notes Ec. Math Sust, vol. 419, pp. 247–259.

Springer, Berlin (1975)
21. Sinha, D.P., Karn, A.K.: Compact operators whose adjoints factor through subspaces of �p . Stud.Math.

150, 17–33 (2002)
22. Weaver, N.: Lipschitz Algebras. World Scientific Publishing Co., Inc., River Edge (1999)
23. Yahi, R., Achour, D., Rueda, P.: Absolutely summing Lipschitz conjugates. Mediterr. J. Math. 13,

1949–1961 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Lipschitz p-compact mappings
	Abstract
	1 Introduction
	2 Notation and preliminaries
	3 The composition ideal of Lipschitz p-compact operators
	4 Lipschitz-free and locally p-compact mappings
	Acknowledgements
	References




