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Abstract

We consider the spaces of ultradifferentiable functions S,, as introduced by Bjorck
(and its dual S))) and we use time-frequency analysis to define a suitable wave front set
in this setting and obtain several applications: global regularity properties of pseudod-
ifferential operators of infinite order and the micro-pseudolocal behaviour of partial
differential operators with polynomial coefficients and of localization operators with
symbols of exponential growth. Moreover, we prove that the new wave front set,
defined in terms of the Gabor transform, can be described using only Gabor frames.
Finally, some examples show the convenience of the use of weight functions to describe
more precisely the global regularity of (ultra)distributions.
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1 Introduction

The wave front set is a basic concept in the local theory of linear partial differential
operators and it extends the one of singular support of a distribution. It deals with
the analysis of the singularities of a function (or distribution) and, at the same time,
describes the directions along which the high frequencies (in terms of the Fourier
transform) responsible for those singularities propagate. In the classical context of
Schwartz distributions theory it was originally defined by Hérmander [21]. There is
a huge literature on wave front sets for the study of the regularity of linear partial
differential operators in spaces of distributions or ultradistributions in a local sense;
see, for instance, [1,2,6,7,15,21,23-25,34,35] and the references therein.

In global classes of functions and distributions (like the Schwartz class S and
its dual) the concept of singular support does not make sense, since we require the
information on the whole R. However, we still can define a global wave front set to
describe the micro-regularity of a distribution, where the cones are taken with respect
to the whole of the phase space variables. In fact, in [22] Hormander introduced
two different types of global wave front sets: the C> wave font set, in the Beurling
setting, for temperate distributions u € &', and the analytic wave front set, in the
Roumieu setting, for ultradistributions &', of Gelfand—-Shilov type, addressed to the
study of quadratic hyperbolic operators. Unfortunately, these global versions of wave
front set have been almost ignored in the literature, whereas they will represent the
key point of our discussion. Only very recently, Rodino and Wahlberg [35] recovered
the concept of C* wave front set of [22] and showed that it can be reformulated in
terms of the short-time Fourier transform, which treats simultaneously the variables
and covariables of a function (or distribution) in order to quantify the energy of a
signal at some time xo and some frequency &p. Since the wave front set has to do
with a simultaneous analysis of points (variables) and directions (covariables), it is
very natural to try to apply methods of time-frequency analysis in connection with
the wave front set. Indeed, in [35] the authors use this advantage to show also that
the original wave front set introduced by Hormander can be described merely with
the information given by a Gabor frame, which is a fundamental tool in the theory of
time-frequency analysis with applications in signal processing and related issues in
function space theory and numerical analysis. Besides, recent applications of Gabor
frames concern also the analysis of partial differential equations and pseudodifferential
equations (see the references quoted in the introduction of [35] for more information).
On the other hand, Nakamura [29] introduces the homogenous wave front set for the
study of propagation of micro-singularities for Schrodinger equations, and it turns out
to be equal to the Gabor wave front set [37]. Cappiello and Schulz [12] recover the
analytic wave front set of [22], defined in terms of a very general known version of the
FBI transform as introduced originally by Sjostrand [39], show that it can be written
using the Gabor transform (with Gaussian window) and study some cases not treated
by Hormander for Gelfand—Shilov ultradistributions of Gevrey type.

The modern theory of general linear PDEs has been largely addressed to local
problems, i.e., to the study of solutions in a suitable small neighbourhood of a point in
R?. More recently, several authors have considered the study of (pseudo)differential
operators from a global point of view; see, for example [22,29,30,37]. The Fourier
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transform and pseudo-differential calculus find in R? their natural setting. In fact, some
problems in Quantum Mechanics, Signal Analysis and other applications in Physics
and Engineering are represented by the study of solutions in the whole Euclidean space
R?. Motivated by these connections, the theory of time-frequency analysis has become
a very suitable tool for a better understanding of the study of (pseudo)differential
operators in the global setting and, in particular, in the Schwartz class S (see [35]) or
in Gelfand—Shilov spaces of Gevrey type (see [12]).

In the present paper we work in the classes of ultradifferentiable functions S, (R%),
where w is a weight function in the sense of Braun et al. [11], which we assume to be
also subadditive, in order to have a consistent definition of modulation spaces given
by exponential weights. Hence, we recover in particular the classes as introduced by
Bjorck [3], with the difference that we impose that the composition of the weight and
the exponential is convex, which allows the use of convex analysis techniques. The
classes under consideration are suitable for our purposes, since they are invariant under
Fourier transform and provide a big scale of spaces that contain as a particular case the
Schwartz class when the weight function is w (t) = log(1+1¢), r > 0. We have seen in
the literature the benefits of time-frequency analysis when applied to such classes (see
[19]), even in combination with the global theory of (pseudo)differential operators
(see e.g. the paper by the same authors [8] and the references therein, or [32,33] when
the classes are defined by sequences in the sense of Denjoy—Carleman; see [27] for a
detailed study of the structure of these spaces when defined by sequences). We have to
mention also that our classes always contain compactly supported functions (they are
non-quasianalytic) and we recover Gelfand—Shilov spaces of Beurling type of index
s > 1 when the weight function is w(t) = 15 (e. a Gevrey weight).

The purpose of our paper is to define the Beurling version of the analytic wave
front set found in [12,22] (where the authors only treated the Roumieu case) in the
setting of Sc’o-ultradistributions, show that it can be described in terms of Gabor frames
(as it is done in the setting of temperate distributions in [35]) and apply it to the
study of the global regularity of (pseudo)differential operators of infinite order (in
[35] the authors cannot treat operators of infinite order, since they have symbols with
polynomial growth). So, we extend, among other results, part of the work [35] to the
ultradifferentiable setting and treat the Beurling case, which is new in the literature (the
authors in [12,22] treat the Roumieu case only for Gelfand—Shilov ultradistributions).

From [19], we know that a function f € S, (R%) can be characterized in terms of
the growth of its Gabor transform, i.e. of its short-time Fourier transform. We use this
fact to extend to the ultradifferentiable setting some known properties of the Gabor
transform in the frame of the Schwartz class S, that we could not find in the literature
for S, and we add them here for the reader’s convenience (see Sect. 2).

In Sect. 3 we consider the global w-wave front set WF, (), for w-tempered distri-
butions u € S/, (RY), defined as the complement of the points zg € R?¢\{0} for which
there exists an open conic set I" containing zo such that

sup ek“’(Z)qu(z)I < 400, YA >0,

zel

where V,u is the Gabor transform of u with respect to the window ¢ € S, (RY) (we
prove that the definition does not depend on the choice of ¢). This definition of wave
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front set seems natural since the Gabor transform allows to analyze simultaneously
the ultradistribution with respect to variables and covariables.

However, in many applications to signal processing and related topics, often Gabor
frames come out to be the most appropriate tool (see, for instance, [14,20]). For
this reason it is also useful to consider a Gabor w-wave front set WFS (1), defined
in terms of the decay of the Gabor coefficients (u, [T(A)@) of the ultradistribution
u € S/ (R?) (see Definition 3.3), where TT(A)g(y) = e!¥*2o(y — Ay) with A =
(A1, Ap) in a suitable lattice A. Actually this is equivalent to analyze the decay of
the Gabor transform of u# on a conical set intersected with A, so that it is natural to
study the relation between these two wave front sets. One of the main results of this
paper, Theorem 3.17, is that WF/ (u) = WFY (u) for all u € S/, (R?), if the lattice is
sufficiently dense. In the particular case of w(¢) = log(1 + t) we recover the results
of [35] about wave front sets of tempered distributions.

In order to examine Gabor w-wave front sets, we need suitable modulation spaces
with exponential weights, in the setting of w-ultradistributions. To this aim we prove
in Sect. 3 those results about modulation spaces which differ from the classical ones
(cf. e.g. [18]). Moreover, we prove two natural properties for the Gabor w-wave front
set. Namely, for an ultradistribution u € S/ (R?), we show that WF, (u) is empty if
and only if u € S, (R?), and that it is not affected by translations and modulations
(time-frequency shifts), as expected in the global setting.

In Sect. 4 our results in the former sections are applied to study the global regularity
of some kind of pseudodifferential operators of infinite order with our global wave
front set. For a global symbol a(x, &) with exponential growth in the second variable,
defined in the spirit of [15] (see Definition 4.2), we consider the Kohn—Nirenberg
quantization

a(r, D) f(x) = (2m)~¢ /ﬂ; D, ) Fleds,

which is well defined for f € S, (Rd). We analyze the kernel of the Gabor transform
of this pseudo-differential operator to prove that

WF,, (a(x, D)u) C cone supp(a),

where cone supp(a) is the conic support of a(x, £), as defined in [22] (see also Def-
inition 4.10). As far as we know, this is new in the literature. As a consequence, we
have that the Kohn—Nirenberg quantization a(x, D), for a symbol a(x, §) € S, (R%)
with compact support, is a globally w-regularizing pseudo-differential operator, in the
sense that for every u € S;(]Rd) we have that a(x, D)u € S,,(RY).

We also study the micro-pseudolocal behaviour of a linear partial differential oper-
ator with polynomial coefficients using purely the properties of the Gabor transform
(Proposition 4.13) and also of a very general type of localization operators (Theo-
rem 4.15), obtaining in the Beurling setting the analogous result of [12, Proposition
3.3]. Finally, in Sect. 5 we calculate the wave front set of some concrete ultradis-
tributions and show, in particular, the usefulness of working with different weight
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functions, as in Example 5.4, where we analyze the global w-wave front set of some
ultradistributions for different weight functions w.

2 Preliminaries and the short-time Fourier transform in S, (R9)

Given a function f € L'(R?), the Fourier transform of f is defined as

F(f)=fe) = / e 1) £(x) dx,
Rd

with standard extensions to more general spaces of functions and distributions.

Definition 2.1 A non-quasianalytic subadditive weight function is a continuous
increasing function w : [0, +00) — [0, +00) satisfying the following properties:

(@) w(t1 + 1) < w(t1) + () Vi, =0;
+00 a)(t)

1
(y)daeR,b>0st. w()>a-+blog(l+1) Vi=>0;
(8) @u(t) :== w(e") is convex.

We then define w(¢) := w(|¢|) for ¢ € C.

We denote by ¢ the Young conjugate of ¢,,, defined by

@l (s) :=sup{st — @u,(1)}, s=>0.
>0

Note that ¢} is increasing and convex, and ¢}** = ¢,, by Fenchel-Moreau Theorem
(see for example [10]). Moreover, ¢ (s)/s is increasing since

@ (0) = sug(—cpw(t)) <0
>

and therefore, for 0 < 51 < 57, by the convexity of ¢};:
S1 S1 S1 S1 S1
@ (s1) = @5 <—S2 + (1 - —) O) < —@p(s2) + (1 - —) 9 (0) < — @ (s2).
82 52 §2 52 52
It will be also useful in the sequel the following inequality

2ieMilt) < (). Vj € No, & > 0. 2.1

Estimates of this kind are well known (see, for instance, [5,11]), usually stated under
slightly different conditions on w. We give here a short proof of (2.1) for the sake of
completeness. By definition of ¢} for ¢, () = w(e") and by the subadditivity of w:
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P, (s) = Sug{ts — Yo} = SuIl>{lS — YD)} = Suré{(d + Ds — oo + 1D}
> > o>

=5 + sup{os — w(ee’)} > s + sup{os — 3¢, (0)} = s + 3(p:f) (i) .
>0 >0 3

Therefore, for s = j/A and multiplying by A:

J ) J
Ay (X) > j 43207 <37> ,

and hence

Definition 2.2 We define S,,(R?) as the set of all u € S(R?) such that

(1) VA >0,a € Nf)l : sup ™ | D% (x)| < 400,
R4
(ii) VA > 0,0 € Nd : sup e ®|D*0(€)| < +o0,
R4
where Ny := NU {0} and D* = (—i)l®l5,
As usual, the corresponding dual space is denoted by S/, (R9) and is the set of all
linear and continuous functionals u : S, (R?) — C. An element of S;)(Rd) is called
an w-tempered distribution.

In [8, Thm. 4.8] we provided the space S, (Rd) with different equivalent systems
of seminorms. For example, for u € S, (Rd), the family of seminorms

o (el o (18]
Pru(u) == sup sup [xP Du(x)le ()i () (2.2)
a,ﬂeNgxéRd

for A, © > 0. On the other hand, it is not difficult to see (using, for instance, [8, Lemma
4.7(i1)]) that the family of seminorms

ok (el
G = sup sup [DuCeyle IO 0 @)

aeNg xeRd

defines another equivalent system of seminorms for S,,(R%).

We recall that S,,(R?) € S(RY) and for their correspondent dual spaces we have
the inclusion S’(RY) C SC’U(R”’). Moreover, the Fourier transform is a continuous
automorphism from S, (R?) to S,,(R?) and from S/ (R?) to S/ (R?).

The condition (8) of non-quasianalyticity in Definition 2.1 ensures the existence
of functions with compact support in S,,(R?). To be more precise, let us briefly recall
(see [4,11]) the definition of the space &) (2) of w-ultradifferentiable functions of
Beurling type in an open subset Q2 of R?. It is the set
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) () ::{f €C®(Q): YK CC Q, Vm e N

——acll
sup sup [D%f (o)l "

aeNg xek

)<+oo}.

To define then the space of w-ultradifferentiable functions of Beurling type with com-
pact support, we first consider, for a compact set K C €2,

Dw)(K) :={f € Ew)(82) = supp f S K}. 2.4

This space is not trivial because of (8) of Definition 2.1. Finally, we set the space of
test functions as follows

D Q) = ind lim D K).
() (§2) H}(/’ISI2H () (K)

Then the following continuous inclusions hold (see [3,17]):
Diw)RY) C Sp(RY) C Euy (RY).
Example 2.3 An example of non-quasianalytic subadditive weight function is
o) =17, s> 1.

In this case £(,) (£2) is the space y ) () of small Gevrey functions (see [24]), D) (2)
is the space of small Gevrey functions with compact support. The space S,,(R?) is the
Gelfand—Shilov space of Beurling type X (R%) (see [31]).

Other examples of admissible weights are given by

wi)=log? (' +1, p=1.

In this case we recover, for 8 = 1, the class £(2) of C* functions, the class of D(£2)
of C* functions with compact support in € and, for S,, (R?), the classical space S(R?)
of rapidly decreasing functions in R¢.

We refer, for instance, to [1,2,11] for more examples. We also refer to [9] for the
comparison of the spaces £(,), D) With the analogous ones defined by sequences in
the sense of Denjoy—Carleman (in the Roumieu case as well; see at the beginning of
Sect. 4 for more information).

Let us denote by T, M and Il(z), respectively, the translation, the modulation
and the phase-space shift operators, defined by

Tof()=fy—x), Mcf(y)=e"%f(y),
@) f() = MeTy f(y) = 'V f(y — x),

forx,y, & e R and z = (x, &).
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Definition 2.4 For a window function ¢ € S, (R?)\{0}, the short-time Fourier trans-
form (briefly STFT) of f € S, (RY) is defined, for z = (x, &) € R??, by:

Vo f (@) :=(f,I(2)¢p) (2.5)
=/ FMe(y —x)e iy, (2.6)
Rd

where the bracket (-, -) in (2.5) and the integral in (2.6) denote the conjugate linear
action of S/, on S, consistent with the inner product (-, -) 2.

By [19, Lemma 1.1], for f, ¢, ¥ € Sw(Rd) we have the following inversion for-
mula:

1
W0 F0) = G [ Ve @M@ @)
In particular, for ¥ = ¢ € S,,(RY)\{0}:

f = Vo [(2)(IT(2)¢) (y)dz. 2.8)

o
Qm)llel;, Jrd

We recall, from [19], the following results:

Theorem 2.5 Let ¢ € S,(RH\{0} and f € S;)(Rd). Then V,, f is continuous and
there are constants ¢, A > 0 such that

Vo f(2)] < ce™@ vz e R¥. 2.9)

Proposition 2.6 Let ¢ € S,,(RY)\{0} and assume that F : R2>? — C is a measurable
function that satisfies that for all . > 0 there is a constant C, > 0 such that

|F(2)| < Cre @@ vz e R¥,

Then
f» 1=/ F(2)(IT(2)p)(y)dz
de

defines a function f € S,(RY).

Theorem 2.7 Let ¢ € S,,(RH)\{0}. Then, for f < S;(Rd)» the following are equiva-
lent:

(i) f e SuRY);
(i) for all » > O there exists Cy > 0 such that

Vo f (@) < Cre @ vz e R¥M;

(iii) Vi, f € Sp(R?).
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The following lemma is well known for functions in S (R?), and hence in S,,(RY).
So we omit its proof.

Lemma 2.8 For f, ¢ € S, (R we have that

Vo, y) = Q)% f(—G() V(p, y) € R

As a consequence, we can deduce the following result.

Proposition 2.9 Ler ¢ € S,,(R?)\{0}. Then
Vy: Sp@®?) — S, (R*)

is continuous.

Proof Let us first remark that if f € S,,(R?) then Vof € Sw (R??) by Theorem 2.7.
Since S,, is a Fréchet space, to prove the continuity of V,, we consider a sequence
{fulnen C Sw (Rd) such that
fo— fe€Su(@®RY  inS,RY) (2.10)

and prove that V,, f;, — V, f in S, (R%).
Indeed, (2.10) implies that

M £ (=y)@m) — ¢ f(=y)PG)  in S, (R*)

and hence, by Lemma 2.8,

—

Vofn = Vof  inS,[R).
Applying the inverse Fourier transform, which is continuous on S,,, we have that
Vofo = Vof  inS,(R*).

and the proof is complete. O

The short-time Fourier transform also provides a new equivalent system of seminorms
for S, (RY).

Proposition 2.10 If ¢ € S, (RY)\{0}, then the collection of seminorms

Vi fllws = sup |V, f(2)]e*@,

zeR2d

for & > 0, forms an equivalent system of seminorms for Sy, (R?).
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208 C. Boiti et al.

Proof Set
So@®?) :={f € SR : |Vyfllws < +00 YA > 0}.

By Theorem 2.7 the sets S‘w (R and S,,(R?) are equal. We have to prove that they
have the same topology.
By the inversion formula (2.8) we have that, for z = (x, §) € R and A, u > 0,

oo (5 e (U )|y5D°’f(y)|
< Ce ww(‘“') #‘/’w(ﬂ)/RMW(pf(zﬂ-|yﬁD§f(H(Z)§0)(Y)|dZ

oo () — 181 w i
= () il )/mewf(x,sn-|yﬂDye<—Vf>ga(y—x>|dxds

_ s (181
<oy (Ve [ s o)

y<a

JEI DY p(y — x)le” (‘%l>2‘°‘|dxd§ (2.11)

for some C > 0.
We shall now need the following inequality

Y i
te ““’w(u) < Cue® vt >0, jeN, (2.12)

that is well known for + > 1 with C,, = 1 (see, for instance, [8, Lemma 4.7(i)] or
[15]), and is trivial for 0 < ¢t < 1 with C}, = e 50 gince @™ is increasing.
Substituting (2.12) and (2.1) into (2.11), by the subadditivity of w we have

()15, pe )

<C, Z < )2—|a| /H;Zd |V, f (x, £) |l @ ghe(y—x)

=

1612 DY gy — xyte (%) axae, (2.13)

Since ¢ € S, (RY, by (2.3), for every A, u > O there is a constant C ;, > 0 such
that for all y € Ng and y € RY,

il
DY p(y)|e"* ™) < CA,Me“”‘”( 2 (2.14)
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From (2.14) with 3 instead of A and y — x instead of y, we have that for every
i, A > 0 there exists a constant C;, ; > 0 such that

o o(8) 71 (8) 8 o2 )1 < s (i)z_la

y<a

s lvl_ * (ol
/né Vo f 5, e glfor1 5 (5) 0 (8) g,

* (la—y| . .
By (2.12) we have |&[l*=7] < C3Ae3)‘w(é)+3”’w(37{). Since ¢} is convex and

@ (0) < 0, we have that

0l (a) + ¢i(b) = ¢ ((a + ”)aaﬂ)

b
+¢5((a + b)m) <@a+b), a,b>0. (2.15)

Therefore, for a new constant C;, 3 > 0:

e (8) i ()30 D g )

<Cusy. (;’j)z—'“ de IV, £ (x, )]eM@® 3@ gy e
R

y=«a

=< Cu,)\ /Zd |V(pf(z)|e(M+3A+m)w(z)e—mw(z)dZ
R

< CllVo fllwut3ism, (2.16)

for CJ, , 1= Cpuy. [gaa €@ dz, which is finite if m > (2d + 1)/b, where b is the
constant in condition (y) of Definition 2.1.

It is easy to see that S, (R?) is a Fréchet space. Indeed, the estimate (2.16) implies
that the identity operator / : S,(R?) — S,(RY) is continuous. Hence, any Cauchy
sequence {f;}nen in Sw(Rd) is a Cauchy sequence in S, (R9). So, it converges in
S, (RY) to some f (because S, (Rd ) is complete). From Proposition 2.9, {V,, fu}neN
converges to V,, f in S, (R24). Therefore, { f,}nen converges to f in Se (RY).

We can apply the open mapping theorem to conclude that / is an isomorphism and
hence the two topologies on S, (R9) coincide. O

Now, we can prove the following

Proposition 2.11 Assume that , y € S,(R)\{0} with (yr, y) # 0. Then the follow-
ing assertions hold:

(a) If F : R*® — C is a measurable function that satisfies, for some ¢, A > 0,

|F(2)] < ce’@ vz eR¥, 2.17)
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then
So®R) 39 (f, ) = Aw F()({I(2)y, p)dz

defines an w-tempered distribution f € S, (RY).
(b) In particular, if F = Vy, f for some f € SC’O(Rd ), then the following inversion
formula holds:

f ) Vy f(2)(z)ydz. (2.18)

1
oy, ¥) [uzaz

Proof From (2.17) we have, for all ¢ € S,,(R%),

I(fs ol 5/ [F ()] Vye(z)ldz
R2d

< C/ e)»w(z)+mw(z)|Vy(p(zﬂe*mw(z)dZ
R2d
< IVy@lloatm (2.19)

for some ¢’ > 0 and m > (2d + 1)/b, where b is the constant in condition (y) of
Definition 2.1.

From Proposition 2.10 the inequality (2.19) implies that f defines a continuous
linear functional on S,,(R%), i.e. f € S, (R9). This proves (a).

In particular, if ' = Vy, f for some f € S;)(Rd) then F satisfies (2.17) by The-
orem 2.5 and hence (2.18) defines an w-tempered distribution f e S, (Rd) given
by

~ 1

)= ———— | V M)y, p)dz VYo € Su(RY).
(f ) (2ﬂ)d<y,1/f>/m<2d y [Ty, ¢)dz V¢ € Sp(RY)

However, from (2.7) we have that

Y= . Vyo()I(2)¥dz

1
Q)4 (Y, y) /Rz

and then (see also [18, pg 43] for vector valued integrals)

1 -
(f.o) = W /RM Vo) (f, I()¥)dz
1
= m /de(l'l(z)y, ©)Vy f(2)dz
=(f.9). ¢eS,RY.
Therefore f = f and (b) is proved. O
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Let us now recall the definition of the adjoint operator of V,,. We consider, for
¢ € L2(R%), the operator

Ay L*R*) — L2(RY)

defined by
Ay F :/ F(o)(z)pdz.
R2d

This is the adjoint operator of V, : L2(R?) - L%(R??) since, forall F € L2(R29)
and h € L*(RY),

(AyF, h) :f F(@)(II(2)p, h)dz = (F, Vyh) = (V;F,h).
R2d

In particular, for ¢ € S, (R%) and F € S,,(R?*?) we can define the adjoint operator
V;F = A, F. We observe that VJF € S,(RY). Infact, if G(x, £, 1) := F(x, &)t —

x) € S, (R3?), we can write Ay F as a partial Fourier transform:

A F(1) = / F(x, &)t —x)e'"Sdxde
RZd

= (Fu5G) (", &, 1)

£ )=(Out.1) (2.20)

Since Sw(R3d ) is invariant under partial Fourier transforms (see, e.g. [8, Remark
4.10]) and restrictions to linear sub-manifolds we deduce that

Vi So®) — Su(RY) (2.21)

is continuous.
Moreover, the inversion formula (2.7) gives, forg, ¥, f € S, (R4 with (¢, ) # 0,

1 1
—V*V, = — V. I dz = (2 d ,
oy Y = gy fo Ve @Mz = s

m VW V1// == ISw(Rd) . (222)

More in general, if ¢ € S, (R¥)\{0} and F is a measurable function on R*, we
define the adjoint operator

V;F:/ F()T(2)edz, (2.23)
]RZd
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where the integral is interpreted, if necessary, in a weak sense, i.e.
(VoF.g) =/ F(2)(T1(2)p, g)dz =/ F(2)Vypg(2)dz = (F, Vyg)
RZd de

for g € S,,(RY).

In particular, if ¢, ¥ € S, (R9)\{0} with (¢, %) # 0, by Theorem 2.5 and Propo-
sition 2.11 we can define the adjoint operator (2.23) for F' = Vy, f with f € SC/D(R")
and obtain that, for all g € S,,(R?),

(VVif.g) = /R Vil @U@, g)dz = Qm) (g, ) (f.8).  (224)
i.e.

1
- V*Vy, =l . 2.25
Qm)d(g, ) ¢V T TSu®D (2:29)

We can now prove the following proposition in a standard way.

Proposition 2.12 Let ¢, ¥, y € S,,(RY) with (y, ) # 0 and let f € S, (R?). Then

1
IV, f (@) < Wuwﬂ # VoD@, z=(x,&) eR¥,

Iy, ¥l

3 The ®-Gabor wave front set

In this section we consider a global wave front set for w-tempered distributions from
two different points of view. The first one is defined in terms of rapid decay of the STFT
in conical sets, that is a natural approach to analyze the regularity of an ultradistribution
with respect to variables and covariables simultaneously. The second one is described
in terms of the rapid decay of the Gabor frame coefficients, and is more related to
applications to signal processing and related topics (see, for instance, [14,20,35]).

One of the main results of this section is to prove that these two points of view lead
to the same global wave front set, so that it is actually sufficient to consider the decay
of the Gabor transform in conical sets intersected with a suitable lattice.

Definition 3.1 Let u € S/ (R?) and ¢ € S,,(R¥)\{0}. We say that zg = (xo, &) €
R24\{0} is not in the w-wave front set WF, (1) of u if there exists an open conic set
I € R2\{0} containing zo and such that

sup e @|V,u(z)| < +00, VA > 0. (3.1)

zel

We observe that WF, (1) is a closed conic subset of R%4\{0}. Moreover, it does not
depend on the choice of the window function g, as the following proposition shows.
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Proposition 3.2 Let u € S, (RY), ¢ € S,(RY)\{0} and z9 € R*\{0}. Assume that
there exists an open conic set T' € R24\{0} containing zo such that (3.1) is satisfied.
Then, for any ¥ € S,(RY)\{0} and for any open conic set T’ € R*\{0} containing
20 and such that T" N Srq—1 C T, where Saq—1 is the unit sphere in R e have

sup O Vyu(z)| < +00, Vi > 0. (3.2)

zel”

Proof From Proposition 2.12 we have that
Vyu@)| < Qo) llell 5 (Voul + Vo) Yz e R, 3.3)

Moreover, since ¢ € S, (R?), from Theorem 2.7 we have that for every u > 0
there exists C,, > 0 such that

e“w(Z)|V¢(p(Z)| <C, Vze R2d. 34

Then

(IVoul * [ Vy@l)(2) Z/RM [Vou(z = 2)| - [Vyo(2)ldz'
=/ [Vou(z — ) - Vyo()dZ
(Z)=<e(z2)

+/ [Vou(z —2)| - [Vyo(2)|dZ'
(7')>e(z)

=11+ L. 3.5
Let us choose ¢ > 0 sufficiently small so that
zel, jz1=21, () <er) = z-Z €T,

and hence, from (3.1), the subadditivity of w and (3.4):

n=<c / DY o)
(z/)<e(z)

< C}Lef)»a)(z) /2d e()»+m)a)(z/)|Vw(p(z/)lefma)(z’)dz/
R

<Cle @ A>0,zel, |z]= 1. (3.6)
if m > (2d + 1)/b, where b is the constant in condition (y) of Definition 2.1.
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On the other hand, from Theorem 2.5 and (3.4), for m > 0 big enough:

h<e / D Vo ()de!
(7/)>e(z)

e / Um0 Y (/) ) g g
(')>e(z)

< C/ekw(z)e—A(A+m—M)e(A+m—u)ng(z) CM (37)

for some ¢’ > 0,if u > A +m, A = w(l) and B, = ([1/e] + 1™, since for
(z/) > &(z) by the subadditivity of w:

0 < 0((2) <o (é(z/)) < (H + 1) ()
1 / 1 !
< ([;} + 1>w(1 +12') < ([;} + 1) (0(D) + (2)),

where [x] denotes the integer part of x € R.
Since ¢ is fixed, the arbitrariness of & > A +m in (3.7) implies that for every A" > 0
there exists a constant C;, > 0 such that

b < Cpe ¥°@ e RM, (3.8)

This gives the conclusion. O

Given «, B8 > 0, consider the lattice A = aZd x ﬂZd C R For a window
¢ € L*(RH\{0} the collection {I1(0)¢}sca is called a Gabor frame for L*(R?)
provided there exist constants A, B > 0 such that

AllfII72 < D) WF o)) > < BlIfII72.  f € LARY)

geA

(see [18] for the analysis of the conditions on « and B for which {IT(0)¢@}sep is a
Gabor frame). Now, we define the Gabor w-wave front set.

Definition 3.3 Let ¢ € S,(RH)\{0} and A = apZ? x BpZ? < R?? a lattice with
oo, Bo > O sufficiently small so that {IT(c)@}seca is a Gabor frame for L2(]Rd). If
ues, (RY), we say that zg € R24\{0} is not in the Gabor w-wave front set WFS (n)
of u if there exists an open conic set I' € R??\ {0} containing z¢ such that

sup ekw(a)|V¢u(0)| <400 VA>0. (3.9
oeANT

Our next goal is to prove that WF, (1) = WFS (u). To this aim we need some

properties of modulation spaces adapted to our setting. We prove those results that
differ from the classical ones already known in & (R9)Y (see [18]).
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We consider, for A € R\{0},

Aw(2)

m;(z) =e v (2) = M@ e R (3.10)

The weights m; (z) are vy -moderate, in the sense that

my(z1 + 22) < va(z1)my(22),

for every A # 0 and z1, zp € R". This is immediate from the subadditivity of w.
We denote, following [18], the weighted L?-9 spaces by

Lhd (R ;:{ F measurable on R?? such that

”F”L,’j,';f Z=</Rd (/Rd |F(x,$)|pmk(x,§)pdx)q/pd§)l/q< +oo},

for 1 < p,q < 400, and

L,i,o.k’q (R .= i F measurable on R such that

1/
1Pz = ( [ (esssup1F ey e, )7de) ™ < +o0)

"l)\’
xeRd

Lﬁ’fo (de) = { F measurable on R?? such that

1/p
|l e = esssup (/ |F(x, £)]Pmy (x, g)f'dx) < +oo},
A SERd R4

for 1 < p, g < 400 with p = +00 or g = 400 respectively.
By [18,Lemma 11.1.2] these are Banach spaces forall 1 < p, ¢ < 4o00. Moreover,

for F e L’ (R*)and H € LY ;n‘f; (R2?), where p’ and ¢’ are the conjugate exponents
of p and g respectively (i.e. % + # =1ifl < p <+4o0,p' =+oc0ifp=1,p =1
if p = 400, and the same for ¢), then F - H € L'(R*?) and

< IIFIIL;;fIIHIILf/,q'- (3.11)

/my,

/ F(2)H (z)dz
RM

If 1 < p,q < +oo, the dual of L7 (R2) is given by LY (R>).
From [18, Proposition 11.1.3] we have the following Young inequality for weighted
LP4 spaces. For F € Ly and G € L!

v)?
IF*Glippa < CIFlpallGlLy (3.12)

for some C > 0.
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Remark 3.4 Tt is easy to see that for every A € R\{0} and 1 < p, ¢ < 400 we have
SR C Ly (R*).

Moreover e #®) ¢ L,’;’f (R2) foru > 0 large enough, since m; (z) = ¢**® and
e~ AR < o=aA(] 4 |7])7P4 for any A > 0, by condition (y) of Definition 2.1.

Definition 3.5 Let ¢ € Sw(Rd)\{O}, and m; (z) as in (3.10) for some A # 0. For
1 < p, g < +o0, the modulation space M fnf (Rd) is defined by

MEARY) = {f € S,(RY) : V,f € LT[R},
with norm || f gz = [[Vy £l p.a- We denote then Mh (R = MLT(RY).

Observe that Definition 3.5 is similar to the definition of modulation spaces in [18];
the difference is that here M} ! (R?) is a subset of S/ (R?), and we take a window
¢ € S,(RY), while in [18] the modulation space M} ?(R?) is a subset of S’'(RY)
and the window belongs to S (R9Y (or a subset of (M,})* for a suitable weight v,
in a suitable space of ‘special’ windows S¢ (R%)). Moreover, here we always need
weights of exponential type. We refer to [40,41] for modulation spaces in the setting
of Gelfand—Shilov spaces, among other type of spaces of ultradifferentiable functions
and ultradistributions.

The definition of M f,'{f is independent of the window ¢, in the sense that different
(non-zero) windows in S,,(R?) give equivalent norms. Indeed for ¢, ¥ € S, (R?),
¢, ¥ # 0, we have from Proposition 2.12, applied with y = i, that

Ve fllppa = WIIIW}”I #Volllppe = ClVy fllppa,  G.13)
IVowll, ) . .
where C = W’ as we can deduce from Young inequality (3.12) (observe that

C is finite by Proposmon 2.9 and Remark 3.4). Then, by interchanging the roles of ¢
and Y we have that V,, f € Li;? if and only if Vi, f € L}, and the corresponding
modulation space norms of f with respect to the two windows are equivalent.

Remark 3.6 From Theorems 2.7 and 2.5 and Proposition 2.11 we have that

S,(RY) = ﬂM RY); S (RY) = UM (RY).

r>0 r<0

The inversion formula of Proposition 2.11 holds also in modulation spaces, as stated
below.

Proposition 3.7 Let y € S, (R?) be a not identically zero window, and consider; for
a measurable function F on R*?, the adjoint V;F defined as in (2.23). Then:
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(1) The operator V; acts continuously as
Vi Lt (R — My (RY),
and there exists C > 0 such that

IVy Fllsge < CllVoyliLy 1F Nz,

where @ is the window in the corresponding M ’1;1,;1 norm.
(ii) In the particular case when FF = V, f, for g € So(RY), and f € M,ﬁ’f, if
(v, &) # 0 the following inversion formula holds:

1
=—— | Vf@l@Eyd:.
I =iy e /RM e/ @Iy dz

Proof (i) We start by proving that V;‘F is an element of S (R?). For ¢ € S,,(RY) we
have from (3.11),

(VP ) = WE, Vi)l < Il IV ¥l
1

/my,

S A o e s
my

this expression is finite for 1 > 0 sufficiently large, as we can deduce from Theo-
rem 2.7(ii) and Remark 3.4. Then from Proposition 2.10 we have that V;F is a well

defined element of S, (R??). From Theorem 2.5 we have that V,, V F is a continuous
function; it is explicitly given by

VoV F(2) = (V) F, I1(2)p) =f F(y,mVy(I1L(2)@)(y, n) dy dn.
R2d

Writing z = (x, §) we have

|V V) F(x,8)| = '/RM F(y,mVey(x =y, & —me "5 dydy

= (IF[*[VeyD(x, §).
Then, from Young inequality (3.12) we obtain

IVy Flipgpe = 1VeVy Fllpa < CUFL2allVey Ly (3.14)

and this expression is finite since V,,y € S,(R*!) C L} (R*?) for every A € R from
Remark 3.4. ~
(ii) We first observe that, by (3.13), Vo f € Lfn’f. Then, from point (i), f =

mv; Vo f € MU Since MJ;! C S., we have that f = f by (2.25). O
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Theorem 3.8 Let 1 < p, g < oo. We have

(le\q)* _ Mp’,q’

IV

and the duality is given by
(f, h) = / Vo [ (2)V,h(2) dz
R2d

for f e ML andh e M7

l/m;j

Proof The proof of this result relies on the duality of weighted L”*9 spaces, and it is
the same as in Theorem 11.3.6 of [18]. O

Proposition 3.9 For1 < p,q < oo we have that S,,(R?) is a dense subspace of M.

Proof We first observe that, from property () of the weight function w (see Definition
2.1) we have that, for # > A big enough, e #*@ ¢ LF"? by Remark 3.4. Hence, for
every f € S, (R?) we obtain

1flpags = Vo flpe < 1V f @' oo™ pa.
From Proposition 2.10 we have
Su®) c My,

with continuous inclusion. It remains to prove the density. We denote by K,, := {z €
R : |z < n}, and we fix ¢ € S, with [l¢]|7, = 27)~?. Consider f € M};! and
define

F,=Vof - xk, and f, = V;Fn.

From Proposition 2.6 we have that f, € S, (]Rd ). Moreover, using (2.25) and Propo-
sition 3.7 we obtain

I fo = Flagg = WVg Fa = ViV fllpggs
< CllFs = Vo flgs

= ClVe fllLpe @eak,)-
So, || fu — fllypa tends to O for n — oo, which completes the proof. O
Iﬂ)L
We recall now from [18] some basic facts about amalgam spaces.
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Definition 3.10 We indicate with ¢/, (Z?) the space of all sequences (axn )i pezd»
with ay, € C forevery k,n € 74, such that the following norm is finite

q/p\ /4
lall o =<Z(Z |akn|f’mx<k,n)1’> ) .
neZd “keZd

Definition 3.11 Let F be a measurable function on R2¢, and define

app = esssup |Fk+x,n+§&)|.
(x.£)€[0,1724

We say that F € W(L},) if the sequence a = (axn); ez belongs to €4, (Z*9). The
space W (L} 1) is called amalgam space, and has the norm defined by

IE Ny gy = llallgpa.
Letg € Sp(RY) and A = aZ? x BoZ? alattice with o, By > 0 sufficiently small

so that {I1(0)@}oea is a Gabor frame for L2(R?). We indicate with 77, the restriction
of the weight (3.10) to the lattice A, in the sense that

m; (k, n) := my (aopk, Bon).

We recall the following result (see Proposition 11.1.4 of [18]).

Proposition 3.12 Let F € W(Lf,,’f) be a continuous function, and aq, fo > 0. Then
Flp € Erpi’f, and there exists a constant C = C(ag, Po, )) such that

IFlallezs < ClIF 0,
mj,
Now, we study the Gabor frame operator associated to the lattice A, given by

S f =D _{f. L)) TI(0) Y, (3.15)

ogel

for g, v, f € L*(RY).
We write as usual S, 4 = Dy, C,, where Cy, is the ‘analysis’ operator, acting on a
function f as

Cof =(f.l(o)p), o €A, (3.16)

and Dy, is the ‘synthesis’ operator, acting on a sequence ¢ = (Ckn)g nezd @S

Dyc= Y cTl(cok, Bon)y. (3.17)
k,neZd
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We analyze the action of the previous operators on the modulation spaces M7 The
proofs of the next two results are very similar to [18, Thms. 12.2.3, 12.2.4], so we
omit them. We just remark that, since ¢ € S, C S, we have that V,¢ € S; then by
Proposition 12.1.11 of [18] we have V¢ € W(L},A), and so we can apply Theorem
11.1.5 of [18].

Theorem 3.13 Ler ¢ € S,,(RY) and A a lattice as before. Then the operator
Cy : MR — 5722
is bounded for every ). € R\{0}, ap, Bo > 0, and 1 < p,q < 0.
Theorem 3.14 Let ¢ € S, (R?). Then we have:
(1) The operator
Dy : (7)) — My RY)

is bounded, for every 1 < p,q < 00, ag, Bo > 0, and A € R\{0}.
(ii) Foreveryc € Z%j and f eM 5,;1 we have that

(Dyc, f)=(c,Cy f), for1<p,g<o0 (3.18)
and

(Cy f.c)=(f,Dyc), forl<p,qg=<oo. (3.19)

(iii) For p,q < oo, we have that Dyc converges unconditionally in M ,’,’{f; ifp =
q = o0, then Dy c converges unconditionally weak* in M ?711;'

Now, we study the Gabor frame operator (3.15). We recall (see [18, Prop. 5.1.1 and
5.2.1]) that if we take a window ¢ € Lz(Rd) and a lattice A such that {T1(o)@}sep iSa
Gabor frame for L2(R?), the operator (3.15) is invertible on L2(R?). Moreover, if we
define the dual window ¥ of ¢ by ¥ := S, }pgo, we have that for every f € L*(R%),

f=Y (. Ho)g) o)y

oeA

with unconditional convergence in L2(R%). We observe also that if ¢ € S,,(R¥) then
the dual window ¢ € S, (Rd) by [19, Thm. 4.2].

Lemma 3.15 Fix ¢ € S,(RH\{0}, and let € S,,(R)\{0} be the dual window of ¢.
For f € Mf,,f (RY), A € R\{0}, we have

f=DyCof =Y (f o)) (0)Y

gelA
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and

f=DyCyf =Y (f,THe)Y)T(0)g,

oeA
with convergence in M f,’{f for p, g < 0o, and weak* convergence in M ?7” in the case
p=q =00

Proof We first consider the case p, ¢ < oo. From Proposition 3.9 we have that there
exists a sequence f, € S,(RY) such that f, — f in M} as n — oo. Since
S, (RY) ¢ L2(R?), we have that

fn=DyCyfn=D,Cy fr. (3.20)

From Theorems 3.13 and 3.14 we obtain Dy Cy f, — DyCyf and D,Cy f, —
D,Cy f in M}y, and so from (3.20) the result is proved.

We now pass tothecase p =g = oo. Let f € M‘l"/’vA and g € Mz])y We have to prove
that

(f.8) =(DyCyf.8) =(DyCy f,8g). (321

From (3.18) and (3.19) we have that

(DyCyf,8) = (f.DyCyg):
from the previous point we have that D,Cyg = g in M 11w so the first equality in

(3.21) is proved. The other is similar. O

Remark 3.16 Letu € S;)(Rd), and ¢, ¥ € S, (R?) as in Lemma 3.15. Then for every
0 € S, (RY) we have

(u,0) = Z(u, (a)p)(Il(o)y, 0). (3.22)

ogeA

We have indeed that from Remark 3.6 there exists A < O suchthatu € M7 = MY}, .
1

Then, from Lemma 3.15, for every g € M ,

(u, g) = Z(u, (o)) (@) ¥, 8).

geA

From Proposition 3.9, the previous formula then holds for g = 6 € S, (R9), so we
have (3.22).

We can now prove the main result of this section.

Theorem 3.17 Ifu € S, (R?) then

WE. (1) = WFY (u).
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Proof The inclusion WFS (u) € WF, (u) is trivial, so that we only have to prove that
WE. (1) € WFY (u).

LetO #£ zo ¢ WFg (u). So, there exists an open conic set I C R34\ {0} containing
zo such that (3.9) is satisfied. By Remark 3.16 we have that, for ¢ € S, (R4)\{0} and
¢ =S, 9 € Sy(RY) its dual window,

V)= Veu@)©)g. ¥) Vi € Su®D.

gelA

We denote

=Y Vou(@)(o).

oeANT

uy; = Z Vou(o)I(o)g.

ceA\D

Clearly Vou(z) = Vyui(z) + Voua(z). Denoting 0 = (01,02) € R? x R?, by
(2.12), (2.1), the subadditivity of w and (2.14), we can estimate, for every o, 8 € Né,
A, > 0:

. M/)w(\‘?\) —u%( )Ixﬁa"‘ul(xﬂ

< Y Wu)l- [P (@050 — on)]e H(E) e ()

oeANI’
1B
= Z Iun(0)|Z< ) 21l |y [Ble uww(1)<02>\a_y|
oeANI’ Y=«

107 5x = aple %)
<Cu Y Veu(o) Z( )2"“'e“‘”<")|aV¢(x —oD)l{o) e -39 %)

oeANl’ <a
=Cy Z [Vou(o)| Z < )2—|“|6Mw(01)euw(x—ol)
oeANT y<a

1973 — apliomyle—re 5 (5)
o

< C)J,M Z |V(pu(a)| Z ( )2_“|g"w(‘71)ek/%’<y/) 3k¢w(§)<02)\a_y‘

oeANT y<a
for some C, Cys ,, > 0.
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For A’ = 6X we apply [5, Prop. 2.1(g)], then (2.12) and (3.9), and finally obtain,
for some constants depending on X and p, and m > 0 big enough:

,)L(p(U(\uI) 7/1,(,0“)( >|xﬂ8°‘u1(x)|

_ * (la—y]
<Ci Y Woton) Y (%) wlenetone i) gy
oeANI’ Y=<«
<Cipu Z |Vou(o)| Z ( >z—laeuw(al)e6m((gz))
oeANI’ y<a
<GCipu j{: |v¢u(g)“JM+6Mw«a»+mw«a»e—mw«g»
oeAND’
< CA " Z —mow (o)) < C)L w x € Rd. (323)
oeANI’

This proves that u; € Sw(Rd) (here, we consider the seminorms given in (2.2)).
Therefore, from Theorem 2.7, V,u; € Sw(RZd) and for every A > O there is a
constant C, > 0 such that

ANVouy ()] < € Yz e R¥, (3.24)

Let us now fix an open conic set I’ C R2?\{0} containing zo and such that
I"'nSy_1Cr.
Then

o
— —zl=¢>0 (3.25)

o]

inf
();érreA\F
zel’

and |0 —z| > ¢lo|for0 £0 € A\I"'and z € T".
From the subadditivity of w we have

HNVur () < Y OO (o) - (o). TT(2)g)|
oeA\l’

<C Z e(k-&-i)w(a)ekw(z—c)lv(p@(z — )|, (3.26)
oeA\I'

for some C, A > 0, because of Theorem 2.5 and since ([18, pg 4l1])
(M(0)g, TH2))| = e 272 VoG(z —0)| = V@ — o). (327)

Since § € S, (R?), from Theorem 2.7 we have that for every u > 0 there is a
constant C;, > 0 such that

|V,@(z — 0)| < Ce 1)
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and hence, substituting in (3.26):

ekw(Z)|V¢u2(Z)| <CCy Z e(?»-i-i)w(ﬁ)e()»—ﬂ)w(z—a)‘ (3.28)
oeA\T

However, for z € " and 0 € A\I" we have |0 — z| > ¢|o| and therefore, by the
subadditivity of w, we have that

cor=al(2) = ()= (] o

Substituting in (3.28) we obtain, for M = ([1/e]+ 1)’1 and p > X sufficiently large:

POV (2) £ CC, Y MM < 0 e, (3.29)
oeA\I'

for some C,, > 0.
From (3.24) and (3.29) we finally deduce

sup e’\“’(Z)qu(z)I < 400, A >0,
zel”

and hence zg ¢ WF, (u). O

From Theorem 3.17, in what follows we use WF, (u) for WFS (u) and any u €
S/ (RY).

Proposition 3.18 For every u € S, (R?) we have WF. (u) = @ if and only if u €
Su(RY).

Proof Suppose that u € S, (R?), and fix a window function ¢ € S, (R%)\{0}; from
Theorem 2.7 we have that for every A > 0 there exists C, > 0 such that

Vou()| < Cre @, vz e R,
Then for every open conic set I' C R2d \{0} condition (3.1) holds, so WF, (1) = @.
Suppose now that WF, (1) = ¢. From Definition 3.1 we have that for every 7 €
RR2?\ {0} there exists an open conic set I' C R??\ {0} containing Z such that for every
A > 0 there exists C) z > 0 satisfying

Vou(2)| < Crze @ VzeTls

Let Yz = I'=N S>y—1. We have that { Yz, Z € R?*?\{0}} is an open covering of Say_1;
since S»g_1 is compact and I'; is conic, there exist zp, . . ., zx € R*\{0} such that

I, U---UTly, =R¥\(0}.
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We then have that for every A > 0,
[Vou(2)| < Cre @ vz e R¥,

where C, = max{Cy z,...,Cs z., |V¢u(0)|ek‘”(0)}. From Theorem 2.7 we finally
have u € S,,(R?). O

We now prove that the wave front set WF,, is not affected by the phase-space shift
operator.

Proposition 3.19 For every w = (v, n) € R* and for every u € S(/U(Rd) we have
WF, (IT(w)u) = WF, (u).
Proof Since IT(w) = M,T,, it is enough to prove that translation and modulation do
not affect the wave front set. Concerning translation, we have that for z = (x, &) €
RZd,
Vo (Tyu) (2) = (Tyu, T1(2)g) = (u, T_y[1(2)p) = e "5V u;
writing v =T_yp € S, (R?) we have that

Vo (Tyu)(2)| = |Vyu(2)l,

and since the wave front set does not depend on the window (Proposition 3.2) we have
WEF, (Tyu) = WF, (). Concerning modulation, we have

Vi (Myu)(2) = (Myu, 1)) = (4, My T1(2)g) = €' " Vyy_ pu(2);
then, writing = M_, ¢ € S, (RY), we get
[V (Myu)(2)] = |Vou(2),

and as before we conclude that WF, (M, u) = WF, (). O

The results obtained in Sects. 2 and 3 are true in the quasi-analytic case also,
i.e. when we consider that w(f) = o(¢), as t — o0, instead of condition (8) of
Definition 2.1. However, in the following we will consider weights satisfying (8), i.e.
there are compactly supported functions in S,,(R%).

4 Applications to (pseudo-)differential operators
In this section we analyze the action of several operators of pseudo-differential (or

differential) type on the global wave front set WF/ (1) of u € SC’U(R" ). In particular,
we obtain regularity results for pseudo-differential operators of infinite order in the
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Beurling setting. Note that, in the classical Schwartz space S(R?), Rodino-Wahlberg
treat in [35] pseudo-differential operators with symbols of polynomial growth.

In order to study the behaviour of the w-wave front set of pseudo-differential opera-
tors of infinite order we need nuclearity of S,, to apply the kernel theorem. It is known
that S,, is nuclear for many weight functions w. For example, whenever they satisfy
the following condition:

dH >1Vr>0, 20() <w(Ht)+ H. “4.1)

Bonet, Meise and Melikhov [9] proved that under such a condition the classes of
ultradifferentiable functions defined by sequences in the sense of Komatsu satisfying
the standard conditions (MO0), (M 1), (M2) and (M3), and the classes defined by
weight functions in the sense of Braun et al. [11] coincide. Hence, under condition
(4.1) our results are true also for spaces defined by sequences instead of weights (see,
for instance, Langenbruch [27] for a complete study of the structure of many global
weighted spaces of (ultra)differentiable functions and ultradistributions defined by
sequences in the sense of Komatsu).
First, we state the following property:

Lemma 4.1 If the weight function w satisfies (4.1) then
logt = o(w(t)), ast— 4o0. “4.2)

Proof Let H > 1 be the constant of (4.1). We fix ¢ > 0 such that w(c¢) > H. For
t > cH there exists m € N such that

cH™ <t <cH™!,
By (4.1) we have, for all x > 0,
22w(x) < 2w(Hx)+2H < w(H?x) +2H + H.
Hence, by induction on k£ € N, we obtain

X0(x) < w(H*x) + Q1 +252 4 ...+ DH.

Therefore,
. logt _ log(cH™) _ (m+ 1 log H +logc
Iim — < Ilim — = lim
1—00 w(t) m-— 0o w(cH™) m>Re om [a)(c) _ % _ zﬁz ..... 2%]

_ (m+ 1)log H + logc

- EHCCREEE

e

We start by defining the following symbol class.
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Definition 4.2 For m € R we define

S = {a € C®MR*™) VA, u>0 3Cy . > 0 such that

w

]

x ( lo| s (181
020fa(x. £)| < CA,,Le“"w( #) () gro® v, £)eR™ a, e Ng} .

Letusremark that when w (¢) = log(1+¢) then S/ contains the classical Hormander
symbol classes of global type and finite order S[’;f o»forall p € [0, 1], and, in particular,
it coincides with S6'fo (see [25] and the arguments of [ 15, Example 2.11 (1)]). However,
in the present section, we are not considering this extreme case by Lemma 4.1. We
extend the results of [35] for symbols of type (0, 0) with infinite order.

Then we consider the Kohn—Nirenberg quantization defined by

a(x, D) f(x) := 2m)™ / ¢ ax, £)F(€)dE,  aeS", feS,RY.
R
“4.3)

The above Kohn—Nirenberg quantization is well defined since f € S, (R?) and hence
for every A > O there exists C; > 0 such that

laCe, )] - 1f @) = " Cre®
which is integrable in R if we choose A > 0 sufficiently large. Moreover,
a(x,D): S, — S'CS..
If S, is nuclear, we can apply the kernel theorem to the linear operator
Vea(x, DYV, : Su(R*) — S, (R*)
and find a unique distribution K € S, (]R4d ) such that
Vpa(x, DYVSF (', ')
— e [ KOy nFGodydy YF @S, @)

in the sense that

(Vpa(x, D)V;F, G)
= QCOUKG 05y, 0, GO F, ) VG e Sp(R*).  (4.5)
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Ifu e S,(RY and F = Vyu € S,(R*) for ¢ € S, (R?) with [|¢|l;2 = 1, then,
from (2.22),

Voa(x, Dyu(y',n') = 27) " Vya(x, D)V Vou(y', n')

= /RM K n's y.n)Veu(y, n)dydn

and we can compute the kernel directly:

Lemma4.3 Fora e S, ¢ € S, (RY) with lell2 =1andu € S, (R?) we have that
Vy(a(x, D)u)(Z) = / 5 K(Z, 2)Vyu(z)dz, (4.6)
R
where, forall z = (v, ),z = (v, ') € R*,

K@@ 2) = @m)2eim / o/ (A= E = Da (x, £)5(E — me(x = y)dxds.
R2d

%))

Proof Let F € Sw(RZd) and consider the Kohn—Nirenberg quantization (4.3) of
VIF € Sy(RY):

a(x, D)V, F(x) = 2m)™ f ¢ a(x, £)VF(E)dE.
R4
Then, by the definition of short-time Fourier transform and (4.3):
Vea(x, D)V F(y',n') = / (a(x, D)V, F)(x)g(x — ye ) dx
R4
= @0 / / B a(x, HVIF E)pk —yhe W dedx.  (4.8)
Rd JRA
So, fixed x, & we have, by (2.23),

¢ Da(x, E)VIF o — y)e )
¢
= / 8 a(x, %‘)V;F(x/)e_i(x/’§>me_i(X’”/>dx/
R4
= [ [, ¢ a0 r G e i —
T IE GG = e ) dydndx!.
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Sincea € S)', F € S,(R?*?) and ¢ € S, (R?), we have that for every Ap, Ao, A3 > 0
there exists a constant C, > 0 such that, by the subaddititvity of w:

lax, §)F (v, me(x" — y)ex — )|
< C)Lemw(S)e—klw(y,n)e—kzw(ﬂ—y)e—ksw(x—y’)
< 0y E) o= FOW) g F o) =120 F220() 30 () Hh30 (V)
Choosing A1 > 2Ap > 0 sufficiently large we can apply Fubini’s theorem with
respect to the variables y, n and x’, obtaining:
¢ Halx, )V FE)ple = ye )

e Ea(x, £)F(y, n)

2,

BN

d

g

¢ — y)e—"““@dx’) o(x = y)e ™ dydn

e Sa(x, E)F (v, n)

2

x

o

d ei<y+s,n)e—i<y+s,s>(p(s)ds) oG e dydy

[l
T~ E—

ei<X,§)a(x, E)F(y, n)eib’ﬂl)e*i(}'f)
2

/Rd ei“'"g”)so(s)ds) o(x — yNe " dydy

e“x’g)a(x, E)F(y, n)e“%ﬂ)e—i(%%‘)

I
o —

de
P — Mok — yhe "M dydn. (4.9)

Since a € SI', F € Sw(]RM) and ¢ € Sw(Rd), for every 1, o, u3 > 0 there
exists a constant C;, > 0 such that, by the subadditivity of w,

la(x, &) F(y, M@ — mex — y)]
< Cuemw(é)efmw(y)efmw(n)eﬂtzw(é)Jruzw(n)efmw(X)Jrusw(y’),

so that, for w3, w1 > wo sufficiently large, the above function is integrable in Ré‘f £0y)
and substituting (4.9) into (4.8) we can apply Fubini’s theorem to obtain:

Vpa(x, D)V, F(y', 1)

= (271)_d/ F(y, me'™"
R2d

. <‘/de ei((%f)*()gf)*(%ﬂ’))a(x, f)a(s — n)w(_x _ y/)dxd.’;) dydn
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Applying the above result to F' = V,u for some u € S, (RY), since [|¢|| 12 = land
hence V(;‘F = V; Vou = (27)%u by (2.22), we have

Vola(x, Dyu)(y',n') = /RN K. n's y, m)Veu(y, n)dydn,

for
KG'\n'sy.m)
= (0 [0 £33 — s =
which concludes the proof of the lemma. O

In the next result the following property on the weight function w, which can be
proved as in [8, Lemma 4.7(i1)] (for instance), will be useful: for every o, £ > 0 and
t>1,

inf f"jew‘f’(%) < e~ =P —%F (4.10)
J€RNo

where a € R and b > 0 are the constants of condition (y) in Definition 2.1.

Proposition4.4 [fa € S”, m € R and K € C®(R*) is defined by (4.7), then for
every A > Q there exists a constant C). > 0 such that

1K (2, 2)| < Cre P00 em=Rot=m)gmetl) = 7 — (y p) 2 = (y/, ) € R¥.
4.11)
Moreover, if a(z) = 0 for z € I'\B(0, R) for an open conic set I' C RM\{O} and
for some R > 0 (here B(0, R) is the ball of center 0 and radius R in R*), then
for every open conic set T' C R*\{0} such that T' N S»q—1 < T we have that for

every A > 0 there exists a constant C;, > 0 such that for all 7/ = (y',n") € T/ and
z=(y,m) € R¥,

IK(Z,2)| < C}Le—)»w(y—y/)e—lw(n—n/)e—ﬂw(y/)e—ﬂw(n’)_ (4.12)
Proof By the linear change of variables &’ = & — n and x’ = x — y" in (4.7) we have
K(Z,z7) = (2m) ity / o (XY 8 4n) =y, & +m) = (')
R2d

xa(x' + . & + n@E)e()dx'dt’
— (27) "2 i (="

. X EN O )+ (8 )= (v.£") =)
R2d
xa(x' +y', & + neE e )dx'ds’,

@ Springer



The Gabor wave front set in spaces of... 231

and hence, setting x = x’ and & = &”:

K (', 2)| = Qm)~™

fde =T EY =M g (x £y £+ FE)p(X)dxdE| .
(4.13)

Writing, for M, N € Ny,
o (xn—n'+E)+E.Y'=y) _ -1+ $)72M(1 _ Ax)Mei((x,n*n”ré)ﬂé,y’*y))
= (=) =0+ &7 A - AT (1 AN
and integrating by parts in (4.13), we have
K@@ )l = @n)*(y - y’>‘2N

x| [ eI s>dxds‘ (4.14)
R2d

where

AN (Y0 X, 8)
= (1= 2" [t = of + 7M1 = A (atx + . & + PP |

Fora € S, since 9, ¢ € S, (Rd), we use the definition of symbol (Definition 4.2)
and the seminorms (2.3) to obtain that for each A, u, A/, u/, A, u’ > 0 there is a
positive constant C := C;, , 5/, 7,57, such that for every M, N € Ny:

(2N)!
ANy 0 nx, 8 <C > —
Y1+r2+y3+y=2N YIY2: Y34

Y Bl -y gy

oploy!
o1+o0r=2M 1:02

o () o () o+ 2 (%) -

” o log] "
x eA () o (4.15)
‘We observe that
n—n'+&7"<v2(n—n)"Ye), (4.16)

and, hence,

m—=n+ §>—2M—|V2\ < 2(2M+|y2|)/2(,7 _ n’>—2M—\Vzl<%->2M+\y2|_
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By (2.12) and by the subadditivity of w, for all & > 0:

oyl < e %(W) o) < 4 A%(‘y-”) ho(+x) < C; eww('Tl') Ao (x)

4.17)

for C; = o),
Analogously

&yl < C; e)‘%)(li‘) ho(€) (4.18)

Substituting (4.17) and (4.18) into (4.15), choosing /' = A +m + 1, u” = A + 1,
uw=A=2>\ =1" =) and applying (2.15) we obtain a constant C; > 0 such that for
all M, N € Ny:

2N)!
v onx, O] < @V Yy GO
_oy V1'2lyalyal
Y1+v2+y3tm=2N
2M)!
Y
o14+or=2M 1:02:

RYAC O PACD) (1 — 'y ~2M=12l (£)2M =0 &) —0 () gma (=) gmo ()
< CA(dﬁ)ZM“NeW(ﬂN )i (3)
x (1 — /)y "M (£)2M gm0 ) =0 () gmo =) gmo )

By [8, Lemma 4.5] we have that for every A" > 0 there exists Cy; > 0 such that

AN (Y ' . x, )
< 0, (3) 0 (3) () = ) =2M (6)2M gm0 ®)=0 ) o1 o).

Now, we turn to formula (4.14) and we have that for all A there is a constant C; > 0
such that for every M, N € Ny:

7N 7M A /
K@ 91 = Coly -y e (3 g2 e () gt gmocr

x (/Rd e—w@‘)dx)(Ad@)z’”e—w@ds). (4.19)

We observe that the integrals are convergent (the second one, for all M € Ny) by
Lemma 4.1. We take the infimum on N and M separately and use the property that the
infimum of the pointwise product of two sets of positive numbers is the product of the
infimums of the two sets. Therefore, we apply (4.10) for o = 2 to obtain (possibly) a
new constant C; such that:

2 N o (y_2 _ ’ ’
IK(Z,2)| < Cie—(l—z>w(y—} )e (k h)w(ﬂ n )emw(n—n ) gme(n )’ (4.20)
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which proves (4.11) by the arbitrariness of A.

Now, we want to prove (4.12). To do so, we apply (4.16) only to (n — n/ + &)=Y
in (4.15) and, by the same computations to get (4.19), we have that if a(z) = 0 for
z € '\B(0, R), for every A > O there is a constant C; > 0 such that

IK(Z’, 2| < Cily — y/>—2New*(27N)<n _ n/>—Mekfﬂ?;(zTM)emw(n—n’)emw(n’)
x / ' — & +m) MmO (g)M =@ gxag, (4.21)
D

yon

where
Dy yi={(x,&) eR¥: (x+y,&+n) € R*\IN)UB(O, R)}.

We now want to estimate (4.21) for 7/ = (y/,n’) € I and z = (v, ) € R*. By
[35, pg 643] we know that

O < C)* i — E+m)?, 2 eT'\B(0,2R),z € R¥, (x,£) € Dy ,,
(4.22)

for some constant C > 0.
We plug (4.22) into (4.21) and apply [5, Prop. 2.1(g)] to obtain, forz’ € I"\ B(0, 2R)
and z € R,

(2N
K2l = CHRCy(y — yy2Ve il %)
rox( M Aok ((M/2 oo M/2
x (n — n/)—Mef‘/’w(T/z)ez%(m)<y/)—M/2ez</’w<m)(n/>—M/2

Xemw(n—n’>emw(n/)/ ()M ()M =0 ) =0 ®) g g

Dy,

Proceeding as in the case before (taking the infimum on M and N separately), we
obtain, from (4.10), that for every A > 0 there exists another constant C; > 0 such
that

D\w—y) —(3=)om—y
K(Z. 2] < Cre P)o0=y) = (3=F)ew=n)
A1 ) A1 4 ’ /
> e_(4_2b>“’()’ )e_(4_2b>w(’7)emw(fl—n)emw(fl)
< e 0= g =) =200 () p=2h0 ()

fora=%—2%—mandz € I"\B(0,2R), z € R*. The estimate (4.12) for |z/| < 2R
follows from the case before, so the proof is complete. O

Remark4.5 Fora € S!!,m € R, and K € C®(R*) defined by (4.7) the integral in
(4.6) is well defined also for u € S, (RY). In fact, (2.9) and (4.11) imply that there
exist C, A > 0 and that for every A > 0 there exists Cj > 0 such that
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K. 2)Vou(z) < C Cye 00N Hm=1om=n) gmo ') o) +iom)

<Cc, AN FHmER0 ) L= () +m+i-Dom) ¢ Ll(de( )
B z=(y.n

(4.23)

if A > max{X, m + 1}, by (4.2).

We now want to extend Lemma 4.3 foru € S, (Rd). To this aim we first need the
next two results.

Proposition 4.6 The space S,,(R?) is dense in S (R?).

Proof Let us consider the inclusion
i1 SRy — S, (RY)
[ i), g) = fR [ f@e(dx Vg € S, RY.

To show that the image is dense we take 7 € (S, (R ))/ such that T|g, = 0 and
prove that 7 = 0 (Hahn-Banach theorem for locally convex spaces).
Since S,,(R?) is reflexive, there exists a unique f € S, (R%) such that

T(p) = /Rd Fe()dx =0, Vo e S,(RY,
because of T|3w = 0. Therefore f =0,i.e. T = 0. |
Proposition 4.7 Let ¢ € S,,(R?)\{0}. Then
V,: SL(RY) — S (R*)

IS continuous.

Proof We already know that
Vi Su®M) — S,(RY
is continuous by (2.21). It follows that
V) : S,RY) — SR>
is continuous and moreover (V; )* | S,(RY = V., because, for f, g € S, (RY),
(VO f.g) = (£, Vig) = (VoS 8)-
Since S, (R?) is dense in S (R4) by Proposition 4.6, we have that (V; )* is the

continuous extension of V,, to S;)(Rd) and, hence, V,, is continuous on S;)(Rd ) also.
O

@ Springer



The Gabor wave front set in spaces of... 235

Now, we need amplitudes a(x, y, &), instead of symbols a(x, &).

Definition 4.8 Given m € R, we say that a(x, y, &) € C®(R3) is an amplitude in
the space S/ if for every A, u > O there is C;, ;, > 0 such that

s latyl (1Bl
|8;‘8;/8§a(x, v, €)| < Ck,uek(p ( x )+WP (;l )emw(é),

3d d
forall (x,y,&) e R* and o, B,y € Nj.

Now, proceeding in a similar way to that of Proposition 1.9 and Theorem 2.2 of
[15], one can prove that if a(x, y, &) € S/ is an amplitude as in Definition 4.8, the
operator acting on S,,, given by the iterated integral

AN ) = / ( f ei<x—y*f>a(x,y,é>f<y>dy) d&. f € Sun
]Rd ]Rd

is well defined and continuous from S, into itself. The operator A is called pseudo-
differential operator of type @ with amplitude a(x, y, ). Moreover, A can be extended
continuously to the dual space A: S, — S, inastandard way (see [15, Theorem 2.5]).
In particular, the Kohn-Nirenberg quantization defined in (4.3) is a pseudo-differential
operator with amplitude

a(x,y, &) = Qr) Ip(x, &),

where p(x, &) is a symbol as in Definition 4.2.
As a consequence of the above considerations and of the estimates of the kernel in
Proposition 4.4, we obtain the following result:

Corollary 4.9 Let a(x,£) € S a symbol as in Definition 4.2, ¢ € S, (RY) with
loll2 =1 andu € S, (RY). Then, for K (', z) as in (4.7), we have

Vea(x, D)u(z') = / y K(Z, 2)Vyu(z)dz, (4.24)
R

forall 7 € R¥.

Proof Since V, operates on S, , from the previous comments it is clear that Vya(x, D)
can be extended to S, (R?). We take u € S (RY). By Proposition 4.6, there exists a
sequence {u, }neny C S, (R?) which converges to u in S, and, hence,

/Zd K(Z', 2)Vypun(2)dz = Vya(x, D)u,(z') — Vya(x, Dyu(z)  in S, (R*).
R
(4.25)

We want to prove that
/ K (7', 2)Vyun(z)dz — / K(Z', 2)Vyu(z)dz (4.26)
R2d R2d
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using Lebesgue’s dominated convergence theorem. First, it is easy to see that
{Voun(z)}nen converges pointwise to V,u(z) for every z € R% from the definition
of the short-time Fourier transform.

Now, since {u,}nen is bounded in S, (Rd), it is equicontinuous there. So, there
exist a constant C > 0 and a seminorm ¢ on S,, (R?) such that

un, 9)| < Cqp), ¢ € Su(RY).

This yields a uniform estimate of the inequality (2.9) (see the proof of [19, Theorem
2.4]) in the sense:

[Voun(2)| < Cer@ 7 eRM peN, (4.27)

for some C, A > 0 independent of n and z. From (4.27) and (4.23) we have that
K (Z', 2)Vyun(2) is dominated by a function in L! (R%d).
Therefore (4.26) is satisfied and hence, from (4.25),

Vea(x, Dyu(z') = /21 K(Z', 2)Vyu(z)dz
R a

also for u € S/, (RY). O

We recall the notion of conic support from [35]:

Definition 4.10 For a € D' (R??) the conic support of a, denoted by cone supp(a), is
the set of all z € R24\{0} such that any open conic set I' C R34\ {0} containing z
satisfies that

supp(a) N I" is not compact in R,

We have the following

Proposition 4.11 Ifm € R, a € S and u € S, (RY), then
WEF, (a(x, D)u) C cone supp(a).

Proof Let 0 # zo ¢ conesupp(a). This means that there exists an open conic set
I' C de\{O} containing zo and such that a(z) = 0 for z € I'\B(0, R) for some
R > 0. Then, from Proposition 4.4, for every open conic set I’ € R??\{0} with
IV N Spy—1 € T we have that the kernel K (z/, z) defined by (4.7) satisfies the estimate
(4.12) forall 7/ € I'" and z € R,

We argue as in Corollary 4.9 and use (4.12) to obtain that formula (4.24) holds for
all 7 € T and therefore there exist C, A > 0, and for every A, N > 0 there exists
C,.n > Osuch that, forall 7/ € T,
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|Vp(a(x, D)u)(z)| < /de |K (', 2)| - |Vyu(z)ldz
< CA,Ne_z(H'N)“’(y/)6_2()‘+N)w("l)
/ e—()~-~-1\’)a>(y—y)e—()»-i-N)w(n—n)|V(pu(y7 m|dydn
R2d
< CCA,Ne_2()‘+N)w(y/)e_2()‘+N)w("/)

. f e~ HHNLG=Y) p= G+ N (=1) o0 gy gy
R2d

It follows, by the subadditivity of w, that

[Vpa(x, D)u(Z)| < CCy ye 20FN00) =204 Mol

, f ¢ AN +0A+N () =N () +0A N ()
R2d

.exw(y”;‘“’(”)dydn
S CC)LYNe—)Lw(,V,)e_)‘w(”/)/ e(X—N)a)(y)e(i—N)w(ﬂ)dydn
R2d
- Cke_kw(y/)e_)‘w("/) < C)LE_M)(Z/) V7 = (y/, 77/) el
(4.28)

for some C, > 0 if we choose N sufficiently large so that the integral in (4.28)
converges.

This proves that zg ¢ WF, (a(x, D)u) by Definition 3.1, and the proof is complete.

O

Since our weight functions are non-quasianalytic, we can obtain the following
consequence of Proposition 4.11.

Corollary4.12 Let a € S, (R*?) with compact support, and consider the corre-
sponding pseudo-differential operator a(x, D), cf. (4.3). Then a(x, D) is globally
w-regularizing, in the sense that for every u € S(;(Rd) we have a(x, D)u € S, (R%).

Proof It is easy to see that a € Sg. Consequently, the corresponding pseudo-
differential operator a(x, D) can be extended to SZU(Rd)- Since the support of
a is compact, we have that conesupp(a) = ¢. From Proposition 4.11 we get
WEF, (a(x, D)u) = (. We apply Proposition 3.18 to conclude. O

In the next part of the section we consider other kind of operators, proving that their
application to ultradistributions does not enlarge the wave front set. We start from the
operators with polynomial coefficients.

Theorem 4.13 Let m > 0 be an integer, and consider

A(x, D) = Z caﬁx"‘Df,
le+B|<m
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where cqp € C. Then for every u € S;)(Rd) we have
WF, (A(x, D)u) € WF,, ().

Proof We fix a window function ¢ € Sw(]Rd ), and, for v € Ng we write ¢, for the
function

v (x) = x"p(x).

For every o € Ng and z = (y, ) € R* we obtain by induction on || that

M@=y (‘;‘) YOUTIR) (4.29)

v<a

We have indeed that for |a| = 1, writing 1; for the multi-index in Ng having 1 in the
Jj-th position and 0 elsewhere, we have

xi (2 = y; ()¢ + (2)¢1;;
we suppose now that (4.29) is true for every |«| = n, and prove it for & with || = n+1.

There exists j € {1, ..., d} such that & = o + 1;. Then by the inductive hypothesis
we have

x*T(z)p = xj Z (j)ya_vH(Z)fpu

-3 (“) [ @ + T @, |
v=o v
- o o =
=y M@¢ + ME@egs + ) [<v> + <U 1 )} Yy )y
e :
=2 (“)y&‘”n(z>¢v,
v<a& v

and so (4.29) is proved. From the definition of short-time Fourier transform we have
Vo (x¥u)(z) = (x"u, (2)p) = (u, x*T1(2)p)

and so by (4.29) we get

Vou)(e) = Y <Ov‘> YV, u(2). (4.30)

V<o
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Concerning differentiation, since
Vo (DPu)(z) = (DPu, TI(2)p) = (u, D’ (I (2)¢))

a direct computation shows that

Vo(DPu)(z) =) (l’i ) P~ Vpuyu. (4.31)

n=p

From (4.30) and (4.31) we finally obtain

Vo(ACe, Dy)(y, ) = Y capVpx*DEu)(y, m)
la+Bl=m

= > ZCaﬂ( )( ) P Vg, uly, ).

latpl=m v=e
n=

(4.32)

On the other hand, it is not difficult to see that for every u, v € NO, Dtg, € S, (Rd ).
Suppose now that zo = (yo, no) ¢ WF, (1), zo € R24\{0}. Then, there exists an
open conic set I' € R??\ {0} containing zg and such that

sup e)"“(Z)W(pu(z)I <400, A>0.

zel

From Proposition 3.2 we have that for every u, v € Ng and for every open conic set
I'" € R?4\{0} containing zo and such that T/ N S»y_; € T,

sup "9 | Vpug,u(z)| < +0o Vi > 0. (4.33)
zel”’

From (4.32), for every k > 0 we get

NV, (A(x, D)u)(z)|

Z anﬁ< )( ) 7kw(z)|ya7vn;67u|e(k+k)w(z)|VDH%M(Z)L

 latplem e
u=p

Since | —v|+ |8 — | < m, from (4.2) we have that forany m € N, mlog(t) < w(t)
for t > 0 large enough. So, " < ¢“® for t > 0 large enough, and hence

sup ¢ @]y P < oo,
zeR2d
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for every v < @ and u < B. Therefore, from (4.33) we obtain

sup e“"(Z)W(p(A(x, D)u)(z)| < +o0, A >0,
zel”

which means that zo ¢ WF, (A(x, D)u), and the proof is complete. O

We now want to prove an analogue of Theorem 4.13 for the case of localization
operators. We recall here the definition of such operators and prove some results that

are needed for our purpose. Given two window functions ¥,y € S, (R?)\{0} and

asymbola € S, (R??), the corresponding localization operator L“]//’y is defined, for

f e S,(RY), as
Ly f=Vi@-Vyf) (4.34)
From Proposition 2.9 we have that
LY : Su(RY) — S, (RY).

We want now to consider symbols in a smaller class than SC’U(RM ), in order to apply
the corresponding localization operator to distributions. We have the following result.

Lemma4.14 Leta(z), z € Rz‘i, be a measurable function such that there exist T, C >
0 such that

la(z)| < Ce™® vz e R¥. (4.35)

Then
LY, : Sy(RY) — S, (RY) (4.36)

and
4, Sy®RY) — 8 (RY) (4.37)

are continuous.

Proof Let f € S, (R). From Theorem 2.7 we have that for every A, p > 0 there
exists C; > 0 such that

ePw(Z)|a(Z)||wa(Z)| < C}\e(p%—r—k)w(z)’

and so, choosing A > p + 7, we have thata - Vi, f € Lfn"p (R%4) for every p > 0,
where m , is defined by (3.10). From Proposition 3.7 and (4.34), we have that L?ﬁ,y fe
M fn"p (R?) for every p > 0, and then, from Remark 3.6, ij,, y f € S,(RY). To prove

@ Springer



The Gabor wave front set in spaces of... 241

the continuity of an//,y on S, (RY) we fix ¢ € S,(RY)\{0}, p > 0, and we observe
that from (3.14) (with p = ¢ = o0) and (4.35) we get

sup [V, (LY, F)@)|e"@ = sup [V, Vi (a - Vy f)le’®

zeR2d zeR2d

CllVey Ly, sup la@Vy f(2)]e"

zeR2d

< C" sup |Vy f(@)]e T,

zeR2d

IA

From Proposition 2.10 we have that (4.36) is continuous.
Letnow f € SC’O(]R‘I ). From Remark 3.6 there exists A < O such that f ¢ M ;’fk (Rd);
then, choosing p = —|7| — |A| we have

" Da@)|Vy f@)] < CePTTHE < foo

forevery z € R*,soa- Vy f € L;’fp (R2?). Then by Proposition 3.7 we have L“]//’y fe
M ‘,’nop (R9), and from Remark 3.6 we finally have Lf/f’y fes, (R?). Observe now that
for every u € S(’D(Rd) and v € S, (R?) we have

(LY, u,v) = (V) (a- Vyu),v) = (u, Vi@- Vyv)) = (u, L%,v).

Then L“‘h’y = (L?w)*; since a satisfies the same estimates as a, the continuity of
(4.37) follows from that of (4.36). O

Theorem 4.15 Let yr, y € S,(RY)\{0}, and let a be a symbol satisfying (4.35). Then
foreveryu € S;(]Rd) we have

WE,, (LY, ,u) S WF,,(u).

Proof Let 7o ¢ WF;)(u), 70 € R \{0}. Then there exists an open conic set [ C
R\ {0} containing zg such that

sup e @|Vyu(z)] < 400 Va > 0.

zel

From (4.35), since A is arbitrary we have

sup e @la(z) Vyu(z)| < +oo Vi > 0.
zel

For window functions ¢, y € S, (Rd) we can then repeat the same procedure used in
the proof of Proposition 3.2. First, we observe that from the definition of localization
operator

V(p(Lf/,’yu) = V(pV;(a - Vyu).
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Now, it is not difficult to see that

Vo(Ly, ,u)(x, &) = /H;Zd(a - Vyu)(s, n)V, (T1(2)@) (s, n)dsdn,
V, (TI@D)@) (s, ) = Vypy (x — s, & — e 0571,
and hence
Vo (LY, ,w)| < la - Vyul * [Vyyl.

Consequently, for every open conic set I” € R2?\{0} containing zo and such that
I'"' N S2y—1 € I we have (see the proof of Proposition 3.2)

sup e’\“’(Z)|V¢(L“1//,yu)(z)| <400, A>0.
zel”

This implies that zg ¢ WF;)(L“wyyu) and the proof is complete. O

5 Examples

In this section we compute the Gabor wave front set for some particular u € S, (R9)
(see also the examples in [35]).

Example 5.1 Consider the Dirac distributionu = § € S, (R?) for every weight ». We
have that

Vod(x, £) = p(—x).
Since V,6(0,&) = ©(0), choosing ¢ in such a way that ¢(0) # 0 we have
{0} x (RU\{O)) € WF,,(8).

Let now (xg, &o) € RM\{O} such that xo # 0, and consider an open conic set contain-
ing (xg, &) of the form

[ ={(x,&) e R*\{0} : |&] < Clx]}

for C > 0. From the subadditivity of w, there exists C; > 0 such that, writing
z=(x,§),

sup @ |V,8(2)| < sup X1V |p(—x)| < +o0
zel xeRd

since ¢ € S,,(R?). Then (xo, &) ¢ WF, (8), and so WF/,(8) = {0} x (R?\{0}). From

Proposition 3.19 we have that for every X € R¥, writing 8« for the Dirac distribution
centered at X,
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WF, (87) = {0} x (RY\{0}). (5.1)

Example 5.2 Let u = 1 be the function identically 1, that belong to S/ (R¥) for every
weight w. A direct computation shows that

V,(1) = e "5 g (—¢);

since ¢ € S, (R?) we can proceed as in Example 5.1, obtaining that for every weight
o, WF, (1) = (R4\{0}) x {0}. From Proposition 3.19 we then have that for every
£ € R? and for every weight w,

WF,, (¢! = (R\{0}) x {0}. (5.2)

Example 5.3 We consider now the function u(x) = ei"xz/z, for x € R and ¢ € R\{0}.
Observe that u € S, (R) for every w. Choosing as window function the Gaussian
o(t) = e"z/z, that belongs to S, (R) for every w, we have, as in Example 6.6 of [35],
that there exists C > 0 such that

_ 2
Vpu(x, £)] = Cexp (-%) .

Then, proceeding in a similar way as in the previous cases we have
WF, (1) = {(x, cx) : x € R\{0}} (5.3)

for every weight .

We observe that in the cases (5.1) and (5.2) the Gabor wave front set gives rougher
information since it does not take into account translations and modulations, while for
the case (5.3) it gives finer information, since it identifies the so-called instantaneous
frequency, that is the only direction along which the time-frequency content of u does
not decay. For a comparison of the Gabor wave front set of the element considered in
the previous examples with other type of global wave front set (at least in the frame
of tempered distributions) we refer to [35].

We observe now that in the previous examples the considered distributions have
the same wave front set for every weight w. In general the Gabor wave front set may
depend on w, as shown in the next example.

Example 5.4 Letw and o be two weight functions, such thatw () < o (¢) and S, (RHN
DRY) C S, (RY)ND(R?). We then fix a function f € S, (R?) with compact support
such that f ¢ S, (R?). From Proposition 3.18 we have

WE,,(f) = 0.

Fix now a window ¢g € S, (R?) with compact support such that ¢o = 1 on supp( f).
From the definition of short-time Fourier transform, we then have that the orthogonal
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projection on Rf of the support of Vi, f (x, &) is compact. Letnow zo = (xo, §o) € R4
with xg # 0, and fix an open conic set containing zo of the form

[ = {(x,&) e R*\{0} : |&] < Clx]},

for C > 0. We then have that I" N supp(V,,, f) is compact, so the condition (3.1) is
satisfied for every A > 0. Then (xo, &) ¢ WF_ (f) for every xo # 0. Consider now a
point of the type (0, &) with & # 0, & € R?. From the fact that ¢o = 1 on supp( f),
we have

Vo £ (0, 8) = / 08 (g di = F(&).

Since f ¢ S, (R?), we have that there exists A > 0 such that

sup ") |V, £(0,8)| = +oo,
£cRd

so (3.1) cannot be satisfied in an open conic set containing (0, &y), and then (0, &) €
WF, (f). We then have that

WE, () = {0} x (R/\{0});
in particular WE, () # WE, (f).

Acknowledgements The authors are very grateful to the reviewers for the careful reading and for the
comments and remarks which improve the presentation and the quality of the paper.

The authors were partially supported by the INdJAM-Gnampa Project 2016 “Nuove prospettive nell’analisi
microlocale e tempo-frequenza”, by FAR 2013, FAR 2014 (University of Ferrara) and by the project “Ricerca
Locale - Analisi di Gabor, operatori pseudodifferenziali ed equazioni differenziali” (University of Torino).
The research of the second author was partially supported by the project MTM2016-76647-P.

References

1. Albanese, A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial dif-
ferential operators. Integr. Equ. Oper. Theory 66, 153-181 (2010)

2. Albanese, A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial
differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411425
(2012)

3. Bjorck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351-407
(1966)

4. Boiti, C., Gallucci, E.: The overdetermined Cauchy problem for w-ultradifferentiable functions.
Manuscripta Math. 155(3-4), 419-448 (2018)

5. Boiti, C., Jornet, D.: A simple proof of Kotake—Narasimhan theorem in some classes of ultradifferen-
tiable functions. J. Pseudo-Ditter. Oper. Appl. 8(2), 297-317 (2017)

6. Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with
constant coefficients. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111(3), 891-919
(2017)

7. Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front sets with respect to the iterates of an operator with
constant coefficients. Abstr. Appl. Anal. 2014, 1-17 (2014). https://doi.org/10.1155/2014/438716

@ Springer


https://doi.org/10.1155/2014/438716

The Gabor wave front set in spaces of... 245

11.

12.

13.

14.

15.

16.

18.
19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.
36.

37.

. Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces

and Wigner type transforms. J. Math. Anal. Appl. 446, 920-944 (2017)

. Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultrad-

ifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425-444 (2007)

. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples,

CMS Books in Mathematics/Ouvrages de Mathématiques de 1a SMC. Springer, New York (2006)
Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math.
17, 206-237 (1990)

Cappiello, M., Schulz, R.: Microlocal analysis of quasianalytic Gelfand—Shilov type ultradistributions.
Complex Var. Elliptic Equ. 61(4), 538-561 (2016)

Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrodinger equa-
tions with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530-571 (2017)

Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Anal-
ysis. Springer, Berlin (2016)

Fernandez, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of
Beurling type. Studia Math. 167(2), 99-131 (2005)

Fernandez, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front
set. J. Math. Anal. Appl. 340(2), 1153-1170 (2008)

. Fieker, C.: P-Konvexitit und w-Hypoelliptizitdt fiir partielle Differentialoperatoren mit konstan-

ten Koeffizienten. Diplomarbeit, Mathematischen Institut der Heinrich-Heine-Universitit Diisseldorf
(1993)

Grochenig, K.: Foundations of Time-Frequency Analysis. Birkhduser, Boston (2001)

Grochenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1),
25-53 (2004)

Heil, C.: A Basis Theory Primer. Applied and Numerical Harmonic Analysis. Springer, New York
(2011)

Hormander, L.: Fourier integral operators. Acta Math. 127(1), 79-183 (1971)

Hormander, L.: Quadratic hyperbolic operators. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Anal-
ysis and Applications. Lecture Notes in Mathematics, pp. 118-160. Springer, Berlin (1991)
Hormander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer-Verlag, Berlin
(1983)

Hormander, L.: The Analysis of Linear Partial Differential Operators, vol. II. Springer-Verlag, Berlin
(1983)

Hormander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer-Verlag, Berlin
(1985)

Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl.
1(4), 403-436 (1995)

Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscripta Math.
119(3), 269-285 (2006)

Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Science Publications, Clarendon
Press, Oxford (1997)

Nakamura, S.: Propagation of the homogeneous wave front set for Schrodinger equations. Duke Math.
J. 126, 349-367 (2005)

Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Springer, Basel
(2010)

Pilipovié, S.: Tempered ultradistributions. Boll. UM.IL B (7) 2(2), 235-251 (1988)

Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions.
J. Pseudo-Differ. Oper. Appl. 4(4), 495-549 (2013)

Pilipovié, S., Prangoski, B.: Anti-Wick and Weyl quantization on ultradistribution spaces. J. Math.
Pures Appl. 103(2), 472-503 (2015)

Rodino, L.: Linear Partial Differential Operators and Gevrey Spaces. World Scientific Publishing Co.,
Inc., River Edge, NJ (1993)

Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625-655 (2014)

Schulz, R., Wahlberg, P.: Microlocal properties of Shubin pseudodifferential and localization operators.
J. Pseudo-Differ. Oper. Appl. 7(1), 91-111 (2016)

Schulz, R., Wahlberg, P.: Equality of the homogeneous and the Gabor wave front set. Commun. Partial
Differ. Equ. 42(5), 703-730 (2017)

@ Springer



246

C. Boiti et al.

38.
39.
40.
41.

42.

Shubin, M. A.: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin (1987)
Sjostrand, J.: Singularités analytiques microlocales. Astérisque 95, 1-166 (1982)

Toft, J.: The Bargmann transform on modulation and Gelfand—Shilov spaces, with applications to
Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 3(2), 145-227 (2012)

Toft, J.: Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ.
Oper. Appl. 8(1), 83—-139 (2017)

Treves, F.: Topological vector spaces, distributions and kernels. Academic Press, New York (1967)

@ Springer



	The Gabor wave front set in spaces of ultradifferentiable functions
	Abstract
	1 Introduction
	2 Preliminaries and the short-time Fourier transform in mathcalSω(mathbbRd)
	3 The ω-Gabor wave front set
	4 Applications to (pseudo-)differential operators
	5 Examples
	Acknowledgements
	References




