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Abstract
We consider the spaces of ultradifferentiable functions Sω as introduced by Björck
(and its dual S ′

ω) and we use time-frequency analysis to define a suitable wave front set
in this setting and obtain several applications: global regularity properties of pseudod-
ifferential operators of infinite order and the micro-pseudolocal behaviour of partial
differential operators with polynomial coefficients and of localization operators with
symbols of exponential growth. Moreover, we prove that the new wave front set,
defined in terms of the Gabor transform, can be described using only Gabor frames.
Finally, some examples show the convenience of the use ofweight functions to describe
more precisely the global regularity of (ultra)distributions.
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1 Introduction

The wave front set is a basic concept in the local theory of linear partial differential
operators and it extends the one of singular support of a distribution. It deals with
the analysis of the singularities of a function (or distribution) and, at the same time,
describes the directions along which the high frequencies (in terms of the Fourier
transform) responsible for those singularities propagate. In the classical context of
Schwartz distributions theory it was originally defined by Hörmander [21]. There is
a huge literature on wave front sets for the study of the regularity of linear partial
differential operators in spaces of distributions or ultradistributions in a local sense;
see, for instance, [1,2,6,7,15,21,23–25,34,35] and the references therein.

In global classes of functions and distributions (like the Schwartz class S and
its dual) the concept of singular support does not make sense, since we require the
information on the whole R

d . However, we still can define a global wave front set to
describe the micro-regularity of a distribution, where the cones are taken with respect
to the whole of the phase space variables. In fact, in [22] Hörmander introduced
two different types of global wave front sets: the C∞ wave font set, in the Beurling
setting, for temperate distributions u ∈ S ′, and the analytic wave front set, in the
Roumieu setting, for ultradistributions S ′

A of Gelfand–Shilov type, addressed to the
study of quadratic hyperbolic operators. Unfortunately, these global versions of wave
front set have been almost ignored in the literature, whereas they will represent the
key point of our discussion. Only very recently, Rodino and Wahlberg [35] recovered
the concept of C∞ wave front set of [22] and showed that it can be reformulated in
terms of the short-time Fourier transform, which treats simultaneously the variables
and covariables of a function (or distribution) in order to quantify the energy of a
signal at some time x0 and some frequency ξ0. Since the wave front set has to do
with a simultaneous analysis of points (variables) and directions (covariables), it is
very natural to try to apply methods of time-frequency analysis in connection with
the wave front set. Indeed, in [35] the authors use this advantage to show also that
the original wave front set introduced by Hörmander can be described merely with
the information given by a Gabor frame, which is a fundamental tool in the theory of
time-frequency analysis with applications in signal processing and related issues in
function space theory and numerical analysis. Besides, recent applications of Gabor
frames concern also the analysis of partial differential equations and pseudodifferential
equations (see the references quoted in the introduction of [35] for more information).
On the other hand, Nakamura [29] introduces the homogenous wave front set for the
study of propagation of micro-singularities for Schrödinger equations, and it turns out
to be equal to the Gabor wave front set [37]. Cappiello and Schulz [12] recover the
analytic wave front set of [22], defined in terms of a very general known version of the
FBI transform as introduced originally by Sjöstrand [39], show that it can be written
using the Gabor transform (with Gaussian window) and study some cases not treated
by Hörmander for Gelfand–Shilov ultradistributions of Gevrey type.

The modern theory of general linear PDEs has been largely addressed to local
problems, i.e., to the study of solutions in a suitable small neighbourhood of a point in
R
d . More recently, several authors have considered the study of (pseudo)differential

operators from a global point of view; see, for example [22,29,30,37]. The Fourier
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transform and pseudo-differential calculus find inR
d their natural setting. In fact, some

problems in Quantum Mechanics, Signal Analysis and other applications in Physics
and Engineering are represented by the study of solutions in thewhole Euclidean space
R
d . Motivated by these connections, the theory of time-frequency analysis has become

a very suitable tool for a better understanding of the study of (pseudo)differential
operators in the global setting and, in particular, in the Schwartz class S (see [35]) or
in Gelfand–Shilov spaces of Gevrey type (see [12]).

In the present paper we work in the classes of ultradifferentiable functions Sω(Rd),
where ω is a weight function in the sense of Braun et al. [11], which we assume to be
also subadditive, in order to have a consistent definition of modulation spaces given
by exponential weights. Hence, we recover in particular the classes as introduced by
Björck [3], with the difference that we impose that the composition of the weight and
the exponential is convex, which allows the use of convex analysis techniques. The
classes under consideration are suitable for our purposes, since they are invariant under
Fourier transform and provide a big scale of spaces that contain as a particular case the
Schwartz class when the weight function isω(t) = log(1+ t), t > 0.We have seen in
the literature the benefits of time-frequency analysis when applied to such classes (see
[19]), even in combination with the global theory of (pseudo)differential operators
(see e.g. the paper by the same authors [8] and the references therein, or [32,33] when
the classes are defined by sequences in the sense of Denjoy–Carleman; see [27] for a
detailed study of the structure of these spaces when defined by sequences). We have to
mention also that our classes always contain compactly supported functions (they are
non-quasianalytic) and we recover Gelfand–Shilov spaces of Beurling type of index
s > 1 when the weight function is ω(t) = t1/s (i.e. a Gevrey weight).

The purpose of our paper is to define the Beurling version of the analytic wave
front set found in [12,22] (where the authors only treated the Roumieu case) in the
setting of S ′

ω-ultradistributions, show that it can be described in terms of Gabor frames
(as it is done in the setting of temperate distributions in [35]) and apply it to the
study of the global regularity of (pseudo)differential operators of infinite order (in
[35] the authors cannot treat operators of infinite order, since they have symbols with
polynomial growth). So, we extend, among other results, part of the work [35] to the
ultradifferentiable setting and treat the Beurling case, which is new in the literature (the
authors in [12,22] treat the Roumieu case only for Gelfand–Shilov ultradistributions).

From [19], we know that a function f ∈ Sω(Rd) can be characterized in terms of
the growth of its Gabor transform, i.e. of its short-time Fourier transform. We use this
fact to extend to the ultradifferentiable setting some known properties of the Gabor
transform in the frame of the Schwartz class S, that we could not find in the literature
for Sω, and we add them here for the reader’s convenience (see Sect. 2).

In Sect. 3 we consider the global ω-wave front set WF′
ω(u), for ω-tempered distri-

butions u ∈ S ′
ω(Rd), defined as the complement of the points z0 ∈ R

2d\{0} for which
there exists an open conic set � containing z0 such that

sup
z∈�

eλω(z)|Vϕu(z)| < +∞, ∀λ > 0,

where Vϕu is the Gabor transform of u with respect to the window ϕ ∈ Sω(Rd) (we
prove that the definition does not depend on the choice of ϕ). This definition of wave
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front set seems natural since the Gabor transform allows to analyze simultaneously
the ultradistribution with respect to variables and covariables.

However, in many applications to signal processing and related topics, often Gabor
frames come out to be the most appropriate tool (see, for instance, [14,20]). For
this reason it is also useful to consider a Gabor ω-wave front set WFGω (u), defined
in terms of the decay of the Gabor coefficients 〈u,�(λ)ϕ〉 of the ultradistribution
u ∈ S ′

ω(Rd) (see Definition 3.3), where �(λ)ϕ(y) = ei〈y,λ2〉ϕ(y − λ1) with λ =
(λ1, λ2) in a suitable lattice �. Actually this is equivalent to analyze the decay of
the Gabor transform of u on a conical set intersected with �, so that it is natural to
study the relation between these two wave front sets. One of the main results of this
paper, Theorem 3.17, is that WF′

ω(u) = WFGω (u) for all u ∈ S ′
ω(Rd), if the lattice is

sufficiently dense. In the particular case of ω(t) = log(1 + t) we recover the results
of [35] about wave front sets of tempered distributions.

In order to examine Gabor ω-wave front sets, we need suitable modulation spaces
with exponential weights, in the setting of ω-ultradistributions. To this aim we prove
in Sect. 3 those results about modulation spaces which differ from the classical ones
(cf. e.g. [18]). Moreover, we prove two natural properties for the Gabor ω-wave front
set. Namely, for an ultradistribution u ∈ S ′

ω(Rd), we show that WF′
ω(u) is empty if

and only if u ∈ Sω(Rd), and that it is not affected by translations and modulations
(time-frequency shifts), as expected in the global setting.

In Sect. 4 our results in the former sections are applied to study the global regularity
of some kind of pseudodifferential operators of infinite order with our global wave
front set. For a global symbol a(x, ξ) with exponential growth in the second variable,
defined in the spirit of [15] (see Definition 4.2), we consider the Kohn–Nirenberg
quantization

a(x, D) f (x) := (2π)−d
∫
Rd

ei〈x,ξ〉a(x, ξ) f̂ (ξ)dξ,

which is well defined for f ∈ Sω(Rd). We analyze the kernel of the Gabor transform
of this pseudo-differential operator to prove that

WF′
ω(a(x, D)u) ⊆ cone supp(a),

where cone supp(a) is the conic support of a(x, ξ), as defined in [22] (see also Def-
inition 4.10). As far as we know, this is new in the literature. As a consequence, we
have that the Kohn–Nirenberg quantization a(x, D), for a symbol a(x, ξ) ∈ Sω(R2d)

with compact support, is a globally ω-regularizing pseudo-differential operator, in the
sense that for every u ∈ S ′

ω(Rd) we have that a(x, D)u ∈ Sω(Rd).
We also study the micro-pseudolocal behaviour of a linear partial differential oper-

ator with polynomial coefficients using purely the properties of the Gabor transform
(Proposition 4.13) and also of a very general type of localization operators (Theo-
rem 4.15), obtaining in the Beurling setting the analogous result of [12, Proposition
3.3]. Finally, in Sect. 5 we calculate the wave front set of some concrete ultradis-
tributions and show, in particular, the usefulness of working with different weight
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functions, as in Example 5.4, where we analyze the global ω-wave front set of some
ultradistributions for different weight functions ω.

2 Preliminaries and the short-time Fourier transform inS!(R
d)

Given a function f ∈ L1(Rd), the Fourier transform of f is defined as

F( f ) = f̂ (ξ) =
∫
Rd

e−i〈x,ξ〉 f (x) dx,

with standard extensions to more general spaces of functions and distributions.

Definition 2.1 A non-quasianalytic subadditive weight function is a continuous
increasing function ω : [0,+∞) → [0,+∞) satisfying the following properties:

(α) ω(t1 + t2) ≤ ω(t1) + ω(t2) ∀t1, t2 ≥ 0;

(β)

∫ +∞

1

ω(t)

t2
dt < +∞;

(γ ) ∃a ∈ R, b > 0 s.t. ω(t) ≥ a + b log(1 + t) ∀t ≥ 0;
(δ) ϕω(t) := ω(et ) is convex.

We then define ω(ζ ) := ω(|ζ |) for ζ ∈ C
d .

We denote by ϕ∗
ω the Young conjugate of ϕω, defined by

ϕ∗
ω(s) := sup

t≥0
{st − ϕω(t)}, s ≥ 0.

Note that ϕ∗
ω is increasing and convex, and ϕ∗∗

ω = ϕω by Fenchel–Moreau Theorem
(see for example [10]). Moreover, ϕ∗

ω(s)/s is increasing since

ϕ∗
ω(0) = sup

t≥0
(−ϕω(t)) ≤ 0

and therefore, for 0 < s1 < s2, by the convexity of ϕ∗
ω:

ϕ∗
ω(s1) = ϕ∗

ω

(
s1
s2
s2 +

(
1 − s1

s2

)
0

)
≤ s1

s2
ϕ∗

ω(s2) +
(
1 − s1

s2

)
ϕ∗

ω(0) ≤ s1
s2

ϕ∗
ω(s2).

It will be also useful in the sequel the following inequality

2 j e
−λϕ∗

ω

(
j
λ

)
≤ e

−3λϕ∗
ω

(
j
3λ

)
, ∀ j ∈ N0, λ > 0. (2.1)

Estimates of this kind are well known (see, for instance, [5,11]), usually stated under
slightly different conditions on ω. We give here a short proof of (2.1) for the sake of
completeness. By definition of ϕ∗

ω for ϕω(t) = ω(et ) and by the subadditivity of ω:
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ϕ∗
ω(s) = sup

t≥0
{ts − ϕω(t)} ≥ sup

t≥1
{ts − ϕω(t)} = sup

σ≥0
{(σ + 1)s − ϕω(σ + 1)}

= s + sup
σ≥0

{σ s − ω(eeσ )} ≥ s + sup
σ≥0

{σ s − 3ϕω(σ )} = s + 3ϕ∗
ω

( s
3

)
.

Therefore, for s = j/λ and multiplying by λ:

λϕ∗
ω

(
j

λ

)
≥ j + 3λϕ∗

ω

(
j

3λ

)
,

and hence

2 j e
3λϕ∗

ω

(
j
3λ

)
≤ e

λϕ∗
ω

(
j
λ

)
.

Definition 2.2 We define Sω(Rd) as the set of all u ∈ S(Rd) such that

(i) ∀λ > 0, α ∈ N
d
0 : sup

Rd
eλω(x)|Dαu(x)| < +∞,

(ii) ∀λ > 0, α ∈ N
d
0 : sup

Rd
eλω(ξ)|Dα û(ξ)| < +∞,

where N0 := N ∪ {0} and Dα = (−i)|α|∂α .
As usual, the corresponding dual space is denoted by S ′

ω(Rd) and is the set of all
linear and continuous functionals u : Sω(Rd) → C. An element of S ′

ω(Rd) is called
an ω-tempered distribution.

In [8, Thm. 4.8] we provided the space Sω(Rd) with different equivalent systems
of seminorms. For example, for u ∈ Sω(Rd), the family of seminorms

pλ,μ(u) := sup
α,β∈Nd

0

sup
x∈Rd

|xβDαu(x)|e−λϕ∗
ω

( |α|
λ

)
−μϕ∗

ω

( |β|
μ

)
, (2.2)

for λ,μ > 0. On the other hand, it is not difficult to see (using, for instance, [8, Lemma
4.7(ii)]) that the family of seminorms

qλ,μ(u) := sup
α∈Nd

0

sup
x∈Rd

|Dαu(x)|e−λϕ∗
ω

( |α|
λ

)
+μω(x)

, λ, μ > 0, (2.3)

defines another equivalent system of seminorms for Sω(Rd).
We recall that Sω(Rd) ⊆ S(Rd) and for their correspondent dual spaces we have

the inclusion S ′(Rd) ⊆ S ′
ω(Rd). Moreover, the Fourier transform is a continuous

automorphism from Sω(Rd) to Sω(Rd) and from S ′
ω(Rd) to S ′

ω(Rd).
The condition (β) of non-quasianalyticity in Definition 2.1 ensures the existence

of functions with compact support in Sω(Rd). To be more precise, let us briefly recall
(see [4,11]) the definition of the space E(ω)(�) of ω-ultradifferentiable functions of
Beurling type in an open subset � of R

d . It is the set

123



The Gabor wave front set in spaces of… 205

E(ω)(�) :=
{
f ∈ C∞(�) : ∀K ⊂⊂ �, ∀m ∈ N

sup
α∈Nd

0

sup
x∈K

|Dα f (x)|e−mϕ∗
ω

( |α|
m

)
< +∞

}
.

To define then the space of ω-ultradifferentiable functions of Beurling type with com-
pact support, we first consider, for a compact set K ⊂ �,

D(ω)(K ) := { f ∈ E(ω)(�) : supp f ⊆ K }. (2.4)

This space is not trivial because of (β) of Definition 2.1. Finally, we set the space of
test functions as follows

D(ω)(�) = ind lim
K↗�

D(ω)(K ).

Then the following continuous inclusions hold (see [3,17]):

D(ω)(R
d) ⊂ Sω(Rd) ⊂ E(ω)(R

d).

Example 2.3 An example of non-quasianalytic subadditive weight function is

ω(t) = t1/s, s > 1.

In this case E(ω)(�) is the space γ (s)(�) of small Gevrey functions (see [24]),D(ω)(�)

is the space of small Gevrey functions with compact support. The space Sω(Rd) is the
Gelfand–Shilov space of Beurling type �s(R

d) (see [31]).
Other examples of admissible weights are given by

ω(t) = logβ(eβ−1 + t), β ≥ 1.

In this case we recover, for β = 1, the class E(�) of C∞ functions, the class ofD(�)

ofC∞ functionswith compact support in� and, forSω(Rd), the classical spaceS(Rd)

of rapidly decreasing functions in R
d .

We refer, for instance, to [1,2,11] for more examples. We also refer to [9] for the
comparison of the spaces E(ω),D(ω) with the analogous ones defined by sequences in
the sense of Denjoy–Carleman (in the Roumieu case as well; see at the beginning of
Sect. 4 for more information).

Let us denote by Tx , Mξ and �(z), respectively, the translation, the modulation
and the phase-space shift operators, defined by

Tx f (y) = f (y − x), Mξ f (y) = ei〈y,ξ〉 f (y),
�(z) f (y) = MξTx f (y) = ei〈y,ξ〉 f (y − x),

for x, y, ξ ∈ R
d and z = (x, ξ).
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Definition 2.4 For a window function ϕ ∈ Sω(Rd)\{0}, the short-time Fourier trans-
form (briefly STFT) of f ∈ S ′

ω(Rd) is defined, for z = (x, ξ) ∈ R
2d , by:

Vϕ f (z) :=〈 f ,�(z)ϕ〉 (2.5)

=
∫
Rd

f (y)ϕ(y − x)e−i〈y,ξ〉dy, (2.6)

where the bracket 〈·, ·〉 in (2.5) and the integral in (2.6) denote the conjugate linear
action of S ′

ω on Sω, consistent with the inner product 〈·, ·〉L2 .

By [19, Lemma 1.1], for f , ϕ, ψ ∈ Sω(Rd) we have the following inversion for-
mula:

〈ψ, ϕ〉 f (y) = 1

(2π)d

∫
R2d

Vϕ f (z)(�(z)ψ)(y)dz. (2.7)

In particular, for ψ = ϕ ∈ Sω(Rd)\{0}:

f (y) = 1

(2π)d‖ϕ‖2
L2

∫
R2d

Vϕ f (z)(�(z)ϕ)(y)dz. (2.8)

We recall, from [19], the following results:

Theorem 2.5 Let ϕ ∈ Sω(Rd)\{0} and f ∈ S ′
ω(Rd). Then Vϕ f is continuous and

there are constants c, λ > 0 such that

|Vϕ f (z)| ≤ ceλω(z) ∀z ∈ R
2d . (2.9)

Proposition 2.6 Let ϕ ∈ Sω(Rd)\{0} and assume that F : R
2d → C is a measurable

function that satisfies that for all λ > 0 there is a constant Cλ > 0 such that

|F(z)| ≤ Cλe
−λω(z) ∀z ∈ R

2d .

Then

f (y) :=
∫
R2d

F(z)(�(z)ϕ)(y)dz

defines a function f ∈ Sω(Rd).

Theorem 2.7 Let ϕ ∈ Sω(Rd)\{0}. Then, for f ∈ S ′
ω(Rd), the following are equiva-

lent:

(i) f ∈ Sω(Rd);
(ii) for all λ > 0 there exists Cλ > 0 such that

|Vϕ f (z)| ≤ Cλe
−λω(z) ∀z ∈ R

2d;

(iii) Vϕ f ∈ Sω(R2d).
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The following lemma is well known for functions in S(Rd), and hence in Sω(Rd).

So we omit its proof.

Lemma 2.8 For f , ϕ ∈ Sω(Rd) we have that

V̂ϕ f (η, y) = (2π)dei〈η,y〉 f (−y)ϕ̂(η) ∀(η, y) ∈ R
2d .

As a consequence, we can deduce the following result.

Proposition 2.9 Let ϕ ∈ Sω(Rd)\{0}. Then

Vϕ : Sω(Rd) −→ Sω(R2d)

is continuous.

Proof Let us first remark that if f ∈ Sω(Rd) then Vϕ f ∈ Sω(R2d) by Theorem 2.7.
Since Sω is a Fréchet space, to prove the continuity of Vϕ we consider a sequence

{ fn}n∈N ⊂ Sω(Rd) such that

fn −→ f ∈ Sω(Rd) in Sω(Rd) (2.10)

and prove that Vϕ fn → Vϕ f in Sω(R2d).
Indeed, (2.10) implies that

ei〈η,y〉 fn(−y)ϕ̂(η) −→ ei〈η,y〉 f (−y)ϕ̂(η) in Sω(R2d)

and hence, by Lemma 2.8,

V̂ϕ fn → V̂ϕ f in Sω(R2d).

Applying the inverse Fourier transform, which is continuous on Sω, we have that

Vϕ fn → Vϕ f in Sω(R2d).

and the proof is complete. ��
The short-time Fourier transform also provides a new equivalent system of seminorms
for Sω(Rd).

Proposition 2.10 If ϕ ∈ Sω(Rd)\{0}, then the collection of seminorms

‖Vϕ f ‖ω,λ := sup
z∈R2d

|Vϕ f (z)|eλω(z),

for λ > 0, forms an equivalent system of seminorms for Sω(Rd).

123



208 C. Boiti et al.

Proof Set

S̃ω(Rd) := { f ∈ S(Rd) : ‖Vϕ f ‖ω,λ < +∞ ∀λ > 0}.

By Theorem 2.7 the sets S̃ω(Rd) and Sω(Rd) are equal. We have to prove that they
have the same topology.

By the inversion formula (2.8) we have that, for z = (x, ξ) ∈ R
2d and λ,μ > 0,

e
−λϕ∗

ω

( |α|
λ

)
e
−μϕ∗

ω

( |β|
μ

)
|yβDα

y f (y)|
≤ Ce

−λϕ∗
ω

( |α|
λ

)
e
−μϕ∗

ω

( |β|
μ

) ∫
R2d

|Vϕ f (z)| · |yβDα
y (�(z)ϕ)(y)|dz

= Ce
−λϕ∗

ω

( |α|
λ

)
e
−μϕ∗

ω

( |β|
μ

) ∫
R2d

|Vϕ f (x, ξ)| · |yβDα
y e

i〈y,ξ〉ϕ(y − x)|dxdξ

≤ C
∑
γ≤α

(
α

γ

)
2−|α|

∫
R2d

|Vϕ f (x, ξ)| · |y||β|e−μϕ∗
ω

( |β|
μ

)

·|ξ ||α−γ ||Dγ
y ϕ(y − x)|e−λϕ∗

ω

( |α|
λ

)
2|α|dxdξ (2.11)

for some C > 0.
We shall now need the following inequality

t j e
−μϕ∗

ω

(
j
μ

)
≤ Cμe

μω(t), ∀t > 0, j ∈ N0, (2.12)

that is well known for t ≥ 1 with Cμ = 1 (see, for instance, [8, Lemma 4.7(i)] or
[15]), and is trivial for 0 < t ≤ 1 with Cμ = e−μϕ∗

ω(0), since ϕ∗ is increasing.
Substituting (2.12) and (2.1) into (2.11), by the subadditivity of ω we have

e
−λϕ∗

ω

( |α|
λ

)
−μϕ∗

ω

( |β|
μ

)
|yβDα

y f (y)|
≤ Cμ

∑
γ≤α

(
α

γ

)
2−|α|

∫
R2d

|Vϕ f (x, ξ)|eμω(x)eμω(y−x)

·|ξ ||α−γ ||Dγ
y ϕ(y − x)|e−3λϕ∗

ω

( |α|
3λ

)
dxdξ. (2.13)

Since ϕ ∈ Sω(Rd), by (2.3), for every λ,μ > 0 there is a constant Cλ,μ > 0 such
that for all γ ∈ N

d
0 and y ∈ R

d ,

|Dγ
y ϕ(y)|eμω(y) ≤ Cλ,μe

λϕ∗
ω

( |γ |
λ

)
. (2.14)
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From (2.14) with 3λ instead of λ and y − x instead of y, we have that for every
μ, λ > 0 there exists a constant Cμ,λ > 0 such that

e
−λϕ∗

ω

( |α|
λ

)
−μϕ∗

ω

( |β|
μ

)
|yβDα

y f (y)| ≤ Cμ,λ

∑
γ≤α

(
α

γ

)
2−|α|

·
∫
R2d

|Vϕ f (x, ξ)|eμω(x)|ξ ||α−γ |e3λϕ∗
ω

( |γ |
3λ

)
−3λϕ∗

ω

( |α|
3λ

)
dxdξ.

By (2.12) we have |ξ ||α−γ | ≤ C3λe3λω(ξ)+3λϕ∗
ω(

|α−γ |
3λ ). Since ϕ∗

ω is convex and
ϕ∗

ω(0) ≤ 0, we have that

ϕ∗
ω(a) + ϕ∗

ω(b) = ϕ∗
ω

(
(a + b)

a

a + b

)

+ϕ∗
ω

(
(a + b)

b

a + b

) ≤ ϕ∗
ω(a + b), a, b > 0. (2.15)

Therefore, for a new constant Cμ,λ > 0:

e
−λϕ∗

ω

( |α|
λ

)
−μϕ∗

ω

( |β|
μ

)
|yβDα

y f (y)|
≤ Cμ,λ

∑
γ≤α

(
α

γ

)
2−|α|

∫
R2d

|Vϕ f (x, ξ)|eμω(x)e3λω(ξ)dxdξ

≤ Cμ,λ

∫
R2d

|Vϕ f (z)|e(μ+3λ+m)ω(z)e−mω(z)dz

≤ C ′
μ,λ‖Vϕ f ‖ω,μ+3λ+m, (2.16)

for C ′
μ,λ := Cμ,λ

∫
R2d e−mω(z)dz, which is finite if m ≥ (2d + 1)/b, where b is the

constant in condition (γ ) of Definition 2.1.
It is easy to see that S̃ω(Rd) is a Fréchet space. Indeed, the estimate (2.16) implies

that the identity operator I : S̃ω(Rd) → Sω(Rd) is continuous. Hence, any Cauchy
sequence { fn}n∈N in S̃ω(Rd) is a Cauchy sequence in Sω(Rd). So, it converges in
Sω(Rd) to some f (because Sω(Rd) is complete). From Proposition 2.9, {Vϕ fn}n∈N
converges to Vϕ f in Sω(R2d). Therefore, { fn}n∈N converges to f in S̃ω(Rd).

We can apply the open mapping theorem to conclude that I is an isomorphism and
hence the two topologies on Sω(Rd) coincide. ��

Now, we can prove the following

Proposition 2.11 Assume that ψ, γ ∈ Sω(Rd)\{0} with 〈ψ, γ 〉 �= 0. Then the follow-
ing assertions hold:

(a) If F : R
2d → C is a measurable function that satisfies, for some c, λ > 0,

|F(z)| ≤ ceλω(z) ∀z ∈ R
2d , (2.17)
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then

Sω(Rd) � ϕ �→ 〈 f , ϕ〉 :=
∫
R2d

F(z)〈�(z)γ, ϕ〉dz

defines an ω-tempered distribution f ∈ S ′
ω(Rd).

(b) In particular, if F = Vψ f for some f ∈ S ′
ω(Rd), then the following inversion

formula holds:

f = 1

(2π)d〈γ,ψ〉
∫
R2d

Vψ f (z)�(z)γ dz. (2.18)

Proof From (2.17) we have, for all ϕ ∈ Sω(Rd),

|〈 f , ϕ〉| ≤
∫
R2d

|F(z)| · |Vγ ϕ(z)|dz

≤ c
∫
R2d

eλω(z)+mω(z)|Vγ ϕ(z)|e−mω(z)dz

≤ c′‖Vγ ϕ‖ω,λ+m (2.19)

for some c′ > 0 and m ≥ (2d + 1)/b, where b is the constant in condition (γ ) of
Definition 2.1.

From Proposition 2.10 the inequality (2.19) implies that f defines a continuous
linear functional on Sω(Rd), i.e. f ∈ S ′

ω(Rd). This proves (a).
In particular, if F = Vψ f for some f ∈ S ′

ω(Rd) then F satisfies (2.17) by The-
orem 2.5 and hence (2.18) defines an ω-tempered distribution f̃ ∈ S ′

ω(Rd) given
by

〈 f̃ , ϕ〉 = 1

(2π)d〈γ,ψ〉
∫
R2d

Vψ f (z)〈�(z)γ, ϕ〉dz ∀ϕ ∈ Sω(Rd).

However, from (2.7) we have that

ϕ = 1

(2π)d〈ψ, γ 〉
∫
R2d

Vγ ϕ(z)�(z)ψdz

and then (see also [18, pg 43] for vector valued integrals)

〈 f , ϕ〉 = 1

(2π)d〈ψ, γ 〉
∫
R2d

Vγ ϕ(z)〈 f ,�(z)ψ〉dz

= 1

(2π)d〈γ,ψ〉
∫
R2d

〈�(z)γ, ϕ〉Vψ f (z)dz

= 〈 f̃ , ϕ〉, ϕ ∈ Sω(Rd).

Therefore f = f̃ and (b) is proved. ��
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Let us now recall the definition of the adjoint operator of Vϕ . We consider, for
ϕ ∈ L2(Rd), the operator

Aϕ : L2(R2d) −→ L2(Rd)

defined by

AϕF =
∫
R2d

F(z)�(z)ϕ dz.

This is the adjoint operator of Vϕ : L2(Rd) → L2(R2d) since, for all F ∈ L2(R2d)

and h ∈ L2(Rd),

〈AϕF, h〉 =
∫
R2d

F(z)〈�(z)ϕ, h〉dz = 〈F, Vϕh〉 = 〈V ∗
ϕ F, h〉.

In particular, for ϕ ∈ Sω(Rd) and F ∈ Sω(R2d) we can define the adjoint operator
V ∗

ϕ F = AϕF . We observe that V ∗
ϕ F ∈ Sω(Rd). In fact, if G(x, ξ, t) := F(x, ξ)ϕ(t −

x) ∈ Sω(R3d), we can write AϕF as a partial Fourier transform:

AϕF(t) =
∫
R2d

F(x, ξ)ϕ(t − x)ei〈t,ξ〉dxdξ

= (F(x,ξ)G
)
(x ′, ξ ′, t)

∣∣
(x ′,ξ ′,t)=(0,−t,t) . (2.20)

Since Sω(R3d) is invariant under partial Fourier transforms (see, e.g. [8, Remark
4.10]) and restrictions to linear sub-manifolds we deduce that

V ∗
ϕ : Sω(R2d) −→ Sω(Rd) (2.21)

is continuous.
Moreover, the inversion formula (2.7) gives, forϕ,ψ, f ∈ Sω(Rd)with 〈ϕ,ψ〉 �= 0,

1

〈ϕ,ψ〉V
∗
ϕ Vψ f = 1

〈ϕ,ψ〉
∫
R2d

Vψ f (z)�(z)ϕdz = (2π)d f ,

i.e.

1

(2π)d〈ϕ,ψ〉V
∗
ϕ Vψ = ISω(Rd ). (2.22)

More in general, if ϕ ∈ Sω(Rd)\{0} and F is a measurable function on R
2d , we

define the adjoint operator

V ∗
ϕ F =

∫
R2d

F(z)�(z)ϕdz, (2.23)
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where the integral is interpreted, if necessary, in a weak sense, i.e.

〈V ∗
ϕ F, g〉 =

∫
R2d

F(z)〈�(z)ϕ, g〉dz =
∫
R2d

F(z)Vϕg(z)dz = 〈F, Vϕg〉

for g ∈ Sω(Rd).
In particular, if ϕ,ψ ∈ Sω(Rd)\{0} with 〈ϕ,ψ〉 �= 0, by Theorem 2.5 and Propo-

sition 2.11 we can define the adjoint operator (2.23) for F = Vψ f with f ∈ S ′
ω(Rd)

and obtain that, for all g ∈ Sω(Rd),

〈V ∗
ϕ Vψ f , g〉 =

∫
R2d

Vψ f (z)〈�(z)ϕ, g〉dz = (2π)d〈ϕ,ψ〉〈 f , g〉, (2.24)

i.e.

1

(2π)d〈ϕ,ψ〉V
∗
ϕ Vψ = IS ′

ω(Rd ). (2.25)

We can now prove the following proposition in a standard way.

Proposition 2.12 Let ϕ,ψ, γ ∈ Sω(Rd) with 〈γ,ψ〉 �= 0 and let f ∈ S ′
ω(Rd). Then

|Vϕ f (z)| ≤ 1

(2π)d |〈γ,ψ〉| (|Vψ f | ∗ |Vϕγ |)(z), z = (x, ξ) ∈ R
2d .

3 The!-Gabor wave front set

In this section we consider a global wave front set for ω-tempered distributions from
two different points of view. The first one is defined in terms of rapid decay of the STFT
in conical sets, that is a natural approach to analyze the regularity of an ultradistribution
with respect to variables and covariables simultaneously. The second one is described
in terms of the rapid decay of the Gabor frame coefficients, and is more related to
applications to signal processing and related topics (see, for instance, [14,20,35]).

One of the main results of this section is to prove that these two points of view lead
to the same global wave front set, so that it is actually sufficient to consider the decay
of the Gabor transform in conical sets intersected with a suitable lattice.

Definition 3.1 Let u ∈ S ′
ω(Rd) and ϕ ∈ Sω(Rd)\{0}. We say that z0 = (x0, ξ0) ∈

R
2d\{0} is not in the ω-wave front set WF′

ω(u) of u if there exists an open conic set
� ⊆ R

2d\{0} containing z0 and such that

sup
z∈�

eλω(z)|Vϕu(z)| < +∞, ∀λ > 0. (3.1)

We observe that WF′
ω(u) is a closed conic subset of R

2d\{0}. Moreover, it does not
depend on the choice of the window function ϕ, as the following proposition shows.
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Proposition 3.2 Let u ∈ S ′
ω(Rd), ϕ ∈ Sω(Rd)\{0} and z0 ∈ R

2d\{0}. Assume that
there exists an open conic set � ⊆ R

2d\{0} containing z0 such that (3.1) is satisfied.
Then, for any ψ ∈ Sω(Rd)\{0} and for any open conic set �′ ⊆ R

2d\{0} containing
z0 and such that �′ ∩ S2d−1 ⊆ �, where S2d−1 is the unit sphere in R

2d , we have

sup
z∈�′

eλω(z)|Vψu(z)| < +∞, ∀λ > 0. (3.2)

Proof From Proposition 2.12 we have that

|Vψu(z)| ≤ (2π)−d‖ϕ‖−2
L2 (|Vϕu| ∗ |Vψϕ|)(z) ∀z ∈ R

2d . (3.3)

Moreover, since ϕ ∈ Sω(Rd), from Theorem 2.7 we have that for every μ > 0
there exists Cμ > 0 such that

eμω(z)|Vψϕ(z)| ≤ Cμ ∀z ∈ R
2d . (3.4)

Then

(|Vϕu| ∗ |Vψϕ|)(z) =
∫
R2d

|Vϕu(z − z′)| · |Vψϕ(z′)|dz′

=
∫

〈z′〉≤ε〈z〉
|Vϕu(z − z′)| · |Vψϕ(z′)|dz′

+
∫

〈z′〉>ε〈z〉
|Vϕu(z − z′)| · |Vψϕ(z′)|dz′

=: I1 + I2. (3.5)

Let us choose ε > 0 sufficiently small so that

z ∈ �′, |z| ≥ 1, 〈z′〉 ≤ ε〈z〉 ⇒ z − z′ ∈ �,

and hence, from (3.1), the subadditivity of ω and (3.4):

I1 ≤ Cλ

∫
〈z′〉≤ε〈z〉

e−λω(z−z′)|Vψϕ(z′)|dz′

≤ Cλe
−λω(z)

∫
R2d

e(λ+m)ω(z′)|Vψϕ(z′)|e−mω(z′)dz′

≤ C ′
λe

−λω(z), λ > 0, z ∈ �′, |z| ≥ 1. (3.6)

if m ≥ (2d + 1)/b, where b is the constant in condition (γ ) of Definition 2.1.
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On the other hand, from Theorem 2.5 and (3.4), for m > 0 big enough:

I2 ≤ c
∫

〈z′〉>ε〈z〉
eλω(z−z′)|Vψϕ(z′)|dz′

≤ ceλω(z)
∫

〈z′〉>ε〈z〉
e(λ+m−μ)ω(z′)|Vψϕ(z′)|eμω(z′)e−mω(z′)dz′

≤ c′eλω(z)e−A(λ+m−μ)e(λ+m−μ)Bεω(z)Cμ (3.7)

for some c′ > 0, if μ > λ + m, A = ω(1) and Bε = ([1/ε] + 1)−1, since for
〈z′〉 > ε〈z〉 by the subadditivity of ω:

ω(z) ≤ ω(〈z〉) ≤ ω

(
1

ε
〈z′〉

)
≤

([
1

ε

]
+ 1

)
ω(〈z′〉)

≤
([

1

ε

]
+ 1

)
ω(1 + |z′|) ≤

([
1

ε

]
+ 1

) (
ω(1) + ω(z′)

)
,

where [x] denotes the integer part of x ∈ R.
Since ε is fixed, the arbitrariness ofμ > λ+m in (3.7) implies that for every λ′ > 0

there exists a constant Cλ′ > 0 such that

I2 ≤ Cλ′e−λ′ω(z), z ∈ R
2d . (3.8)

This gives the conclusion. ��
Given α, β > 0, consider the lattice � = αZ

d × βZ
d ⊂ R

2d . For a window
ϕ ∈ L2(Rd)\{0} the collection {�(σ)ϕ}σ∈� is called a Gabor frame for L2(Rd)

provided there exist constants A, B > 0 such that

A‖ f ‖2L2 ≤
∑
σ∈�

|〈 f ,�(σ)ϕ〉|2 ≤ B‖ f ‖2L2 , f ∈ L2(Rd)

(see [18] for the analysis of the conditions on α and β for which {�(σ)ϕ}σ∈� is a
Gabor frame). Now, we define the Gabor ω-wave front set.

Definition 3.3 Let ϕ ∈ Sω(Rd)\{0} and � = α0Z
d × β0Z

d ⊆ R
2d a lattice with

α0, β0 > 0 sufficiently small so that {�(σ)ϕ}σ∈� is a Gabor frame for L2(Rd). If
u ∈ S ′

ω(Rd), we say that z0 ∈ R
2d\{0} is not in the Gabor ω-wave front setWFGω (u)

of u if there exists an open conic set � ⊂ R
2d\{0} containing z0 such that

sup
σ∈�∩�

eλω(σ)|Vϕu(σ )| < +∞ ∀λ > 0. (3.9)

Our next goal is to prove that WF′
ω(u) = WFGω (u). To this aim we need some

properties of modulation spaces adapted to our setting. We prove those results that
differ from the classical ones already known in S(Rd) (see [18]).
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We consider, for λ ∈ R\{0},

mλ(z) = eλω(z), vλ(z) = e|λ|ω(z), z ∈ R
n . (3.10)

The weights mλ(z) are vλ-moderate, in the sense that

mλ(z1 + z2) ≤ vλ(z1)mλ(z2),

for every λ �= 0 and z1, z2 ∈ R
n . This is immediate from the subadditivity of ω.

We denote, following [18], the weighted L p,q spaces by

L p,q
mλ

(R2d) :=
{
F measurable on R

2d such that

‖F‖L p,q
mλ

:=
( ∫

Rd

( ∫
Rd

|F(x, ξ)|pmλ(x, ξ)pdx
)q/p

dξ
)1/q

< +∞
}
,

for 1 ≤ p, q < +∞, and

L∞,q
mλ

(R2d) :=
{
F measurable on R

2d such that

‖F‖L∞,q
mλ

:=
( ∫

Rd

(
ess sup
x∈Rd

|F(x, ξ)|mλ(x, ξ)
)q
dξ

)1/q
< +∞

}
,

L p,∞
mλ

(R2d) :=
{
F measurable on R

2d such that

‖F‖L p,∞
mλ

:= ess sup
ξ∈Rd

( ∫
Rd

|F(x, ξ)|pmλ(x, ξ)pdx
)1/p

< +∞
}
,

for 1 ≤ p, q ≤ +∞ with p = +∞ or q = +∞ respectively.
By [18, Lemma 11.1.2] these are Banach spaces for all 1 ≤ p, q ≤ +∞. Moreover,

for F ∈ L p,q
mλ

(R2d) and H ∈ L p′,q ′
1/mλ

(R2d), where p′ and q ′ are the conjugate exponents
of p and q respectively (i.e. 1

p + 1
p′ = 1 if 1 < p < +∞, p′ = +∞ if p = 1, p′ = 1

if p = +∞, and the same for q), then F · H ∈ L1(R2d) and

∣∣∣∣
∫
R2d

F(z)H(z)dz

∣∣∣∣ ≤ ‖F‖L p,q
mλ

‖H‖
L p′,q′
1/mλ

. (3.11)

If 1 ≤ p, q < +∞, the dual of L p,q
mλ

(R2d) is given by L p′,q ′
1/mλ

(R2d).
From [18, Proposition 11.1.3] we have the followingYoung inequality for weighted

L p,q spaces. For F ∈ L p,q
mλ

and G ∈ L1
vλ
,

‖F ∗ G‖L p,q
mλ

≤ C‖F‖L p,q
mλ

‖G‖L1
vλ

, (3.12)

for some C > 0.
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Remark 3.4 It is easy to see that for every λ ∈ R\{0} and 1 ≤ p, q ≤ +∞ we have

Sω(R2d) ⊂ L p,q
mλ

(R2d).

Moreover e−μω(z) ∈ L p,q
mλ

(R2d) for μ > 0 large enough, since mλ(z) = eλω(z) and
e−Aω(z) ≤ e−aA(1 + |z|)−bA for any A > 0, by condition (γ ) of Definition 2.1.

Definition 3.5 Let ϕ ∈ Sω(Rd)\{0}, and mλ(z) as in (3.10) for some λ �= 0. For
1 ≤ p, q ≤ +∞, the modulation space M p,q

mλ
(Rd) is defined by

M p,q
mλ

(Rd) := { f ∈ S ′
ω(Rd) : Vϕ f ∈ L p,q

mλ
(R2d)},

with norm ‖ f ‖M p,q
mλ

= ‖Vϕ f ‖L p,q
mλ

. We denote then M p
mλ

(Rd) := M p,p
mλ

(Rd).

Observe that Definition 3.5 is similar to the definition of modulation spaces in [18];
the difference is that here M p,q

mλ
(Rd) is a subset of S ′

ω(Rd), and we take a window
ϕ ∈ Sω(Rd), while in [18] the modulation space Mp,q

m (Rd) is a subset of S ′(Rd)

and the window belongs to S(Rd) (or a subset of (M1
v )∗ for a suitable weight v,

in a suitable space of ‘special’ windows SC(Rd)). Moreover, here we always need
weights of exponential type. We refer to [40,41] for modulation spaces in the setting
of Gelfand–Shilov spaces, among other type of spaces of ultradifferentiable functions
and ultradistributions.

The definition of M p,q
mλ

is independent of the window ϕ, in the sense that different
(non-zero) windows in Sω(Rd) give equivalent norms. Indeed for ϕ,ψ ∈ Sω(Rd),
ϕ,ψ �= 0, we have from Proposition 2.12, applied with γ = ψ , that

‖Vϕ f ‖L p,q
mλ

≤ 1

(2π)d‖ψ‖2
L2

‖|Vψ f | ∗ |Vϕψ |‖L p,q
mλ

≤ C‖Vψ f ‖L p,q
mλ

, (3.13)

where C =
‖Vϕψ‖

L1vλ
(2π)d‖ψ‖2

L2
, as we can deduce from Young inequality (3.12) (observe that

C is finite by Proposition 2.9 and Remark 3.4). Then, by interchanging the roles of ϕ

and ψ we have that Vϕ f ∈ L p,q
mλ

if and only if Vψ f ∈ L p,q
mλ

, and the corresponding
modulation space norms of f with respect to the two windows are equivalent.

Remark 3.6 From Theorems 2.7 and 2.5 and Proposition 2.11 we have that

Sω(Rd) =
⋂
λ>0

M∞
mλ

(Rd); S ′
ω(Rd) =

⋃
λ<0

M∞
mλ

(Rd).

The inversion formula of Proposition 2.11 holds also inmodulation spaces, as stated
below.

Proposition 3.7 Let γ ∈ Sω(Rd) be a not identically zero window, and consider, for
a measurable function F on R

2d , the adjoint V ∗
γ F defined as in (2.23). Then:
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(i) The operator V ∗
γ acts continuously as

V ∗
γ : L p,q

mλ
(R2d) → M p,q

mλ
(Rd),

and there exists C > 0 such that

‖V ∗
γ F‖M p,q

mλ
≤ C‖Vϕγ ‖L1

vλ
‖F‖L p,q

mλ
,

where ϕ is the window in the corresponding M p,q
mλ

norm.
(ii) In the particular case when F = Vg f , for g ∈ Sω(Rd), and f ∈ M p,q

mλ
, if

〈γ, g〉 �= 0 the following inversion formula holds:

f = 1

(2π)d〈γ, g〉
∫
R2d

Vg f (z)�(z)γ dz.

Proof (i) We start by proving that V ∗
γ F is an element of S ′

ω(Rd). For ψ ∈ Sω(Rd) we
have from (3.11),

|〈V ∗
γ F, ψ〉| = |〈F, Vγ ψ〉| ≤ ‖F‖L p,q

mλ
‖Vγ ψ‖

L p′,q′
1/mλ

≤ ‖F‖L p,q
mλ

‖eμω(z)Vγ ψ‖∞‖e−μω(z)‖
L p′,q′
1/mλ

;

this expression is finite for μ > 0 sufficiently large, as we can deduce from Theo-
rem 2.7(ii) and Remark 3.4. Then from Proposition 2.10 we have that V ∗

γ F is a well

defined element of S ′
ω(R2d). From Theorem 2.5 we have that VϕV ∗

γ F is a continuous
function; it is explicitly given by

VϕV
∗
γ F(z) = 〈V ∗

γ F,�(z)ϕ〉 =
∫
R2d

F(y, η)Vγ (�(z)ϕ)(y, η) dy dη.

Writing z = (x, ξ) we have

|VϕV
∗
γ F(x, ξ)| =

∣∣∣∣
∫
R2d

F(y, η)Vϕγ (x − y, ξ − η)e−i〈y,ξ−η〉 dy dη

∣∣∣∣
≤ (|F | ∗ |Vϕγ |)(x, ξ).

Then, from Young inequality (3.12) we obtain

‖V ∗
γ F‖M p,q

mλ
= ‖VϕV

∗
γ F‖L p,q

mλ
≤ C‖F‖L p,q

mλ
‖Vϕγ ‖L1

vλ
, (3.14)

and this expression is finite since Vϕγ ∈ Sω(R2d) ⊂ L1
vλ

(R2d) for every λ ∈ R from
Remark 3.4.

(ii) We first observe that, by (3.13), Vg f ∈ L p,q
mλ

. Then, from point (i), f̃ =
1

(2π)d 〈γ,g〉V
∗
γ Vg f ∈ M p,q

mλ
. Since M p,q

mλ
⊂ S ′

ω, we have that f̃ = f by (2.25). ��
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Theorem 3.8 Let 1 ≤ p, q < ∞. We have

(M p,q
mλ

)∗ = M p′,q ′
1/mλ

,

and the duality is given by

〈 f , h〉 =
∫
R2d

Vϕ f (z)Vϕh(z) dz

for f ∈ M p,q
mλ

and h ∈ M p′,q ′
1/mλ

.

Proof The proof of this result relies on the duality of weighted L p,q spaces, and it is
the same as in Theorem 11.3.6 of [18]. ��

Proposition 3.9 For 1 ≤ p, q < ∞we have thatSω(Rd) is a dense subspace of M p,q
mλ

.

Proof Wefirst observe that, from property (γ ) of the weight functionω (see Definition
2.1) we have that, for μ > λ big enough, e−μω(z) ∈ L p,q

mλ
by Remark 3.4. Hence, for

every f ∈ Sω(Rd) we obtain

‖ f ‖M p,q
mλ

= ‖Vϕ f ‖L p,q
mλ

≤ ‖Vϕ f (z)eμω(z)‖∞‖e−μω(z)‖L p,q
mλ

.

From Proposition 2.10 we have

Sω(Rd) ⊂ M p,q
mλ

,

with continuous inclusion. It remains to prove the density. We denote by Kn := {z ∈
R
2d : |z| ≤ n}, and we fix ϕ ∈ Sω with ‖ϕ‖2

L2 = (2π)−d . Consider f ∈ M p,q
mλ

and
define

Fn = Vϕ f · χKn and fn = V ∗
ϕ Fn .

From Proposition 2.6 we have that fn ∈ Sω(Rd). Moreover, using (2.25) and Propo-
sition 3.7 we obtain

‖ fn − f ‖M p,q
mλ

= ‖V ∗
ϕ Fn − V ∗

ϕ Vϕ f ‖M p,q
mλ

≤ C‖Fn − Vϕ f ‖L p,q
mλ

= C‖Vϕ f ‖L p,q
mλ

(R2d\Kn)
.

So, ‖ fn − f ‖M p,q
mλ

tends to 0 for n → ∞, which completes the proof. ��

We recall now from [18] some basic facts about amalgam spaces.
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Definition 3.10 We indicate with �
p,q
mλ

(Z2d) the space of all sequences (akn)k,n∈Zd ,
with akn ∈ C for every k, n ∈ Z

d , such that the following norm is finite

‖a‖�
p,q
mλ

=
( ∑
n∈Zd

( ∑
k∈Zd

|akn|pmλ(k, n)p
)q/p)1/q

.

Definition 3.11 Let F be a measurable function on R
2d , and define

akn = ess sup
(x,ξ)∈[0,1]2d

|F(k + x, n + ξ)|.

We say that F ∈ W (L p,q
mλ

) if the sequence a = (akn)k,n∈Zd belongs to �
p,q
mλ

(Z2d). The
space W (L p,q

mλ
) is called amalgam space, and has the norm defined by

‖F‖W (L p,q
mλ

) = ‖a‖�
p,q
mλ

.

Let ϕ ∈ Sω(Rd) and� = α0Z
d ×β0Z

d a lattice with α0, β0 > 0 sufficiently small
so that {�(σ)ϕ}σ∈� is a Gabor frame for L2(Rd). We indicate with m̃λ the restriction
of the weight (3.10) to the lattice �, in the sense that

m̃λ(k, n) := mλ(α0k, β0n).

We recall the following result (see Proposition 11.1.4 of [18]).

Proposition 3.12 Let F ∈ W (L p,q
mλ

) be a continuous function, and α0, β0 > 0. Then
F |� ∈ �

p,q
m̃λ

, and there exists a constant C = C(α0, β0, λ) such that

‖F |�‖�
p,q
m̃λ

≤ C‖F‖W (L p,q
mλ

).

Now, we study the Gabor frame operator associated to the lattice �, given by

Sϕ,ψ f =
∑
σ∈�

〈 f ,�(σ)ϕ〉�(σ)ψ, (3.15)

for ϕ,ψ, f ∈ L2(Rd).
We write as usual Sϕ,ψ = DψCϕ , where Cϕ is the ‘analysis’ operator, acting on a

function f as

Cϕ f = 〈 f ,�(σ)ϕ〉, σ ∈ �, (3.16)

and Dψ is the ‘synthesis’ operator, acting on a sequence c = (ckn)k,n∈Zd as

Dψc =
∑

k,n∈Zd

ckn�(α0k, β0n)ψ. (3.17)
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We analyze the action of the previous operators on the modulation spaces M p,q
mλ

. The
proofs of the next two results are very similar to [18, Thms. 12.2.3, 12.2.4], so we
omit them. We just remark that, since ϕ ∈ Sω ⊂ S, we have that Vϕϕ ∈ S; then by
Proposition 12.1.11 of [18] we have Vϕϕ ∈ W (L1

vλ
), and so we can apply Theorem

11.1.5 of [18].

Theorem 3.13 Let ϕ ∈ Sω(Rd) and � a lattice as before. Then the operator

Cϕ : M p,q
mλ

(Rd) −→ �
p,q
m̃λ

(Z2d)

is bounded for every λ ∈ R\{0}, α0, β0 > 0, and 1 ≤ p, q ≤ ∞.

Theorem 3.14 Let ψ ∈ Sω(Rd). Then we have:

(i) The operator

Dψ : �
p,q
m̃λ

(Z2d) −→ M p,q
mλ

(Rd)

is bounded, for every 1 ≤ p, q ≤ ∞, α0, β0 > 0, and λ ∈ R\{0}.
(ii) For every c ∈ �

p′,q ′
m̃−λ

and f ∈ M p,q
mλ

we have that

〈Dψc, f 〉 = 〈c,Cψ f 〉, for 1 ≤ p, q < ∞ (3.18)

and

〈Cψ f , c〉 = 〈 f , Dψc〉, for 1 < p, q ≤ ∞. (3.19)

(iii) For p, q < ∞, we have that Dψc converges unconditionally in M p,q
mλ

; if p =
q = ∞, then Dψc converges unconditionally weak∗ in M∞

1/vλ
.

Now, we study the Gabor frame operator (3.15). We recall (see [18, Prop. 5.1.1 and
5.2.1]) that if we take a window ϕ ∈ L2(Rd) and a lattice� such that {�(σ)ϕ}σ∈� is a
Gabor frame for L2(Rd), the operator (3.15) is invertible on L2(Rd). Moreover, if we
define the dual window ψ of ϕ by ψ := S−1

ϕ,ϕϕ, we have that for every f ∈ L2(Rd),

f =
∑
σ∈�

〈 f ,�(σ)ϕ〉�(σ)ψ

with unconditional convergence in L2(Rd). We observe also that if ϕ ∈ Sω(Rd) then
the dual window ψ ∈ Sω(Rd) by [19, Thm. 4.2].

Lemma 3.15 Fix ϕ ∈ Sω(Rd)\{0}, and let ψ ∈ Sω(Rd)\{0} be the dual window of ϕ.
For f ∈ M p,q

mλ
(Rd), λ ∈ R\{0}, we have

f = DψCϕ f =
∑
σ∈�

〈 f ,�(σ)ϕ〉�(σ)ψ
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and

f = DϕCψ f =
∑
σ∈�

〈 f ,�(σ)ψ〉�(σ)ϕ,

with convergence in M p,q
mλ

for p, q < ∞, and weak∗ convergence in M∞
1/vλ

in the case
p = q = ∞.

Proof We first consider the case p, q < ∞. From Proposition 3.9 we have that there
exists a sequence fn ∈ Sω(Rd) such that fn → f in M p,q

mλ
as n → ∞. Since

Sω(Rd) ⊂ L2(Rd), we have that

fn = DψCϕ fn = DϕCψ fn . (3.20)

From Theorems 3.13 and 3.14 we obtain DψCϕ fn → DψCϕ f and DϕCψ fn →
DϕCψ f in M p,q

mλ
, and so from (3.20) the result is proved.

We now pass to the case p = q = ∞. Let f ∈ M∞
1/vλ

and g ∈ M1
vλ
. We have to prove

that

〈 f , g〉 = 〈DψCϕ f , g〉 = 〈DϕCψ f , g〉. (3.21)

From (3.18) and (3.19) we have that

〈DψCϕ f , g〉 = 〈 f , DϕCψg〉;

from the previous point we have that DϕCψg = g in M1
vλ
, so the first equality in

(3.21) is proved. The other is similar. ��
Remark 3.16 Let u ∈ S ′

ω(Rd), and ϕ,ψ ∈ Sω(Rd) as in Lemma 3.15. Then for every
θ ∈ Sω(Rd) we have

〈u, θ〉 =
∑
σ∈�

〈u,�(σ)ϕ〉〈�(σ)ψ, θ〉. (3.22)

We have indeed that fromRemark 3.6 there exists λ < 0 such that u ∈ M∞
mλ

= M∞
1/vλ

.

Then, from Lemma 3.15, for every g ∈ M1
vλ
,

〈u, g〉 =
∑
σ∈�

〈u,�(σ)ϕ〉〈�(σ)ψ, g〉.

From Proposition 3.9, the previous formula then holds for g = θ ∈ Sω(Rd), so we
have (3.22).

We can now prove the main result of this section.

Theorem 3.17 If u ∈ S ′
ω(Rd) then

WF′
ω(u) = WFGω (u).
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Proof The inclusion WFGω (u) ⊆ WF′
ω(u) is trivial, so that we only have to prove that

WF′
ω(u) ⊆ WFGω (u).

Let 0 �= z0 /∈ WFGω (u). So, there exists an open conic set � ⊂ R
2d\{0} containing

z0 such that (3.9) is satisfied. By Remark 3.16 we have that, for ϕ ∈ Sω(Rd)\{0} and
ϕ̃ = S−1

ϕϕ ϕ ∈ Sω(Rd) its dual window,

〈u, ψ〉 =
∑
σ∈�

Vϕu(σ )〈�(σ)ϕ̃, ψ〉 ∀ψ ∈ Sω(Rd).

We denote

u1 =
∑

σ∈�∩�

Vϕu(σ )�(σ)ϕ̃,

u2 =
∑

σ∈�\�
Vϕu(σ )�(σ)ϕ̃.

Clearly Vϕu(z) = Vϕu1(z) + Vϕu2(z). Denoting σ = (σ1, σ2) ∈ R
d × R

d , by
(2.12), (2.1), the subadditivity of ω and (2.14), we can estimate, for every α, β ∈ N

d
0 ,

λ,μ > 0:

e
−λϕ∗

ω

( |α|
λ

)
e
−μϕ∗

ω

( |β|
μ

)
|xβ∂αu1(x)|

≤
∑

σ∈�∩�

|Vϕu(σ )| · ∣∣xβ∂α
(
ei〈σ2,x〉ϕ̃(x − σ1)

)∣∣e−λϕ∗
ω

( |α|
λ

)
e
−μϕ∗

ω

( |β|
μ

)

≤
∑

σ∈�∩�

|Vϕu(σ )|
∑
γ≤α

(
α

γ

)
2−|α||x ||β|e−μϕ∗

ω

( |β|
μ

)
〈σ2〉|α−γ |

·|∂γ ϕ̃(x − σ1)|e−λϕ∗
ω

( |α|
λ

)
2|α|

≤ Cμ

∑
σ∈�∩�

|Vϕu(σ )|
∑
γ≤α

(
α

γ

)
2−|α|eμω(x)|∂γ ϕ̃(x − σ1)|〈σ2〉|α−γ |e−3λϕ∗

ω

( |α|
3λ

)

≤ Cμ

∑
σ∈�∩�

|Vϕu(σ )|
∑
γ≤α

(
α

γ

)
2−|α|eμω(σ1)eμω(x−σ1)

·|∂γ ϕ̃(x − σ1)|〈σ2〉|α−γ |e−3λϕ∗
ω

( |α|
3λ

)

≤ Cλ′,μ
∑

σ∈�∩�

|Vϕu(σ )|
∑
γ≤α

(
α

γ

)
2−|α|eμω(σ1)e

λ′ϕ∗
ω

( |γ |
λ′

)
−3λϕ∗

ω

( |α|
3λ

)
〈σ2〉|α−γ |

for some Cμ,Cλ′,μ > 0.
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For λ′ = 6λ we apply [5, Prop. 2.1(g)], then (2.12) and (3.9), and finally obtain,
for some constants depending on λ and μ, and m > 0 big enough:

e
−λϕ∗

ω

( |α|
λ

)
e
−μϕ∗

ω

( |β|
μ

)
|xβ∂αu1(x)|

≤ Cλ,μ

∑
σ∈�∩�

|Vϕu(σ )|
∑
γ≤α

(
α

γ

)
2−|α|eμω(σ1)e

−6λϕ∗
ω

( |α−γ |
6λ

)
〈σ2〉|α−γ |

≤ Cλ,μ

∑
σ∈�∩�

|Vϕu(σ )|
∑
γ≤α

(
α

γ

)
2−|α|eμω(σ1)e6λω(〈σ2〉)

≤ Cλ,μ

∑
σ∈�∩�

|Vϕu(σ )|e(μ+6λ)ω(〈σ 〉)+mω(〈σ 〉)e−mω(〈σ 〉)

≤ C ′
λ,μ

∑
σ∈�∩�

e−mω(〈σ 〉) ≤ C ′′
λ,μ, x ∈ R

d . (3.23)

This proves that u1 ∈ Sω(Rd) (here, we consider the seminorms given in (2.2)).
Therefore, from Theorem 2.7, Vϕu1 ∈ Sω(R2d) and for every λ > 0 there is a
constant Cλ > 0 such that

eλω(z)|Vϕu1(z)| ≤ Cλ ∀z ∈ R
2d . (3.24)

Let us now fix an open conic set �′ ⊂ R
2d\{0} containing z0 and such that

�′ ∩ S2d−1 ⊆ �.
Then

inf
0 �=σ∈�\�

z∈�′

∣∣∣∣ σ

|σ | − z

∣∣∣∣ = ε > 0 (3.25)

and |σ − z| ≥ ε|σ | for 0 �= σ ∈ �\� and z ∈ �′.
From the subadditivity of ω we have

eλω(z)|Vϕu2(z)| ≤
∑

σ∈�\�
eλω(σ)+λω(z−σ)|Vϕu2(σ )| · |〈�(σ)ϕ̃,�(z)ϕ〉|

≤ C
∑

σ∈�\�
e(λ+λ̄)ω(σ )eλω(z−σ)|Vϕϕ̃(z − σ)|, (3.26)

for some C, λ̄ > 0, because of Theorem 2.5 and since ([18, pg 41])

|〈�(σ)ϕ̃,�(z)ϕ〉| = |e−i〈σ1,z2−σ2〉Vϕϕ̃(z − σ)| = |Vϕϕ̃(z − σ)|. (3.27)

Since ϕ̃ ∈ Sω(Rd), from Theorem 2.7 we have that for every μ > 0 there is a
constant Cμ > 0 such that

|Vϕϕ̃(z − σ)| ≤ Cμe
−μω(z−σ)
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and hence, substituting in (3.26):

eλω(z)|Vϕu2(z)| ≤ CCμ

∑
σ∈�\�

e(λ+λ̄)ω(σ )e(λ−μ)ω(z−σ). (3.28)

However, for z ∈ �′ and σ ∈ �\� we have |σ − z| ≥ ε|σ | and therefore, by the
subadditivity of ω, we have that

ω(σ) = ω

(
ε|σ |
ε

)
≤

([
1

ε

]
+ 1

)
ω(ε|σ |) ≤

([
1

ε

]
+ 1

)
ω(z − σ).

Substituting in (3.28) we obtain, for M = ([1/ε]+1)−1 andμ > λ sufficiently large:

eλω(z)|Vϕu2(z)| ≤ CCμ

∑
σ∈�\�

e(λ+λ̄+λM−μM)ω(σ) ≤ Cλ, z ∈ �′, (3.29)

for some Cλ > 0.
From (3.24) and (3.29) we finally deduce

sup
z∈�′

eλω(z)|Vϕu(z)| < +∞, λ > 0,

and hence z0 /∈ WF′
ω(u). ��

From Theorem 3.17, in what follows we use WF′
ω(u) for WFGω (u) and any u ∈

S ′
ω(Rd).

Proposition 3.18 For every u ∈ S ′
ω(Rd) we have WF′

ω(u) = ∅ if and only if u ∈
Sω(Rd).

Proof Suppose that u ∈ Sω(Rd), and fix a window function ϕ ∈ Sω(Rd)\{0}; from
Theorem 2.7 we have that for every λ > 0 there exists Cλ > 0 such that

|Vϕu(z)| ≤ Cλe
−λω(z), ∀z ∈ R

2d .

Then for every open conic set � ⊆ R
2d\{0} condition (3.1) holds, so WF′

ω(u) = ∅.
Suppose now that WF′

ω(u) = ∅. From Definition 3.1 we have that for every z ∈
R
2d\{0} there exists an open conic set �z ⊆ R

2d\{0} containing z such that for every
λ > 0 there exists Cλ,z > 0 satisfying

|Vϕu(z)| ≤ Cλ,ze
−λω(z) ∀z ∈ �z .

Let ϒz = �z ∩ S2d−1. We have that {ϒz, z ∈ R
2d\{0}} is an open covering of S2d−1;

since S2d−1 is compact and �z is conic, there exist z1, . . . , zk ∈ R
2d\{0} such that

�z1 ∪ · · · ∪ �zk = R
2d\{0}.
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We then have that for every λ > 0,

|Vϕu(z)| ≤ Cλe
−λω(z) ∀z ∈ R

2d ,

where Cλ = max{Cλ,z1 , . . . ,Cλ,zk , |Vϕu(0)|eλω(0)}. From Theorem 2.7 we finally
have u ∈ Sω(Rd). ��

We now prove that the wave front set WF′
ω is not affected by the phase-space shift

operator.

Proposition 3.19 For every w = (y, η) ∈ R
2d and for every u ∈ S ′

ω(Rd) we have

WF′
ω(�(w)u) = WF′

ω(u).

Proof Since �(w) = MηTy , it is enough to prove that translation and modulation do
not affect the wave front set. Concerning translation, we have that for z = (x, ξ) ∈
R
2d ,

Vϕ(Tyu)(z) = 〈Tyu,�(z)ϕ〉 = 〈u, T−y�(z)ϕ〉 = e−i〈y,ξ〉VT−yϕu;

writing ψ = T−yϕ ∈ Sω(Rd) we have that

|Vϕ(Tyu)(z)| = |Vψu(z)|,

and since the wave front set does not depend on the window (Proposition 3.2) we have
WF′

ω(Tyu) = WF′
ω(u). Concerning modulation, we have

Vϕ(Mηu)(z) = 〈Mηu,�(z)ϕ〉 = 〈u, M−η�(z)ϕ〉 = ei〈η,x〉VM−ηϕu(z);

then, writing θ = M−ηϕ ∈ Sω(Rd), we get

|Vϕ(Mηu)(z)| = |Vθu(z)|,

and as before we conclude that WF′
ω(Mηu) = WF′

ω(u). ��
The results obtained in Sects. 2 and 3 are true in the quasi-analytic case also,

i.e. when we consider that ω(t) = o(t), as t → +∞, instead of condition (β) of
Definition 2.1. However, in the following we will consider weights satisfying (β), i.e.
there are compactly supported functions in Sω(Rd).

4 Applications to (pseudo-)differential operators

In this section we analyze the action of several operators of pseudo-differential (or
differential) type on the global wave front set WF′

ω(u) of u ∈ S ′
ω(Rd). In particular,

we obtain regularity results for pseudo-differential operators of infinite order in the
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Beurling setting. Note that, in the classical Schwartz space S(Rd), Rodino-Wahlberg
treat in [35] pseudo-differential operators with symbols of polynomial growth.

In order to study the behaviour of theω-wave front set of pseudo-differential opera-
tors of infinite order we need nuclearity of Sω to apply the kernel theorem. It is known
that Sω is nuclear for many weight functions ω. For example, whenever they satisfy
the following condition:

∃ H > 1 ∀ t ≥ 0, 2ω(t) ≤ ω(Ht) + H . (4.1)

Bonet, Meise and Melikhov [9] proved that under such a condition the classes of
ultradifferentiable functions defined by sequences in the sense of Komatsu satisfying
the standard conditions (M0), (M1), (M2) and (M3), and the classes defined by
weight functions in the sense of Braun et al. [11] coincide. Hence, under condition
(4.1) our results are true also for spaces defined by sequences instead of weights (see,
for instance, Langenbruch [27] for a complete study of the structure of many global
weighted spaces of (ultra)differentiable functions and ultradistributions defined by
sequences in the sense of Komatsu).

First, we state the following property:

Lemma 4.1 If the weight function ω satisfies (4.1) then

log t = o(ω(t)), as t → +∞. (4.2)

Proof Let H > 1 be the constant of (4.1). We fix c > 0 such that ω(c) > H . For
t ≥ cH there exists m ∈ N such that

cHm ≤ t ≤ cHm+1.

By (4.1) we have, for all x ≥ 0,

22ω(x) ≤ 2ω(Hx) + 2H ≤ ω(H2x) + 2H + H .

Hence, by induction on k ∈ N, we obtain

2kω(x) ≤ ω(Hkx) + (2k−1 + 2k−2 + · · · + 1)H .

Therefore,

lim
t→∞

log t

ω(t)
≤ lim

m→∞
m∈N

log(cHm+1)

ω(cHm)
≤ lim

m→∞
m∈N

(m + 1) log H + log c

2m
[
ω(c) − H

2 − H
22

− · · · − H
2m

]

= lim
m→∞
m∈N

(m + 1) log H + log c

2m
[
ω(c) − H + H

2m
] = 0.

��
We start by defining the following symbol class.
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Definition 4.2 For m ∈ R we define

Smω :=
{
a ∈ C∞(R2d) : ∀λ,μ > 0 ∃Cλ,μ > 0 such that

|∂α
x ∂

β
ξ a(x, ξ)|≤ Cλ,μe

λϕ∗
ω

( |α|
λ

)
e
μϕ∗

ω

( |β|
μ

)
emω(ξ), ∀(x, ξ)∈ R

2d , α, β ∈ N
d
0

}
.

Let us remark thatwhenω(t) = log(1+t) then Smω contains the classicalHörmander
symbol classes of global type and finite order Smρ,0, for all ρ ∈ [0, 1], and, in particular,
it coincides with Sm0,0 (see [25] and the arguments of [15, Example 2.11 (1)]). However,
in the present section, we are not considering this extreme case by Lemma 4.1. We
extend the results of [35] for symbols of type (0, 0) with infinite order.

Then we consider the Kohn–Nirenberg quantization defined by

a(x, D) f (x) := (2π)−d
∫
Rd

ei〈x,ξ〉a(x, ξ) f̂ (ξ)dξ, a ∈ Smω , f ∈ Sω(Rd).

(4.3)

The above Kohn–Nirenberg quantization is well defined since f̂ ∈ Sω(Rd) and hence
for every λ > 0 there exists Cλ > 0 such that

|a(x, ξ)| · | f̂ (ξ)| ≤ emω(ξ)Cλe
−λω(ξ)

which is integrable in R
d if we choose λ > 0 sufficiently large. Moreover,

a(x, D) : Sω −→ S ′ ⊆ S ′
ω.

If Sω is nuclear, we can apply the kernel theorem to the linear operator

Vϕa(x, D)V ∗
ϕ : Sω(R2d) −→ S ′

ω(R2d)

and find a unique distribution K ∈ S ′
ω(R4d) such that

Vϕa(x, D)V ∗
ϕ F(y′, η′)

= (2π)d
∫
R2d

K (y′, η′; y, η)F(y, η)dydη ∀F ∈ Sω(R2d), (4.4)

in the sense that

〈Vϕa(x, D)V ∗
ϕ F,G〉

= (2π)d〈K (y′, η′; y, η),G(y′, η′)F(y, η)〉 ∀G ∈ Sω(R2d). (4.5)
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If u ∈ Sω(Rd) and F = Vϕu ∈ Sω(R2d) for ϕ ∈ Sω(Rd) with ‖ϕ‖L2 = 1, then,
from (2.22),

Vϕa(x, D)u(y′, η′) = (2π)−dVϕa(x, D)V ∗
ϕ Vϕu(y′, η′)

=
∫
R2d

K (y′, η′; y, η)Vϕu(y, η)dydη

and we can compute the kernel directly:

Lemma 4.3 For a ∈ Smω , ϕ ∈ Sω(Rd) with ‖ϕ‖L2 = 1 and u ∈ Sω(Rd) we have that

Vϕ(a(x, D)u)(z′) =
∫
R2d

K (z′, z)Vϕu(z)dz, (4.6)

where, for all z = (y, η), z′ = (y′, η′) ∈ R
2d ,

K (z′, z) = (2π)−2dei〈y,η〉
∫
R2d

ei(〈x,ξ〉−〈y,ξ〉−〈x,η′〉)a(x, ξ)ϕ̂(ξ − η)ϕ(x − y′)dxdξ.

(4.7)

Proof Let F ∈ Sω(R2d) and consider the Kohn–Nirenberg quantization (4.3) of
V ∗

ϕ F ∈ Sω(Rd):

a(x, D)V ∗
ϕ F(x) = (2π)−d

∫
Rd

ei〈x,ξ〉a(x, ξ)V̂ ∗
ϕ F(ξ)dξ.

Then, by the definition of short-time Fourier transform and (4.3):

Vϕa(x, D)V ∗
ϕ F(y′, η′) =

∫
Rd

(a(x, D)V ∗
ϕ F)(x)ϕ(x − y′)e−i〈x,η′〉dx

= (2π)−d
∫
Rd

∫
Rd

ei〈x,ξ〉a(x, ξ)V̂ ∗
ϕ F(ξ)ϕ(x − y′)e−i〈x,η′〉dξdx . (4.8)

So, fixed x, ξ we have, by (2.23),

ei〈x,ξ〉a(x, ξ)V̂ ∗
ϕ F(ξ)ϕ(x − y′)e−i〈x,η′〉

=
∫
Rd

ei〈x,ξ〉a(x, ξ)V ∗
ϕ F(x ′)e−i〈x ′,ξ〉ϕ(x − y′)e−i〈x,η′〉dx ′

=
∫
Rd

∫
R2d

ei〈x,ξ〉a(x, ξ)F(y, η)ei〈x ′,η〉ϕ(x ′ − y)

·e−i〈x ′,ξ〉ϕ(x − y′)e−i〈x,η′〉dydηdx ′.
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Since a ∈ Smω , F ∈ Sω(R2d) and ϕ ∈ Sω(Rd), we have that for every λ1, λ2, λ3 > 0
there exists a constant Cλ > 0 such that, by the subaddititvity of ω:

|a(x, ξ)F(y, η)ϕ(x ′ − y)ϕ(x − y′)|
≤ Cλe

mω(ξ)e−λ1ω(y,η)e−λ2ω(x ′−y)e−λ3ω(x−y′)

≤ Cλe
mω(ξ)e− λ1

2 ω(y)e− λ1
2 ω(η)e−λ2ω(x ′)+λ2ω(y)e−λ3ω(x)+λ3ω(y′).

Choosing λ1 > 2λ2 > 0 sufficiently large we can apply Fubini’s theorem with
respect to the variables y, η and x ′, obtaining:

ei〈x,ξ〉a(x, ξ)V̂ ∗
ϕ F(ξ)ϕ(x − y′)e−i〈x,η′〉

=
∫
R2d

ei〈x,ξ〉a(x, ξ)F(y, η)

·
(∫

Rd
ei〈x ′,η〉ϕ(x ′ − y)e−i〈x ′,ξ〉dx ′

)
ϕ(x − y′)e−i〈x,η′〉dydη

=
∫
R2d

ei〈x,ξ〉a(x, ξ)F(y, η)

·
(∫

Rd
ei〈y+s,η〉e−i〈y+s,ξ〉ϕ(s)ds

)
ϕ(x − y′)e−i〈x,η′〉dydη

=
∫
R2d

ei〈x,ξ〉a(x, ξ)F(y, η)ei〈y,η〉e−i〈y,ξ〉

·
(∫

Rd
e−i〈s,ξ−η〉ϕ(s)ds

)
ϕ(x − y′)e−i〈x,η′〉dydη

=
∫
R2d

ei〈x,ξ〉a(x, ξ)F(y, η)ei〈y,η〉e−i〈y,ξ〉

· ϕ̂(ξ − η)ϕ(x − y′)e−i〈x,η′〉dydη. (4.9)

Since a ∈ Smω , F ∈ Sω(R2d) and ϕ ∈ Sω(Rd), for every μ1, μ2, μ3 > 0 there
exists a constant Cμ > 0 such that, by the subadditivity of ω,

|a(x, ξ)F(y, η)ϕ̂(ξ − η)ϕ(x − y′)|
≤ Cμe

mω(ξ)e−μ1ω(y)e−μ1ω(η)e−μ2ω(ξ)+μ2ω(η)e−μ3ω(x)+μ3ω(y′),

so that, forμ3, μ1 > μ2 sufficiently large, the above function is integrable inR
4d
(x,ξ,η,y)

and substituting (4.9) into (4.8) we can apply Fubini’s theorem to obtain:

Vϕa(x, D)V ∗
ϕ F(y′, η′)

= (2π)−d
∫
R2d

F(y, η)ei〈y,η〉

·
(∫

R2d
ei(〈x,ξ〉−〈y,ξ〉−〈x,η′〉)a(x, ξ)ϕ̂(ξ − η)ϕ(x − y′)dxdξ

)
dydη.
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Applying the above result to F = Vϕu for some u ∈ Sω(Rd), since ‖ϕ‖L2 = 1 and
hence V ∗

ϕ F = V ∗
ϕ Vϕu = (2π)du by (2.22), we have

Vϕ(a(x, D)u)(y′, η′) =
∫
R2d

K (y′, η′; y, η)Vϕu(y, η)dydη,

for

K (y′, η′; y, η)

= (2π)−2dei〈y,η〉
∫
R2d

ei(〈x,ξ〉−〈y,ξ〉−〈x,η′〉)a(x, ξ)ϕ̂(ξ − η)ϕ(x − y′)dxdξ,

which concludes the proof of the lemma. ��
In the next result the following property on the weight function ω, which can be

proved as in [8, Lemma 4.7(ii)] (for instance), will be useful: for every σ,μ > 0 and
t ≥ 1,

inf
j∈N0

t−σ j e
μϕ∗

ω

(
σ j
μ

)
≤ e−(μ− σ

b )ω(t)− σa
b , (4.10)

where a ∈ R and b > 0 are the constants of condition (γ ) in Definition 2.1.

Proposition 4.4 If a ∈ Smω , m ∈ R and K ∈ C∞(R4d) is defined by (4.7), then for
every λ > 0 there exists a constant Cλ > 0 such that

|K (z′, z)| ≤ Cλe
−λω(y−y′)e(m−λ)ω(η−η′)emω(η′), z = (y, η), z′ = (y′, η′) ∈ R

2d .

(4.11)

Moreover, if a(z) = 0 for z ∈ �\B(0, R) for an open conic set � ⊆ R
2d\{0} and

for some R > 0 (here B(0, R) is the ball of center 0 and radius R in R
2d), then

for every open conic set �′ ⊆ R
2d\{0} such that �′ ∩ S2d−1 ⊆ � we have that for

every λ > 0 there exists a constant Cλ > 0 such that for all z′ = (y′, η′) ∈ �′ and
z = (y, η) ∈ R

2d ,

|K (z′, z)| ≤ Cλe
−λω(y−y′)e−λω(η−η′)e−2λω(y′)e−2λω(η′). (4.12)

Proof By the linear change of variables ξ ′ = ξ − η and x ′ = x − y′ in (4.7) we have

K (z′, z) = (2π)−2dei〈y,η〉
∫
R2d

ei(〈x ′+y′,ξ ′+η〉−〈y,ξ ′+η〉−〈x ′+y′,η′〉)

×a(x ′ + y′, ξ ′ + η)ϕ̂(ξ ′)ϕ(x ′)dx ′dξ ′

= (2π)−2dei(〈y′,η〉−〈y′,η′〉)

·
∫
R2d

ei(〈x ′,ξ ′〉+〈x ′,η〉+〈y′,ξ ′〉−〈y,ξ ′〉−〈x ′,η′〉)

×a(x ′ + y′, ξ ′ + η)ϕ̂(ξ ′)ϕ(x ′)dx ′dξ ′,
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and hence, setting x = x ′ and ξ = ξ ′:

|K (z′, z)| = (2π)−2d
∣∣∣∣
∫
R2d

ei(〈x,η−η′+ξ〉+〈ξ,y′−y〉)a(x + y′, ξ + η)ϕ̂(ξ)ϕ(x)dxdξ

∣∣∣∣ .
(4.13)

Writing, for M, N ∈ N0,

ei(〈x,η−η′+ξ〉+〈ξ,y′−y〉) = 〈η − η′ + ξ 〉−2M (1 − �x )
Mei(〈x,η−η′+ξ〉+〈ξ,y′−y〉)

= 〈y − y′〉−2N 〈η − η′ + ξ 〉−2M (1 − �x )
Mei〈x,η−η′+ξ〉(1 − �ξ)

Nei〈ξ,y′−y〉

and integrating by parts in (4.13), we have

|K (z′, z)| = (2π)−2d〈y − y′〉−2N

×
∣∣∣∣
∫
R2d

ei(〈x,η−η′〉+〈ξ,y′−y〉)λN ,M (y′, η′, η, x, ξ)dxdξ

∣∣∣∣ , (4.14)

where

λN ,M (y′, η′, η, x, ξ)

= (1 − �ξ)
N

[
ei〈x,ξ〉〈η − η′ + ξ 〉−2M (1 − �x )

M
(
a(x + y′, ξ + η)ϕ̂(ξ)ϕ(x)

)]
.

For a ∈ Smω , since ϕ, ϕ̂ ∈ Sω(Rd), we use the definition of symbol (Definition 4.2)
and the seminorms (2.3) to obtain that for each λ, μ, λ′, μ′, λ′′, μ′′ > 0 there is a
positive constant C := Cλ,μ,λ′,μ′,λ′′,μ′′ such that for every M, N ∈ N0:

|λN ,M (y′, η′, η, x, ξ)| ≤ C
∑

γ1+γ2+γ3+γ4=2N

(2N )!
γ1!γ2!γ3!γ4!

×
∑

σ1+σ2=2M

(2M)!
σ1!σ2! 〈x〉

|γ1|〈η − η′ + ξ 〉−2M−|γ2|

× e
λϕ∗

ω

( |γ3|
λ

)
e
μϕ∗

ω

( |σ1|
μ

)
emω(ξ+η)e

λ′ϕ∗
ω

( |γ4|
λ′

)
e−μ′ω(ξ)

× e
λ′′ϕ∗

ω

( |σ2 |
λ′′

)
e−μ′′ω(x). (4.15)

We observe that

〈η − η′ + ξ 〉−1 ≤ √
2〈η − η′〉−1〈ξ 〉, (4.16)

and, hence,

〈η − η′ + ξ 〉−2M−|γ2| ≤ 2(2M+|γ2|)/2〈η − η′〉−2M−|γ2|〈ξ 〉2M+|γ2|.
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By (2.12) and by the subadditivity of ω, for all λ̃ > 0:

〈x〉|γ1| ≤ e
λ̃ϕ∗

ω

( |γ1|
λ̃

)
eλ̃ω(〈x〉) ≤ e

λ̃ϕ∗
ω

( |γ1|
λ̃

)
eλ̃ω(1+|x |) ≤ Cλ̃e

λ̃ϕ∗
ω

( |γ1|
λ̃

)
eλ̃ω(x)

(4.17)

for Cλ̃ = eλ̃ω(1).
Analogously

〈ξ 〉|γ2| ≤ Cλ̃e
λ̃ϕ∗

ω

( |γ2 |
λ̃

)
eλ̃ω(ξ). (4.18)

Substituting (4.17) and (4.18) into (4.15), choosing μ′ = λ̃ + m + 1, μ′′ = λ̃ + 1,
μ = λ = λ′ = λ′′ = λ̃ and applying (2.15) we obtain a constant Cλ > 0 such that for
all M, N ∈ N0:

|λN ,M (y′, η′, η, x, ξ)| ≤ Cλ(d
√
2)2M+2N

∑
γ1+γ2+γ3+γ4=2N

(2N )!
γ1!γ2!γ3!γ4!d

−2N

×
∑

σ1+σ2=2M

(2M)!
σ1!σ2!d

−2M

× eλϕ∗
ω

(
2N
λ

)
eλϕ∗

ω

(
2M
λ

)
〈η − η′〉−2M−|γ2|〈ξ 〉2Me−ω(ξ)−ω(x)emω(η−η′)emω(η′)

≤ Cλ(d
√
2)2M+2Neλϕ∗

ω

(
2N
λ

)
eλϕ∗

ω

(
2M
λ

)
×〈η − η′〉−2M 〈ξ 〉2Me−ω(ξ)−ω(x)emω(η−η′)emω(η′).

By [8, Lemma 4.5] we have that for every λ′ > 0 there exists Cλ′ > 0 such that

|λN ,M (y′, η′, η, x, ξ)|
≤ Cλ′eλ′ϕ∗

ω

(
2N
λ′

)
eλ′ϕ∗

ω

(
2M
λ′

)
〈η − η′〉−2M 〈ξ 〉2Me−ω(ξ)−ω(x)emω(η−η′)emω(η′).

Now, we turn to formula (4.14) and we have that for all λ there is a constantCλ > 0
such that for every M, N ∈ N0:

|K (z′, z)| ≤ Cλ〈y − y′〉−2Ne
λϕ∗

ω

(
2N
λ

)
〈η − η′〉−2Me

λϕ∗
ω

(
2M
λ

)
emω(η−η′)emω(η′)

×
( ∫

Rd
e−ω(x)dx

)( ∫
Rd

〈ξ 〉2Me−ω(ξ)dξ
)
. (4.19)

We observe that the integrals are convergent (the second one, for all M ∈ N0) by
Lemma 4.1. We take the infimum on N and M separately and use the property that the
infimum of the pointwise product of two sets of positive numbers is the product of the
infimums of the two sets. Therefore, we apply (4.10) for σ = 2 to obtain (possibly) a
new constant C ′

λ such that:

|K (z′, z)| ≤ C ′
λe

−
(
λ− 2

b

)
ω(y−y′)

e
−

(
λ− 2

b

)
ω(η−η′)

emω(η−η′)emω(η′), (4.20)
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which proves (4.11) by the arbitrariness of λ.
Now, we want to prove (4.12). To do so, we apply (4.16) only to 〈η − η′ + ξ 〉−M

in (4.15) and, by the same computations to get (4.19), we have that if a(z) = 0 for
z ∈ �\B(0, R), for every λ > 0 there is a constant Cλ > 0 such that

|K (z′, z)| ≤ Cλ〈y − y′〉−2Ne
λϕ∗

(
2N
λ

)
〈η − η′〉−Me

λϕ∗
ω

(
2M
λ

)
emω(η−η′)emω(η′)

×
∫
Dy′,η

〈η′ − (ξ + η)〉−Me−ω(x)〈ξ 〉Me−ω(ξ)dxdξ, (4.21)

where

Dy′,η := {(x, ξ) ∈ R
2d : (x + y′, ξ + η) ∈ (R2d\�) ∪ B(0, R)}.

We now want to estimate (4.21) for z′ = (y′, η′) ∈ �′ and z = (y, η) ∈ R
2d . By

[35, pg 643] we know that

〈y′〉〈η′〉 ≤ C〈x〉2〈η′ − (ξ + η)〉2, z′ ∈ �′\B(0, 2R), z ∈ R
2d , (x, ξ) ∈ Dy′,η,

(4.22)

for some constant C > 0.
Weplug (4.22) into (4.21) and apply [5, Prop. 2.1(g)] to obtain, for z′ ∈ �′\B(0, 2R)

and z ∈ R
2d ,

|K (z′, z)| ≤ CM/2Cλ〈y − y′〉−2Ne
λϕ∗

ω

(
2N
λ

)

×〈η − η′〉−Me
λ
2 ϕ∗

ω

(
M

λ/2

)
e

λ
4 ϕ∗

ω

(
M/2
λ/4

)
〈y′〉−M/2e

λ
4 ϕ∗

ω

(
M/2
λ/4

)
〈η′〉−M/2

× emω(η−η′)emω(η′)
∫
Dy′,η

〈x〉M 〈ξ 〉Me−ω(x)e−ω(ξ)dxdξ.

Proceeding as in the case before (taking the infimum on M and N separately), we
obtain, from (4.10), that for every λ > 0 there exists another constant Cλ > 0 such
that

|K (z′, z)| ≤ Cλe
−

(
λ− 2

b

)
ω(y−y′)

e
−

(
λ
2− 1

b

)
ω(η−η′)

× e
−

(
λ
4− 1

2b

)
ω(y′)

e
−

(
λ
4− 1

2b

)
ω(η′)

emω(η−η′)emω(η′)

≤ Cλe
−λ̄ω(y−y′)e−λ̄ω(η−η′)e−2λ̄ω(y′)e−2λ̄ω(η′),

for λ̄ = λ
8 − 2

b −m and z′ ∈ �′\B(0, 2R), z ∈ R
2d . The estimate (4.12) for |z′| ≤ 2R

follows from the case before, so the proof is complete. ��
Remark 4.5 For a ∈ Smω , m ∈ R, and K ∈ C∞(R4d) defined by (4.7) the integral in
(4.6) is well defined also for u ∈ S ′

ω(Rd). In fact, (2.9) and (4.11) imply that there
exist C̃, λ̃ > 0 and that for every λ > 0 there exists Cλ > 0 such that
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|K (z′, z)Vϕu(z)| ≤ C̃Cλe
−λω(y−y′)+(m−λ)ω(η−η′)emω(η′)eλ̃ω(y)+λ̃ω(η)

≤ C̃Cλe
λω(y′)+(m+λ)ω(η′)e(λ̃−λ)ω(y)+(m+λ̃−λ)ω(η) ∈ L1(R2d

z=(y,η))

(4.23)

if λ > max{λ̃,m + λ̃}, by (4.2).

We now want to extend Lemma 4.3 for u ∈ S ′
ω(Rd). To this aim we first need the

next two results.

Proposition 4.6 The space Sω(Rd) is dense in S ′
ω(Rd).

Proof Let us consider the inclusion

i : Sω(Rd) ↪→ S ′
ω(Rd)

f �→ 〈i( f ), ϕ〉 :=
∫
Rd

f (x)ϕ(x)dx ∀ϕ ∈ Sω(Rd).

To show that the image is dense we take T ∈ (S ′
ω(Rd)

)′
such that T |Sω

= 0 and
prove that T ≡ 0 (Hahn-Banach theorem for locally convex spaces).

Since Sω(Rd) is reflexive, there exists a unique f ∈ Sω(Rd) such that

T (ϕ) =
∫
Rd

f (x)ϕ(x)dx = 0, ∀ϕ ∈ Sω(Rd),

because of T |Sω
= 0. Therefore f = 0, i.e. T ≡ 0. ��

Proposition 4.7 Let ϕ ∈ Sω(Rd)\{0}. Then

Vϕ : S ′
ω(Rd) −→ S ′

ω(R2d)

is continuous.

Proof We already know that

V ∗
ϕ : Sω(R2d) −→ Sω(Rd)

is continuous by (2.21). It follows that

(V ∗
ϕ )∗ : S ′

ω(Rd) −→ S ′
ω(R2d)

is continuous and moreover (V ∗
ϕ )∗

∣∣
Sω(Rd )

= Vϕ because, for f , g ∈ Sω(Rd),

〈(V ∗
ϕ )∗ f , g〉 = 〈 f , V ∗

ϕ g〉 = 〈Vϕ f , g〉.

Since Sω(Rd) is dense in S ′
ω(Rd) by Proposition 4.6, we have that (V ∗

ϕ )∗ is the
continuous extension of Vϕ to S ′

ω(Rd) and, hence, Vϕ is continuous on S ′
ω(Rd) also.

��
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Now, we need amplitudes a(x, y, ξ), instead of symbols a(x, ξ).

Definition 4.8 Given m ∈ R, we say that a(x, y, ξ) ∈ C∞(R3d) is an amplitude in
the space Smω if for every λ,μ > 0 there is Cλ,μ > 0 such that

|∂α
x ∂

γ
y ∂

β
ξ a(x, y, ξ)| ≤ Cλ,μe

λϕ∗
( |α+γ |

λ

)
+μϕ∗

( |β|
μ

)
emω(ξ),

for all (x, y, ξ) ∈ R
3d and α, β, γ ∈ N

d
0 .

Now, proceeding in a similar way to that of Proposition 1.9 and Theorem 2.2 of
[15], one can prove that if a(x, y, ξ) ∈ Smω is an amplitude as in Definition 4.8, the
operator acting on Sω, given by the iterated integral

A( f )(x) :=
∫
Rd

(∫
Rd

ei〈x−y,ξ〉a(x, y, ξ) f (y)dy

)
dξ, f ∈ Sω,

is well defined and continuous from Sω into itself. The operator A is called pseudo-
differential operator of typeωwith amplitude a(x, y, ξ).Moreover, A can be extended
continuously to the dual space Ã : S ′

ω → S ′
ω in a standardway (see [15, Theorem2.5]).

In particular, the Kohn–Nirenberg quantization defined in (4.3) is a pseudo-differential
operator with amplitude

a(x, y, ξ) := (2π)−d p(x, ξ),

where p(x, ξ) is a symbol as in Definition 4.2.
As a consequence of the above considerations and of the estimates of the kernel in

Proposition 4.4, we obtain the following result:

Corollary 4.9 Let a(x, ξ) ∈ Smω a symbol as in Definition 4.2, ϕ ∈ Sω(Rd) with
‖ϕ‖L2 = 1 and u ∈ S ′

ω(Rd). Then, for K (z′, z) as in (4.7), we have

Vϕa(x, D)u(z′) =
∫
R2d

K (z′, z)Vϕu(z)dz, (4.24)

for all z′ ∈ R
2d .

Proof Since Vϕ operates on S ′
ω, from the previous comments it is clear that Vϕa(x, D)

can be extended to S ′
ω(Rd). We take u ∈ S ′

ω(Rd). By Proposition 4.6, there exists a
sequence {un}n∈N ⊂ Sω(Rd) which converges to u in S ′

ω and, hence,

∫
R2d

K (z′, z)Vϕun(z)dz = Vϕa(x, D)un(z
′) −→ Vϕa(x, D)u(z′) in S ′

ω(R2d).

(4.25)

We want to prove that

∫
R2d

K (z′, z)Vϕun(z)dz −→
∫
R2d

K (z′, z)Vϕu(z)dz (4.26)
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using Lebesgue’s dominated convergence theorem. First, it is easy to see that
{Vϕun(z)}n∈N converges pointwise to Vϕu(z) for every z ∈ R

2d from the definition
of the short-time Fourier transform.

Now, since {un}n∈N is bounded in S ′
ω(Rd), it is equicontinuous there. So, there

exist a constant C > 0 and a seminorm q on Sω(Rd) such that

|〈un, ϕ〉| ≤ Cq(ϕ), ϕ ∈ Sω(Rd).

This yields a uniform estimate of the inequality (2.9) (see the proof of [19, Theorem
2.4]) in the sense:

|Vϕun(z)| ≤ C̃eλ̃ω(z), z ∈ R
2d , n ∈ N, (4.27)

for some C̃, λ̃ > 0 independent of n and z. From (4.27) and (4.23) we have that
K (z′, z)Vϕun(z) is dominated by a function in L1(R2d

z ).
Therefore (4.26) is satisfied and hence, from (4.25),

Vϕa(x, D)u(z′) =
∫
R2d

K (z′, z)Vϕu(z)dz

also for u ∈ S ′
ω(Rd). ��

We recall the notion of conic support from [35]:

Definition 4.10 For a ∈ D′(R2d) the conic support of a, denoted by cone supp(a), is
the set of all z ∈ R

2d\{0} such that any open conic set � ⊂ R
2d\{0} containing z

satisfies that

supp(a) ∩ � is not compact in R
2d .

We have the following

Proposition 4.11 If m ∈ R, a ∈ Smω and u ∈ S ′
ω(Rd), then

WF′
ω(a(x, D)u) ⊆ cone supp(a).

Proof Let 0 �= z0 /∈ cone supp(a). This means that there exists an open conic set
� ⊂ R

2d\{0} containing z0 and such that a(z) = 0 for z ∈ �\B(0, R) for some
R > 0. Then, from Proposition 4.4, for every open conic set �′ ⊆ R

2d\{0} with
�′ ∩ S2d−1 ⊆ � we have that the kernel K (z′, z) defined by (4.7) satisfies the estimate
(4.12) for all z′ ∈ �′ and z ∈ R

2d .
We argue as in Corollary 4.9 and use (4.12) to obtain that formula (4.24) holds for

all z′ ∈ �′ and therefore there exist C, λ̄ > 0, and for every λ, N > 0 there exists
Cλ,N > 0 such that, for all z′ ∈ �′,
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|Vϕ(a(x, D)u)(z′)| ≤
∫
R2d

|K (z′, z)| · |Vϕu(z)|dz
≤ Cλ,Ne

−2(λ+N )ω(y′)e−2(λ+N )ω(η′)

·
∫
R2d

e−(λ+N )ω(y−y′)e−(λ+N )ω(η−η′)|Vϕu(y, η)|dydη

≤ CCλ,Ne
−2(λ+N )ω(y′)e−2(λ+N )ω(η′)

·
∫
R2d

e−(λ+N )ω(y−y′)e−(λ+N )ω(η−η′)eλ̄ω(y,η)dydη.

It follows, by the subadditivity of ω, that

|Vϕa(x, D)u(z′)| ≤ CCλ,Ne
−2(λ+N )ω(y′)e−2(λ+N )ω(η′)

·
∫
R2d

e−(λ+N )ω(y)+(λ+N )ω(y′)e−(λ+N )ω(η)+(λ+N )ω(η′)

·eλ̄ω(y)+λ̄ω(η)dydη

≤ CCλ,Ne
−λω(y′)e−λω(η′)

∫
R2d

e(λ̄−N )ω(y)e(λ̄−N )ω(η)dydη

≤ Cλe
−λω(y′)e−λω(η′) ≤ Cλe

−λω(z′) ∀z′ = (y′, η′) ∈ �′

(4.28)

for some Cλ > 0 if we choose N sufficiently large so that the integral in (4.28)
converges.

This proves that z0 /∈ WF′
ω(a(x, D)u) by Definition 3.1, and the proof is complete.

��
Since our weight functions are non-quasianalytic, we can obtain the following

consequence of Proposition 4.11.

Corollary 4.12 Let a ∈ Sω(R2d) with compact support, and consider the corre-
sponding pseudo-differential operator a(x, D), cf. (4.3). Then a(x, D) is globally
ω-regularizing, in the sense that for every u ∈ S ′

ω(Rd) we have a(x, D)u ∈ Sω(Rd).

Proof It is easy to see that a ∈ S0ω. Consequently, the corresponding pseudo-
differential operator a(x, D) can be extended to S ′

ω(Rd). Since the support of
a is compact, we have that cone supp(a) = ∅. From Proposition 4.11 we get
WF′

ω(a(x, D)u) = ∅. We apply Proposition 3.18 to conclude. ��
In the next part of the section we consider other kind of operators, proving that their

application to ultradistributions does not enlarge the wave front set. We start from the
operators with polynomial coefficients.

Theorem 4.13 Let m > 0 be an integer, and consider

A(x, D) =
∑

|α+β|≤m

cαβx
αDβ

x ,
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where cαβ ∈ C. Then for every u ∈ S ′
ω(Rd) we have

WF′
ω(A(x, D)u) ⊆ WF′

ω(u).

Proof We fix a window function ϕ ∈ Sω(Rd), and, for ν ∈ N
d
0 we write ϕν for the

function

ϕν(x) = xνϕ(x).

For every α ∈ N
d
0 and z = (y, η) ∈ R

2d we obtain by induction on |α| that

xα�(z)ϕ =
∑
ν≤α

(
α

ν

)
yα−ν�(z)ϕν. (4.29)

We have indeed that for |α| = 1, writing 1 j for the multi-index in N
d
0 having 1 in the

j-th position and 0 elsewhere, we have

x j�(z)ϕ = y j�(z)ϕ + �(z)ϕ1 j ;

we suppose now that (4.29) is true for every |α| = n, and prove it for α̃with |α̃| = n+1.
There exists j ∈ {1, . . . , d} such that α̃ = α + 1 j . Then by the inductive hypothesis
we have

x α̃�(z)ϕ = x j
∑
ν≤α

(
α

ν

)
yα−ν�(z)ϕν

=
∑
ν≤α

(
α

ν

) [
yα−ν+1 j �(z)ϕν + yα−ν�(z)ϕν+1 j

]

= yα̃�(z)ϕ + �(z)ϕα̃ +
∑
ν≤α
ν �=0

[(
α

ν

)
+

(
α

ν − 1 j

)]
yα̃−ν�(z)ϕν

=
∑
ν≤α̃

(
α̃

ν

)
yα̃−ν�(z)ϕν,

and so (4.29) is proved. From the definition of short-time Fourier transform we have

Vϕ(xαu)(z) = 〈xαu,�(z)ϕ〉 = 〈u, xα�(z)ϕ〉

and so by (4.29) we get

Vϕ(xαu)(z) =
∑
ν≤α

(
α

ν

)
yα−νVϕνu(z). (4.30)
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Concerning differentiation, since

Vϕ(Dβu)(z) = 〈Dβu,�(z)ϕ〉 = 〈u, Dβ(�(z)ϕ)〉

a direct computation shows that

Vϕ(Dβu)(z) =
∑
μ≤β

(
β

μ

)
ηβ−μVDμϕu. (4.31)

From (4.30) and (4.31) we finally obtain

Vϕ(A(x, D)u)(y, η) =
∑

|α+β|≤m

cαβVϕ(xαDβ
x u)(y, η)

=
∑

|α+β|≤m

∑
ν≤α
μ≤β

cαβ

(
α

ν

)(
β

μ

)
yα−νηβ−μVDμϕνu(y, η).

(4.32)

On the other hand, it is not difficult to see that for every μ, ν ∈ N
d
0 , D

μϕν ∈ Sω(Rd).
Suppose now that z0 = (y0, η0) /∈ WF′

ω(u), z0 ∈ R
2d\{0}. Then, there exists an

open conic set � ⊆ R
2d\{0} containing z0 and such that

sup
z∈�

eλω(z)|Vϕu(z)| < +∞, λ > 0.

From Proposition 3.2 we have that for every μ, ν ∈ N
d
0 and for every open conic set

�′ ⊆ R
2d\{0} containing z0 and such that �′ ∩ S2d−1 ⊆ �,

sup
z∈�′

eλω(z)|VDμϕνu(z)| < +∞ ∀λ > 0. (4.33)

From (4.32), for every k > 0 we get

eλω(z)|Vϕ(A(x, D)u)(z)|
≤

∑
|α+β|≤m

∑
ν≤α
μ≤β

cαβ

(
α

ν

)(
β

μ

)
e−kω(z)|yα−νηβ−μ|e(λ+k)ω(z)|VDμϕνu(z)|.

Since |α −ν|+ |β −μ| ≤ m, from (4.2) we have that for anym ∈ N,m log(t) ≤ ω(t)
for t > 0 large enough. So, tm ≤ eω(t) for t > 0 large enough, and hence

sup
z∈R2d

e−kω(z)|yα−νηβ−μ| < +∞,
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for every ν ≤ α and μ ≤ β. Therefore, from (4.33) we obtain

sup
z∈�′

eλω(z)|Vϕ(A(x, D)u)(z)| < +∞, λ > 0,

which means that z0 /∈ WF′
ω(A(x, D)u), and the proof is complete. ��

We now want to prove an analogue of Theorem 4.13 for the case of localization
operators. We recall here the definition of such operators and prove some results that
are needed for our purpose. Given two window functions ψ, γ ∈ Sω(Rd)\{0} and
a symbol a ∈ S ′

ω(R2d), the corresponding localization operator La
ψ,γ is defined, for

f ∈ Sω(Rd), as

La
ψ,γ f = V ∗

γ (a · Vψ f ). (4.34)

From Proposition 2.9 we have that

La
ψ,γ : Sω(Rd) → S ′

ω(Rd).

We want now to consider symbols in a smaller class than S ′
ω(R2d), in order to apply

the corresponding localization operator to distributions. We have the following result.

Lemma 4.14 Let a(z), z ∈ R
2d , be a measurable function such that there exist τ,C >

0 such that

|a(z)| ≤ Ceτω(z) ∀z ∈ R
2d . (4.35)

Then

La
ψ,γ : Sω(Rd) → Sω(Rd) (4.36)

and

La
ψ,γ : S ′

ω(Rd) → S ′
ω(Rd) (4.37)

are continuous.

Proof Let f ∈ Sω(Rd). From Theorem 2.7 we have that for every λ, ρ > 0 there
exists Cλ > 0 such that

eρω(z)|a(z)||Vψ f (z)| ≤ Cλe
(ρ+τ−λ)ω(z),

and so, choosing λ ≥ ρ + τ , we have that a · Vψ f ∈ L∞
mρ

(R2d) for every ρ > 0,
wheremρ is defined by (3.10). From Proposition 3.7 and (4.34), we have that La

ψ,γ f ∈
M∞

mρ
(Rd) for every ρ > 0, and then, from Remark 3.6, La

ψ,γ f ∈ Sω(Rd). To prove
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the continuity of La
ψ,γ on Sω(Rd) we fix ϕ ∈ Sω(Rd)\{0}, ρ > 0, and we observe

that from (3.14) (with p = q = ∞) and (4.35) we get

sup
z∈R2d

|Vϕ(La
ψ,γ f )(z)|eρω(z) = sup

z∈R2d
|VϕV

∗
γ (a · Vψ f )|eρω(z)

≤ C‖Vϕγ ‖L1
vρ

sup
z∈R2d

|a(z)Vψ f (z)|eρω(z)

≤ C ′ sup
z∈R2d

|Vψ f (z)|e(τ+ρ)ω(z).

From Proposition 2.10 we have that (4.36) is continuous.
Let now f ∈ S ′

ω(Rd). From Remark 3.6 there exists λ < 0 such that f ∈ M∞
mλ

(Rd);
then, choosing ρ = −|τ | − |λ| we have

eρω(z)|a(z)||Vψ f (z)| ≤ Ce(ρ+τ−λ)ω(z) < +∞

for every z ∈ R
2d , so a ·Vψ f ∈ L∞

mρ
(R2d). Then by Proposition 3.7 we have La

ψ,γ f ∈
M∞

mρ
(Rd), and from Remark 3.6 we finally have La

ψ,γ f ∈ S ′
ω(Rd). Observe now that

for every u ∈ S ′
ω(Rd) and v ∈ Sω(Rd) we have

〈La
ψ,γ u, v〉 = 〈V ∗

γ (a · Vψu), v〉 = 〈u, V ∗
ψ(a · Vγ v)〉 = 〈u, La

γ,ψv〉.

Then La
ψ,γ = (La

γ,ψ)∗; since a satisfies the same estimates as a, the continuity of
(4.37) follows from that of (4.36). ��
Theorem 4.15 Let ψ, γ ∈ Sω(Rd)\{0}, and let a be a symbol satisfying (4.35). Then
for every u ∈ S ′

ω(Rd) we have

WF′
ω(La

ψ,γ u) ⊆ WF′
ω(u).

Proof Let z0 /∈ WF′
ω(u), z0 ∈ R

2d\{0}. Then there exists an open conic set � ⊆
R
2d\{0} containing z0 such that

sup
z∈�

eλω(z)|Vψu(z)| < +∞ ∀λ > 0.

From (4.35), since λ is arbitrary we have

sup
z∈�

eλω(z)|a(z)Vψu(z)| < +∞ ∀λ > 0.

For window functions ϕ, γ ∈ Sω(Rd) we can then repeat the same procedure used in
the proof of Proposition 3.2. First, we observe that from the definition of localization
operator

Vϕ(La
ψ,γ u) = VϕV

∗
γ (a · Vψu).
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Now, it is not difficult to see that

Vϕ(La
ψ,γ u)(x, ξ) =

∫
R2d

(a · Vψu)(s, η)Vγ (�(z)ϕ)(s, η)dsdη,

Vγ (�(z)ϕ)(s, η) = Vϕγ (x − s, ξ − η)e−i〈s,ξ−η〉,

and hence

|Vϕ(La
ψ,γ u)| ≤ |a · Vψu| ∗ |Vϕγ |.

Consequently, for every open conic set �′ ⊆ R
2d\{0} containing z0 and such that

�′ ∩ S2d−1 ⊆ � we have (see the proof of Proposition 3.2)

sup
z∈�′

eλω(z)|Vϕ(La
ψ,γ u)(z)| < +∞, λ > 0.

This implies that z0 /∈ WF′
ω(La

ψ,γ u) and the proof is complete. ��

5 Examples

In this section we compute the Gabor wave front set for some particular u ∈ S ′
ω(Rd)

(see also the examples in [35]).

Example 5.1 Consider the Dirac distribution u = δ ∈ S ′
ω(Rd) for every weight ω. We

have that

Vϕδ(x, ξ) = ϕ(−x).

Since Vϕδ(0, ξ) = ϕ(0), choosing ϕ in such a way that ϕ(0) �= 0 we have

{0} × (Rd\{0}) ⊆ WF′
ω(δ).

Let now (x0, ξ0) ∈ R
2d\{0} such that x0 �= 0, and consider an open conic set contain-

ing (x0, ξ0) of the form

� = {(x, ξ) ∈ R
2d\{0} : |ξ | < C |x |}

for C > 0. From the subadditivity of ω, there exists C1 > 0 such that, writing
z = (x, ξ),

sup
z∈�

eλω(z)|Vϕδ(z)| ≤ sup
x∈Rd

eλC1ω(x)|ϕ(−x)| < +∞

since ϕ ∈ Sω(Rd). Then (x0, ξ0) /∈ WF′
ω(δ), and soWF′

ω(δ) = {0}× (Rd\{0}). From
Proposition 3.19 we have that for every x ∈ R

d , writing δx for the Dirac distribution
centered at x ,
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WF′
ω(δx ) = {0} × (Rd\{0}). (5.1)

Example 5.2 Let u = 1 be the function identically 1, that belong to S ′
ω(Rd) for every

weight ω. A direct computation shows that

Vϕ(1) = e−i〈x,ξ〉ϕ̂(−ξ);

since ϕ̂ ∈ Sω(Rd) we can proceed as in Example 5.1, obtaining that for every weight
ω, WF′

ω(1) = (Rd\{0}) × {0}. From Proposition 3.19 we then have that for every
ξ ∈ R

d and for every weight ω,

WF′
ω(ei〈·,ξ 〉) = (Rd\{0}) × {0}. (5.2)

Example 5.3 We consider now the function u(x) = eicx
2/2, for x ∈ R and c ∈ R\{0}.

Observe that u ∈ S ′
ω(R) for every ω. Choosing as window function the Gaussian

ϕ(t) = e−t2/2, that belongs to Sω(R) for every ω, we have, as in Example 6.6 of [35],
that there exists C > 0 such that

|Vϕu(x, ξ)| = C exp

(
− (ξ − cx)2

2(1 + c2)

)
.

Then, proceeding in a similar way as in the previous cases we have

WF′
ω(u) = {(x, cx) : x ∈ R\{0}} (5.3)

for every weight ω.

We observe that in the cases (5.1) and (5.2) the Gabor wave front set gives rougher
information since it does not take into account translations and modulations, while for
the case (5.3) it gives finer information, since it identifies the so-called instantaneous
frequency, that is the only direction along which the time-frequency content of u does
not decay. For a comparison of the Gabor wave front set of the element considered in
the previous examples with other type of global wave front set (at least in the frame
of tempered distributions) we refer to [35].

We observe now that in the previous examples the considered distributions have
the same wave front set for every weight ω. In general the Gabor wave front set may
depend on ω, as shown in the next example.

Example 5.4 Letω andσ be twoweight functions, such thatω(t) ≤ σ(t) andSσ (Rd)∩
D(Rd) � Sω(Rd)∩D(Rd). We then fix a function f ∈ Sω(Rd)with compact support
such that f /∈ Sσ (Rd). From Proposition 3.18 we have

WF′
ω( f ) = ∅.

Fix now a window ϕ0 ∈ Sσ (Rd) with compact support such that ϕ0 ≡ 1 on supp( f ).
From the definition of short-time Fourier transform, we then have that the orthogonal
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projection onR
d
x of the support ofVϕ0 f (x, ξ) is compact. Let now z0 = (x0, ξ0) ∈ R

2d

with x0 �= 0, and fix an open conic set containing z0 of the form

� = {(x, ξ) ∈ R
2d\{0} : |ξ | < C |x |},

for C > 0. We then have that � ∩ supp(Vϕ0 f ) is compact, so the condition (3.1) is
satisfied for every λ > 0. Then (x0, ξ0) /∈ WF′

σ ( f ) for every x0 �= 0. Consider now a
point of the type (0, ξ0) with ξ0 �= 0, ξ0 ∈ R

d . From the fact that ϕ0 ≡ 1 on supp( f ),
we have

Vϕ0 f (0, ξ) =
∫

e−i〈t,ξ〉 f (t)ϕ0(t) dt = f̂ (ξ).

Since f /∈ Sσ (Rd), we have that there exists λ > 0 such that

sup
ξ∈Rd

eλσ(ξ)|Vϕ0 f (0, ξ)| = +∞,

so (3.1) cannot be satisfied in an open conic set containing (0, ξ0), and then (0, ξ0) ∈
WF′

ω( f ). We then have that

WF′
σ ( f ) = {0} × (Rd\{0});

in particular WF′
σ ( f ) �= WF′

ω( f ).

Acknowledgements The authors are very grateful to the reviewers for the careful reading and for the
comments and remarks which improve the presentation and the quality of the paper.
The authors were partially supported by the INdAM-Gnampa Project 2016 “Nuove prospettive nell’analisi
microlocale e tempo-frequenza”, byFAR2013, FAR2014 (University of Ferrara) andby the project “Ricerca
Locale - Analisi di Gabor, operatori pseudodifferenziali ed equazioni differenziali” (University of Torino).
The research of the second author was partially supported by the project MTM2016-76647-P.

References

1. Albanese, A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial dif-
ferential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)

2. Albanese, A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial
differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425
(2012)

3. Björck, G.: Linear partial differential operators and generalized distributions. Ark.Mat. 6(21), 351–407
(1966)

4. Boiti, C., Gallucci, E.: The overdetermined Cauchy problem for ω-ultradifferentiable functions.
Manuscripta Math. 155(3-4), 419–448 (2018)

5. Boiti, C., Jornet, D.: A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferen-
tiable functions. J. Pseudo-Differ. Oper. Appl. 8(2), 297–317 (2017)

6. Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with
constant coefficients. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111(3), 891–919
(2017)

7. Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front sets with respect to the iterates of an operator with
constant coefficients. Abstr. Appl. Anal. 2014, 1–17 (2014). https://doi.org/10.1155/2014/438716

123

https://doi.org/10.1155/2014/438716


The Gabor wave front set in spaces of… 245

8. Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces
and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017)

9. Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultrad-
ifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007)

10. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples,
CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2006)

11. Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math.
17, 206–237 (1990)

12. Cappiello, M., Schulz, R.: Microlocal analysis of quasianalytic Gelfand–Shilov type ultradistributions.
Complex Var. Elliptic Equ. 61(4), 538–561 (2016)

13. Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrödinger equa-
tions with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530–571 (2017)

14. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Anal-
ysis. Springer, Berlin (2016)

15. Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of
Beurling type. Studia Math. 167(2), 99–131 (2005)

16. Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front
set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008)

17. Fieker, C.: P-Konvexität und ω-Hypoelliptizität für partielle Differentialoperatoren mit konstan-
ten Koeffizienten. Diplomarbeit, Mathematischen Institut der Heinrich-Heine-Universität Düsseldorf
(1993)

18. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)
19. Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1),

25–53 (2004)
20. Heil, C.: A Basis Theory Primer. Applied and Numerical Harmonic Analysis. Springer, New York

(2011)
21. Hörmander, L.: Fourier integral operators. Acta Math. 127(1), 79–183 (1971)
22. Hörmander, L.: Quadratic hyperbolic operators. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Anal-

ysis and Applications. Lecture Notes in Mathematics, pp. 118–160. Springer, Berlin (1991)
23. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer-Verlag, Berlin

(1983)
24. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. II. Springer-Verlag, Berlin

(1983)
25. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer-Verlag, Berlin

(1985)
26. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl.

1(4), 403–436 (1995)
27. Langenbruch,M.: Hermite functions andweighted spaces of generalized functions.ManuscriptaMath.

119(3), 269–285 (2006)
28. Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Science Publications, Clarendon

Press, Oxford (1997)
29. Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math.

J. 126, 349–367 (2005)
30. Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Springer, Basel

(2010)
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