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Dušan Bednařík1 · Poj Lertchoosakul2 · Diego Marques3 · Pavel Trojovský1

Received: 16 May 2017 / Accepted: 16 October 2018 / Published online: 22 October 2018
© The Author(s) 2018

Abstract
This paper aims to generalize results that have appeared in Atanassov (Math Balk
New Ser 18(1–2):15–32, 2004). We consider here variants of the Halton sequences in
a generalized numeration system, called theCantor expansion,with respect to arbitrary
sequences of permutations of the Cantor base.We first show that they provide a wealth
of low-discrepancy sequences by giving an estimate of (star) discrepancy bound of
the generalized Halton sequence in bounded Cantor bases. Then we impose certain
conditions on the sequences of permutations of the Cantor base which are analogous,
but not straightforward, to themodifiedHalton sequence introduced by E.I. Atanassov.
We show that this modified Halton sequence in Cantor bases attains a better estimate
of the (star) discrepancy bound than the generalized Halton sequence in Cantor bases.

Keywords Halton sequence · van der Corput sequence · Hammersley point set ·
Low-discrepancy sequence · Pseudorandom number · Cantor expansion

Mathematics Subject Classification Primary 11J71 · 11K38 · 11K45; Secondary
65C10

1 Introduction

Let ω = (xn)∞n=1 be a sequence in [0, 1)s . A standard problem in numerical analysis
is estimating the integral of a function, through a knowledge of its value at a finite
number of points of the sequence. This is known as the Monte Carlo method in the
case of stochastic sequences (xn)Nn=1 or the quasi-Monte Carlo method in the case of
deterministic (xn)Nn=1. This is encapsulated in the famous Koksma–Hlawka inequality
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∫

[0,1]s
f (x) dx − 1

N

N
∑

n=1

f (xn)

∣
∣
∣
∣
≤ V ( f )D∗

N (ω)

for any function f on [0, 1]s with bounded variation V ( f ) in the sense of Hardy and
Krause, see [19], and for any finite set of points (xn)Nn=1 with discrepancy

D∗
N (ω) = sup

J=∏s
i=1[0,zi )⊆[0,1)s

∣
∣
∣
∣

A(J ; N ;ω)

N
− λs(J )

∣
∣
∣
∣
.

Here A(J ; N ;ω) = #{1 ≤ n ≤ N : xn ∈ J } is the counting function, λs(J ) denotes
the s-dimensional Lebesgue measure of J , and the above supremum is taken over all
rectangular solids J = ∏s

i=1[0, zi ) with 0 < zi ≤ 1 (1 ≤ i ≤ s). Note that λs(J ) =
∏s

i=1 zi . For more details on numerical integration, the reader can consult [5,15] or
[16]. Evidently, to estimate

∫

[0,1]s f (x) dx sufficiently precisely, what is needed is a
good bound for D∗

N (ω). The discrepancy is nothing other than a quantitative measure
of uniformity of distribution. In particular, the sequence ω is uniformly distributed on
[0, 1)s , if and only if D∗

N (ω) → 0 as N → ∞. In a sense, the faster D∗
N (ω) decays

as a function of N , the better uniformly distributed the sequence ω is. One of the
fundamental obstructions in nature in this subject is that there is a limit to how well
distributed any sequence can be. This is encapsulated in the elementary inequality
D∗

N (ω) ≥ 1/2s N (N ∈ N) whose proof makes an entertaining exercise. This opens
the door to the deep subject of irregularities of distribution which addresses just what
limitations there are to the uniformity of distribution of an arbitrary sequence, and
the complementary problem of constructing sequences with discrepancy as small as
possible. This latter issue is clearly central to the initial issue mentioned in this paper.

Perhaps the most famous example of a low-discrepancy sequence is the van der
Corput sequence. In 1935, van der Corput [4] introduced a procedure to generate low-
discrepancy sequences on [0, 1). These sequences are considered to be among the best
distributed over [0, 1), and no other infinitely generated sequences can have discrep-
ancy of smaller order of magnitude than van der Corput sequences. The technique of
van der Corput is based on a very simple idea. Let b > 1 be a natural number. Then
every nonnegative integer n has a unique b-adic representation of the form

n =
∞
∑

j=1

n jb
j−1 = n1 + n2b + n3b

2 + n4b
3 + · · · ,

where n j ∈ {0, 1, . . . , b − 1} ( j ∈ N) and only finitely many of the n j ’s are nonzero.
The van der Corput sequence (φb(n))∞n=0 in base b is constructed by reversing the base
b representation of the sequence of nonnegative integers, where the radical-inverse
function φb : N0 → [0, 1) is defined by

φb

⎛

⎝

∞
∑

j=1

n jb
j−1

⎞

⎠ =
∞
∑

j=1

n j

b j
= n1

b
+ n2

b2
+ n3

b3
+ · · · .
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The generalized and modified Halton sequences in Cantor. . . 3

In applications, a generalization of the van der Corput sequence to higher dimen-
sions is more likely to be of practical use. In 1960, this was proposed by J.H. Halton
[11]. Given pairwise coprime integers b1, . . . , bs all greater than 1, the sequence
(φb1(n), . . . , φbs (n))∞n=0 is called the Halton sequence in bases b1, . . . , bs .

It was known for a long time that the discrepancy of the first N elements of the
Halton sequence in bases b1, . . . , bs can be bounded by

c
(log N )s

N
+ O

(
(log N )s−1

N

)

, (1)

for some constant c = c(b1, . . . , bs) > 0. For example, thiswas shown in [9,11,18,19].
It is believed that the order (log N )s/N is the best possible for an arbitrary infinite
sequence. That this is the case when s = 1 was proved by Schmidt [21]. For s > 1, the
question remains open.We shall call an infinite sequenceω in [0, 1)s a low-discrepancy
sequence if D∗

N (ω) = O((log N )s/N ).

The question of how small the constant c in (1) can be is interesting from both
a theoretical and a practical viewpoint. The articles referred to above show that this
constant depends very strongly on the dimension s.Theminimal value for this quantity
can be obtained if we choose b1, . . . , bs to be the first s prime numbers. But even in
this case, c grows very fast to infinity if s increases. This deficiency was overcome by
Atanassov [1] who could improve the constant so that

c = c(b1, . . . , bs) = 1

s!
s
∏

i=1

bi − 1

log bi
. (2)

This estimate is so impressive that, when b1, . . . , bs are the first s prime numbers,
c(b1, . . . , bs) → 0 as s → ∞.

In another direction of effort to improve the behavior of Halton sequences, several
researchers have studied various ways of generalizing their definition by including
permutations, chosen either deterministically or randomly, in the radical-inverse func-
tion. This idea goes back to [2,6]. Let Σ = (σ j )

∞
j=1 be an arbitrary sequence of

permutations of {0, 1, . . . , b − 1} which fix 0. The generalized radical-inverse func-
tion φΣ

b : N0 → [0, 1) with respect to Σ is defined by

φΣ
b

⎛

⎝

∞
∑

j=1

n jb
j−1

⎞

⎠ =
∞
∑

j=1

σ j (n j )

b j
= σ1(n1)

b
+ σ2(n2)

b2
+ σ3(n3)

b3
+ · · · .

The sequence (φΣ
b (n))∞n=0 is a low-discrepancy sequence, and it is called the gen-

eralized van der Corput sequence in base b with respect to Σ. The generalized
Halton sequences can be introduced in a similar way. In parallel to these efforts,
Atanassov also showed in [1] that any generalized Halton sequence attains the
same constant as in (2); furthermore, he could produce certain generalized Halton
sequences, by means of the so-called “admissible integers,” for which the constants
c = c(b1, . . . , bs,Σ1, . . . , Σs) of the discrepancy bounds have an even better asymp-
totic behavior than (2).

In this paper, we introduce the generalized Halton sequence in Cantor bases, which
is induced by the a-adic integers and which is called the Cantor expansion, and give
an estimate of its discrepancy by adapting the techniques developed by Atanassov.
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4 D. Bednařík et al.

Also, we extend the notion of admissible integers so that we can derive a special type
of generalized Halton sequences in Cantor bases with a better estimate of discrep-
ancy bounds. Our work is an extension of [10] and can be viewed as a generalization
of Atanassov’s results. Note that the van der Corput sequence and some other one-
dimensional low-discrepancy sequences with respect to the Cantor expansion were
studied in [3,8]. In addition, Halton sequences defined in a more generalized numer-
ation system than the Cantor expansion, called the G-expansion, were mentioned in
[13]; however, the paper aimed to study the Halton sequence in some fixed non-integer
bases. Furthermore, it is worth noting that several uniformly distributed sequences,
which can be constructed through the notions of Cantor-base-additive function and
strongly Cantor-base-additive function, were studied in [14]. This paper also included
our generalized Halton sequence in Cantor bases as an example; nevertheless, it aimed
to provide criteria for uniform distribution and it did not study the discrepancy of those
sequences obtained by Cantor-base-additive functions.

We now summarize the contents of this paper. In Sect. 2, we introduce the concept
of a generalized numeration system, called the Cantor expansion. Then we define
the generalized Halton sequence induced by this generalized system and state our
first main result on the estimate of discrepancy of the sequence. In Sect. 3, we
impose certain conditions on the sequences of permutations of the Cantor base to
produce an extension of the concept of admissible integers. Then we define the
modified Halton sequence in the Cantor expansion and state our second main result
regarding the discrepancy bound of this special type of sequence. In Sects. 4 and 5,
we prove the first and the second main results, respectively. Finally, we introduce
in Sect. 6 the generalized Hammersley point set in Cantor bases and show that it
provides a wealth of low-discrepancy point sets by giving an estimate of its discrep-
ancy.

We list here the notation which will be used repeatedly throughout the paper. For
each natural number b > 1, we write Zb = {0, 1, . . . , b−1} and Z

∗
b = {1, 2, . . . , b−

1}. It is also important to note that every permutation in this paper fixes 0.

2 The generalized Halton sequence in Cantor bases

Let b = (b j )
∞
j=1 be a sequence of natural numbers greater than 1. Then it is clear that

every nonnegative integer n has a unique b-adic representation of the form

n =
∞
∑

j=1

n jb1 · · · b j−1 = n1 + n2b1 + n3b1b2 + n4b1b2b3 + · · · ,

where n j ∈ Zb j ( j ∈ N) and all but finitely many n j ’s are zero. This b-adic repre-
sentation is also called the Cantor expansion of n with respect to the Cantor base b.
Moreover, every real number x ∈ [0, 1) has a b-adic expansion of the form

x =
∞
∑

j=1

x j
b1 · · · b j

= x1
b1

+ x2
b1b2

+ x3
b1b2b3

+ · · · ,
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The generalized and modified Halton sequences in Cantor. . . 5

where x j ∈ Zb j ( j ∈ N). The x j can be calculated by the greedy algorithm

x1 = [xb1] and x j = [{xb1 · · · b j−1}b j ],

where [α] and {α} denote the integer part and the fraction part of α, respectively. The
idea of this generalized numeration system stems from the a-adic integers, which is
a class of locally compact topological groups and possesses a symbolic dynamical
structure. For more details on the a-adic integers, see [12, pp. 106–117].

Suppose that Σ = (σ j )
∞
j=1 is a sequence of permutations of Zb1, Zb2 , Zb3 , . . . ,

where the permutations all fix 0. We define the generalized radical-inverse function
φΣ
b : N0 → [0, 1) by

φΣ
b

⎛

⎝

∞
∑

j=1

n jb1 · · · b j−1

⎞

⎠ =
∞
∑

j=1

σ j (n j )

b1 · · · b j
= σ1(n1)

b1
+ σ2(n2)

b1b2
+ σ3(n3)

b1b2b3
+ · · · .

The generalized van der Corput sequence in base b with respect to Σ is defined as
(φΣ

b (n))∞n=0. This sequence was studied in [3,8], where it was proved to be a low-
discrepancy sequence with some restriction on the Cantor base b. Furthermore, the
sequence where all the permutations are identity was shown, without any restriction on
the Cantor base, to be uniformly distributed mod 1 in [17] and to be a low-discrepancy
sequence in [10].

Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s sequences of natural numbers greater
than 1 such that, for all 1 ≤ i1 < i2 ≤ s and all j1, j2 ∈ N, bi1, j1 and bi2, j2 are
coprime. For each 1 ≤ i ≤ s, let Σi = (σi, j )

∞
j=1 be a sequence of permutations of

Zbi,1, Zbi,2 , Zbi,3 , . . . . The generalized Halton sequence in Cantor bases b1, . . . , bs
with respect to Σ1, . . . , Σs is defined to be (φ

Σ1
b1

(n), . . . , φ
Σs
bs

(n))∞n=0.

The following theorem is ourfirstmain resultwhichgives an estimate of discrepancy
of the generalized Halton sequence in bounded Cantor bases.

Theorem 1 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s bounded sequences of natu-
ral numbers greater than 1 such that, for all 1 ≤ i1 < i2 ≤ s and all j1, j2 ∈ N, bi1, j1
and bi2, j2 are coprime. For each 1 ≤ i ≤ s and j ∈ N, let σi, j be a permutation of
Zbi, j . For each 1 ≤ i ≤ s, denote Σi = (σi, j )

∞
j=1. Suppose that ω is the generalized

Halton sequence in Cantor bases b1, . . . , bs with respect to Σ1, . . . , Σs . Then, for
any N ∈ N, we have

ND∗
N (ω) ≤

s
∑

l=0

Ml+1

l!
l
∏

i=1

(	Mi/2
 log N
logmi

+ l

)

,

where Mi = max(bi, j )∞j=1 andmi = min(bi, j )∞j=1 (1 ≤ i ≤ s),andwhere Ms+1 = 1.
In particular, for any N ∈ N, we obtain

D∗
N (ω) ≤ c

(log N )s

N
+ O

(
(log N )s−1

N

)
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6 D. Bednařík et al.

with

c = c(b1, . . . , bs) = 1

s!
s
∏

i=1

	Mi/2

logmi

.

This theorem says that the generalized Halton sequence in bounded Cantor bases is
a low-discrepancy sequence. In particular, it generalizes the main result in [10, Main
Theorem 2.1 and Corollary 2.2], where all the permutations are fixed to be identity.
Also, the constant c = c(b1, . . . , bs) in the bound here is essentially as good as that
established in [10].

When the sequences b1, . . . , bs are of period one, that is,Mi = mi for all 1 ≤ i ≤ s,
the estimated bound c = c(b1, . . . , bs) of Theorem 1 is exactly the same as that given
in [1] for the Halton sequences based on coprime bases. Though the generalized
Halton sequence in Cantor bases do not attain a lower estimate of discrepancy bound
than the classical Halton sequence, it provides more variety of sequences with similar
estimated bound, especially when Mi is large and when the difference Mi − mi is
small compared with Mi for each 1 ≤ i < s. In fact, let c = c(b1, . . . , bs) and c′ =
c′(b′

1, . . . , b
′
s) denote the constants of the estimated bound appeared in Theorem 1 for

the generalizedHalton sequence inCantor bases b1, . . . , bs with respect toΣ1, . . . , Σs

and for the classical Halton sequence in bases b′
1, . . . , b

′
s, respectively, such that Mi =

max(bi, j )∞j=1 = b′
i for each 1 ≤ i ≤ s. Suppose that, for each 1 ≤ i ≤ s, ki ∈ N0 is

a fixed integer and that Mi = mi + ki , where mi = min(bi, j )∞j=1. Then we have

c(b1, . . . , bs)

c′(b′
1, . . . , b

′
s)

=
1
s!
∏s

i=1
	Mi /2

logmi

1
s!
∏s

i=1
	Mi /2

logMi

=
s
∏

i=1

logMi

logmi
=

s
∏

i=1

logMi

log(Mi − ki )
.

It is not hard to see that c(b1, . . . , bs)/c′(b′
1, . . . , b

′
s) tends to 1 exponentially fast as

Mi ’s go to infinity.

3 Themodified Halton sequence in Cantor bases

In this section, we introduce a special class of generalized Halton sequences in Cantor
bases that involves some deep periodicity properties. It can be considered as a gener-
alization of Atanassov’s modified Halton sequences. We shall show that this kind of
sequences satisfies a better estimate of discrepancy bound than the generalized Halton
sequences.

Definition 1 Let a1, . . . , an ∈ Z. We shall denote

(a1, . . . , an) := (a1, . . . , an, a1, . . . , an, a1, . . . , an, . . . )

to be the periodic sequence of the integers a1, . . . , an . In addition, we shall sometimes
abuse the following notation
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The generalized and modified Halton sequences in Cantor. . . 7

(a1, . . . , an, an+1, an+2, an+3, . . . )

:= (a1, . . . , an, an+1 mod n, an+2 mod n, an+3 mod n, . . . )

to mean the periodic sequence (a1, . . . , an), when it is clear from the context that
an+1, an+2, an+3, . . . are not defined. Here, for each m ∈ N, m mod n denotes the
remainder of the Euclidean division of m by n, except m mod n = n when m is
divisible by n.

Next we introduce the notion of admissible sequences of integers which extends
Atanassov’s notion of admissible integers.

Definition 2 Let j1, . . . , js ∈ N. Suppose p1,1, . . . , p1, j1 , . . . , ps,1, . . . , ps, js are dis-
tinct prime numbers such that, for each 1 ≤ i ≤ s, there exists a common primitive
root modulo pi,1, . . . , pi, ji . For each 1 ≤ i ≤ s, let pi = (pi,1, . . . , pi, ji ). Periodic
sequences of integers k1 = (k1,1, . . . , k1, j1), . . . , ks = (ks,1, . . . , ks, js ) are said to be
admissible for p1, . . . , ps if, for each (d1, . . . , ds) ∈ Z

∗
p1,�1

×· · ·×Z
∗
ps,�s

(1 ≤ �i ≤ ji ,

1 ≤ i ≤ s), there exists (α1, . . . , αs) ∈ N
s such that

ki,1 · · · ki,αi−1

∏

1≤i0≤s
i0 �=i

pi0,1 · · · pi0,αi0−1 ≡ di (mod pi,αi ) and αi ≡ �i (mod ji )

for all 1 ≤ i ≤ s.

Note that the existence of admissible sequences for such prime sequences
p1, . . . , ps in Definition 2 will be proved in Lemma 6.

Definition 3 Let p1 = (p1,1, . . . , p1, j1), . . . , ps = (ps,1, . . . , ps, js ) be periodic
sequences of distinct prime numbers such that, for each 1 ≤ i ≤ s, there exists
a common primitive root modulo pi,1, . . . , pi, ji . Suppose k1, . . . , ks are admissible
sequences for p1, . . . , ps . For each 1 ≤ i ≤ s, let Σi = (σi, j )

∞
j=1 be the sequence of

permutations of Zpi,1 , Zpi,2 , Zpi,3 , . . . such that

σi, j : Zpi, j → Zpi, j : x �→ xki,1 · · · ki, j−1 mod pi, j .

The modified Halton sequence in Cantor bases p1, . . . , ps with respect to k1, . . . , ks
is defined to be (φ

Σ1
p1 (n), . . . , φ

Σs
ps (n))∞n=0.

When the sequences p1, . . . , ps in Definition 3 are of period one, i.e. p1 =
(p1,1), . . . , ps = (ps,1), our modified Halton sequence in Cantor bases is exactly
the modified Halton sequence introduced by Atanassov [1].

The notion of admissible sequences seems technical and hard to understand, so it
is worth noting here that this condition involves some periodic properties and is used
to improve the estimate in (3) for Λ1. In particular, we shall be considering the distri-
bution of the modified Halton sequence in Cantor bases over an elementary interval,
which will be divided into #(Zp1,α1

× · · · × Zps,αs ) subintervals. The admissibility
condition ensures that there will be the same number of elements of the sequence in

123



8 D. Bednařík et al.

each subinterval. These periodic properties will be seen in Lemma 8. Due to the fact
that the subintervals of the considered elementary interval are small and that the exact
number of elements of the sequence in each subinterval is known, it is possible to
make a better estimate of the discrepancy bound for the modified Halton sequence in
Cantor bases than for the generalized Halton sequence in Cantor bases.

The following statement is our second main result which gives an estimate of
discrepancy bound of the modified Halton sequence in Cantor bases.

Theorem 2 Let ω be the modified Halton sequence in Cantor bases p1, . . . , ps with
respect to k1, . . . , ks . Then, for any N ∈ N, we have

D∗
N (ω) ≤ c

(log N )s

N
+ O

(
(log N )s−1

N

)

with

c = c(p1, . . . , ps) = 1

s!

(
s
∑

i=1

logMi

)
s
∏

i=1

Mi (1 + logMi )

(mi − 1) logmi
,

where Mi = max(pi,1, . . . , pi, ji ) and mi = min(pi,1, . . . , pi, ji ) (1 ≤ i ≤ s).

Note that Theorem 2 gives a lower estimate c = c(p1, . . . , ps) than the bound
c = c(b1, . . . , bs) provided by Theorem 1, when the mi ’s are large enough. Also,
when the sequences p1, . . . , ps are of period one, i.e. Mi = mi for all 1 ≤ i ≤ s, the
estimated bound c = c(p1, . . . , ps) of our modified Halton sequence in Cantor bases
is indeed the same as that of the modified Halton sequence given in [1]. Although
the modified Halton sequences in Cantor bases do not attain a lower estimate of
discrepancy bound than Atanassov’s modified Halton sequences, our method gives
more variety of sequences with similar estimated bound, especially when Mi is large
and when the difference Mi −mi is small compared with Mi for each 1 ≤ i < s. This
follows from the same argument as that at the end of Sect. 2.

4 Proof of Theorem 1

The proof of Theorem 1 is indeed inspired by and closely related to that given by
Atanassov [1]. Moreover, it can be seen as an extension of that given by Haddley et
al. [10]. Note that Lemma 1 is required to make the extension of the proof provided
by Haddley et al. [10] possible.

In order to prove the theorem, we need the following five lemmas.
The first preliminary result is a variant of the Chinese remainder theorem, and it is

used to prove Lemma 2.

Lemma 1 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s arbitrary sequences of natural
numbers greater than 1 such that, for all 1 ≤ i1 < i2 ≤ s and all j1, j2 ∈ N, bi1, j1
and bi2, j2 are coprime. For each 1 ≤ i ≤ s and j ∈ N, let σi, j be a permutation of
Zbi, j , and let fi : N0 → N0 be a function defined by
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The generalized and modified Halton sequences in Cantor. . . 9

fi (n) = fi

⎛

⎝

∞
∑

j=1

ni, j bi,1 · · · bi, j−1

⎞

⎠ =
∞
∑

j=1

σi, j (ni, j )bi,1 · · · bi, j−1,

for every n ∈ N0 with the bi -adic expansion
∑∞

j=1 ni, j bi,1 · · · bi, j−1. For each 1 ≤
i ≤ s, let αi be a natural number, and let li,1 ∈ Zbi,1 , . . . , li,αi ∈ Zbi,αi

. Then there
exists a unique 0 ≤ n <

∏s
i=1 bi,1 · · · bi,αi such that, for all 1 ≤ i ≤ s,

fi (n) ≡ li,1 + li,2bi,1 + li,3bi,1bi,2 + · · · li,αi bi,1 · · · bi,αi−1 (mod bi,1 · · · bi,αi ).

Proof For each 1 ≤ i ≤ s, let b∗
i = bi,1 · · · bi,αi . We first prove the uniqueness

of the n. Suppose that n and n′ are two solutions of all the congruences such that
0 ≤ n, n′ <

∏s
i=1 b

∗
i . It follows that fi (n) ≡ fi (n′) (mod b∗

i ) for all 1 ≤ i ≤ s, that
is, we have

∞
∑

j=1

σi, j (ni, j )bi,1 · · · bi, j−1 ≡
∞
∑

j=1

σi, j (n
′
i, j )bi,1 · · · bi, j−1 (mod b∗

i ),

and this is equivalent to

αi∑

j=1

σi, j (ni, j )bi,1 · · · bi, j−1 ≡
αi∑

j=1

σi, j (n
′
i, j )bi,1 · · · bi, j−1 (mod b∗

i ).

We know that |∑αi
j=1 σi, j (ni, j )bi,1 · · · bi, j−1 − ∑αi

j=1 σi, j (n′
i, j )bi,1 · · · bi, j−1| < b∗

i
for each 1 ≤ i ≤ s, and hence this difference must be 0. Therefore, we obtain
σi, j (ni, j ) = σi, j (n′

i, j ) for all 1 ≤ i ≤ s and 1 ≤ j ≤ αi . Since σi, j are all bijective,
we have ni, j = n′

i, j for all such i and j . It follows that b∗
i | n − n′ for each i . This

implies that b∗
1 · · · b∗

s | n− n′ because b∗
1, . . . , b

∗
s are pairwise coprime. By the choice

of n and n′, we must have n = n′.
Now we show the existence of such n. Define F : Zb∗

1 ···b∗
s

→ Zb∗
1
× · · · × Zb∗

s
by

F(n) = ( f1(n) mod b∗
1, . . . , fs(n) mod b∗

s ).

It suffices to show that F is a bijection. By the proof of uniqueness, F must be an
injection. For each 1 ≤ i ≤ s, it is clear that fi is a bijection on Zb∗

i
. It follows

immediately that F is a surjection since the domain and the codomain of F have the
same number of elements. This proves the existence of such n. ��

The following lemma is a consequence of the so-called “elementary interval prop-
erty” satisfied by Halton sequences.

Lemma 2 Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s arbitrary sequences of natural
numbers greater than 1 such that, for all 1 ≤ i1 < i2 ≤ s and all j1, j2 ∈ N, bi1, j1
and bi2, j2 are coprime. For each 1 ≤ i ≤ s and j ∈ N, let σi, j be a permutation of
Zbi, j . For each 1 ≤ i ≤ s, denote Σi = (σi, j )

∞
j=1. Suppose that ω is the generalized

123



10 D. Bednařík et al.

Halton sequence in Cantor bases b1, . . . , bs with respect to Σ1, . . . , Σs . Let J be an
interval of the form

J =
s
∏

i=1

[
ui

bi,1 · · · bi,αi
,

vi

bi,1 · · · bi,αi

)

with integers 0 ≤ ui < vi ≤ bi,1 · · · bi,αi and αi ∈ N (1 ≤ i ≤ s). Then

|A(J ; N ;ω) − Nλs(J )| ≤
s
∏

i=1

(vi − ui )

holds for every N ∈ N. Moreover, for every N ≤ ∏s
i=1 bi,1 · · · bi,αi , we have

A(J ; N ;ω) ≤ ∏s
i=1(vi − ui ).

Proof For each n ∈ N0, we denote the bi -adic expansion of n by

n =
∞
∑

j=1

ni, j bi,1 · · · bi, j−1 = ni,1 + ni,2bi,1 + ni,3bi,1bi,2 + ni,4bi,1bi,2bi,3 + · · · ,

where ni, j ∈ Zbi, j ( j ∈ N). Let � = (l1, . . . , ls) ∈ N
s
0 be such that, for all 1 ≤ i ≤ s,

we have 0 ≤ li < bi,1 · · · bi,αi with the expansion

li = li,αi + li,αi−1bi,αi + li,αi−2bi,αi bi,αi−1 + · · · + li,1bi,αi · · · bi,2,

where li,αi− j ∈ Zbi,αi− j (0 ≤ j ≤ αi − 1). We consider the interval

J� =
s
∏

i=1

[
li

bi,1 · · · bi,αi
,

li + 1

bi,1 · · · bi,αi

)

.

Then the nth element ωn of the generalized Halton sequence in Cantor bases is con-
tained in J� if and only if, for all 1 ≤ i ≤ s,

li,1
bi,1

+ · · · + li,αi
bi,1 · · · bi,αi

≤ σi,1(ni,1)

bi,1
+ σi,2(ni,2)

bi,1bi,2
+ · · ·

<
li,1
bi,1

+ · · · + li,αi
bi,1 · · · bi,αi

+ 1

bi,1 · · · bi,αi
.

This is however equivalent to σi,1(ni,1) = li,1, . . . , σi,αi (ni,αi ) = li,αi which in turn
is equivalent to

∞
∑

j=1

σi, j (ni, j )bi,1 · · · bi, j−1 ≡ li,1 + li,2bi,1 + · · · + li,αi bi,1 · · · bi,αi−1

(mod bi,1 · · · bi,αi )
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The generalized and modified Halton sequences in Cantor. . . 11

for all 1 ≤ i ≤ s. By Lemma 1, every
∏s

i=1 bi,1 · · · bi,αi consecutive elements of the
generalized Halton sequence in Cantor bases contain exactly one element in J�, in
other words, A(J�; t∏s

i=1 bi,1 · · · bi,αi ;ω) = t for all t ∈ N, and hence

A

(

J�; t
s
∏

i=1

bi,1 · · · bi,αi ;ω

)

−
(

t
s
∏

i=1

bi,1 · · · bi,αi
)

λs(J�) = 0.

Therefore, for every N ∈ N, we obtain

|A(J�; N ;ω) − Nλs(J�)| ≤ 1.

Now we write the interval J as a disjoint union of intervals of the form J�,

J =
v1−1
⋃

l1=u1

· · ·
vs−1
⋃

ls=us

J�,

where � = (l1, . . . , ls). We then have

|A(J ; N ;ω) − Nλs(J )| ≤
v1−1
∑

l1=u1

· · ·
vs−1
∑

ls=us

|A(J�; N ;ω) − Nλs(J�)| ≤
s
∏

i=1

(vi − ui ),

which proves the first assertion.
For every N ≤ ∏s

i=1 bi,1 · · · bi,αi , we always have A(J�; N ;ω) ≤ 1 for each
� = (l1, . . . , ls) ∈ N

s
0 with 0 ≤ li < bi,1 · · · bi,αi for all 1 ≤ i ≤ s, and hence

A(J ; N ;ω) =
v1−1
∑

l1=u1

· · ·
vs−1
∑

ls=us

A(J�; N ;ω) ≤
s
∏

i=1

(vi − ui ).

This is the second assertion of the lemma. ��
The following lemma, which is borrowed from [10], is important for achieving an

s! factor in the bounds for the discrepancy.
Lemma 3 [10, Lemma 3.3] Let b1 = (b1, j )∞j=1, . . . , bs = (bs, j )∞j=1 be s arbitrary
sequences of natural numbers greater than 1. Suppose (a1,α)∞α=0, . . . , (as,α)∞α=0 are
s bounded sequences of nonnegative real numbers such that ai,0 ≤ 1 and ai,α ≤ fi
for some fixed fi > 0 and for each α ∈ N and 1 ≤ i ≤ s. Then, for any N ∈ N, we
have

∑

(α1,...,αs )∈Ns
0∏s

i=1 bi,1···bi,αi ≤N

s
∏

i=1

ai,αi ≤ 1

s!
s
∏

i=1

(

fi
log N

logmi
+ s

)

,

where mi = min(bi, j )∞j=1 (1 ≤ i ≤ s).
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12 D. Bednařík et al.

The proof of this lemma is based on an argument of Diophantine geometry
which asserts that the number of positive solutions (α1, . . . , αs) of the inequality
∏s

i=1 bi,1 · · · bi,αi ≤ N is bounded by 1
s!
∏s

i=1
log N
logmi

.

Next we need to introduce some notation. Let J ⊆ R
s be an interval. Then a signed

splitting of J is a collection of not necessarily disjoint intervals J1, . . . , Jr together
with signs ε1, . . . , εr ∈ {−1, 1} such that, for all x ∈ J , we have

r
∑

i=1
x∈Ji

εi = 1.

A function ν on the class of intervals in R
s is said to be additive if, for each pair of

disjoint intervals A, B in R
s, we have ν(A ∪ B) = ν(A) + ν(B). It is not hard to

see that the s-dimensional Lebesgue measure λs and the counting function A(·; N ;ω)

are the examples we are particularly interested in. It is not hard to check that, for any
additive function ν on the class of intervals in R

s, we have

ν(J ) =
r
∑

i=1

εiν(Ji ∩ J ),

where (J1, . . . , Jr ; ε1, . . . , εr ) is a signed splitting of J . The following lemma is
borrowed from [1] (see also [5] for a detailed proof).

Lemma 4 [1, Lemma 3.5] Let J = ∏s
i=1[0, zi ) be an s-dimensional interval. For

each 1 ≤ i ≤ s, let (zi,α)α=1,...,ni be an arbitrary finite sequence of numbers in [0, 1].
Define further zi,0 = 0 and zi,ni+1 = zi for all 1 ≤ i ≤ s. Then the collection of
intervals

s
∏

i=1

[min(zi,αi , zi,αi+1),max(zi,αi , zi,αi+1))

together with the signs εα1,...,αs = ∏s
i=1 sgn(zi,αi+1 − zi,αi ), for 0 ≤ αi ≤ ni and

1 ≤ i ≤ s, defines a signed splitting of the interval J .

The signed splitting technique is interesting here because it will lead to the improve-
ment by a 2s factor in the bounds for the discrepancy. In order to use it, we need a digit
expansion of reals z ∈ [0, 1) in (b j )

∞
j=1-adic base which uses signed digits. The next

lemma, from [10], shows that such an expansion exists. Note that signed splittings
coupled with signed numeration systems were first introduced in [7,9].

Lemma 5 [10, Lemma 3.5] Let b = (b j )
∞
j=1 be an arbitrary sequence of natural

numbers greater than 1. Then every z ∈ [0, 1) can be written in the form

z = a0 + a1
b1

+ a2
b1b2

+ a3
b1b2b3

+ · · ·

with integer digits a0, a1, a2, . . . such that a0 ∈ {0, 1} and −	 b j−1
2 
 ≤ a j ≤ 	 b j

2 
 for
all j ∈ N. This expansion is called the signed b-adic expansion of z.
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The generalized and modified Halton sequences in Cantor. . . 13

Now we are ready to prove our first main theorem.

Proof (Proof of Theorem 1) Let J = ∏s
i=1[0, zi ) ⊆ [0, 1)s . According to Lemma 5,

for all 1 ≤ i ≤ s, we consider the signed bi -adic expansion of zi of the form

zi = ai,0 + ai,1
bi,1

+ ai,2
bi,1bi,2

+ ai,3
bi,1bi,2bi,3

+ · · ·

with ai,0 ∈ {0, 1} and −	 bi, j−1
2 
 ≤ ai, j ≤ 	 bi, j

2 
 ( j ∈ N).

For each 1 ≤ i ≤ s, let ni = 	 log N
logmi


 + 1, and, for each 1 ≤ α ≤ ni , define the
truncation of the expansion

zi,α = ai,0 + ai,1
bi,1

+ ai,2
bi,1bi,2

+ · · · + ai,α−1

bi,1 · · · bi,α−1
,

and let zi,0 = 0 and zi,ni+1 = zi .
By Lemma 4, the collection of intervals

Jα1,...,αs =
s
∏

i=1

[min(zi,αi , zi,αi+1),max(zi,αi , zi,αi+1))

together with the signs εα1,...,αs = ∏s
i=1 sgn(zi,αi+1 − zi,αi ), for 0 ≤ αi ≤ ni and

1 ≤ i ≤ s, defines a signed splitting of the interval J .

Since both λs and A(·; N ;ω) are additive functions on the set of intervals, we obtain
that

A(J ; N ;ω) − Nλs(J ) =
n1∑

α1=0

· · ·
ns∑

αs=0

εα1,...,αs (A(Jα1,...,αs ; N ;ω) − Nλs(Jα1,...,αs ))

= Λ1 + Λ2,

(3)
where Λ1 denotes the sum over all (α1, . . . , αs) such that

∏s
i=1 bi,1 · · · bi,αi ≤ N and

Λ2 denotes the remaining part of the above sum.
First we deal with the sum Λ1. For each 1 ≤ i ≤ s, the length of the interval

[min(zi,αi , zi,αi+1),max(zi,αi , zi,αi+1)) is |ai,αi /bi,1 · · · bi,αi |, and the endpoints of
this interval are rationals with denominator bi,1 · · · bi,αi . It is worth noting that, due
to the choice of ni , we have αi < ni when

∏s
i=1 bi,1 · · · bi,αi ≤ N . Accordingly, the

intervals Jα1,...,αs are of the form as considered in Lemma 2 from which we obtain

|A(Jα1,...,αs ; N ;ω) − Nλs(Jα1,...,αs )| ≤
s
∏

i=1

|ai,αi |.
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14 D. Bednařík et al.

We have |ai,αi | ≤ 	bi,αi /2
 ≤ 	Mi/2
 =: fi . An application of Lemma 3 yields that

Λ1 ≤ 1

s!
s
∏

i=1

(	Mi/2
 log N
logmi

+ s

)

.

It remains to estimate Λ2. To this end, we split the set of s-tuples (α1, . . . , αs)

for which
∏s

i=1 bi,1 · · · bi,αi > N into disjoint sets B0, B1, . . . , Bs−1 where we set
B0 = {(α1, . . . , αs) ∈ N

s
0 : b1,1 · · · b1,α1 > N } and, for 1 ≤ l ≤ s − 1,

Bl =
{

(α1, . . . , αs) ∈ N
s
0 :

l
∏

i=1

bi,1 · · · bi,αi ≤ N and
l+1
∏

i=1

bi,1 · · · bi,αi > N

}

.

Here we abuse the notation N
s
0. The choices of (α1, . . . , αs) must also satisfy αi ≤ ni

for each 1 ≤ i ≤ s.
For a fixed 1 ≤ l ≤ s−1 and a fixed l-tuple (α1, . . . , αl)with

∏l
i=1 bi,1 · · · bi,αi ≤

N , define r to be the largest integers such that

(
l
∏

i=1

bi,1 · · · bi,αi
)

(bl+1,1 · · · bl+1,r−1) ≤ N .

It follows that the tuple (α1, . . . , αl , αl+1, . . . , αs) is contained in Bl if and only if
αl+1 ≥ r .

Therefore, for each 0 ≤ l ≤ s − 1 and fixed α1, . . . , αl ∈ N0 such that
∏l

i=1 bi,1 · · · bi,αi ≤ N , we have

∑

αl+1,...,αs∈N0
(α1,...,αl ,αl+1,...,αs )∈Bl

εα1,...,αs (A(Jα1,...,αs ; N ;ω) − Nλs(Jα1,...,αs ))

= ± (A(L; N ;ω) − Nλs(L)),

where

L =
l
∏

i=1

[min(zi,αi , zi,αi+1),max(zi,αi , zi,αi+1))

×[min(zl+1,r , zl+1),max(zl+1,r , zl+1)) ×
s
∏

i=l+2

[0, zi ).

123



The generalized and modified Halton sequences in Cantor. . . 15

Let (α1, . . . , αs) ∈ Bl . Since we have

|zl+1 − zl+1,r | =
∣
∣
∣
∣

al+1,r

bl+1,1 · · · bl+1,r
+ al+1,r+1

bl+1,1 · · · bl+1,r+1
+ al+1,r+2

bl+1,1 · · · bl+1,r+2
+ · · ·

∣
∣
∣
∣

= 1

bl+1,1 · · · bl+1,r−1

∣
∣
∣
∣

al+1,r

bl+1,r
+ al+1,r+1

bl+1,r bl+1,r+1
+ al+1,r+2

bl+1,r bl+1,r+1bl+1,r+2
+ · · ·

∣
∣
∣
∣

≤ 1

bl+1,1 · · · bl+1,r−1

( 	bl+1,r /2

bl+1,r

+ 	bl+1,r+1/2

bl+1,r bl+1,r+1

+ 	bl+1,r+2/2

bl+1,r bl+1,r+1bl+1,r+2

+ · · ·
)

≤ 1

bl+1,1 · · · bl+1,r−1

(
1

2
+ 1

2bl+1,r
+ 1

2bl+1,r bl+1,r+1
+ · · ·

)

≤ 1

bl+1,1 · · · bl+1,r−1

(
1

2
+ 1

22
+ 1

23
+ · · ·

)

= 1

bl+1,1 · · · bl+1,r−1
,

the interval [min(zl+1,r , zl+1),max(zl+1,r , zl+1)) is contained in some interval

[
u

bl+1,1 · · · bl+1,r
,

v

bl+1,1 · · · bl+1,r

)

for u, v ∈ N0 with v − u ≤ bl+1,r . Hence, L is contained in the interval

L ′ =
l
∏

i=1

[min(zi,αi , zi,αi+1),max(zi,αi , zi,αi+1))

×
[

u

bl+1,1 · · · bl+1,r
,

v

bl+1,1 · · · bl+1,r

)

× [0, 1)s−l−1.

Since (α1, . . . , αs) ∈ Bl , we have (
∏l

i=1 bi,1 · · · bi,αi )(bl+1,1 · · · bl+1,r ) > N and
∏l

i=1 bi,1 · · · bi,αi ≤ N . The latter inequality implies that αi < ni for every 1 ≤ i ≤ l.
Thus, an application of Lemma 2 yields that

A(L; N ;ω) ≤ A(L ′; N ;ω) ≤ bl+1,r

l
∏

i=1

|ai,αi |.

But on the other hand, we also have Nλs(L) ≤ bl+1,r
∏l

i=1 |ai,αi |. Hence,

|A(L; N ;ω) − Nλs(L)| ≤ bl+1,r

l
∏

i=1

|ai,αi | ≤ Ml+1

l
∏

i=1

ci,αi ,

where ci,αi = 1 if αi = 0 and ci,αi = 	Mi/2
 otherwise.
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16 D. Bednařík et al.

Summing up, we obtain

|Λ2| ≤
s−1
∑

l=0

∑

α1,...,αl∈N0
∏l

i=1 bi,1···bi,αi ≤N

∣
∣
∣
∣
∣
∣

∑

(α1,...,αs )∈Bl
εα1,...,αs (A(Jα1,...,αs ; N ;ω)

−Nλs(Jα1,...,αs ))
∣
∣

≤
s−1
∑

l=0

∑

α1,...,αl∈N0
∏l

i=1 bi,1···bi,αi ≤N

Ml+1

l
∏

i=1

ci,αi

≤
s−1
∑

l=0

Ml+1

l!
l
∏

i=1

(	Mi/2
 log N
logmi

+ l

)

,

(4)

where we have used Lemma 3 again. Hence, the result follows. ��

5 Proof of Theorem 2

Lemma 6 Suppose that p1 = (p1,1, . . . , p1, j1), . . . , ps = (ps,1, . . . , ps, js ) are peri-
odic sequences of distinct prime numbers such that, for each 1 ≤ i ≤ s, there exists a
common primitive root modulo pi,1, . . . , pi, ji . Then there exist admissible sequences
k1 = (k1,1, . . . , k1, j1), . . . , ks = (ks,1, . . . , ks, js ) for p1, . . . , ps .

Proof For each 1 ≤ i ≤ s, let gi be some fixed common primitive root modulo
pi,1, . . . , pi, ji . The congruences in Definition 2 lead to the system (1 ≤ i ≤ s)

g
(ai,i,1+···+ai,i, ji )xi+ai,i,1+···+ai,i,�i−1+∑

i0 �=i ((ai,i0,1+···+ai,i0, ji0
)xi0+ai,i0,1+···+ai,i0,�i0

−1)

i

≡ gcii (mod pi,�i ), i = 1, . . . , s,
(5)

where g
ai,i0,1

i ≡ pi0,1 (mod pi,�i ), . . . , g
ai,i0, ji0
i ≡ pi0, ji0 (mod pi,�i ) for i0 �= i,

g
ai,i,1
i ≡ ki,1 (mod pi,�i ), . . . , g

ai,i, ji
i ≡ ki, ji (mod pi,�i ), g

ci
i ≡ bi (mod pi,�i ),

and αi = ji xi + �i . It is worth noting that the choice of each integer ki, j can be fixed
according to the Chinese remainder theorem and the fact that pi,1, . . . , pi, ji are all
distinct primes. The system of congruences in (5) is equivalent to

(ai,i,1 + · · · + ai,i, ji )xi + ai,i,1 + · · · + ai,i,�i−1

+
∑

i0 �=i

(ai,i0xi0 + ai,i0,1 + · · · + ai,i0,�i0−1)

≡ ci (mod pi,�i − 1), i = 1, . . . , s,

(6)
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The generalized and modified Halton sequences in Cantor. . . 17

where ai,i0 = ai,i0,1 + · · · + ai,i0, ji0 for i0 �= i . We introduce s integer variables
y1, . . . , ys to change the congruences (6) into a system of Diophantine equations

(ai,i,1 + · · · + ai,i, ji )xi +
∑

i0 �=i

ai,i0xi0 = c′
i + yi (pi,�i − 1), i = 1, . . . , s, (7)

where c′
i = ci − ∑s

i0=1(ai,i0,1 + · · · + ai,i0,�i0−1).

In order to prove the lemma, it suffices to show, for any given integers ai,i0 with
i �= i0, the existence of integers a1,1,1, . . . , a1,1, j1 , . . . , as,s,1, . . . , as,s, js such that,
for any integers c′

1, . . . , c
′
s and any integers y1, . . . , ys , the system (7) has a solution in

integers x1, . . . , xs .Note that we actually require xi ∈ N0 so that αi = ji xi +�i ∈ N0,

but this nonnegativity of xi can be achieved by a suitable choice of y1, . . . , ys . Let

A =

⎛

⎜
⎜
⎜
⎝

a1,1,1 + · · · + a1,1, j1 a1,2 · · · a1,s
a2,1 a2,2,1 + · · · + a2,2, j2 · · · a2,s
...

...
. . .

...

as,1 as,2 · · · as,s,1 + · · · + as,s, js

⎞

⎟
⎟
⎟
⎠

.

By Cramer’s Rule, it is enough to show that the determinant of A can be made to be
1 by a suitable choice of the numbers a1,1,1, . . . , a1,1, j1 , . . . , as,s,1, . . . , as,s, js . This
claim follows by induction on s. When s = 1, choose a1,1,1 = 1 and a1,1,2 = · · · =
a1,1, j1 = 0. Next, expand the determinant of A along the last column, Ai,s being the
cofactors:

det(A) = a1,s A1,s + a2,s A2,s + · · · + as−1,s As−1,s + (as,s,1 + · · · + as,s, js )As,s .

By the induction hypothesis, we have As,s = 1. Setting

as,s,1 + · · · + as,s, js = 1 − (a1,s A1,s + a2,s A2,s + · · · + as−1,s As−1,s)

yields det(A) = 1, with an appropriate choice of integers as,s,1, . . . , as,s, js . This
proves the existence of admissible sequences k1, . . . , ks . ��

Before proceeding, we introduce here some notations for brevity. Suppose p1 =
(p1,1, . . . , p1, j1), . . . , ps = (ps,1, . . . , ps, js ) are periodic sequences of distinct prime
numbers such that, for each 1 ≤ i ≤ s, there exists a common primitive root modulo
pi,1, . . . , pi, ji . Let k1 = (k1,1, . . . , k1, j1), . . . , ks = (ks,1, . . . , ks, js ) be admissible
sequences for p1, . . . , ps . Define
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18 D. Bednařík et al.

Pi (α) := ki,1 · · · ki,αi−1

∏

1≤i0≤s, i0 �=i

pi0,1 · · · pi0,αi0−1 mod pi,αi

T (N ) :=
{

α = (α1, . . . , αs) ∈ N
s
0 :

s
∏

i=1

pi,1 · · · pi,αi ≤ N

}

M(α) :=
{

� = (�1, . . . , �s) ∈ Zp1,α1
× · · · × Zps,αs : �1 + · · · + �s > 0

}

R(α; �) :=
s
∏

i=1

max(1,min(2�i , 2(pi,αi − �i )))

for all 1 ≤ i ≤ s, α = (α1, . . . , αs) ∈ N
s
0, N ∈ N and � = (�1, . . . , �s) ∈ N

s
0, where

we denote ki,−1 = ki,0 = pi,−1 = pi,0 := 1.
In the following proposition, we formulate an estimate of discrepancy of the modi-

fied Halton sequence in Cantor bases which is the basis for our proof of Theorem 2. It
can also be used for computational estimation of D∗

N (ω), if performing O((log N )s)

operations is not a problem.

Proposition 1 Letω be the modified Halton sequence in Cantor bases p1, . . . , ps with
respect to k1, . . . , ks . Then, for any N ∈ N, we have

ND∗
N (ω) ≤

∑

α∈T (N )

⎛

⎜
⎝1 +

∑

�∈M(α)

∥
∥
∥

∑s
i=1

�i
pi,αi

Pi (α)

∥
∥
∥

−1

2R(α; �)

⎞

⎟
⎠

+
s−1
∑

l=0

Ml+1

l!
l
∏

i=1

(	Mi/2
 log N
logmi

+ l

)

,

where Mi = max(pi, j )∞j=1 and mi = min(pi, j )∞j=1 (1 ≤ i ≤ s), and where ‖ · ‖ is
the to-the-nearest-integer function.

The proof of this proposition is based on specific periodicity properties of the mod-
ified Halton sequence in Cantor bases. These properties will be studied in Lemma 8.
Note that the following lemma appears in [1] in slightly different notation, and it is
used to derive some properties in Lemma 8.

Lemma 7 [1, Lemma 4.2] Let p1,α1 , . . . , ps,αs be distinct prime numbers, and let
ξ = (ξ1,t , . . . , ξs,t )

∞
t=0 be a sequence in Z

s . Let v and w be fixed integer s-tuples such
that 0 ≤ vi < wi ≤ pi,αi (1 ≤ i ≤ s). For each K ∈ N, we denote by

AK (v,w) = #{0 ≤ n ≤ K − 1 : ∀ 1 ≤ i ≤ s, vi ≤ ξi,t mod pi,αi ≤ wi − 1}

the number of the first K terms of ξ such that, for all 1 ≤ i ≤ s, the remainder of ξi,n
modulo pi,αi is among the numbers vi , . . . , wi − 1. Then, for all K ∈ N, we have

sup
v,w

∣
∣
∣
∣
∣
AK (v,w) − K

s
∏

i=1

wi − vi

pi,αi

∣
∣
∣
∣
∣
≤

∑

�∈M(α)

|SK (�; ξ)|
R(α; �)

,

123



The generalized and modified Halton sequences in Cantor. . . 19

where

SK (�; ξ) :=
K−1
∑

t=0

e

(
s
∑

i=1

�iξi,t

pi,αi

)

,

with the usual notation e(x) := exp(2π i x).

Lemma 8 Let ω be the modified Halton sequence in Cantor bases p1, . . . , ps with
respect to k1, . . . , ks . Let I be an elementary interval of the form

I =
s
∏

i=1

[
ui

pi,1 · · · pi,αi−1
,

ui + 1

pi,1 · · · pi,αi−1

)

with integers 0 ≤ ui ≤ pi,1 · · · pi,αi−1 − 1 and αi ∈ N0 (1 ≤ i ≤ s), and let J be a
subinterval of I of the form

J =
s
∏

i=1

[
ui

pi,1 · · · pi,αi−1
+ vi

pi,1 · · · pi,αi
,

ui
pi,1 · · · pi,αi−1

+ wi

pi,1 · · · pi,αi

)

with integers 0 ≤ vi < wi ≤ pi,αi (1 ≤ i ≤ s). There exists a nonnegative integer n
with ωn ∈ I . Let n0 be the smallest integer such that ωn0 ∈ I . Suppose that ωn0 drops
into the interval

s
∏

i=1

[
ui

pi,1 · · · pi,αi−1
+ xi

pi,1 · · · pi,αi
,

ui
pi,1 · · · pi,αi−1

+ xi + 1

pi,1 · · · pi,αi

)

with 0 ≤ xi ≤ pi,αi − 1 (1 ≤ i ≤ s). Then the following statements are true.

(1) n0 <
∏s

i=1 pi,1 · · · pi,αi−1, and the indices of the terms of ω that drop into I are
of the form n = n0 + t

∏s
i=1 pi,1 · · · pi,αi−1 for some t ∈ N0.

(2) Suppose that n = n0 + t
∏s

i=1 pi,1 · · · pi,αi−1 with t ∈ N0. Then ωn ∈ J if and
only if there exist l1 ∈ {v1, . . . , w1 − 1}, . . . , ls ∈ {vs, . . . , ws − 1} such that
xi + t Pi (α) ≡ li (mod pi,αi ) for all 1 ≤ i ≤ s.

(3) Let ξ = (ξ1,t , . . . , ξs,t )
∞
t=0 be the sequence in Z

s with ξi,t = xi + t Pi (α) for each
1 ≤ i ≤ s. Let N ∈ N, and let K be the largest integer such that n0 + (K −
1)
∏s

i=1 pi,1 · · · pi,αi−1 < N . Then we have

|A(J ; N ;ω) − Nλs(J )| < 1 +
∑

�∈M(α)

SK (�; ξ)

R(α; �)
.

Proof For each n ∈ N0, we denote the pi -adic expansion of n by

n =
∞
∑

j=1

ni, j pi,1 · · · pi, j−1,
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20 D. Bednařík et al.

where ni, j ∈ Zpi, j ( j ∈ N). On the other hand, we write the expansion of ui as

ui = ui,αi−1 + ui,αi−2 pi,αi−1 + ui,αi−3 pi,αi−1 pi,αi−2 + · · · + ui,1 pi,αi−1 · · · pi,2,

where ui,αi− j ∈ Zpi,αi− j (1 ≤ j ≤ αi − 1). We have

ω =
⎛

⎝

∞
∑

j=1

n1, j k1,1 · · · k1, j−1 mod p1, j
p1,1 · · · p1, j , . . . ,

∞
∑

j=1

ns, j ks,1 · · · ks, j−1 mod ps, j
ps,1 · · · ps, j

⎞

⎠

∞

n=0

and

I =
s
∏

i=1

⎡

⎣

αi−1
∑

j=1

ui, j
pi,1 · · · pi, j ,

αi−1
∑

j=1

ui, j
pi,1 · · · pi, j + 1

pi,1 · · · pi,αi−1

⎞

⎠ .

Then the nth element ωn of the modified Halton sequence in Cantor bases is contained
in I if and only, for all 1 ≤ i ≤ s and all 1 ≤ j ≤ αi − 1,

ni, j ki,1 · · · ki, j−1 ≡ ui, j (mod pi, j ).

It follows, by Lemma 1, that there exists exactly one n0 such that ωn0 ∈ I and
0 ≤ n0 <

∏s
i=1 pi,1 · · · pi,αi−1. For each 1 ≤ i ≤ s and all t ∈ N0, the first αi − 1

digits of n0 + t
∏s

i0=1 pi0,1 · · · pi0,αi0−1 in the pi -adic number system are the same as
that of n0. Therefore, ωn ∈ I is equivalent to n = n0 + t

∏s
i0=1 pi0,1 · · · pi0,αi0−1 for

some t ∈ N0. This proves the first assertion.
Next, suppose that n = n0 + t

∏s
i0=1 pi0,1 · · · pi0,αi0−1 with t ∈ N0. For all 1 ≤

i ≤ s, we now look at the αi th digit of the pi -adic expansion of n. Since the αi th digit
of t

∏s
i0=1 pi0,1 · · · pi0,αi0−1 in the pi -adic expansion is

⎛

⎝t
s
∏

i0=1

pi0,1 · · · pi0,αi0−1

⎞

⎠

i,αi

= t
∏

1≤i0<1
i0 �=i

pi0,1 · · · pi0,αi0−1 mod pi,αi ,

we have

σi,αi

⎛

⎝

⎛

⎝t
s
∏

i0=1

pi0,1 · · · pi0,αi0−1

⎞

⎠

i,αi

⎞

⎠ = tki,1 · · · ki,αi−1

∏

1≤i0<s
i0 �=i

pi0,1 · · · pi0,αi0−1 mod pi,αi

= t Pi (α) mod pi,αi .
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Moreover, we have σi,αi ((n0)i,αi ) = xi . Due to the fact that all the permutations σi, j
are isomorphisms, we obtain

σi,αi ((n)i,αi ) = xi + t Pi (α) mod pi,αi .

It follows immediately that ωn ∈ J if and only if, for all 1 ≤ i ≤ s,

vi ≤ xi + t Pi (α) mod pi,αi ≤ wi − 1.

This proves the second assertion.
By the definition of K , we observe that A(J ; N ;ω) = AK (v,w). Also, it is not

hard to check that

−1 + K
s
∏

i=1

wi − vi

pi,αi
< Nλs(J ) < 1 + K

s
∏

i=1

wi − vi

pi,αi
.

Now it follows that

|A(J ; N ;ω) − Nλs(J )| < 1 +
∣
∣
∣
∣
∣
AK (v,w) − K

s
∏

i=1

wi − vi

pi,αi

∣
∣
∣
∣
∣
.

By using Lemma 7, we immediately obtain the last assertion. ��
Proof (Proof of Proposition 1) Let J = ∏s

i=1[0, zi ) ⊆ [0, 1)s . We expand each
zi in the same way as in the proof of Theorem 1, and obtain the equality (3) for
A(J ; N ;ω) − Nλs(J ). The estimate in (4) for Λ2 depends only on Lemma 2, so we
can use it here too. We now investigate

Λ1 =
∑

α∈T (N )

εα1,...,αs (A(Jα1,...,αs ; N ;ω) − Nλs(Jα1,...,αs )).

Let α = (α1, . . . , αs) ∈ T (N ). The interval Jα1,...,αs is contained inside some
elementary interval

I =
s
∏

i=1

[
ui

pi,1 · · · pi,αi−1
,

ui + 1

pi,1 · · · pi,αi−1

)

with 0 ≤ ui ≤ pi,1 · · · pi,αi−1 − 1 (1 ≤ i ≤ s). Consider the sequence ξ, defined
as in Lemma 8, such that ξi,t = xi + t Pi (α) (1 ≤ i ≤ s), where the integers xi are
determined by the first term of the modified Halton sequence ω that drops into the
interval I fits into the smaller interval

s
∏

i=1

[
ui

pi,1 · · · pi,αi−1
+ xi

pi,1 · · · pi,αi
,

ui
pi,1 · · · pi,αi−1

+ xi + 1

pi,1 · · · pi,αi

)
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22 D. Bednařík et al.

From the last property of Lemma 8, it follows that

|A(Jα1,...,αs ; N ;ω) − Nλs(Jα1,...,αs )| < 1 +
∑

�∈M(α)

|SK (�; ξ)|
R(α; �)

,

where K is the number of terms of ω among the first N that drop into the interval I .
Now we have

Λ1 ≤
∑

α∈T (N )

⎛

⎝1 +
∑

�∈M(α)

|SK (�; ξ)|
R(α; �)

⎞

⎠ .

In order to accomplish the proof, we claim that

|SK (�; ξ)| ≤ 1

2

∥
∥
∥
∥
∥

s
∑

i=1

�i

pi,αi
Pi (α)

∥
∥
∥
∥
∥

−1

. (8)

Let θ = ∑s
i=1

�i
pi,αi

Pi (α). Since p1,α1 , . . . , ps,αs are pairwise coprime and, for each

1 ≤ i ≤ s, pi,αi � Pi (α), we must have ‖θ‖ �= 0. The inequality (8) follows
immediately from

∣
∣
∣
∣
∣

K−1
∑

t=0

e(tθ + ϑ)

∣
∣
∣
∣
∣
= sin(π‖K θ‖)

sin(π‖θ‖) ≤ 1

2‖θ‖ (ϑ ∈ R).

This completes the proof of Proposition 1. ��
The following two lemmas help extend Proposition 1 to Theorem 2. The first result

shows that the modified Halton sequence in Cantor bases possesses some particular
periodicity properties,while the other onewhich is borrowed directly from [1] provides
some technical estimate to be used with the first lemma.

Lemma 9 Let p1 = (p1,1, . . . , p1, j1), . . . , ps = (ps,1, . . . , ps, js ) be periodic
sequences of distinct prime numbers such that, for each 1 ≤ i ≤ s, there is
a common primitive root modulo pi,1, . . . , pi, ji . Let k1 = (k1,1, . . . , k1, j1), . . . ,

ks = (ks,1, . . . , ks, js ) be admissible sequences for p1, . . . , ps . Denote

K := ( j1 · · · js)
j1∏

γ1=1

· · ·
js∏

γs=1

(
s
∏

i=1

(

pi,γi − 1
)

)

.

For each β = (β1, . . . , βs) ∈ N
s
0, denote

U (β) := {

α = (α1, . . . , αs) ∈ N
s
0 : ∀ 1 ≤ i ≤ s, βi K ≤ αi < (βi + 1)K

}

.

Then, for any β = (β1, . . . , βs) ∈ N
s
0, any 1 ≤ γi ≤ ji (1 ≤ i ≤ s) and any

(b1, . . . , bs) ∈ Z
∗
p1,γ1

× · · · × Z
∗
ps,γs

, we have
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The generalized and modified Halton sequences in Cantor. . . 23

#{α ∈ U (β) : ∀ 1 ≤ i ≤ s, Pi (α) = bi and αi ≡ γi (mod ji )}
= Ks

j1 · · · js ∏s
i=1(pi,γi − 1)

.

Proof First, we observe that there are Ks/( j1 · · · js) elements inU (β) such that αi ≡
γi (mod ji ) for each 1 ≤ i ≤ s, and that there are only

∏s
i=1(pi,γi − 1) distinct

elements (b1, . . . , bs) in Z
∗
p1,γ1

× · · · × Z
∗
ps,γs

. By Pigeonhole Principle, there exists

(b′
1, . . . , b

′
s) ∈ Z

∗
p1,γ1

× · · · × Z
∗
ps,γs

such that

#{α ∈ U (β) : ∀ 1 ≤ i ≤ s, Pi (α) = b′
i and αi ≡ γi (mod ji )}

≥ Ks

j1 · · · js ∏s
i=1(pi,γi − 1)

.

For each1 ≤ i ≤ s, let gi be somefixed commonprimitive rootmodulo pi,1, . . . , pi, ji .
Since pi,γi � b′

i , the congruences b
′
i ≡ gcii (mod pi,γi ) are fulfilled for some integers

ci . Note from Lemma 6 that the equalities Pi (α) = bi and the congruences αi ≡ γi
(mod ji ) are possible if and only if α together with some integers y1, . . . , ys form
a solution to the system (7). We conclude that if α′, α′′ ∈ U (β) are two (possibly
equal) solutions such that Pi (α′) = b′

i = Pi (α′′) and α′
i ≡ γi ≡ α′′

i (mod ji ) for all
1 ≤ i ≤ s, then the s-tuple α′′′ defined by

α′′′
i = α′

i − α′′
i + γi −

[
α′
i − α′′

i + γi

K

]

· K , i = 1, . . . , s,

is a (possibly trivial) solution of the congruences α′′′
i ≡ γi (mod ji ) and of the

equations Pi (α′′′) = b∗
i , where b∗

i ≡ g

∑s
i0

(ai,i0,1+···+ai,i0,γi0−1 )

i (mod pi,γi ) with
the notation from the system (7), and it is in U (0). It follows, from the choice of
(b′

1, . . . , b
′
s), that

#{α ∈ U (0) : ∀ 1 ≤ i ≤ s, Pi (α) = b∗
i and αi ≡ γi (mod ji )}

≥ Ks

j1 · · · js ∏s
i=1(pi,γi − 1)

.

Let (b1, . . . , bs) ∈ Z
∗
p1,γ1

× · · · × Z
∗
ps,γs

. Since k1, . . . , ks are admissible, we have

#{α ∈ U (β) : ∀ 1 ≤ i ≤ s, Pi (α) = bi and αi ≡ γi (mod ji )} ≥ 1.

Let α ∈ U (β) be such that Pi (α) = bi and αi ≡ γi (mod ji ) for each 1 ≤ i ≤ s, and
let α0 ∈ U (0) be such that Pi (α0) = b∗

i and α0
i ≡ γi (mod ji ) for each i . Then the

s-tuple α∗ defined by

α∗
i = αi + α0

i − γi −
[

αi + α0
i − γi

K

]

· K + βi K , i = 1, . . . , s,
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yields another solution of the congruences α∗
i ≡ γi (mod ji ) and of the equations

Pi (α∗) = bi , and it is in U (x). It follows immediately that

#{α ∈ U (β) : ∀ 1 ≤ i ≤ s, Pi (α) = bi and αi ≡ γi (mod ji )}
≥ Ks

j1 · · · js ∏s
i=1(pi,γi − 1)

since there are at least Ks/( j1 · · · js ∏s
i=1(pi,γi − 1)) such α0

i . Because this is true
for all (b1, . . . , bs), it follows that the number of the solutions in U (β) is exactly
Ks/( j1 · · · js ∏s

i=1(pi,γi − 1)). This completes the proof of Lemma 9. ��
Lemma 10 [1, Lemma 4.4] Let p1, . . . , ps be distinct prime numbers. Then

∑

�∈M(p1,...,ps )

p1−1
∑

b1=1

· · ·
ps−1
∑

bs=1

∥
∥
∥

�1b1
p1

+ · · · + �sbs
ps

∥
∥
∥

−1

2R(p1, . . . , ps; �)

≤
(

s
∑

i=1

log pi

)(
s
∏

i=1

pi

)(

−1 +
s
∏

i=1

(1 + log pi )

)

,

where we denote

M(p1, . . . , ps) := {

� = (�1, . . . , �s) ∈ Zp1 × Zps : �1 + · · · + �s > 0
}

,

R(p1, . . . , ps; �) :=
s
∏

i=1

max(1,min(2�i , 2(pi − �i ))).

Now we are in a position to prove our second main theorem.

Proof (Proof of Theorem 2) Our proof is based upon Proposition 1. Let

K = ( j1 · · · js)
j1∏

γ1=1

· · ·
js∏

γs=1

(
s
∏

i=1

(

pi,γi − 1
)

)

.

For each β = (β1, . . . , βs) ∈ N
s
0, denote

U (β) := {

α = (α1, . . . , αs) ∈ N
s
0 : ∀ 1 ≤ i ≤ s, βi K ≤ αi < (βi + 1)K

}

.

Clearly, each α = (α1, . . . , αs) ∈ T (N ) is inside a unique box U (β) such that the
s-tuple β satisfies

∏s
i=1 pi,1 · · · pi,βi K ≤ N . We apply Lemma 3, for the integers

bi, j := (pi,1 · · · pi, ji )K/ ji and the bounds fi := 1, to obtain an estimate of the
number of those boxes U (β) which contain T (N ), i.e. we have
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∑

β=(β1,...,βs )∈Ns
0∏s

i=1 pi,1···pi,βi K≤N

1 =
∑

β=(β1,...,βs )∈Ns
0

∏s
i=1

((

pi,1···pi, ji
)K/ ji

)βi ≤N

1

≤ 1

s!
s
∏

i=1

(
log N

(K/ ji ) log(pi,1 · · · pi, ji )
+ s

)

≤ 1

s!
s
∏

i=1

(
log N

K logmi
+ s

)

.

Now we can use Lemma 9 to obtain a partial estimate of the first sum in the inequality
in Proposition 1 as follows

∑

α∈T (N )

∑

�∈M(α)

∥
∥
∥

∑s
i=1

�i
pi,αi

Pi (α)

∥
∥
∥

−1

2R(α; �)

≤
∑

β∈Ns
0∏s

i=1 pi,1···pi,βi K≤N

⎛

⎝

j1∑

γ1=1

· · ·
js∑

γs=1

Ks

j1 · · · js ∏s
i=1(pi,γi − 1)

⎛

⎝
∑

�∈M(p1,γ1 ,...,ps,γs )

p1,γ1−1
∑

b1=1

· · ·
ps,γs−1
∑

bs=1

∥
∥
∥

∑s
i=1

�i bi
pi,γi

∥
∥
∥

−1

2R(p1,γ1 , . . . , ps,γs ; �)

⎞

⎟
⎠

⎞

⎟
⎠ .

We apply Lemma 10 to the rightmost sums of the above inequality to get

∑

α∈T (N )

∑

�∈M(α)

∥
∥
∥

∑s
i=1

�i
pi,αi

Pi (α)

∥
∥
∥

−1

2R(α; �)
≤

∑

β∈Ns
0∏s

i=1 pi,1···pi,βi K≤N
⎛

⎝

j1∑

γ1=1

· · ·
js∑

γs=1

Ks

j1 · · · js ∏s
i=1(pi,γi − 1)

((
s
∑

i=1

log pi,γi

)(
s
∏

i=1

pi,γi

)

(

−1 +
s
∏

i=1

(1 + log pi,γi )

)))

≤
∑

β∈Ns
0∏s

i=1 pi,1···pi,βi K≤N
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Ks
∏s

i=1(mi − 1)

(
s
∑

i=1

logMi

)(
s
∏

i=1

Mi

)(

−1 +
s
∏

i=1

(1 + logMi )

)

≤ 1

s!

(
s
∏

i=1

(
log N

K logmi
+ s

))(
Ks

∏s
i=1(mi − 1)

)(
s
∑

i=1

logMi

)

(
s
∏

i=1

Mi

)(

−1 +
s
∏

i=1

(1 + logMi )

)

(9)

To obtain the estimate of the other part of the first sum in the inequality in Proposition 1,
we utilize Lemma 3 again, that is, we have

∑

α∈T (N )

1 =
∑

α∈Ns
0∏s

i=1 pi,1···pi,αi ≤N

1 ≤ 1

s!
s
∏

i=1

(
log N

logmi
+ s

)

. (10)

We finally combine Proposition 1 with (9) and (10) to obtain

ND∗
N (ω) ≤

(
1

s!
(

1
∏s

i=1 logmi

)

(

1 +
∑s

i=1 logMi
∏s

i=1 Mi
(−1 + ∏s

i=1(1 + logMi )
)

∏s
i=1(mi − 1)

))

(log N )s

+ O
(

(log N )s−1
)

≤
(

1

s!

(
s
∑

i=1

logMi

)
s
∏

i=1

Mi (1 + logMi )

(mi − 1) logmi

)

(log N )s + O
(

(log N )s−1
)

,

where the last inequality follows from (
∑s

i=1 logMi )(
∏s

i=1 Mi/(mi − 1)) ≥ 1. This
completes the proof of Theorem 2. ��

6 The generalized Hammersley point set in Cantor bases

Based on the (s − 1)-dimensional generalized Halton sequence, we can introduce a
finite s-dimensional point set which is called the generalized Hammersley point set.

Let b1 = (b1, j )∞j=1, . . . , bs−1 = (bs−1, j )
∞
j=1 be s−1 sequences of natural numbers

greater than 1 such that, for all 1 ≤ i1 < i2 ≤ s−1 and all j1, j2 ∈ N, bi1, j1 and bi2, j2
are coprime. For each 1 ≤ i ≤ s − 1, let Σi = (σi, j )

∞
j=1 be an arbitrary sequence

of permutations of Zbi, j ( j ∈ N). The generalized Hammersley point set in Cantor
bases b1, . . . , bs−1 with respect to Σ1, . . . , Σs−1, consisting of N points in [0, 1)s,
is defined to be the point set

P =
{( n

N
, φ

Σ1
b1

(n), . . . , φ
Σs−1
bs−1

(n)
)

: 0 ≤ n ≤ N − 1
}

.
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Wededuce a discrepancy bound for the generalized Hammersley point set in Cantor
bases with the help of Theorem 1 in combination with the following general result
from [19] that goes back to Roth [20].

Lemma 11 [19, Lemma 3.7] Let ω = (xn)∞n=0 be an arbitrary sequence in [0, 1)s−1

with discrepancy D∗
N (ω). For N ∈ N, let P be the point set consisting of (n/N , xn)

in [0, 1)s for n = 0, 1, . . . , N − 1. Then we have

ND∗
N (P) ≤ max

1≤N ′≤N
N ′D∗

N ′(ω) + 1.

Theorem 3 Let b1 = (b1, j )∞j=1, . . . , bs−1 = (bs−1, j )
∞
j=1 be s−1 arbitrary sequences

of natural numbers greater than 1 such that, for all 1 ≤ i1 < i2 ≤ s − 1 and all
j1, j2 ∈ N, bi1, j1 and bi2, j2 are coprime. For each 1 ≤ i ≤ s − 1 and j ∈ N, let
σi, j be a permutation of Zbi, j . For each 1 ≤ i ≤ s, denote Σi = (σi, j )

∞
j=1. For

each N ∈ N, suppose that P is the generalized Hammersley point set in Cantor
bases b1, . . . , bs−1 with respect to Σ1, . . . , Σs−1 consisting of N points. Then, for
any N ≥ 1, we have

ND∗
N (P) ≤ 1

(s − 1)!
s−1
∏

i=1

(	Mi/2
 log N
logmi

+ s − 1

)

+
s−2
∑

l=0

Ml+1

l!
l
∏

i=1

(	Mi/2
 log N
logmi

+ l

)

+ 1,

where Mi = max{bi, j ∈ bi : bi,1 · · · bi, j ≤ N } and mi = min{bi, j ∈
bi : bi,1 · · · bi, j ≤ N } (1 ≤ i ≤ s − 1).

Corollary 1 Let b1 = (b1, j )∞j=1, . . . , bs−1 = (bs−1, j )
∞
j=1 be s−1 bounded sequences

of natural numbers greater than 1 such that, for all 1 ≤ i1 < i2 ≤ s − 1 and all
j1, j2 ∈ N, bi1, j1 and bi2, j2 are coprime. For each 1 ≤ i ≤ s − 1 and j ∈ N, let
σi, j be a permutation of Zbi, j . For each 1 ≤ i ≤ s, denote Σi = (σi, j )

∞
j=1. For

each N ∈ N, suppose that P is the generalized Hammersley point set in Cantor
bases b1, . . . , bs−1 with respect to Σ1, . . . , Σs−1 consisting of N points. Then, for
any N ≥ 1, we have

ND∗
N (P) ≤ c

(log N )s−1

N
+ O

(
(log N )s−2

N

)

with

c = c(b1, . . . , bs−1) = 1

(s − 1)!
s−1
∏

i=1

	Mi/2

logmi

,

where Mi = max(bi, j )∞j=1 and mi = min(bi, j )∞j=1 (1 ≤ i ≤ s − 1).

A point set P consisting of N points in [0, 1)s is called a low-discrepancy point set
if D∗

N (P) = O((log N )s−1/N ). In this sense, the generalized Hammersley point set
in Cantor bases is a low-discrepancy point set.
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