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Abstract
We establish some properties of universal Dirichlet series. In particular we give a
new estimate on the growth of their coefficients. As a consequence we obtain an
information about the admissible size of coefficients of Dirichlet polynomials that
approximate a given entire function on a compact set. Moreover we prove that, for

all α > −1, the sequence of Riesz means
((∑n

k=1 k
α
)−1 ∑n

k=1 k
αDk( f )

)
of partial

sums of an universal Dirichlet series f is automatically universal. Finally we show
that the Dirichlet series satisfying the universal approximation property with respect
to every compact set K (with connected complement) contained in a strip {z ∈ C :
σ ≤ �(z) ≤ 0} are not necessarily universal in the left half-plane {z ∈ C : �(z) ≤ 0}.

Keywords Universal Dirichlet series · Boundary behavior of Dirichlet series ·
Over-convergence · Approximation in the complex domain

Mathematics Subject Classification 30K10 · 30E10

1 Introduction and notations

For a compact set K ⊂ C, A(K ) will stand for the space of all continuous functions
on K which are holomorphic in its interior. The notion of universal Taylor series was
independently introduced by Luh [13] and Chui and Parnes [7], and was strengthened
by Nestoridis [17], who showed the existence of holomorphic function f on the unit
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488 A. Mouze

discD = {z ∈ C : |z| < 1}whose Taylor series∑
n≥0 anz

n at 0 satisfies the following
universal approximation property: for every compact set K ⊂ {z ∈ C; |z| ≥ 1} with
connected complement and for every function h ∈ A(K ), there exists a subsequence
(λn) ⊂ N such that

∑λn
k=0 akz

k converges to h uniformly on K , as n tends to infinity.
SinceNestoridis’ theorem,many results on universal Taylor series in the complex plane
appeared. We refer the reader to [5] and the references therein. Roughly speaking, this
curious phenomenon of universality has the following interpretation: the sequence of
partial sums of the Taylor series (at 0) of a holomorphic function on D can have the
worst possible behavior, even on the unit circle. In 2005, Bayart proved that (ordinary)
Dirichlet series share this very strange property [3]. For a complex number z, �(z)
(resp. �(z)) denotes its real part (resp. imaginary part). LetC+ = {s ∈ C ; �(s) > 0}
(resp. C− = {s ∈ C ; �(s) < 0}) be the right (resp. left) half-plane. To any Dirich-
let series f = ∑

n≥1 ann
−s , one can associate its abscissa of absolute convergence

σa( f ) = inf{�(s) : ∑
n≥1 ann

−s is absolutely convergent} and its n-th partial sum
Dn( f ), i.e. Dn( f )(s) = ∑n

k=1 akk
−s . Notice that for all s with �(s) > σa( f ), one

has
∑

n≥1 |an|n−�(s) < +∞. Let us consider the space Da(C+) of absolutely con-
vergent Dirichlet series

∑
n≥1 ann

−s in C+ endowed with its natural topology given
by the semi-norms ‖∑

n≥1 ann
−s‖σ = ∑

n≥1 |an|n−σ , σ > 0. In [3], the author
established the existence of universal Dirichlet series in Da(C+) in the following
sense: for any “admissible” compact set K ⊂ C− with connected complement and
for any function h ∈ A(K ), there exists an increasing sequence (λn) ⊂ N such that
sups∈K |Dλn ( f )(s) − h(s)| → 0 as n tends to infinity. Recently in [2] the authors
relaxed the assumption that the compact sets be admissible. In the sequel, we will call
Ud the set of such universal Dirichlet series. Several results about these can be found
in [2,5,8,9,15]. Observe that obviously they remain valid for universal Dirichlet series
with respect to all compact sets of C− with connected complement (not necessarily
“admissible” compact sets). In particular in [8] the authors obtain estimates on the
growth of coefficients of universal Dirichlet series and, in [15], it is proved that uni-
versal Dirichlet series cannot be logarithmically summable at any point of their line
of convergence, where the sequence (σL,n( f )) of logarithmic means of a Dirichlet
series f is given by σL,n( f )(s) = 1

log(n)

∑n
k=1

1
k Dk( f )(s). Therefore we deduce that

universal Dirichlet series cannot be Cesàro summable at any point of their line of con-
vergence. Finally let us introduce the class of universal Dirichlet series with respect
to a specific compact set K .

Definition 1.1 Let K ⊂ C− be a compact set with connected complement. ADirichlet
series f = ∑

k≥1 akk
−s ∈ Da(C+) is said to be universal with respect to K if the

set {Dn( f ) : n ∈ N} is dense in A(K ) endowed with the topology given by the
supremum norm on K . We will call Ud,K the set of such universal Dirichlet series.

If K ∩ {z ∈ C : �(z) = 0} = ∅, we know that Ud,K 
= Ud [8].
In the present short paper, we are going to establish some properties of universal

Dirichlet series. First we are interested in the notion of restricted universality. As has
been pointed out, an universal Dirichlet series with respect to a specific compact set
K ⊂ C− with connected complement is not necessarily an element of Ud . A natural
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Some properties of universal Dirichlet series 489

question that arises is whether the same conclusion holds for Dirichlet series that are
universal with respect to a compact set K ⊂ C− (with connected complement) such
that K ∩{z ∈ C : �(z) = 0} 
= ∅. Actually we are going to establish a stronger result:
there exists a Dirichlet series which satisfies the universal approximation property
with respect to every compact set K (with connected complement) contained in a
strip {z ∈ C : σ < �(z) ≤ 0} (σ < 0) whose partial sums tend to infinity for
almost every z (in the sense of Lebesgue measure) in the left half-plane {z ∈ C :
�(z) < σ − 1

2 }. It is a Dirichlet version of a theorem of Kahane and Melas for
universal Taylor series with respect to compact sets that are contained in an annulus
[11]. Then we study some boundary behaviors of universal Dirichlet series. First
we study the effect of Cesàro summability methods on universal Dirichlet series.
The same problem has been studied in the case of universal Taylor series ( [4,12,
16]) and in particular it is showed that a Taylor series is universal if and only if the
sequence of Cesàro means of its partial sums is universal. In the case of Dirichlet
series, we already know that a universal element cannot be Cesàro summable on the
boundary. It is easy to prove that the sequence of Cesàro means

(
n−1 ∑n

k=1 Dk( f )(s)
)

of an element f ∈ Ud satisfies the universal approximation property with respect
to all compact subsets of C− with connected complement. Furthermore we show
that the same result remains true for the sequence of weighted Riesz means of the

form
((∑n

k=1 k
α
)−1 ∑n

k=1 k
αDk( f )(s)

)
for α > −1. Notice that the case α = 1

corresponds to logarithmic means, but we don’t know if the universal Dirichlet series
remain automatically universal under this summability method. As mentioned above,
we only know that they cannot be logarithmically summable on iR. Next we improve
the result of [8] on the admissible growth of coefficients of such series. As application,
we are interested in the following result of the set ofDirichlet polynomials: let K ⊂ C−
be a compact set with connected complement and δ > 0, then for every integer N the

set
{∑M

n=N ann−(1−δ)n−s; M ≥ N , |an| ≤ 1
}
is dense in A(K ) [2] (see Lemma 4.5

below). We show that this result does not hold anymore if the arbitrarily small real
number δ is replaced by the sequence δn = 1/ log1+ε(log(n)) (ε > 0) for instance.
Finally we deal with an extension of a result of Gauthier [10]: we exhibit universal
Dirichlet series whose coefficients are generated by the Riemann zeta-function. To do
this, we combine the famous Voronin’s theorem with the lemma of approximation by
Dirichlet polynomials.

The paper is organized as follows: in Sect. 2 we deal with the results on restricted
universality. In Sect. 3 we are interested in Riesz summability methods preserving
the universality of Dirichlet series. Section 4 is devoted to the study of the growth of
coefficients of universal Dirichlet series and its applications for the approximation by
Dirichlet polynomials with a control on the size of coefficients, whereas in Sect. 5 we
build universal Dirichlet series thanks to Riemann zeta-function. Section 6 concludes
the paper with some open problems.
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490 A. Mouze

2 Restricted universality

For power series, the notion of universality with respect to a specific compact set does
not coincide with that of universality with respect to all suitable compact sets. We
know that a Taylor series of H(D) that is universal with respect to any compact set K
with connected complement contained in a closed annulus {z ∈ C : 1 ≤ |z| ≤ d} is not
necessarily universal in the sense of Nestoridis.We refer the reader to [6, Section 4] for
an elementary proof using the fact that all universal Taylor series possess Ostrowski-
gaps. But more than this is true: Kahane and Melas showed that there exists a power
series

∑
k≥0 akz

k having radius of convergence equal to 1, that is universal with respect
to any compact set K with connected complement contained in the closed annulus
{z ∈ C : 1 ≤ |z| ≤ d} and satisfies

∑n
k=0 akz

k → ∞ for almost every (in the sense
of Lebesgue measure) z in {z ∈ C : |z| > d}, as n tends to infinity [11]. Thus in the
context of Dirichlet series, one can wonder if any Dirichlet series which satisfies the
universal approximation property in a given strip is necessarily universal. We give a
negative answer. To do this, we establish a stronger result in the spirit of Kahane-Melas
theorem: following their main ideas, we show that there exists a Dirichlet series which
satisfies the universal approximation property in a given strip but which has a regular
behavior in a left half-plane.

Theorem 2.1 Let σ < 0. There exists a Dirichlet series
∑

n≥1 ann
−s in Da(C+)

satisfying the universal approximation property in the strip {s ∈ C : σ < �(s) ≤ 0}
such that

∑n
j=1 a j j−s → ∞, as n tends to infinity, for almost every s in the half-plane

{s ∈ C : �(s) < σ − 1
2 } (in the sense of the Lebesgue measure).

Proof Let us consider an universal Dirichlet series f (s) = ∑
n≥1 bnn

−s in Da(C+).

We are going to build inductively the sequence of coefficients (an). Set a1 = b1 and
assume that we constructed a2, . . . , an−1. For every complex number d,we define the
sets En(d) as follows

En(d) =
{
s ∈ Bn :

∣∣∣∣∣
n−1∑
k=1

akk
−s + bnn

−s + dn−s

∣∣∣∣∣ ≤ log(log(n + 2))

}
,

where Bn is the compact rectangle

Bn =
{
s ∈ C : σ − 1

2
− log(log(n + 2))

≤ �(s) ≤ σ − 1

2
− log(log(n + 2))

log(n)
and |�(s)| ≤ log(log(n + 2))

}
.

Clearly the fact En(d) ∩ En(d ′) 
= ∅ implies that

|d − d ′|n−σ
√
n log(n) ≤ 2 log(log(n + 2)).
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Some properties of universal Dirichlet series 491

Let us choose {w1, . . . , wqn } in the closed disc {w ∈ C : |w +∑n−1
k=1(ak − bk)k−σ | ≤

1/ log(log(n + 2))} maximal under the requirement

|w j − wk | ≥ 2
log(log(n + 2))√

n log(n)

for j 
= k. A simple argument of recovering gives

qn ≥ C
n log2(n)

log4(log(n + 2))
,

where C is a constant. We set dk = wknσ , for k = 1, . . . , qn . We conclude that, for
i = 1, . . . , qn , the sets En(di ) are pairwise disjoint. Hence there exists din such that

λ(En(din )) ≤ λ(Bn)

qn
≤ C ′ log6(log(n + 2))

n log2(n)
,

where C ′ depends only on C . We let an = bn + din and g(s) = ∑
n≥1 ann

−s . Then,
for every s ∈ Bn\En(din ), we have |∑n

k=1 akk
−s | ≥ log(log(n + 2)), which implies∑n

k=1 akk
−s → ∞ as n → +∞, unless s ∈ En(din ) for infinitely many values

of n. Since
∑

n≥2
log6(log(n+2))

n log2(n)
< +∞, we have

∑
n≥1 λ(En(din )) < +∞, and the

Borel-Cantelli lemma applied to any fixed set BM ensures that
∑n

j=1 a j j−s → ∞,

as n → +∞, for almost every s in the half-plane {s ∈ C : �(s) < σ − 1
2 }. On the

other hand we have, for every n ≥ 1,

∣∣∣∣∣
n∑

k=1

(ak − bk)k
−σ

∣∣∣∣∣ ≤ 1/ log(log(n + 2)).

Hence the abscissa of convergence σc(h) of the Dirichlet series h(s) = ∑
k≥1(ak −

bk)k−s satisfies σc(h) ≤ σ. Therefore a classical result (see for instance [1, Theorem
11.11]) ensures that

∑
k≥1(ak −bk)k−s converges uniformly on every compact subset

lying interior to the half-plane {s ∈ C : �(s) > σ }, which implies that
∑

k≥N (ak −
bk)k−s converges uniformly to 0, as N tends to infinity, on such compact sets. Now,
let K ⊂ {s ∈ C : σ < �(s) ≤ 0} be a compact set such that Kc is connected and
let P be any holomorphic polynomial. Since f is an universal Dirichlet series, there
exists an increasing sequence of natural numbers (λn) such that

sup
s∈K

∣∣∣∣∣
λn∑
k=1

bkk
−s − P(s) +

+∞∑
k=1

(ak − bk)k
−s

∣∣∣∣∣

= sup
s∈K

∣∣∣∣∣∣
λn∑
k=1

akk
−s − P(s) +

+∞∑
k=1+λn

(ak − bk)k
−s

∣∣∣∣∣∣
→ 0
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492 A. Mouze

as n tends to infinity. Thus by the triangle inequality we get

sup
s∈K

|
λn∑
k=1

akk
−s − P(s)| ≤ sup

s∈K
|

λn∑
k=1

akk
−s − P(s)

+
+∞∑

k=1+λn

(ak − bk)k
−s | + sup

s∈K
|

+∞∑
k=1+λn

(ak − bk)k
−s |,

and combining the last two inequalities with the fact sups∈K | ∑+∞
k=N (ak −bk)k−s | →

0, as N → +∞,we conclude that the Dirichlet series g satisfies the universal approx-
imation property in the strip {s ∈ C : σ < �(s) ≤ 0}. This finishes the proof.

��
Remark 2.2 (1) In the above construction, there is a grey zone. What is the behavior

of the Dirichlet series g in the strip {s ∈ C : σ − 1
2 ≤ �(s) ≤ σ }?

(2) Contrary to the case of Taylor series, we do not know an elementary proof of
the simple fact that a Dirichlet series which satisfies the universal approximation
property in a given strip is not necessarily universal.

3 Riesz means of universal Dirichlet series

For a Dirichlet series f (s) = ∑
n≥1 ann

−s, let us consider the Cesàro means of its
partial sums:

σn( f )(s) = D1( f )(s) + D2( f )(s) + · · · + Dn( f )(s)

n
.

Let K ⊂ {s ∈ C ; �(s) ≤ 0} be a compact set with connected complement and h
be an entire function. Let L be a compact set with connected complement such that
K ⊂ L and {s − 1, s ∈ K } ⊂ L. Assume that f is an universal Dirichlet series.
Therefore there exists a sequence (λn) such that

sup
s∈L

|Dλn ( f )(s) − h(s)| → 0, as n → +∞.

Observe that we have σλn ( f )(s) =
(
1 + 1

λn

)
Dλn ( f )(s) − 1

λn
Dλn ( f )(s − 1). Thus

the triangle inequality gives

sup
s∈K

|σλn ( f )(s) − h(s)| ≤ sup
s∈K

|Dλn ( f )(s) − h(s)| + 1

λn
sup
s∈K

|Dλn ( f )(s) − h(s)|

+ 1

λn
sup
s∈K

|Dλn ( f )(s − 1) − h(s − 1)|
+ 1

λn
(sups∈K |h(s)| + sups∈K |h(s − 1)|)

≤ sup
s∈L

|Dλn ( f )(s) − h(s)| + 2

λn
sup
s∈L

|Dλn ( f )(s) − h(s)|
+ 2

λn
sups∈L |h(s)|
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Some properties of universal Dirichlet series 493

and we deduce that sups∈K |σλn ( f )(s) − h(s)| → 0, as n tends to infinity. Therefore
we proved the following Proposition:

Proposition 3.1 Let f be a Dirichlet series in Da(C+). Assume that f is a universal
Dirichlet series, then for every compact set K ⊂ C− with connected complement and
every entire function h, there exists an increasing sequence (λn) ⊂ N such that σλn ( f )
converges to h uniformly on K as n tends to infinity, i.e. the sequence of the Cesàro
means of partial sums of an universal Dirichlet series is universal.

More generally we are interested in the Riesz means related to the summability
matrix Aα = (an,k(α)) given by

an,k(α) =
⎧⎨
⎩

k−α

∑n
j=1 j−α

for 1 ≤ k ≤ n,

0 for k ≥ n + 1,

with 0 < α < 1. For a Dirichlet series f (s) = ∑
n≥1 ann

−s, we define the Aα-Riesz
means as follows:

σAα,n( f )(s) = 1∑n
k=1 k

−α

(
n∑

k=1

k−αDk( f )(s)

)
.

The case α = 0 corresponds to the Cesàro means.
We will need the following lemma, which is an exercise left to the reader.

Lemma 3.2 Let 0 < α < 1. For any integer l ≥ 1, we have

n∑
k=1

k−α = n1−α

1 − α
+ lα +

l∑
j=0

Cα, j

nα+ j
+ εα(n)

nα+l
,

where the numbers lα and Cα, j , j = 0, . . . , l, don’t depend on n (Cα,0 = 1
2 , Cα,1 =

−α
12 ,…) and εα(n) → 0 as n → +∞.

Theorem 3.3 Let f be a Dirichlet series in Da(C+). Assume that f is a universal
Dirichlet series, then for every compact set K ⊂ C− with connected complement
and every entire function h, there exists an increasing sequence (λn) ⊂ N such that
σAα,λn ( f ) converges to h uniformly on K as n tends to infinity, i.e. the sequence of
the Riesz means (σAα,n( f )) is universal.

Proof Let K ⊂ C− be a compact set with connected complement and h be an entire
function. We set σK = inf{�(s); s ∈ K }, tK = sup{|�(s)|; s ∈ K } and lK = min{l ∈
N; σK + α + l > 0}. Let us define the compact sets Kα, K−

α and K+
α as follows:

Kα = {s ∈ C; σK + α − 1 ≤ �(s) ≤ α + lK and |�(s)| ≤ tK },
K−

α = Kα ∩ C− and K+
α = Kα ∩ C+.
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494 A. Mouze

Observe that K−
α has connected complement and K ⊂ K−

α . Since f = ∑
n≥1 ann

−s

is an universal Dirichlet series, there exists an increasing sequence (λn) ⊂ N such
that

sup
s∈K−

α

|Dλn ( f )(s) − h(s)| → 0, as n → +∞. (1)

We are going to prove that σAα,λn ( f ) converges to h uniformly on K as n tends to
infinity. Let us write

σAα,n( f )(s) =
∑n

k=1 k
−αDk( f )(s)∑n
k=1 k

−α

=
∑n

j=1 a j

(∑n
k=1 k

−α − (
∑ j

k=1 k
−α − j−α)

)
j−s

∑n
k=1 k

−α

= Dn( f )(s) + Dn( f )(s + α)∑n
k=1 k

−α
−

∑n
j=1 a j (

∑ j
k=1 k

−α) j−s

∑n
k=1 k

−α

(2)

Lemma 3.2 ensures that we can find N ≥ 1 such that for every n ≥ N , we have

∣∣∣∣∣∣
n∑

k=N+1

k−α − n1−α

1 − α
− lα −

lK∑
j=0

Cα, j

nα+ j

∣∣∣∣∣∣
<

1

nα+lK
. (3)

Then we write, for all n with λn ≥ N ,

λn∑
j=1

a j

⎛
⎝

j∑
k=1

k−α

⎞
⎠ j−s =

N∑
j=1

a j

⎛
⎝

j∑
k=1

k−α

⎞
⎠ j−s

+
λn∑

j=N+1

a j

(
N∑

k=1

k−α

)
j−s +

λn∑
j=N+1

a j (

j∑
k=N+1

k−α) j−s . (4)

Clearly, we have

sup
s∈K

∣∣∣∣∣

∑N
j=1 a j (

∑ j
k=1 k

−α) j−s

∑λn
k=1 k

−α

∣∣∣∣∣ → 0 as n → +∞.

By the triangle inequality, we get

∣∣∣∣∣∣
λn∑

j=N+1

a j (

N∑
k=1

k−α) j−s

∣∣∣∣∣∣
≤

∣∣∣∣∣
N∑

k=1

k−α

∣∣∣∣∣

⎛
⎝∣∣Dλn ( f )(s) − h(s)

∣∣ +
∣∣∣∣∣∣

N∑
j=1

a j j
−s

∣∣∣∣∣∣
+ |h(s)|

⎞
⎠ .

(5)
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Some properties of universal Dirichlet series 495

Therefore we deduce, using both (1) and K ⊂ K−
α ,

sup
s∈K

∣∣∣∣∣

∑λn
j=N+1 a j (

∑N
k=1 k

−α) j−s

∑λn
k=1 k

−α

∣∣∣∣∣ → 0 as n → +∞. (6)

Let us now consider the last term of (4). Using Lemma 3.2 and the estimate (3) we
can write, for all positive integer n with λn ≥ N ,

λn∑
j=N+1

a j (

j∑
k=N+1

k−α) j−s = 1

1 − α

λn∑
j=N+1

a j j
−(s+α−1) + lα

λn∑
j=N+1

a j j
−s

+
lK∑
i=0

Cα,i

λn∑
j=N+1

a j j
−(s+α+i)

+
λn∑

j=N+1
a j j−(s+α+lK )εα( j),

(7)

with |εα( j)| ≤ 1, for all j ≥ N . Clearly we have

sup
s∈K

∣∣∣∣∣∣
λn∑

j=N+1

a j j
−s

∣∣∣∣∣∣
≤ sup

s∈K
|Dλn ( f )(s) − h(s)| + sup

s∈K
|h(s)| + sup

s∈K
|DN ( f )(s)| .

(8)

Combining (1) with (8), we get

sups∈K | ∑λn
j=N+1 a j j−s |

∑λn
k=1 k

−α
→ 0 as n → +∞. (9)

In the same way, observe that for s ∈ K , we necessarily have s + α − 1 ∈ K−
α and

we have

sup
s∈K

∣∣∣∣∣∣
λn∑

j=N+1

a j j
−(s+α−1)

∣∣∣∣∣∣
≤ sup

s∈K−
α

|Dλn ( f )(s) − h(s)| + sup
s∈K−

α

|h(s)|

+ sup
s∈K−

α

|DN ( f )(s)| , (10)

which gives, using (1),

sups∈K | ∑λn
j=N+1 a j j−(s+α−1)|

∑λn
k=1 k

−α
→ 0 as n → +∞. (11)

Let us now estimate the sums
∑λn

j=N+1 a j j−(s+α+i), for i = 0, . . . , lK −1 and s ∈ K .

By construction the property s ∈ K implies the following property s + α + i ∈ Kα,
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496 A. Mouze

for all i = 0, . . . , lK − 1. For any integer i ∈ {0, . . . , lK − 1}, we have to consider
two cases:

Case s+α+i ∈ K−
α : we have, for any complex number s ∈ K with s+α+i ∈ K−

α ,

∣∣∣∣∣∣
λn∑

j=N+1

a j j
−(s+α+i)

∣∣∣∣∣∣
≤ sup

s∈K−
α

|Dλn ( f )(s)−h(s)|+ sup
s∈K−

α

|h(s)| + sup
s∈K−

α

|DN ( f )(s)| .

(12)

Case s + α + i ∈ K+
α : let us choose η > 0 with 1 − α − η > 0. Thus, for any

complex number s ∈ K with s + α + i ∈ K+
α , the following estimate holds

∣∣∣∣∣∣
λn∑

j=N+1

a j j
−(s+α+i)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
λn∑

j=N+1

a j j
−(s+α+i+η) jη

∣∣∣∣∣∣

≤ λη
n

+∞∑
j=1

|a j | j−η

(13)

Thus, combining (12) with (13), we get

sups∈K | ∑λn
j=N+1 a j j−(s+α+i)|

∑λn
k=1 k

−α
≤ sups∈K−

α
|Dλn ( f )(s) − h(s)|
∑λn

k=1 k
−α

+ sups∈K−
α

|h(s)|
∑λn

k=1 k
−α

+ sups∈K−
α

|DN ( f )(s)|
∑λn

k=1 k
−α

+ λ
η
n∑λn

k=1 k
−α

+∞∑
j=1

|a j | j−η

(14)

Therefore taking into consideration (1), the estimate
∑λn

k=1 k
−α ∼ λ1−α

n
1−α

as n → +∞
and the property 1 − α − η > 0, we get

sups∈K | ∑λn
j=1 a j j−(s+α+i)|

∑λn
k=1 k

−α
→ 0, as n → +∞. (15)

In the same way, we have, for all λn ≥ N ,

sups∈K
∣∣∣∑λn

j=N+1 a j j−(s+α+lK )εα( j)
∣∣∣

∑λn
k=1 k

−α
≤ λ

η
n∑λn

k=1 k
−α

+∞∑
j=N+1

|a j | j−η → 0 as n → +∞.

(16)

Let us recall that K ⊂ K−
α .Applying (1),wehave also sups∈K |Dλn ( f )(s)−h(s)| → 0

as n → +∞. Hence combining (4), (6), (7), (9), (11), (15), (16) with (2), we obtain

sup
s∈K

|σAα,λn ( f )(s) − h(s)| → 0 as n → +∞.
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This finishes the proof. ��

Remark 3.4 (1) On the other hand, the samemethod allows to prove that Theorem 3.3
remains true in the case α < 0. Therefore if f is an universal Dirichlet series,
then for all α < 1, the sequence of the Riesz means (σAα,n( f )) is universal.

(2) Let k ≥ 1 be an integer. Let us consider the Cesàro means of order k

σ(C,k),n( f )(s) =
n∑
j=1

(
1 − j − 1

n

)(
1 − j − 1

n + 1

)
. . .

(
1 − j − 1

n + k − 1

)
a j j

−s

of a Dirichlet series f = ∑
j≥1 a j j−s . As in Proposition 3.1, it is easy to check

that the universality of f implies the universality of the sequence (σ(C,k),n( f ))
for all integer k ≥ 1.

4 Growth of the coefficients of universal Dirichlet series and
applications

We begin by giving a slight improvement of the estimate of the growth of coeffi-
cients of universal Dirichlet series. In [8], the authors showed that for an universal
Dirichlet series

∑
n≥1 ann

−s with respect to a compact set K ⊂ iR we have

lim sup(n|an|e−√
bn log(n)) = +∞, provided that (bn) is a decreasing sequence satis-

fying
∑

n≥2 bn/(n log(n)) < +∞. The proof was inspired by that employed by [14]
to handle the case of coefficients of universal Taylor series. Using similar ideas, we
slightly strengthen this result. In the sequel, for j ≥ 1, we denote by log j the j-th
iterated of the function log, i.e. for every positive integer n sufficiently large, we have
log1(n) = log(n), log2(n) = log(log(n)), ....We set q j = min(n ∈ N : log j (n) > 1).
To proceed further, it is convenient to state the following key-lemma.

Lemma 4.1 Let η > 0, k ≥ 1 be an integer and let
∑

n≥1 ann
−s be a Dirichlet series

in Da(C+) that satisfies the universal approximation property on {i t : −η ≤ t ≤
η}. Assume that (εn) is a decreasing sequence of positive real numbers satisfying∑

εn/(n log1(n) . . . logk(n)) < +∞ and εn log(n) → +∞, as n tends to infinity.
Then we have

∑
|an|e− εn log(n)

log2(n)... logk+1(n) = +∞.

Proof We follow the main ideas of the proof of [8, Lemma 2.1]. We set δn = eεn for
n ∈ N. There exists N0 ≥ qk+1 such that, for every n ≥ N0, we have

logk(εn log(n)) > 1,
εn log(n)

log1(εn log(n)) . . . logk(εn log(n))
≥ qk+1 (17)
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and

∞∑
n=N0

δn

n log1(n) . . . logk(n)
< η.

We define the functions from iR which are 2iπ -periodic letting

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hn(i t) = n log(n)

δn
π for |t | <

δn

n log1(n) . . . logk(n)
,

Hn(i t) = 0 for
δn

n log1(n) . . . logk(n)
≤ |t | ≤ π.

For f ∈ L1([−π, π ]), let us define its Fourier coefficients f̂ (log(m)) =
1

2π

∫ π

−π

f (i t)mitdt . We get

Ĥn(log(m)) =
⎧
⎨
⎩
1 for m = 1,
n log1(n) . . . logk(n)

δn log(m)
sin

(
δn log(m)

n log1(n) . . . logk(n)

)
for m 
= 1.

Let N ≥ N0 be an integer. By hypothesis we can approximate theDirichlet polynomial
1 + ∑N−1

m=1 amm
−z by a subsequence of partial sums of f uniformly on the compact

set {i t : −η ≤ t ≤ η}. Therefore there exists an integer M > N such that we have, for

all t ∈ [−η, η],
∣∣∣1 − ∑M

m=N amm−i t
∣∣∣ < 1

2 which implies 1
2 ≤ �

(∑M
m=N amm−i t

)
.

Thus we proceed as in the proof of Lemma 2.1 of [8] to obtain

1

2
≤

M∑
m=N

|am | × | f̂ (log(m))|. (18)

with

f̂ (log(m)) =
M∏

n=N0

sin

(
δn log(m)

n log1(n) . . . logk(n)

)

δn log(m)

n log1(n) . . . logk(n)

.

As (δn) is a decreasing sequence and the series
∑ δn

n log1(n) . . . logk(n)
converges,

we get δn → 0, as n → +∞. Therefore, there exists an integer N such that we have

the following two inequalities
δN0

N0l1(N0) . . . lk(N0)
log(N ) > e and δN < e. For every

m ∈ {N , . . . , M}, we have
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δN0

N0 log1(N0) . . . logk(N0)
log(m)>e and

δm

m log1(m) . . . logk(m)
log(m)<δm ≤δN <e.

Then there exists an integer l ∈ {N0, · · · ,m − 1} satisfying

δl

l log1(l) . . . logk(l)
log(m) ≥ e and

δl+1

(l + 1) log1(l + 1) . . . logk(l + 1)
log(m) < e.

Since the sequence (δn) is decreasing, we get

| f̂ (log(m))| ≤
l∏

n=N0

n log1(n) . . . logk(n)

δn log(m)
≤

( l log1(l) . . . logk(l)

δl log(m)

)l+1−N0 ≤
(
1

e

)l+1−n0
.

(19)

Set um = εm log(m)
log1(εm log(m))... logk (εm log(m))

.Taking into account (17), observe that we have

um log1(um) . . . logk(um) ≤ um log1(εm log(m)) . . . logk(εm log(m)) ≤ εm log(m).

We deduce

l + 1 ≥ um ≥ εm log(m)

log2(m) . . . logk+1(m)
. (20)

Combining (18) with (19) and (20) we obtain

M∑
m=N

|am |en0e− εm log(m)
log2(m)... logk+1(m) ≥ 1

2
.

Since this holds for infinitely many pairs (N , M), we have the conclusion. ��
Remark 4.2 The estimate given by (20) seems to be optimal since the unique solution
xn of the equation x log(x) log2(x) . . . logk(x) = n has the following behavior: xn ∼

n
log2(n)... logk+1(n)

as n tends to infinity.

Next Lemma 4.1 leads to the following statement.

Theorem 4.3 Let η > 0, k ≥ 1 be an integer and let
∑

n≥1 ann
−s be a Dirichlet series

inDa(C+) satisfying the universal approximation property on {i t : −η ≤ t ≤ η}. Let
(bn) be a decreasing sequence satisfying

∑
bn/(n log1(n) . . . logk(n)) < +∞ and

bn log(n) → +∞, as n tends to infinity. Then, we have

lim sup
n→+∞

(
n|an|e− bn log(n)

log2(n)... logk+1(n)

)
= +∞.
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500 A. Mouze

Proof Assume that there exists a real number M such that, for all integer n large
enough,

|an| ≤ M

n
e

bn log(n)
log2(n)... logk+1(n) . (21)

Let ε > 0. We set εn = max

(
bn,

logk+1(n)

logε
k(n)

)
+ bn for all integer n large

enough. Obviously the sequence (εn) is decreasing,
∑ εn

n log1(n) . . . logk(n)
con-

verges and εn log(n) → +∞, as n tends to infinity. Thus Lemma 4.1 ensures that∑
|an|e− εn log(n)

log2(n)... logk+1(n) = +∞. On the other hand, combining (21) with the equal-

ity bn = εn − max

(
bn,

logk+1(n)

logε
k(n)

)
and the estimate max

(
bn,

logk+1(n)

logε
k(n)

)
≥

logk+1(n)

logε
k(n)

, we have for every positive integer B, with B > A and A fixed large

enough,

B∑
n=A

|an|e− εn log(n)
log2(n)... logk+1(n) ≤ M

B∑
n=A

1

n
e
− log(n)

log2(n)... logk−1(n) log1+ε
k (n) .

However it is easy to check that
∑ 1

n
e
− log(n)

log2(n)... logk−1(n) log1+ε
k (n) < +∞. We obtain a

contradiction and we have the announced conclusion. ��
Now let ε > 0 and k ≥ 2 be an integer. If we apply Theorem 4.3 with the sequence

(bn) given by bn = logk+1(n)

logε
k (n)

, we obtain the following corollary.

Corollary 4.4 Let k ≥ 2 be a positive integer and ε > 0. Let η > 0 and let
∑

n≥1 ann
−s

be a Dirichlet series inDa(C+) that satisfies the universal approximation property on
{i t : −η ≤ t ≤ η}. Then, we have

lim sup
n→+∞

(
n|an|e

− log(n)

log2(n)... logk−1(n)(logk (n))1+ε

)
= +∞.

Now we apply this last result to obtain some information on the admissible size of
coefficients of Dirichlet polynomials that approximate continuous functions on closed
intervals of the imaginary axis. More precisely, a careful examination of the proof of
Theorem 3.1 of [2] shows that the following result holds.

Lemma 4.5 Let K ∈ C− be a compact set with connected complement and δ > 0.

Then, for every N ∈ N, the set
{∑M

n=N ann−(1−δ)n−s; M ≥ N , |an| ≤ 1
}
is dense in

A(K ).
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On the other hand, Theorem 4.3 allows to obtain the following result. We shall use the
following notation: for every integer k ≥ 2 and every τ > 0, we set

δk,τ (n) = 1

log2(n) . . . logk−1(n) log1+τ
k (n)

for all n large enough(n ≥ qk)

and

Ak,τ =
{
(an) ∈ C

N : |an| ≤ n−(1−τ) for n < qk and |an| ≤ n−(1−δk,τ (n)) for n ≥ qk
}

.

Corollary 4.6 Let K ∈ C− be a compact set with connected complement such that K
contains a set of the following type {i t : a ≤ t ≤ b} , a, b ∈ R. Let k ≥ 2 be a positive

integer and τ > 0. Then the set
{∑M

n=1 ann
−s; M ≥ 1, (an) ∈ Ak,τ

}
is not dense in

A(K ).

Up to do a translation on the imaginary axis we can assume that there exists η > 0
such that {i t : −η ≤ t ≤ η} ⊂ K . Hence to prove Corollary 4.6, it suffices to establish
the following statement.

Proposition 4.7 Let k ≥ 2 be a positive integer and η, τ > 0. Then the set of

Dirichlet polynomials defined by
{∑M

n=1 ann
−i t ; M ≥ 1, (an) ∈ Ak,τ

}
is not dense

in C([−η, η]).

Proof Set EN =
{∑M

n=N ann−i t ; M ≥ 1, |an| ≤ n−(1−δk,τ (n))
}
for N ≥ qk .We argue

by contradiction. Assume that
Hypothesis (H): for every integer N ≥ qk , the set EN is dense in C([−η, η]).
Let also P be a Dirichlet polynomial, g ∈ A(K ), σ > 0 and ε > 0. We choose
N ≥ qk bigger than the degree of P such that

∑
n≥N n−1−σ+δk,τ (n) < ε. In particular,

by hypothesis there exists u = ∑M
n=N ann−(1−δk,τ (n))n−i t , such that

|an| ≤ 1 and sup
t∈[−η,η]

|u(i t) − g(t) + P(i t)| < ε.

Setting h(t) = u(t) + P(i t), we deduce

sup
t∈[−η,η]

|u(i t)−g(t)+P(i t)| < ε and ‖h − P‖σ =‖u(s)‖σ ≤
∑
n≥N

n−1−σ+δk,τ (n) < ε.

Thuswe have shown that, under the hypothesis (H), for every Dirichlet polynomial P,

for every continuous function g ∈ C([−η, η]), for all σ > 0 and ε > 0, there exists a
Dirichlet polynomial h such that supK |h−g| < ε and ‖h− P‖σ < ε. Then following
a classical construction [2,3,8], we can can build Dirichlet series in Da(C+) of the
form

∑
ann−s, with |an| ≤ n−(1−δk,τ (n)), which satisfies the universal approximation
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502 A. Mouze

property on [−η, η]. Then Theorem 4.3 gives a contradiction. Thus the hypothesis
(H) does not hold. Hence there exists a positive integer N0 = N0(τ ) ≥ qk such that,

∀N ≥ N0, the set

{
M∑

n=N

ann
−(1−δk,τ (n))n−i t ; M ≥ N , |an | ≤ 1

}
is not dense in C([−η, η]).

(22)

It remains to check that, for any ε > 0, for every integer N < N0(ε) the set of Dirichlet

polynomials
{∑M

n=1 ann
−i t ; M ≥ 1, (an) ∈ Ak,τ

}
is not dense in C([−η, η]). If not,

for τ > 0 fixed, for any continuous function g and ε > 0, one can find M ≥ 1 and
complex numbers a1, . . . , aM , with (an) ∈ Ak,τ , such that

sup
t∈[−η,η]

∣∣∣∣∣
M∑
n=1

ann
−i t − g(t)N 1+α+i t

0

∣∣∣∣∣ < ε,

where N0 = N0(τ/2) ≥ qk (N0(τ/2) is given by (22)) and α > 0 satisfy the condition

Nα
0 ≥ nτ for n = 1, . . . , qk, and sup

l≥qk
|lδk,τ (l)−δk,τ/2(lN0)| ≤ Nα

0 . (23)

We deduce

sup
t∈[−η,η]

∣∣∣∣∣
M∑
n=1

an(nN0)
−1N−α

0 (nN0)
−i t − g(t)

∣∣∣∣∣ < ε.

Observe that we can rewrite

M∑
n=1

an(nN0)
−1N−α

0 (nN0)
−i t =

MN0∑
j=N0

b j j
−i t ,

where the coefficients b j satisfy the following estimates (thanks to (23), N0 ≥ qk and
(an) ∈ Ak,τ ):

(1) b j = 0 if j 
= nN0, with n = 1, . . . , M,

(2) for n = 1, . . . , qk − 1,

|bnN0 | = |an|N−1−α
0 ≤ 1

n1−τ N 1+α
0

≤ (nN0)
−(1−δk,τ/2(nN0))

(3) for n = qk, . . . , M,

|bnN0 | = |an|N−1−α
0 ≤ n−(1−δk,τ (n))N−1−α

0
≤ (nN0)

−(1−δk,τ/2(nN0))nδk,τ (n)−δk,τ/2(nN0)N−α
0≤ (nN0)

−(1−δk,τ/2(nN0)).
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Thus for any continuous function g, any ε > 0, we have found a Dirich-
let polynomial

∑MN0
j=N0

b j j−i t with N0 = N0(τ/2) which is defined in (22) and

|b j | ≤ j−(1−δk,τ/2( j)), such that

sup
t∈[−η,η]

∣∣∣∣∣∣
MN0∑
j=N0

b j j
−i t − g(t)

∣∣∣∣∣∣
< ε.

According to (22), we obtain a contradiction. This finishes the proof. ��

5 Coefficients of universal Dirichlet series and the Riemann
zeta-function

Let us consider the Dirichlet polynomial approximation again. Observe that we can
rewrite the statement of [2, Theorem 3.1] as follows.

Lemma 5.1 Let K ⊂ C− be a compact set with connected complement, g an entire
function, N > 0 a positive integer, 0 < δ < σ and ε > 0. Then there exist a Dirichlet
polynomial h = ∑M

n=N ann−z such that supz∈K |h(z) − g(z)| < ε, ‖h‖σ < ε and
|an| ≤ 1

n1−δ , for n = N , . . . , M .

We end the paper with the Dirichlet version of a result of Gauthier [10]. Although
universal Dirichlet series are generic, we do not know exhibit such elements. A similar
problem holds in the case of universal power series. In a recent work [10] the Riemann-
zeta function was employed to generate the coefficients of universal Taylor series in
the sense of Nestoridis. The proof is constructive and is a combination of a lemma
of approximation polynomial [10, Lemma 3.2] (which gives a geometric control of
growth of coefficients) with Voronin’s Theorem. First let us recall the latter.

Theorem 5.2 (Voronin [18]) For each z0 in the strip 1/2 < σ < 1 and each k =
0, 1, 2, . . . , the sequence

{(
ζ(z0 + im), ζ ′(z0 + im), . . . , ζ (k)(z0 + im)

)
: m = 1, 2, . . .

}

is dense in Ck+1.

In the case of Dirichlet series, using Lemma 5.1 and following the ideas of [10], we
can build an universal Dirichlet serieswhose coefficients are generated by theRiemann
zeta-function. To do this, we need a Dirichlet version of Lemma 3.4 of [10]. Let (gn)
be an enumeration of all Dirichlet polynomials with rational complex coefficients and
(Kn) be the sequence of compact sets Kn = [−n, 0] × [−n, n].
Lemma 5.3 Let σ be a real number with 1/2 < σ < 1. Let (δn) be a decreasing
sequence of positive real numbers with δ1 < 1/2. There exist a sequence (mn) of
integers and an increasing sequence (kn) of integers (with k0 = 0) such that

|ζ(σ + iml)| ≤ log(l + 2)

l1−δn
for l = 1 + kn−1, . . . , kn,
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and the polynomials Qn(z) = ∑kn
l=1+kn−1

ζ(σ + iml)l−z have the following approxi-
mation property

sup
z∈Kn

∣∣Q j (z) − gn(z) + Q1(z) + · · · + Qn−1(z)
∣∣ ≤ 2

n
.

Proof First we apply Lemma 5.1 to find a Dirichlet polynomialw1 = a1,1+a1,22−z +
· · ·+a1,k1k

−z
1 such that |a1,l | ≤ l−1+δ1 , for l = 1, . . . , k1 supz∈K1

|w1(z)−g1(z)| < 1
2 .

By Theorem 5.2 there are integers m1, . . . ,mk1 such that

|ζ(σ + iml)| ≤ log(l + 2)l−1+δ1 for l = 1, . . . , k1,

and

sup
z∈K1

|Q1(z) − g1(z)| < 1,

with Q1(z) = ∑k1
l=1 ζ(σ + iml)l−z . By induction, suppose for j = 1, . . . , n − 1 we

have built integers k1, . . . , kn−1, and m1, . . . ,mkn−1 such that

|ζ(σ + iml)| ≤ log(l + 2)

l1−δ j
for l = 1 + k j−1, . . . , k j ,

and the polynomials Q j (z) = ∑k j
l=1+k j−1

ζ(σ + iml)l−z have the following approxi-
mation property

sup
z∈K j

∣∣Q j (z) − g j (z) + Q1(z) + · · · + Q j−1(z)
∣∣ ≤ 2

j
.

We apply Lemma 5.1 again to find a Dirichlet polynomial wn(z) = an,kn−1+1(kn−1 +
1)−z + · · · + an,kn k

−z
n satisfying |an,l | ≤ l−1+δ1 , for l = kn−1 + 1, . . . , kn

supz∈Kn
|wn(z) − gn(z)| < 1

n . By Theorem 5.2 there are integers mkn−1+1, . . . ,mkn
such that

|ζ(σ + iml)| ≤ log(l + 2)l−1+δn for l = kn−1 + 1, . . . , kn,

and

sup
z∈Kn

|Qn(z) − gn(z) + Q1(z) + · · · + Qn−1(z)| <
2

n
,

with Qn(z) = ∑kn
l=kn−1+1 ζ(σ + iml)l−z . This finishes the proof. ��

Now the following statement holds.
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Theorem 5.4 Let σ be a real number with 1/2 < σ < 1. There is a sequence (mn) of
integers such that the series

∑
n≥1 ζ(σ + imn)n−z is an universal Dirichlet series in

Da(C+).

Proof Let (δn) be a decreasing sequence of positive real numbers with δ1 < 1/2. Let
us consider the Dirichlet series f (z) = ∑+∞

l=1 ζ(σ + iml)l−z given by Lemma 5.3.
Observe that

f (z) =
+∞∑
n=1

kn∑
l=kn−1+1

ζ(σ + iml)l
−z .

Moreover for all τ > 0, there exists nτ , so that for every integer n ≥ nτ , δn < τ. Set
ετ = τ − δnτ > 0. Thus we have

‖ f ‖τ = ‖
nτ∑
n=1

kn∑
l=kn−1+1

ζ(σ + iml)l
−z‖τ +

+∞∑
l=knτ

|ζ(σ + iml)|l−τ

≤
knτ∑
l=1

|ζ(σ + iml)|l−τ +
+∞∑
l=knτ

log(l + 2)l−ετ −1 < +∞.

Hence f belongs toDa(C+).Now let K ⊂ C− be a compact set with connected com-
plement, P be a Dirichlet polynomial and ε > 0. By definition, there exists a positive
integer N such that for all n ≥ N , K ⊂ Kn and one can find n1 ≥ max(N , 4/ε) such

that supK |P − gn1 | < ε/2. By construction, the partial sum
∑kn1

l=1 ζ(σ + iml)l−z

satisfies

sup
z∈Kn1

∣∣∣∣∣∣

kn1∑
l=1

ζ(σ + iml)l
−z − gn1(z)

∣∣∣∣∣∣
<

2

n1
<

ε

2
.

Therefore we have by the triangle inequality supz∈K
∣∣∣∑kn1

l=1 ζ(σ + iml)l−z − P(z)
∣∣∣ <

ε, and f is an universal Dirichlet series. ��

6 Open problems

We conclude the paper with some open problems.

(1) Let K ∈ C− be a compact set with connected complement and δ > 0. We

know that, for every N ≥ 1, the set
{∑M

n=N ann−(1−δ)n−s; M ≥ N , |an| ≤ 1
}

is dense in A(K ). On the other hand, Corollary 4.6 ensures that this result
does not hold anymore if one replaces δ by a sequence (δn) defined by δn =(
log2(n) . . . logk−1(n) log1+τ

k (n)
)−1

(for all k ≥ 2 and τ > 0). Neverthe-
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less the following problem remains open: is the set of Dirichlet polynomials{∑M
n=N ann

−
(
1− 1

log2(n+2)

)
n−s; M ≥ N , |an| ≤ 1

}
dense in A(K ), for all N ≥ 1?

(2) Let σ < 0, does there exist a Dirichlet series
∑

k≥1 akk
−s belonging to Da(C+)

which is universal in the strip {s ∈ C : σ ≤ �(s) ≤ 0}, satisfying∑n
k=1 akk

−s →
∞, as n tends to infinity, almost everywhere in the half-plane {z ∈ C : �(s) < σ }?

(3) An universal Dirichlet series f cannot be logarithmically summable at any point
of its line of convergence. However we don’t know whether the sequence of

its logarithmic means
((

1
log(n)

)∑n
k=1 k

−1Dk( f )(s)
)
still satisfies the universal

approximation property.
(4) The sequence of Cesàro means of partial sums of an universal Dirichlet series

remains universal, but it would be interesting to knowwhether the converse impli-
cation holds.
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