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Abstract We are interested in two properties of real numbers: the first one is the
property of having given digit frequencies in the binary expansion, such as the well
known Besicovitch sets, and the second one is the property of having the longest run
of heads in the n independent Bernoulli trials, that is the so called Erdös–Rényi sets. In
2013, Chen andWen (JMathAnal Appl 401:29–37, 2013) considered the intersections
of these two kinds of sets by determining the Hausdorff dimension of the sets

{
x ∈ [0, 1) : lim inf

n→∞
Sn(x)

n
≥ α, lim

n→∞
Rn(x)

log2 n
= β

}
, 0 ≤ α ≤ 1, 0 ≤ β ≤ +∞,

where Sn(x)denotes the summation of thefirstn digits and Rn(x) is themaximal length
of consecutive one digits in the first n terms of the dyadic expansion of x ∈ [0, 1). In
the present paper, we complement this result by computing the Hausdorff dimension
of the following sets

{
x ∈ [0, 1) : lim

n→∞
Sn(x)

n
= α, lim

n→∞
Rn(x)

log2 n
= β

}
, 0 ≤ α ≤ 1, 0 ≤ β ≤ +∞.
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1 Introduction

Determining the Hausdorff dimension of sets of numbers is a fundamental and impor-
tant problem in number theory and the multifractal analysis of various dynamical
systems in view of Borel’s normal number theorem [1] in 1909. In 1934, Besicovitch
[2] firstly complemented Borel’s result by computing the Hausdorff dimension of sets
of numbers in [0, 1] for which the limit of the frequency of digit one in the dyadic
expansion is bounded from above. After that, Eggleston [3] generalized Besicovitch’s
work to the case of b-adic expansion, where b ≥ 2 is an integer. In the past sev-
eral decades, many people extended the results got by Besicovitch and Eggleston in
diverse directions. For more details, the readers are referred to [4,7,8] and references
therein. In 2013, Chen and Wen [6] generalized Besicovitch’s work by considering
the Hausdorff dimension of the intersections of the lower Besicovitch sets and the
Erdös–Rényi sets. Based on their result, we turn to a more subtle kind of sets, which
will complement the result got by Chen et al.

Now, we are going to introduce some notations and definitions that will be used
later. For any real number x ∈ [0, 1), let x =∑∞

n=1 xn/2
n =0. x1x2 . . . be the unique

non-terminating binary expansion of x , where xn ∈ {0, 1}, n ≥ 1, are called the digits
of the binary expansion of x . We set S0(x) = 0 and write Sn(x) = ∑n

i=1 xi , n ≥ 1,
the sum of the first n digits of x or the n-th partial sum of x . For the following sets

B(α) =
{
x ∈ [0, 1) : lim inf

n→∞
Sn(x)

n
≥ α

}
,

1

2
≤ α ≤ 1,

which are called the lower Besicovitch sets, it can be concluded by Besicovitch’s result
[2] that

dimH B(α) = H(α)

log 2
,

1

2
≤ α ≤ 1,

where dimH denotes theHausdorff dimension and H(·) is the entropy function defined
by

H(x) = −x log x − (1 − x) log(1 − x), 0 ≤ x ≤ 1, (1.1)

and we set 0 log 0 = 0 by convention. Furthermore, write

B(α) =
{
x ∈ [0, 1) : lim

n→∞
Sn(x)

n
= α

}
, 0 ≤ α ≤ 1, (1.2)
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which are called Besicovitch sets. It is well known that Besicovitch’s research also
give the conclusion that

dimH B(α) = H(α)

log 2
, 0 ≤ α ≤ 1.

Next we are ready to introduce the Erdös–Rényi sets. For any x ∈ [0, 1), let Rn(x)
be the dyadic run-length function of x , namely,

Rn(x) = max{k : xi+1 = xi+2 = . . . = xi+k = 1, 0 ≤ i ≤ n − k}.

In a pioneering work, Erdös and Rényi [5] proved that for almost all x ∈ [0, 1),

lim
n→∞

Rn(x)

log2 n
= 1,

which is the well known Erdös–Rényi limit theorem. So it is meaningful to study the
level sets

E(β) =
{
x ∈ [0, 1) : lim

n→∞
Rn(x)

log2 n
= β

}
, 0 ≤ β ≤ ∞, (1.3)

which are called Erdös–Rényi sets. It was proved by Ma et al. that the exceptional
set of the Erdös–Rényi limit theorem has full Hausdorff dimension in [11]. In the
past several years, there are abundant dimensional results concerning the run-length
function. Formore results, the readers are referred to [12–14]. However, few results are
concerned about the relationship between the Besicovitch sets and the Erdös–Rényi
sets.

By classifying the real numbers in the unit interval satisfying both the properties of
Besicovitch sets and Erdös–Rényi sets, Chen et al. [6] firstly considered the fractional
dimensions of intersections of the lower Besicovitch sets and the Erdös–Rényi sets in
2013. In fact, for any 0 ≤ α ≤ 1, 0 ≤ β ≤ +∞, they showed that the Hausdorff
dimension of the sets

S(α, β) =
{
x ∈ [0, 1) : lim inf

n→∞
Sn(x)

n
≥ α, lim

n→∞
Rn(x)

log2 n
= β

}

is supα≤t≤1
H(t)
log 2 , where H(·) is defined as (1.1). In this paper, we turn to a more subtle

kind of sets, which are the intersections of the Besicovitch sets and the Erdös–Rényi
sets. For the α, β above, we define the sets

E(α, β) =
{
x ∈ [0, 1) : lim

n→∞
Sn(x)

n
= α, lim

n→∞
Rn(x)

log2 n
= β

}
. (1.4)

The main result of this paper can be stated as follows.
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Theorem 1.1 For any 0 ≤ α ≤ 1 and 0 ≤ β ≤ +∞, we have that

dimH E(α, β) = H(α)

log 2
.

For acquaintance of the definitions and properties of Hausdorff dimension, one can
refer to Falconer’s book [10].

2 Preliminaries

In this section, we gather some terminologies and present some lemmas which are
essential to our proof.

Definition 2.1 Let M ≥ 1 be an integer. The finite sequence (x1x2 . . . xM ) ∈ {0, 1}M
is called an M-word. When xi = 0 or 1 for any 1 ≤ i ≤ M , such M-word is denoted
by 0M or 1M respectively for convenience. In particular, for an integer N satisfying
0 ≤ N < M , the M-word

(x1x2 . . . xM−1, 0) with
M−1∑
i=1

xi = N

is called an (N , M)-word. We denote the family of all the (N , M)-words by WM (N ).
In order to estimate the number of the words in WM (N ), we need the following

result which is a direct consequence of the Stirling’s formula [15].

Lemma 2.2 For any positive integers n and k with 0 ≤ k ≤ n, we have the following
equation

log

(
n

k

)
= nH

(
k

n

)
+ O(log n), as n → ∞,

where H(·) is the entropy function defined as (1.1), and the notation f (n) = O(g(n))

means that f (n)
g(n)

is bounded as n → ∞.

The following dimension result about homogeneous Moran sets is a classic tool to
estimate the Hausdorff dimension of a fractal set from below.

Let {di }i≥1 be a sequence of positive integers and {ci }i≥1 be a sequence of positive
numbers satisfying di ≥ 2, 0 < ci < 1, d1c1 ≤ δ and di ci ≤ 1 (i ≥ 2), where δ is
some positive number. Let

D =
⋃
i≥0

Di , D0 = ∅, Di = {(σ1 . . . σi ) : 1 ≤ σ j ≤ d j , 1 ≤ j ≤ i}.

If σ = (σ1 . . . σk) ∈ Dk , τ = (τ1 . . . τm) ∈ Dm , the concatenation of σ and τ is
denoted by σ ∗ τ = (σ1 . . . σkτ1 . . . τm).
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Definition 2.3 ([9]) Suppose that J ⊂ R is a closed subinterval with diameter δ > 0.
Let F = {Jσ : σ ∈ D} be a collection of closed subsets of J with the following
properties:

(1) J∅ = J ;
(2) For any i ≥ 1 and σ ∈ Di−1, Jσ∗1, Jσ∗2, . . . , Jσ∗di are subintervals of Jσ and

int (Jσ∗i )
⋂

int (Jσ∗ j ) = ∅ (i 
= j), where int (·) denotes the interior of a set;
(3) For any i ≥ 1 and σ ∈ Di−1, 1 ≤ l ≤ di ,

|Jσ∗l ||Jσ | = ci , where | · | denotes the
diameter of a set.
Then C∞ := ⋂

i≥1

⋃
σ∈Di

Jσ is called a homogeneous Moran set determined by F .

For each i ≥ 1, we call the union Ci := ⋃
σ∈Di

Jσ the i-th generation of C∞.

Lemma 2.4 ([9]) For the homogeneous Moran sets defined above, we have

dimH C∞ ≥ lim inf
j→∞

log d1d2 . . . d j

− log c1c2 . . . c j+1d j+1
.

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. As for the upper bound, it is easy
to get that dimH E(α, β) ≤ H(α)

log 2 since E(α, β) ⊂ B(α) for any 0 ≤ α ≤ 1, 0 ≤ β ≤
+∞, where B(α) is defined as (1.2). To obtain the lower bound of dimH E(α, β), we
will construct a suitable homogeneous Moran subset named C∞, then the conclusion
can be drawn by using Lemma 2.4. For this, we need to consider the following cases.

3.1 0 ≤ α ≤ 1, 0 < β < +∞

In this subsection, we shall prove our result in the case of 0 ≤ α ≤ 1, 0 < β < +∞
in detail, while the argument for other cases can be done by someminor modifications.
In what follows, we will construct the desired Moran subset C∞ of E(α, β). For any
x ∈ R, we use the notation �x� to represent the maximal integer that less than or equal
to x .

Choose an integer n0 large enough such that 2n0 > �(n0 + 1)β� . We define two
sequences of integers {Nn}n≥1 and {ln}n≥1 as follows:

Nn =

⎧⎪⎨
⎪⎩

� 2n0−�n0β�
�√n0−1� �, n = 1;

� 2n0+n−2−�(n0+n−1)β�
�√n0+n−2� �, n ≥ 2.

ln =
⎧⎨
⎩
2n0 − N1�√n0 − 1� − �n0β�, n = 1;

2n0+n−2 − Nn�√n0 + n − 2� − �(n0 + n − 1)β�, n ≥ 2.
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Obviously, we know that 0 ≤ ln < �√n0 + n − 2� for any n ≥ 1.
A family of sets {Cn}n≥1 of words which are related to C∞ are defined by

Cn =
{
ω1ω2 . . . ωNn−1νNn : νNn = ωNn0

ln1�(n0+n−1)β�,

ωi ∈ W�√n0+n−2�(�α
√
n0 + n − 2�), 1 ≤ i ≤ Nn

}
,

for any n ≥ 1.
Now, we are ready to give a suitable homogeneous Moran set C∞ as below:

C∞ = {0.u1u2 . . . ∈ [0, 1] : ui ∈ Ci , ∀i ≥ 1}

= 0.
∞∏
i=1

Ci .

By the construction of C∞, the two sequences {di }i≥1 and {ci }i≥1 corresponding
to Definition 2.3 can be written as follows:

di =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�√n0−1�−1
�α√

n0−1�
)
, 1 ≤ i ≤ N1;

(�√n0+p−1�−1
�α√

n0+p−1�
)
,

k+1∑
j=1

N j + 1 ≤ i ≤
k+2∑
j=1

N j , k ≥ 0.

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−�√n0−1�, 1 ≤ i < N1;
2−(�√n0−1�+l1+�n0β�), i = N1;
2−�√n0+k�,

k+1∑
j=1

N j + 1 ≤ i <
k+2∑
j=1

N j , k ≥ 0;

2−(�√n0+k�+lk+2+�(n0+k+1)β�), i =
k+2∑
j=1

N j , k ≥ 0.

In order to get the lower bound of dimH E(α, β), the following two lemmas are
essential.

Lemma 3.1 Let 0 ≤ α ≤ 1, 0 < β < +∞, then dimH C∞ ≥ H(α)
log 2 .

Proof For any integer j satisfying
∑k+1

i=1 Ni ≤ j <
∑k+2

i=1 Ni for some k ≥ 0, we
assume that j = ∑k+1

i=1 Ni + p, for some p with 0 ≤ p < Nk+2. Let us consider the
following two cases.

Case 1 j + 1 <
k+2∑
i=1

Ni .
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By the definitions of {di }i≥1 and {ci }i≥1, an application of Lemma 2.2 implies that

lim inf
j→∞

log d1d2 . . . d j

− log c1c2 . . . c j+1d j+1

= lim inf
k→∞

k+1∑
i=1

Ni log
(�√n0+i−2�−1

�α√
n0+i−2�

) + p log
(�√n0+k�−1

�α√
n0+k�

)
[
2n0 +

k∑
i=1

2n0+i−1 + (p + 1)�√n0 + k�
]
log 2 − log

(�√n0+k�−1
�α√

n0+k�
)

≥ lim inf
k→∞

A(k) + B(k)

C(k) + D(k)
,

where we denote

A(k) =
k+1∑
i=1

Ni

[(
�√n0 + i − 2� − 1

)
H

(
α�√n0 + i − 2�

�√n0 + i − 2� − 1

)

+O
(
�√n0 + i − 2� − 1

)]

+O
(
�√n0 + k� − 1

)
,

B(k) = p
(
�√n0 + k� − 1

)
H

(�√n0 + k� − 1

�α√
n0 + k�

)
,

C(k) =
[
2n0 +

k∑
i=1

2n0+i−1 + �√n0 + k�
]
log 2,

D(k) =
(
p�√n0 + k�

)
log 2.

Thus by the Stolz-Cesàro Theorem we know that

lim inf
k→∞

A(k)

C(k)
= H(α)

log 2
, lim inf

k→∞
B(k)

D(k)
= H(α)

log 2
,

so we have

lim inf
k→∞

A(k) + B(k)

C(k) + D(k)
≥ H(α)

log 2
.

Case 2 j + 1 =
k+2∑
i=1

Ni . Similar to Case 1, we have
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lim inf
j→∞

log d1d2 . . . d j

− log c1c2 . . . c j+1d j+1

= lim inf
k→∞

k+1∑
i=1

Ni log
(�√n0+i−2�−1

�α√
n0+i−2�

) + (Nk+2 − 1) log
(�√n0+k�−1

�α√
n0+k�

)
(
2n0 +

k+1∑
i=1

2n0+i−1

)
log 2 − log

(�√n0+k�−1
�α√

n0+k�
)

≥ lim inf
k→∞

k+2∑
i=1

Ni

[(�√n0 + i − 2� − 1
)
H(

α�√n0+i−2�
�√n0+i−2�−1

) + O
(
log�√n0 + i − 2�)]

(2n0 +
k+1∑
i=1

2n0+i−1) log 2

= H(α)

log 2
.

Hence, by Lemma 2.4 we have

dimH C∞ ≥ lim inf
j→∞

log d1d2 . . . d j

− log c1c2 . . . c j+1d j+1
≥ H(α)

log 2
.

��
Lemma 3.2 Let 0 ≤ α ≤ 1, 0 < β < +∞, then C∞ ⊂ E(α, β).

Proof Let n ∈ N satisfying 2n0+k ≤ n < 2n0+k+1 for some k ≥ 1.
Take x = 0.x1x2 . . . ∈ C∞. In order to get that lim

n→∞
Sn(x)
n = α, we have the following

three cases.

Case 1 2n0+k + p�√n0 + k� ≤ n < 2n0+k + (p + 1)�√n0 + k� for some 1 ≤ p <

Nk+2.

Sn(x)

n
=

k+1∑
i=1

[
Ni�α√

n0 + i − 2� + �(n0 + i − 1)β�] + p�α√
n0 + k� + O

(√
n0 + k

)

2n0+k + p�√n0 + k� + O
(√

n0 + k
) ;

Case 2 2n0+k + Nk+2�√n0 + k� ≤ n < 2n0+k + Nk+2�√n0 + k� + lk+2.

Sn(x)

n
=

k+2∑
i=1

Ni�α√
n0 + i − 2� +

k+1∑
i=1

�(n0 + i − 1)β�
2n0+k + Nk+2�√n0 + k� + O

(√
n0 + k

) ;

Case 3 2n0+k + Nk+2�√n0 + k� + lk+2 ≤ n < 2n0+k+1.

Sn(x)

n
=

k+2∑
i=1

Ni�α√
n0 + i − 2� +

k+1∑
i=1

�(n0 + i − 1)β� + O (n0 + k − 1)

2n0+k + Nk+2�√n0 + k� + O (n0 + k + 1)
.
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Therefore, by the definition of {Ni }i≥1, we have limn→∞ Sn(x)
n = α in all the cases

above.
Also, by the construction of C∞ one can easily check that

�β(n0 + k)�
n0 + k + 1

<
Rn(x)

log2 n
≤ �β(n0 + k + 1)�

n0 + k
,

which means limn→∞ Rn(x)
log2 n

= β. Hence we have C∞ ⊂ E(α, β). ��

Using Lemmas 3.1 and 3.2, we can easily get that

dimH E(α, β) ≥ H(α)

log 2
,

which completes the proof of Theorem 1.1.

3.2 0 ≤ α ≤ 1, β = 0 and + ∞
Bearing in mind the construction of C∞, the proof for the remaining cases are

similar to the proof in the case 0 ≤ α ≤ 1, 0 < β < +∞. We only need to modify
the number of 1s in the construction of {Cn}n≥1 when β is allowed to be 0 or +∞.

Case 1 0 ≤ α ≤ 1, β = 0.
Similar to the definitions of {Nn}n≥1 and {ln}n≥1 in the previous subsection, we

define two sequences of integers {N ′
n}n≥1 as well as {l ′n}n≥1 as follows:

N
′
n =

⎧⎪⎪⎨
⎪⎪⎩

� 2n0−�√n0�
�√n0−1� �, n = 1;

� 2n0+n−2−�√(n0+n−1)�
�√n0+n−2� �, n ≥ 2.

l
′
n =

⎧⎨
⎩
2n0 − N

′
1�

√
n0 − 1� − �√n0�, n = 1;

2n0+n−2 − N
′
n�

√
n0 + n − 2� − �√(n0 + n − 1)�, n ≥ 2.

Obviously, we have that 0 ≤ l
′
n < �√n0 + n − 2� for any n ≥ 1.

Then we define

Cn =
{
ω1ω2 . . . ωN ′

n−1νN ′
n

: νN ′
n

= ωN ′
n
0l

′
n1�√n0+n−1�,

ωi ∈ W�√n0+n−2�(�α
√
n0 + n − 2�), 1 ≤ i ≤ Nn

}
,

for any n ≥ 1.

Case 2 0 ≤ α ≤ 1, β = +∞.
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In this case, take an integer n0 large enough, and two sequences of integers {N ′′
n }n≥1

and {l ′′n}n≥1 are defined as below:

N
′′
n =

⎧⎪⎪⎨
⎪⎪⎩

� 2n0−n20
�√n0−1� �, n = 1;

� 2n0+n−2−n20
�√n0+n−2� �, n ≥ 2.

l
′′
n =

⎧⎨
⎩
2n0 − N

′′
1n

2
0 − �√n0�, n = 1;

2n0+n−2 − N
′′
n �√(n0 + n − 2)� − (n0 + n − 1)2, n ≥ 2.

Also, 0 ≤ l
′′
n < �√n0 + n − 2� for any n ≥ 1.

Define

Cn = {
ω1ω2 . . . ωN ′′

n −1νN ′′
n

: νN ′′
n

= ωN ′′
n
0l

′′
n 1(n0+n−1)2 ,

ωi ∈ W�√n0+n−2�
(
�α√n0 + n − 2�

)
, 1 ≤ i ≤ N

′′
n

}
,

for any n ≥ 1.
In the two cases above, we construct the homogeneous Moran set

C∞ = {
0.u1u2 . . . ∈ [0, 1] : ui ∈ Ci , ∀i ≥ 1

}

= 0.
∞∏
i=1

Ci .

As we did in the Sect. 3.1, it is easy to check that Lemmas 3.1 and 3.2 still hold. So
we can obtain that dimH E(α, β) ≥ H(α)

log 2 in all the above cases.
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