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Abstract In this paper we study the existence of positive solutions to a class of p&q
elliptic problems given by

−div(a(|∇u|p)|∇u|p−2∇u) = f (u) + |u|q∗−2u in �, u = 0 on ∂�,

where � ⊂ R
N is bounded, 2 ≤ p ≤ q < q∗, f : R → R is a function that can have

an uncountable set of discontinuity points and the function a is a continuous function.
This result to extend previous ones to a larger class of p&q type problems.
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76 G. M. Figueiredo, R. G. Nascimento

1 Introduction

When f is a continuous function, the existence and multiplicity of solutions of p&q
type problems has been extensively investigated; see for example [7,9,12,28] and [30]
in bounded domain and [1,8,14,18,26] and [29] in R

N . A check in the references of
these articles will provide a complete picture of the study of this class of problems.

In this paper we are looking for positive solutions to p&q type problems when f
has an uncountable set of discontinuity points. To be specific, we are looking positive
solutions for the following class of quasilinear problems

{−div(a(|∇u|p)|∇u|p−2∇u) = f (u) + |u|q∗−2u in �,

u = 0 on ∂�
(1.1)

where � ⊂ R
N is a bounded domain and 2 ≤ p ≤ q < q∗. The hypotheses on the

functions a and f are the following:

(a1) The function a is continuous and there exist constants k0, k1, k2, k3 ≥ 0 such
that

k0 + k1t
q−p

p ≤ a(t) ≤ k2 + k3t
q−p

p , for all t > 0.

(a2) There exists α ∈ (0, 1] such that

A(t) ≥ αa(t)t for all t ≥ 0,

where A(t) =
∫ t

0
a(s)ds.

( f1) For all t ∈ R, there are C > 0 and r ∈ (q, q∗) such that

| f (t)| ≤ C(1 + |t |r−1)

( f2) For all t ∈ R, there is θ ∈ (pα, q∗) such that

0 ≤ θ F(t) =
∫ t

0
f (s)ds ≤ t f (t) uniformly in �, where

f (t) := lim
ε↓0 ess inf|t−s|<ε f (s)

and

f (t) := lim
ε↓0 ess sup|t−s|<ε f (s), which are N-mensurable.

( f3) There is β > 0 that will be fixed later, such that

H(t − β) ≤ f (t), for all t ∈ R and uniformly in �,
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Existence of positive solutions for a class of p&q… 77

where H is the Heaviside function, i.e,

H(t) =
{
0 if t ≤ 0,
1 if t > 0.

( f4) lim supt→0+
f (t)

tq−1 = 0 and f (t) = 0 if t ≤ 0.

A typical example of a function satisfying the conditions ( f1)–( f4) is given by

f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if t ∈] − ∞, β/2[
1 if t ∈ Q

⋂[β/2, β]
0 if t ∈ (R \ Q)

⋂[0, β]
l∑

k=1

|t |qk−1

βqk−1 if t > β, l ≥ 1 and qk ∈ (q, q∗).

Note that the function f in this example has an uncountable set of discontinuity
points. By a solution for (1.1)we understand as a function 0 ≤ u ∈ W 1,q

0 (�) satisfying

∫
�

a(|∇u|p)|∇u|p−2∇u∇ϕ =
∫

�

ρϕ dx +
∫

�

|u|q∗−2uϕ dx,

for all ϕ ∈ W 1,q
0 (�) and

ρ(x) ∈ [
f (u(x)), f (u(x))

]
a.e in �.

Problems involving discontinuous nonlinearity appears in several physical situa-
tions. Among these, we may cite electrical phenomena, plasma physics, free boundary
value problems, etc. The reader may consult Ambrosetti–CalahorranoDobarro [2],
Ambrosetti–Turner [3], Arcoya–Calahorrano [4], Arcoya–Diaz–Tello [5], Badialle
[6] and the references therein.

The main result of this paper is as follows.

Theorem 1.1 Assume (a1)–(a2) and ( f1)–( f4). Then, problem (1.1) has a positive
solution. Moreover, if u ∈ W 1,q

0 (�) is a solution of problem (1.1), then |{x ∈ � :
u(x) > β}| > 0.

We will give some examples of functions a in order to illustrate the degree of
generality of the kind of problems studied here.

Example 1.2 Considering a(t) = t
q−p

p , we have that the function a satisfies the
hypotheses (a1)–(a2) with k0 = k2 = 0 and k1 = k3 = 1. Hence, Theorem 1.1
is valid for the problem

−
qu = f (u) + |u|q∗−2u in �.
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78 G. M. Figueiredo, R. G. Nascimento

Example 1.3 Considering a(t) = 1 + t
q−p

p , we have that the function a satisfies the
hypotheses (a1)–(a2) with k0 = k1 = k2 = k3 = 1. Hence, Theorem 1.1 is valid for
the problem

−
pu − 
qu = f (u) + |u|q∗−2u in �.

Problem (pnL) comes from a general reaction–diffusion system:

ut = div[D(u)∇u] + c(x, u), (1.2)

where D(u) = (|∇u|p−2 + |∇u|N−2). This system has a wide range of applications
in physics and related sciences, such as biophysics, plasma physics and chemical
reaction design. In such applications, the function u describes a concentration, the
first term on the right-hand side of (1.2) corresponds to the diffusion with a diffusion
coefficient D(u); whereas the second one is the reaction and relates to source and loss
processes. Typically, in chemical and biological applications, the reaction term c(x, u)

is a polynomial of u with variable coefficients (see [15,22,23,25,31]).
Beneathwepresent someother examples that are also interesting frommathematical

point of view.

Example 1.4 Considering a(t) = 1 + 1

(1+t)
p−2

p
, we have that the function a satisfies

the hypotheses (a1)–(a2) with k0 = 1, k1 = 0, k2 = 2 and k3 = 0. Hence, Theorem
1.1 is valid for the problem

−div

(
|∇u|p−2∇u + |∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)
= f (u) + |u|p∗−2u in �.

Example 1.5 Considering a(t) = 1 + t
q−p

p + 1

(1+t)
p−2

p
, it follows that the function

a satisfies the hypotheses (a1)–(a2) with k0 = k1 = k2 = 2, and k3 = 1. Hence,
Theorem 1.1 is valid for the problem

−
pu − 
N u − div

(
|∇u|p−2∇u

(1 + |∇u|p)
p−2

p

)
= f (u) + |u|q∗−2u in �.

Our arguments were influenced by [6,7,19] and [20], . Below we list what we
believe that are the main contributions of our paper.

(1) Problem (1.1) presents combinations of discontinuous nonlinearity with critical
growth and operator p&q-Laplacian that at least to our knowledge, seem to be
new.

(2) In [7,19,20] the nonlinearity is continuous. In this paper, the nonlinearity can
have an uncountable set of discontinuity points.

(3) We adapt arguments can be found in [6] for a general class of operators.
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Existence of positive solutions for a class of p&q… 79

This paper is organized as follows. In Sect. 2 we study the basic results from convex
analysis and give some information on preliminary results. In Sect. 3 we study the
variational framework and some Technical Lemmas. We show the existence result in
Sect. 4.

2 Basic results from convex analysis

In this section, for the reader’s convenience,we recall somedefinitions and basic results
on the critical point theory of locally Lipschitz continuous functionals as developed
by Chang [13], Clarke [16,17] and Grossinho and Tersian [21].

Let X be a real Banach space. A functional I : X → R is locally Lipschitz
continuous, I ∈ Liploc(X,R) for short, if given u ∈ X there is an open neighborhood
V := Vu ⊂ X and some constant K = KV > 0 such that

| I (v2) − I (v1) |≤ K ‖ v2 − v1 ‖, vi ∈ V, i = 1, 2.

The directional derivative of I at u in the direction of v ∈ X is defined by

I 0(u; v) = lim sup
h→0, σ↓0

I (u + h + σv) − I (u + h)

σ
.

Hence I 0(u; .) is continuous, convex and its subdifferential at z ∈ X is given by

I 0(u; z) = {
μ ∈ X∗; I 0(u; v) ≥ I 0(u; z) + 〈μ, v − z〉, v ∈ X

}
,

where 〈., .〉 is the duality pairing between X∗ and X . The generalized gradient of I at
u is the set

∂ I (u) = {
μ ∈ X∗; 〈μ, v〉 ≤ I 0(u; v), v ∈ X

}
.

Since I 0(u; 0) = 0, ∂ I (u) is the subdifferential of I 0(u; 0). A few definitions and
properties will be recalled below.

∂ I (u) ⊂ X∗ is convex, non-empty and weak*-compact,

λ(u) = min
{ ‖ μ ‖X∗ ;μ ∈ ∂ I (u)

}
,

and

∂ I (u) = {
I ′(u)

}
, if I ∈ C1(X,R).

A critical point of I is an element u0 ∈ X such that 0 ∈ ∂ I (u0) and a critical value of
I is a real number c such that I (u0) = c for some critical point u0 ∈ X .

A sequence (un) ⊂ X is called Palais–Smale sequence at level c (P S)c if

I (un) → c, λ(un) → 0
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80 G. M. Figueiredo, R. G. Nascimento

A functional I satisfies the (P S)c condition if any Palais–Smale sequence at nivel
c has a convergent subsequence.

Theorem 2.1 Let I ∈ Liploc(X,R) with I (0) = 0 and satisfying:

(i) There are r > 0 and ρ > 0, such that I (u) ≥ ρ, for ||u|| = r , u ∈ X;
(ii) There is e ∈ X\Bρ(0) with I (e) < 0.

If

c = inf
γ∈�

max I (γ (t))t∈[0,1]

with

� = {γ ∈ C([0, 1], X), γ (0) = 0 and I (γ (1)) < 0}

and I satisfies the Palais–Smale condition, then c ≥ ρ is a critical point of I , such
that there is u ∈ X verifying

I (u) = c and 0 ∈ ∂ I (u).

Proposition 2.2 (Riesz representation theorem) ([10]) Let � be a bounded linear
functional on Lr (�), 1 < r < ∞ and α ∈ R. Then, there is a unique function
u ∈ Lr ′

(�), r ′ = r
r−1 , such that

〈
�, v

〉=
∫

�

uv dx, for all v ∈ Lr (�).

Moreover,

|u|r ′,α = ‖�‖(Lr (�))∗ .

Proposition 2.3 ([13]) If �(u) =
∫

�

F(u)dx, where F(t) =
∫ t

0
f (s)ds, then � ∈

Liploc(L p(�) and ∂�(u) ⊂ L
p

p−1 (�). Moreover, if ρ ∈ ∂�(u), it satisfies

ρ(x) ∈ [ f (u(x)), f (u(x))] a.e in �.

3 The variational framework and some technical lemmas

We will look for solutions of problem (1.1) by finding critical points of the Euler-
Lagrange functional I : W 1,q

0 (�) → R given by I (u) = Q(u) − �(u), where

Q(u) = 1

p

∫
�

A(|∇u|p)dx − 1

q∗

∫
�

|u|q∗dx,
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Existence of positive solutions for a class of p&q… 81

and

�(u) =
∫

�

F(u) dx

Note that Q is C1(W 1,q
0 (�),R) and for all φ ∈ W 1,q

0 (�), we have

Q′(u)φ =
∫

�

a(|∇u|p)|∇u|p−2∇u∇φdx −
∫

�

|u|q∗−2uφdx

Note that I ∈ Liploc(W 1,q
0 (�),R) and

∂ I (u) = {Q′(u)} − ∂�(u), ∀u ∈ W 1,q
0 (�).

In the next result we prove a local Palais–Smale condition to functional I .

Lemma 3.1 The functional I satisfies the (P S)c condition for

c <
(1
θ

− 1

q∗
)(

Sk1

)N/q

.

Proof Let (un) be a (P S)c sequence for I. Then,

I (un) → c and λ(un) → 0.

Consider (wn) ⊂ ∂ I (un) such that

‖wn‖∗ = λ(un) = on(1)

and

wn = Q′(un) − ρn,

where ρn ∈ ∂�(un). So,

c + 1 + ‖un‖ ≥ I (un) − 1

θ

〈
wn, un

〉

≥ 1

p

∫
�

A(|∇un|p)dx −
∫

�

F(un)dx − 1

q∗

∫
�

|un|q∗
dx

−1

θ

∫
�

a(|∇un|p)|∇un|pdx + 1

θ

∫
�

ρnundx − 1

θ

∫
�

|un|q∗
dx .
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82 G. M. Figueiredo, R. G. Nascimento

From (a2)

c + 1 + ‖un‖ ≥ I (un) − 1

θ

〈
wn, un

〉

≥
(

α

p
− 1

θ

) ∫
�

a(|∇un|p)|∇un|pdx +
∫

�

(
1

θ
ρnun − F(un)

)
dx

+
(
1

θ
− 1

q∗

)∫
�

|un|q∗
dx

Using ( f2) we get

1

θ
ρn(x)un(x) ≥ 1

θ
f (un(x))un(x) ≥ F(un(x)) a.e in �. (3.1)

Hence,

c + 1 + ‖un‖ ≥
(

α

p
− 1

θ

)∫
�

a(|∇un|p)|∇un|pdx +
(
1

θ
− 1

q∗

) ∫
�

|un|q∗
dx

Using (a1) and ( f2) again, we have

c + 1 + ‖un‖ ≥ k1

(
α

p
− 1

θ

)
‖un‖q .

Since θ > pα,we conclude that (un) is bounded inW 1,q
0 (�). Passing to a subsequence,

if necessary, we obtain

un ⇀ u in W 1,q
0 (�),

un → u in Ls(�),

un(x) → u(x) a.e in �,

|un(x)| ≤ h(x) ∈ Ls(�)

where 1 ≤ s < q∗.
From ( f4) and by definition of I , we can consider u(x) ≥ 0 a.e in �. Moreover,

using the Concentration-Compactness Principle due to Lions [27], we obtain � an at
most countable index set, sequences (μi ), (νi ) ⊂ (0,∞), such that

|∇un|q ⇀ |∇u|q + μ and |un|q∗
⇀ |u|q∗ + ν, (3.2)

as n → +∞, in weak∗-sense of measures, where

ν =
∑
i∈�

νiδxi , μ ≥
∑
i∈�

μiδxi , Sν
q/q∗
i ≤ μi , (3.3)

for all i ∈ �, where δxi is the Dirac mass at xi ∈ �.
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Existence of positive solutions for a class of p&q… 83

We claim that � = ∅. Arguing by contradiction that � �= ∅, we fixe i ∈ �.
Without loss of generality we can suppose B2(0) ⊂ �. Considering ψ ∈ C∞

0 (�)

such that ψ ≡ 1 in B1(0), ψ ≡ 0 in � \ B2(0) and |∇ψ |∞ ≤ 2, we define ψ�(x) :=
ψ((x − xi )/�), where � > 0. Hence, (ψ�un) is bounded in W 1,q

0 (�) and

on(1) = 〈
wn, ψ�un

〉=
∫

�

a(|∇un|p)|∇un|p−2∇un∇(ψ�un) dx

−
∫

�

|u|q∗
ψ� dx −

∫
�

ρnψ�un dx .

So,

∫
�

a(|∇un|p)|∇un|p−2∇unψ� = −
∫

�

una(|∇un|p)|∇un|p−2∇ψ� dx

+
∫

�

|u|q∗
ψ� dx +

∫
�

ρnψ�un dx (3.4)

Since supp(ψ�) is compact and it is contained in B2�(xi ) and using (a1), we have

∣∣∣∣
∫

�

una(|∇un|p) |∇un|p−2 ∇un∇ψ� dx

∣∣∣∣
≤

∫
B2�(0)

a(|∇un|p)|∇un|p−1|un∇ψ�| dx

≤
∫

B2�(0)
k2|∇un|p−1|unψ�| dx

+
∫

B2�(0)
k3|∇un|p−1|unψ�| dx

Using Hölder inequality and boundedness of (un) in W 1,q
0 (�), imply

∣∣∣∣
∫

�

una(|∇un|p) |∇un|p−2 ∇un∇ψ� dx

∣∣∣∣
≤ C1

(∫
B2�(0)

|un|p|ψ�|p
)

+C2

( ∫
B2�(0)

|un|q |ψ�|q
)

Since un → u in Ls(�) and using the Dominated Convergence Theorem, we get
that

lim
�→0

[
lim

n→∞

∣∣∣∣
∫

�

una(|∇un|p)|∇un|p−2∇un∇ψ� dx

∣∣∣∣
]

= 0. (3.5)
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84 G. M. Figueiredo, R. G. Nascimento

Now, using Proposition 2.3 and ( f1), we obtain

0 ≤ ρn(x) ≤ C(1 + |un(x)|r−1) a.e in �. (3.6)

Then,

∫
B2�(0)

ρnψ�un ≤ C

[ ∫
B2�(0)

ψ�|un|dx +
∫

B2�(0)
ψ�|un|r dx

]

so

lim
�→0

[
lim

n→∞

∫
�

ρnunψ� dx
]

= 0. (3.7)

Therefore

∫
�

a(|∇un|p)|∇un|pψ�dx =
∫

�

|u|q∗
ψ� dx + on(1). (3.8)

From (a1), we have

k0

∫
�

|∇un|pdx + k1

∫
�

|∇un|qdx ≤
∫

�

|u|q∗
ψ� dx

We can let n → ∞, we obtain

k1

∫
�

dμ ≤
∫

�

ψ� dν + o�(1).

Letting� → 0we conclude that νi ≥ k1μi . It follows froma (3.3) that νi ≥
(

k1S

)N/q

Now we shall prove that the above expression cannot occur, and therefore the set

� is empty. Indeed, arguing by contradiction, let us suppose that νi ≥
(

k1S

)N/q

, for

some i ∈ �. Then, from (a2), we get

c + on(1) = I (un) − 1

θ

〈
wn, un

〉

≥
(1
θ

− 1

q∗
)∫

�

|un|q∗
dx

+
∫

�

[1
θ
ρnun − F(un)

]
dx .

Once that (3.1), we conclude

c + on(1) ≥
(1
θ

− 1

q∗
) ∫

�

|un|q∗
dx ≥

∫
B2�(0)

|un|q∗
ψ� dx
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Letting n → +∞, we get

c ≥
(1
θ

− 1

q∗
) ∫

�

ψ� dν

and � → 0, we conclude

c ≥
(1
θ

− 1

q∗
)
νi ≥

(1
θ

− 1

q∗
)(

Sk1

)N/q

,

which is a contradiction. Hence � is empty and it follows that

∫
�

|un|q∗dx →
∫

�

|u|q∗dx . (3.9)

Now our aim is to prove that

un → u ∈ W 1,q
0 (�).

Note that, by the (3.9) and Brezis and Lieb [11](see also [24][Lemma 4.6]

∫
�

(|un|q∗−2un)(un − u)dx = on(1). (3.10)

Moreover, using ( f1) we have

0 ≤ ρn ≤ C(1 + |u|r−1) a.e ∈ �.

Thus
∫

�

|ρn|r/r−1dx ≤ C + C‖un‖r ≤ C + C1‖un‖r ,

which we conclude that (ρn) is bounded in Lr/r−1(�). By Holder inequality, we have

∫
�

ρn(un−u)dx ≤ |ρn|Lr/r−1(�)|un − u|Lr (�)

by the (3.9) and the boundedness of (ρn)

∫
�

ρn(un − u)dx = on(1). (3.11)

Now by the a(t) ≥ k1tq−p/p for every t ≥ 0, which follows by the left-hand side
inequality in (a1), assumption (a3) and arguing as [7, Lemma 2.4] we have

C |x − y|q ≤< a(|x |p)|x |p−2x − a(|y|p)|y|p−2y, x − y >, ∀x, y ∈ R
N
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86 G. M. Figueiredo, R. G. Nascimento

with N ≥ 1 and < ., . > the scalar product in RN .
Since that (un − u) is bounded in W 1,q

0 (�) and ||wn||∗ = 01, we get that

< wn, un − u >= on(1).

Now, using (3.10)and (3.11) we have

C ||un − u||q ≤
∫

�

(a(|∇un|p)|∇un|p−2∇un − a(|∇u|p)|∇u|p−2∇u)(∇un − ∇u)dx

=
∫

�

a(|∇un|p)|∇un|p−2∇un(∇un

−∇u)dx −
∫

�

a(|∇u|p)|∇u|p−2∇u(∇un − ∇u)dx

≤
∫

�

a(|∇un|p)|∇un|p−2∇un(∇un − ∇u)dx −
∫

�

|un|q∗

+
∫

�

|un|q∗−2unu −
∫

�

ρnun +
∫

�

ρnu

=
∫

�

a(|∇un|p)|∇un|p−2∇un(∇un − ∇u)dx

−
∫

�

(|un|q∗−2un)(un − u)dx −
∫

�

ρn(un − u)dx

= < wn, un − u >= on(1)

where we conclude, up to a subsequence, that

un → u ∈ W 1,q
0 (�).

��
Lemma 3.2 (i) There are v ∈ W 1,q

0 (�) and T > 0 such that

max
t∈[0,T ] I (tv) < c

(ii) There are r > 0 and e ∈ W 1,q
0 (�) \ Br (0) such that I (e) < 0.

(iii) There is ρ > 0 such that I (u) ≥ ρ, for ‖u‖ = r , u ∈ W 1,q
0 (�).

Proof Consider v ∈ C∞
0 (�) such that ‖v‖ = 1, |ϒ = {x ∈ � : T v(x) > β}| > 0, T

to be fixed later and the function j : R → R given by

j (t) = k2t p

p
‖v‖p

1,p + k3tq

q
− tq∗

q∗ |v|p∗
L p∗

(�
.

So, there is t∗ > 0, such that

j (t∗) = max
t≥0

j (t)
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Note that j is increasing in (0, t∗) and decreasing in (t∗,∞). We can choose T > 0
such that

(a) T < t∗,
(b) j (T ) < j (t∗)
(c) j (T ) < c

In order to prove i), we use (a1), continuous embedding and ||v|| = 1, then

I (tv) = 1

p

∫
�

A(|∇(tv)|p)dx − tq∗

q∗

∫
�

|v|q∗dx −
∫

�

F(tv)dx

≤ k2t p

p

∫
�

|∇v|p + k3tq

q

∫
�

|∇v|q − tq∗

q∗

∫
�

|v|q∗dx

= k2t p

p
‖v‖p

1,p + k3tq

q
− tq∗

q∗

∫
�

|v|q∗dx

= j (t) ≤ max
t∈[0,T ] j (t) ≤ j (T ) ≤ j (t∗) < c.

Then,

max
t∈[0,T ] I (tv) < c.

To prove i i) use ( f3) and fix β = T
2 we obtain e = T v with ‖e‖ = T such that

I (e) = I (T v) = 1

p

∫
�

A(|∇(tv)|p)dx − 1

q∗

∫
�

|T v|q∗dx −
∫

�

F(tv)dx

≤ j (T ) −
∫

�

F(tv)dx

≤ j (T ) − H(tv − β)

∫
ϒ

|T v|dx < 0.

Finally we consider ( f1), ( f4) and the continuous embedding of W 1,q
0 (�) in Lr (�)

and in Lq∗
(�) to obtain C1, C2, C3 > 0 such that

I (u) ≥ k1
q

C1‖u‖q − C2‖u‖r − C3‖u‖q∗
.

Considering 0 < γ sufficient small, we obtain ρ > 0 such that

I (u) ≥ ρ, for all ‖u‖ = γ with u ∈ W 1,q
0 (�).

��
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4 Proof of Theorem 1.1

From Lemmas 3.2 and 3.1, follow from the Theorem 2.1 problem (1.1) has a solution
u ∈ W 1,q

0 (�).
Using u− as a test function, we conclude

u = u+ ≥ 0.

Now we prove that the set

{x ∈ � : u(x) > β}

has positive measure.
Suppose, by contradiction, that u(x) ≤ β a.e in �. Then,since u is solution, we

have
∫

�

a(|∇u|p)|∇u|pdx =
∫

�

ρudx +
∫

�

|u|q∗dx

Using (a1) and ( f1) we have

k1‖u‖q = k1

∫
�

|∇u|qdx ≤ k0

∫
�

|∇u|pdx + k1

∫
�

|∇u|qdx

≤
∫

�

a(|∇u|p)|∇u|pdx =
∫

�

ρudx +
∫

�

|u|q∗dx

≤
∫

�

C(u + |u|r )dx +
∫

�

|u|q∗dx

≤ C(β + βr )|�| + β|�|
≤ 3Ĉβ|�|

where Ĉ = max{C, 1} and β < 1.
Since J (u) = c > 0, there exists M > 0 such that ‖u‖ ≥ M . Then,

k1Mq ≤ 3Ĉβ|�|, (4.1)

But this inequality is impossible if we choose

β = min

{
1/2,

T

2
,

k1Mr

3Ĉ |�|
}
.

��
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