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Abstract In this article we consider the following integral equation associated to the
BO–ZK operator in the half plane. By combining the lifting regularity and the moving
planes method for integral forms, we demonstrate that there is no positive solution for
this integral equation.
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1 Introduction

In [11] Dancer studied the nonexistence of positive solutions for the following non-
linear elliptic equation

⎧
⎨

⎩

−Δu(x) = ur (x), x ∈ R
2+,

u(x) = 0, x ∈ ∂R2+
(1)

proved a Liouville-type result by showing that problem (1) has no bounded positive
solution. During the last years there has been an increasing interest in the study of
linear and nonlinear integral operators, especially nonlocal and integral operators.
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Chen et al. [5] recently investigated the following integral equation on the upper half
space

u(x) = cn

∫

R
n+

(
1

|x − y|n−α
− 1

|x̄ − y|n−α

)

ur (y)dy,

where r > 1 and α < n, and established that the above integral equation is equivalent
to the poly-harmonic semi-linear equation

(−Δ)αu = ur , u > 0, (2)

with Navier boundary conditions on the half-space. They applied the method of
moving planes in integral forms and showed that there is no nonnegative solution

u ∈ L
n(r−1)

α

loc (Rn+), if n
n−α

< r < n+α
n−α

. One can see, for instance, [6,21] for some good
surveys on some Liouville-type theorems for (2).

In the present paper we study the the following integral equation on the upper half
space

u(x) =
∫

R
2+
Gα(x, y)ur (y) dy, x = (x1, x2) ∈ R

2+ = R × R+, (3)

where r > 0, α ∈ (0, 1),

Gα(x, y) = Kα(x − y) − Kα(x − y), (4)

and Kα is the kernel of the Benjamin–Ono–Zakharov–Kuznetsov (BO–ZK) operator
Lα = I + D2α

x1 − ∂2x2 , i.e.

Kα(x) = Cα

∫ ∞

0
e−te− x22

4t t−
1
2 Hα(x1, t) dt, (5)

with

Hα(x1, t) =
∫

R

e−t |ξ |2αeix1ξdξ,

where Cα is a positive constant, depending on α. Here Dx1 is defined by (−Δx1)
1/2

and x̄ is the reflection of x about x2 = 0. It can be easily seen that under suitable decay
assumptions on the solutions, (3) is equivalent to the equation

⎧
⎨

⎩

Lαu(x) = ur (x), x ∈ R
2+,

u(x) = 0, x ∈ ∂R2+.

(6)

The operator Lα appears in the study of toy models [1,2,10], parabolic equations for
which local diffusions occur only in certain directions and nonlocal diffusions. See
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[16] for some results on regularity and rigidity properties of the operatorLα . Equation
(6) appears in the study of solitary waves of the generalized BO–ZK equation

ut + ∂x1

(
−D2α

x1 u + ∂2x2u + ur
)

= 0. (7)

See also [22] for some local and global well-posedness results for (7). In the case
α = 1/2, Eq. (7) turns into

ut + ∂x1

(
−H ∂x1u + ∂2x2u + ur

)
= 0, (8)

whichwas proposed as amodel to describe the electromigration in thin nanoconductors
on a dielectric substrate (see [13,14]). HereH stands for the Hilbert transform in the
x1-variable such that H ∂x1 = Dx1 . In this case the kernel K1/2 can be represented
[14] by

K1/2(x) = C1/2

∫ ∞

0

√
t

t2 + x21
e− x22

4t dt.

It was proved in [14] that the regular solitary waves of (8) do exist in the fractional
Sobolev–Liouville spaces (see [12]), if 2 ≤ r < 5.

Before stating our main result, we recall that if f ∈ Lq
x2L

p
x1(R

2+), its norm is

denoted by ‖ f ‖Lq
x2 L

p
x1 (R2+) =

∥
∥
∥‖ f ‖L p

x1 (R)

∥
∥
∥
Lq
x2 (R+)

.

Theorem 1 Suppose that p0, q0 ≥ r satisfies

α

p0
+ 1

q0
<

2α

r − 1
. (9)

Then there is no positive solution u ∈ L p0
x2 L

q0
x1(R

2+) of (3).

Corollary 1 Assume that p0, q0 ≥ r satisfies (9). If u ∈ L p0
x2 L

q0
x1(R

2+) is a nonnegative
solution of (6), then u ≡ 0.

To prove the non-existence of positive solutions for (3), we use regularity lifting by
contracting operators appearing in the integral equations [7,19] to boost the positive
solutions for integral equation (3) to L1(R2+) ∩ L∞(R2+).

Theorem 2 Let u be a positive solution of (3). Suppose that u ∈ L p0
x2 L

q0
x1(R

2+), where
p0, q0 ≥ r satisfies (9). Then u ∈ L1(R2+) ∩ L∞(R2+).

Next step to prove Theorem 1 is to employ the method of moving planes in integral
forms. We move the plane along x2 direction to show that the solutions must be
monotone increasing in x2 and thus derive a contradiction.

Theorem 3 Under the assumption of Theorem 2, we have that u must be symmetric
about the line x2 = c, for some constant c. Moreover u is strictly monotone increasing
with respect to x2.
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For more related results regarding the method of moving planes and integral equa-
tions, refer the reader to [6,8,9,15,19,20] and the references therein.

This paper is organized as follows. Section 2 is devoted to the preliminaries of the
kernel Kα and also the proof of Theorem 2. The symmetry and the nonexistence result
of the solutions are proved in Sect. 3.

For the simplicity and without loss of generality, we assume henceforth Cα = 1.
Throughout the paper, the notation A � B means that there exists a constantC > 0

such that A ≤ CB. The notation A � B is similarly defined.Wewill also write A ≈ B
to mean A � B and A � B.

2 Properties of Kα

In this section we will give some key properties of the kernel Kα .

Lemma 1 Let α > 0. The following properties hold:

(i) Kα ∈ L p
x2L

q
x1(R

2) ∩ Lq
x1L

p
x2(R

2) for p, q ≥ 1 with α(1 + 1/p) > 1 − 1/q.
(ii) Kα(x) > 0, for x ∈ R

2, and is an even function which is strictly decreasing in
|x1| and |x2| and smooth for x1 �= 0.

(iii) For 0 < α < 1, we have the following bound

Kα(x) � |x1|α−1e−|x2|, x ∈ R
2,

where C depends only on α.
(iv) There is a constant C, depending only on α, such that

Kα(x) � |x1|−1−2αe− |x2 |
4 , if |x1| ≥ 1. (10)

and

Kα(x) � |x1|−1−2αe− x22
4 , if |x1| ≥ 1 ≥ |x2|. (11)

In particular, 0 < lim|x1|,|x2|→+∞ |x1|1+2αex
2
2/4Kα(x) < +∞.

Proof The decay properties of Hα are obtained in [4] (see also [3]). In particular, it is
proved that

lim|x1|→∞ |x1|1+2αHα(x1, 1) < ∞.

Using this estimate and the scaling property

Hα(x1, t) = t−
1
2α Hα

(
t−

1
2α x1, 1

)
,

it is easy to see that

Hα(x1, t) ≈ min
{
t−1/2α, t |x1|−1−2α

}
. (12)

123



Liouville-type theorem for a nonlocal operator on the half… 443

So that

Kα(x) � |x1|−1−2α
∫ |x1|2α

0
e−t− x22

4t t
1
2 dt +

∫ ∞

|x1|2α
e−t− x22

4t t
− 1

2

(
1+ 1

α

)

dt. (13)

It follows then froma change of variable and the elementary inequality s+y2/s ≥ 2|y|,
for all s ≥ 0, that

Kα(x) � |x1|α−1e−|x2|
(∫ 1

0
t1/2dt +

∫ ∞

1
t−1/2(1+1/α)dt

)

� |x1|α−1e−|x2|. (14)

To prove (10), we have for |x1| ≥ 1 from (13) and the inequality

t + x22
4t

≥ t

2
+ 1

2t
+ |x2|

4

that

Kα(x) � |x1|−2α−1e− |x2 |
4

∫ ∞

0
e−te− 1

t t
1
2 dt � |x1|−2α−1e− |x2 |

4 . (15)

In order to prove (11), we have for |x1| ≥ 1 ≥ |x2| from (12) and the inequality
x22/t ≤ x22 + 1/t that

Kα(x) ≥ |x1|−1−2α
∫ 1

0
e−te−x22/4t t1/2 � |x1|−1−2αe−x22/4.

The properties of Kα in (ii) follow from the positivity and the monotonicity of Hα in
[4,17]. Finally the property (i) is deduced from (13) and the Minkowski inequality. 
�

The following lemma gives a Hardy–Littlewood–Sobolev-type inequality; and is a
direct consequence of Lemma 1 (see also [18]) and the Young inequality

‖ f ∗ g‖L p
x2 L

q
x1 (R2+) ≤ ‖ f ‖L p1

x2 L
q1
x1 (R2+)

‖g‖L p2
x2 L

q2
x1 (R2+)

, (16)

with 1 + 1
p = 1

p1
+ 1

p2
and 1 + 1

q = 1
q1

+ 1
q2
.

Lemma 2 Let α > 0 and c > 0 and f ∈ L p
x2L

q
x1(R

2). Then Mα( f ) = Kα ∗ f ∈
L p1
x2 L

q1
x1(R

2) and

‖Mα( f )‖L p1
x2 L

q1
x1 (R2)

≤ C‖ f ‖L p
x2 L

q
x1 (R2),

provided α(2+ 1/p1) + 1/q1 > 1/q + α/p, where ∗ is the convolution operator. The
same result holds for Lq

x1L
p
x2(R

2) and Lq1
x1L

p1
x2 (R

2).

To prove Theorem 2, we apply the regularity lifting by contracting operators.
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Definition 1 Let V be a topological vector space with two extended norms ‖ · ‖X and
‖ ·‖Y , where X = {v ∈ V ; ‖v‖X < ∞} and Y = {v ∈ V ; ‖v‖Y < ∞}. The operator
T : X → Y is said to be a contraction if

‖T x − T y‖Y ≤ θ‖x − y‖X ,

for all x, y ∈ X and some 0 < θ < 1.

We now recall the following regularity lifting theorem (see [7,19]).

Theorem 4 [19, Lemma 2.2] Let T be a contracting operator from X to itself and
from Y to itself, and assume that X, Y are both complete. If f ∈ X, and there exists
g ∈ Z = X ∩ Y such that f = T f + g in X, then g ∈ Z.

The proof of Theorem 2 is a direct corollary of the following result and the Young
inequality (16).

Theorem 5 Under the same conditions of Theorem 2, we have u ∈ L p
x2L

q
x1(R

2+) for
all 1 < p, q < ∞.

Proof Define the linear operator

Tvw =
∫

R
2+
Gα(x, y)(|v(y)|r−1w(y)) dy.

For a fixed real number a > 0, define

ua(x) =
{
u(x), |u(x)| > a or |x | > a,

0, otherwise.

Write ub = u − ua , which is uniformly bounded by a in Ba(0). It is evident that
uq = (ua + ub)q = uqa + uqb for all q > 0. Since u = ua + ub satisfies (3), we have
u = Tuaua+Tubub. Let g = Tubub−ub. Thenwe can see that g ∈ L∞(R2+)∩L1(R2+),
so that g ∈ L p

x2L
q
x1(R

2+) for all 1 < p, q < ∞. Thus ua = Tuaua + g. Now by using
Lemma 2 and the Hölder inequality we have for w ∈ L p

x2L
q
x1(R

2+) that

‖Tuaw‖L p
x2 L

q
x1 (R2+) ≤ C‖ua‖r−1

L
p0
x2 L

q0
x1 (R2+)

‖w‖L p
x2 L

q
x1 (R2+).

By virtue of u ∈ L p0
x2 L

q0
x1(R

2+), choose a large enough such that

C‖ua‖r−1
L
p0
x2 L

q0
x1 (R2+)

< 1/2.

This combining with Tua being a linear operator, implies that Tua is a contraction
map from L p

x2L
q
x1(R

2+) into itself, for all p, q > r . Applying Theorem 4, the solution
w = Tuaw+g belongs to L p0

x2 L
q0
x1(R

2+)∩ L p
x2L

q
x1(R

2+); and by uniqueness of solution,
ua ∈ L p0

x2 L
q0
x1(R

2+) ∩ L p
x2L

q
x1(R

2+), since ua is a solution of w = Tuaw + g. Therefore
u ∈ L p

x2L
q
x1(R

2+) for all r < p, q < ∞.
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Finally an application of Lemma 1 shows that u ∈ L p
x2L

q
x1(R

2+) for all 1 < p, q <

∞. 
�
Remark 1 Lemmas 1 and 2 show that Theorem 5 is also true if we consider
Lq
x1L

p
x2(R

2+) instead of L p
x2L

q
x1(R

2+).

We show that the positive solution u of (3) are continuous. We believe that u is also
Lipschitz continuous, but we are not able to show it.

Proposition 1 Under the same conditions of Theorem 2, the positive solution u of (3)
is continuous.

Proof It follows from (3) that

u(x) − u(y) =
∫

R
2+

(Gα(x, z) − Gα(y, z)) ur (z)dz

=
∫

Bδ(x)
(Gα(x, z) − Gα(y, z)) ur (z)dz

+
∫

R
2+\Bδ(x)

(Gα(x, z) − Gα(y, z)) ur (z)dz.

(17)

By Theorem 2,
∫

R
2+ Gα(x, z)ur (z)dz < +∞, and thus the second term of the right

hand side of (17) is small enough if we choose δ sufficiently large. On the other hand,
we have from Lemma 1 that Kα(x − z) − Kα(y − z) → 0, as |x − y| → 0, for any
z ∈ Bδ(x). Hence

lim
x→y

∫

Bδ(x)
(Kα(x − z) − Kα(y − z)) ur (z)dz = 0.

Since |x̄ − ȳ| → 0 as |x − y| → 0, we have

lim
x→y

∫

Bδ(x)
(Kα(x̄ − z) − Kα(ȳ − z)) ur (z)dz = 0.

Therefore we deduce

lim
x→y

∫

Bδ(x)
(Gα(x, z) − Gα(y, z)) ur (z)dz = 0.

Thus the first term of the right hand side of (17) is finite, and consequently the solution
u of (3) is continuous. 
�

3 Symmetry

For a given real number λ > 0, we may define a family of moving planes

Ωλ = {x ∈ R
2+, x2 = λ}.
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and moving regions Σλ = {x ∈ R
2+, 0 < x2 < λ}. Let us list some properties of Gα .

For any x ∈ R
2+, we denote its reflection through the plane Ωλ by xλ = (x1, 2λ− x2).

Lemma 3 (i) For any x, y ∈ Σλ with x �= y, we have

max{Gα(xλ, y),Gα(x, yλ)} < Gα(xλ, yλ) (18)

and

|Gα(xλ, y) − Gα(x, yλ)| < Gα(xλ, yλ) − Gα(x, y). (19)

(ii) For any x ∈ Σλ and y ∈ Σc
λ = R

2+ \ Σλ, it holds that

Gα(x, y) < Gα(xλ, y). (20)

Proof For any x, y, let d(x, y) = |x2 − y2|2. Recalling (4), one has

Gα(x, y) = Kα(x − y) − Kα(x̄ − y)

=
∫ ∞

0
e−t t−

1
2 Hα(x1 − y1, t)

(

e− (x2−y2)2

4t − e− (−x2−y2)2

4t

)

dt

=
∫ ∞

0
e−t t−

1
2 Hα(x1 − y1, t)

(
e− d(x,y)

4t − e− d(x,y)+ψ(x,y)
4t

)
dt,

where ψ(x, y) = 4x2y2. It is clear that Gα(x, y) > 0. By direct computations, one
obtains that

∂Gα

∂d
< 0,

∂Gα

∂d
> 0,

∂2Gα

∂ψ∂d
< 0. (21)

On the other hand, it is obvious to see for any x, y ∈ Σλ that

d(xλ, yλ) = d(x, y) < d(xλ, y) = d(x, yλ), (22)

and

ψ(x, y) ≤ max{ψ(xλ, y), ψ(x, yλ)} ≤ ψ(xλ, yλ). (23)

The proof of lemma follows from (21)–(23). 
�
Lemma 4 For any positive solution u of (3), we have for any x ∈ Σλ that

u(x) − uλ(x) ≤
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ))
(
ur (y) − urλ(y)

)
dy,

where uλ(x) = u(xλ).
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Proof Let Σ̃λ = {xλ, x ∈ Σλ}. It is easy to see that

u(x) =
∫

Σλ

Gα(x, y)ur (y)dy +
∫

Σ̃λ

Gα(x, y)ur (y)dy

+
∫

Σc
λ\Σ̃λ

Gα(x, y)ur (y)dy

=
∫

Σλ

Gα(x, y)ur (y)dy +
∫

Σλ

Gα(x, yλ)u
r
λ(y)dy

+
∫

Σc
λ\Σ̃λ

Gα(x, y)ur (y)dy.

(24)

Substituting x by xλ, we get

u(x) − u(xλ) =
∫

Σλ

(Gα(x, y) − Gα(xλ, y)) u
r (y)dy

+
∫

Σλ

(Gα(x, yλ) − Gα(xλ, yλ)) u
r
λ(y)dy

+
∫

Σc
λ\Σ̃λ

(Gα(x, y) − Gα(xλ, y)) u
r (y)dy.

(25)

It is deduced from Lemma 3 that

u(x) − u(xλ) ≤
∫

Σλ

(Gα(x, y) − Gα(xλ, y)) u
r (y)dy

−
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ)) u
r
λ(y)dy

≤
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ)) u
r (y)dy

−
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ)) u
r
λ(y)dy

=
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ))
(
ur (y) − urλ(y)

)
dy;

and the proof is completed. 
�
Lemma 5 For 0 < λ � 1, Σ−

λ = {x ∈ Σλ, u(x, y) > uλ(x, y)} has measure zero.
Proof It is easy to see from Lemma 3, for any x ∈ Σ−

λ , that
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0 < u(x) − uλ(x) ≤
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ))
(
ur (y) − urλ(y)

)
dy

=
∫

Σ−
λ

(Gα(xλ, yλ) − Gα(x, yλ))
(
ur (y) − urλ(y)

)
dy

+
∫

Σλ\Σ−
λ

(Gα(xλ, yλ) − Gα(x, yλ))
(
ur (y) − urλ(y)

)
dy.

By Lemma 3, ur (x) ≤ urλ(x) on Σλ \ Σ−
λ and Gα(xλ, yλ) ≥ Gα(x, yλ) for y ∈

Σλ \ Σ−
λ , then the last integral in the above inequality is negative. Hence we get

u(x) − uλ(x) ≤
∫

Σ−
λ

(Gα(xλ, yλ) − Gα(x, yλ))
(
ur (y) − urλ(y)

)
dy

≤
∫

Σ−
λ

Gα(xλ, yλ)
(
ur (y) − urλ(y)

)
dy

≤
∫

Σ−
λ

Kα(xλ − yλ)
(
ur (y) − urλ(y)

)
dy

�
∫

Σ−
λ

Gα(xλ, yλ)ϕ
r−1(y) (u(y) − uλ(y)) dy

�
∫

Σ−
λ

Gα(xλ, yλ)u
r−1(y) (u(y) − uλ(y)) dy,

(26)

where we have used the mean value theorem with ϕ(y) valued between u(y) and
uλ(y), and the fact that 0 ≤ uλ(y) ≤ ϕ(y) ≤ u(y) on Σ−

λ .
It follows first from Lemma 2 and then the Hölder inequality that

‖u − uλ‖L p0
x2 L

q0
x1 (Σ−

λ )
� ‖u‖r−1

L
p0
x2 L

q0
x1 (Σλ)

‖u − uλ‖L p0
x2 L

q0
x1 (Σ−

λ )
.

Since u ∈ L p0
x2 L

q0
x1(R

2), by choosing λ � 1 we deduced that ‖u−uλ‖L p0
x2 L

q0
x1 (Σ−

λ )
= 0,

and therefore Σ−
λ has measure zero. 
�

Proof of Theorem 3 Define

λ0 = sup{λ, uμ(x) ≥ u(x),∀μ ≤ λ, x ∈ Σμ}.

We assume that λ0 < +∞, because the case λ0 = +∞ gives the proof by the
definition of λ0 and the assumption u ∈ L p0

x2 L
q0
x1(R

2+). We show that the solution u(x)
is monotone increasing with respect to the x2-variable and symmetric about Ωλ0 , that
is, u(x) = uλ0(x) on Σλ0 . Suppose by the contradiction argument that u ≤ uλ0 and
u �≡ uλ onΣλ0 .We prove that there exists an ε > 0 such that, for any λ0 ≤ λ < λ0+ε,
it holds on Σλ that

u(x) ≤ uλ(x).
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By using an argument analogous to the proof of Lemma 5, we can obtain that

‖u − uλ‖L p0
x2 L

q0
x1 (Σλ)

≤ C‖u‖r−1
L
p0
x2 L

q0
x1 (Σ−

λ )
‖u − uλ‖L p0

x2 L
q0
x1 (Σλ)

. (27)

Now if we establish for ε � 1 that

C‖u‖r−1
L
p0
x2 L

q0
x1 (Σ−

λ )
≤ 1

4
, (28)

then it follows from (27) that Σ−
λ is a set of zero measure; and consequently uλ(x) ≥

u(x) for any x ∈ Σλ and λ ∈ [λ0, λ0 + ε). This contradicts with the definition of λ0
and the result follows.

Nowwe prove inequality (28). Choose, for any small ς > 0, a large enough number
δ > 0 such that

‖u‖r−1
L
p0
x2 L

q0
x1 (R2+\Bδ(0))

< ς, (29)

where Bδ(0) is the ball of radius δ > 0 centered at zero in R
2+. It is straightforward

to see that u < uλ in Σλ0 . Indeed by contrary suppose that uλ(x0) = u(x0), for some
x0 ∈ Σλ0 . It follows then from Lemma 3 and the proof of Lemma 4 that

0 = uλ(x0) − u(x0) ≥
∫

Σλ0

(
Kα(xλ0 , yλ0) − Kα(x, yλ0)

) (
urλ0(y) − ur (y)

)
dy

+
∫

Σc
λ0

\Σ̃λ0

(
Kα(xλ0 , y) − Kα(x, y)

)
urλ0(y)dy

≥
∫

Σc
λ0

\Σ̃λ0

(
Kα(xλ0 , y) − Kα(x, y)

)
urλ0(y)dy.

By applying again Lemma 3 it yields that u(y) = 0 for all y ∈ Σc
λ0

\ Σ̃λ0 which
contradicts with the positivity of u. Now for any κ > 0 define

Bκ = {x ∈ Σλ0 ∩ Bδ(0), uλ0(x) − u(x) > κ}, Bc
κ = Σλ0 ∩ Bδ(0) \ Bκ ;

and denote, for λ > λ0,

B̃λ = (Σλ \ Σλ0) ∩ Bδ(0).

Note that the measure of Bc
κ tends to zero as κ → 0. Moreover

Σ−
λ ∩ Bδ(0) ⊂ (Σ−

λ ∩ Bκ) ∪ Bc
κ ∪ B̃λ (30)
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and themeasure of B̃λ is small as λ is close to λ0.We show that themeasure ofΣ−
λ ∩Bκ

is sufficiently small as λ is close to λ0. Actually, since for any x ∈ Σ−
λ ∩ Bκ we have

uλ(x) − u(x) = uλ(x) − uλ0(x) + uλ0(x) − u(x) < 0,

then uλ0(x) − uλ(x) > κ . And hence

Θκ := {x ∈ Bδ(0), uλ0(x) − uλ(x) > κ} ⊃ Σ−
λ ∩ Bκ . (31)

Therefore it is deduced from the Chebyshev inequality that

|Θκ | ≤ 1

κr+1

∫

Θκ

|uλ0(x) − uλ(x)|r+1dx ≤ 1

κr+1

∫

Bδ(0)
|uλ0(x) − uλ(x)|r+1dx .

The above integral and consequently Σ−
λ ∩ Bκ is small enough as λ is close to λ0.

Finally by combining (30) and (31) we obtain that the measure of Σ−
λ ∩ Bδ(0) is

sufficiently small for λ close to λ0. This completes the proof. 
�
Proof of Theorem 1 Suppose that u is a nontrivial nonnegative solution of (3). Then
there exists y0 ∈ R

2+ such that u(y0) > 0. By the continuity of u from Proposition 1,
there exists a neighborhood Ny0 of y0 in R

2+ such that u(y) > 0 for any y ∈ N . Since
Gα > 0 in R2+, then

u(x) =
∫

R
2+
Gα(x, y)ur (y)dy ≥

∫

Ny0

Gα(x, y)ur (y)dy > 0. (32)

Due to Theorem 3, we know that the plane Ωλ can be moved to the limiting position
Ωλ0 . We show that λ0 = +∞, which gives a simple contradiction argument. Assume
λ0 < +∞, then the symmetric image of the boundary of R2+ through the line Ωλ0

is the plane x2 = 2λ0. And therefore u(x) = 0 for any x ∈ Ω2λ0 , which is a
contradiction to (32). Now making use again of Theorem 3, it can be derived that
u(x) is monotone increasing with respect to x2. This leads to a contradiction with the
assumption u ∈ L p0

x2 L
q0
x1(R

2+). As a result, the positive solution of (3) does not exist.

�

Remark 2 Under the assumptions of Theorem 1, one can easily repeat, with some
modifications, the proof of Theorem 1 and demonstrate the non-existence of positive
solution for the integral equation (3) in R

+ × R. The key point is that by Bernstein’s
theorem [17], one can write Hα in terms of subordination formula

Hα(x1, t) =
∫ ∞

0

1√
2s

e− t2x21
4s dμα(s),

with some nonnegative finite measure μα ≥ 0 with μα �≡ 0.

Theorem 1 can be extended to a general nonlinearity.
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Theorem 6 Let the assumptions of Theorem 1 hold. Suppose that u ∈ L p0
x2 L

q0
x1(R

2+)

is the nonnegative solution of

u(x) =
∫

R
2+
Gα(x, y) f (y, u(y)) dy, x = (x1, x2) ∈ R

2+ = R × R+, (33)

Suppose also that f (x, u) is nondecreasing in the variable x2 and nondecreasing
with respect to u, and ∂ f

∂u ∈ L p1
x2 L

q1
x1(R

2+) is non-decreasing with respect to u, where
1 ≤ p1, q1 ≤ ∞ with

1

p1
+ 1

p0
≤ 1 and

1

q1
+ 1

q0
≤ 1.

Then u is identically equal to zero.

The proof is basically the same as that of Theorem 1. In order to avoid repetition,
we explain the key modifications of the proof of Theorem 6.

Applying the same arguments as in Lemma 4, we can observe for any x ∈ Σλ from
the monotonicity of f (x, u) with respect to x2 that

u(x) − uλ(x) ≤
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ)) ( f (y, u(y)) − f (y, uλ(y))) dy

+
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ)) ( f (y, uλ(y)) − f (yλ, uλ(y))) dy

≤
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ)) ( f (y, u(y)) − f (y, uλ(y))) dy.

(34)

Recall the definition of Σ−
λ in Lemma 5. Now since f is nondecreasing in u, we have

u(x) − uλ(x) ≤
∫

Σλ

(Gα(xλ, yλ) − Gα(x, yλ)) ( f (y, u(y)) − f (y, uλ(y))) dy

≤
∫

Σ−
λ

(Gα(xλ, yλ) − Gα(x, yλ)) ( f (y, u(y)) − f (y, uλ(y))) dy

≤
∫

Σ−
λ

Gα(x, y) ( f (y, u(y)) − f (y, uλ(y))) dy

≤
∫

Σ−
λ

Kα(x − y) ( f (y, u(y)) − f (y, uλ(y))) dy

≤
∫

Σ−
λ

Gα(x, y)
∂ f

∂u
(y, u(y))(u(y) − uλ(y))dy, (35)

where in the last inequality we have used themean value theorem and themonotonicity
of ∂ f

∂u in u. The rest of proof is the same as that of Theorem 1 by using Lemma 2.
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