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Abstract This paper is a revised version of a recent paper by the author with the same
title. The purpose of the present paper is the improvement of results for solutions of
the inhomogeneous differential equation:

u′(t) + A(t)u(t) + f (t) = 0, t ∈ (t1, t2)

u(t1) = ϕ

in reflexive Banach space X. For f (s) ∈ C1
([t1, t2], X

)
, Kato obtained a unique strict

solution under some conditions on the operator family {A(t)}t1≤t≤t2 to ensure the
hyperbolicity of theproblem. In aprevious paper, the author obtained in abstractHilbert
space H a unique strong solution u(t) ∈ C0,1

([t1, t2], H
)∩ D if f ∈ BV

([t1, t2], H
)

and a strict solution if additionally f ∈ C0
([t1, t2], H

)
. Here is D = D

(
(A(t)

)

independent of t. In the present paper we extend these results to reflexive Banach
spaces X.
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126 S. Jawad

1 Introduction

This paper is a revised version of a recent paper by the author with the same title.
New in this version is the crucial Lemma 2.1 and its correct application in Theo-
rem 3.1. This Lemma was first mentioned in the paper of Kato [6] from 1953 as
Lemma 5, but the proof there is not quite right, because from the boundedness of the
sequence {Axn} its weak convergence is inferred, while only the existence of a weak
convergent subsequence is certain. In the present paper we give proof for this Lemma.
For the treatment of the inhomogeneous differential equation:

{
u′(t) + A(t)u(t) + f (t) = 0 , t1 < t < t2
u(t1) = ϕ

(1.1)

in reflexive Banach space X, we use as usual the associated integral equation:

u(t) = U (t, t1)ϕ −
∫ t

t1
U (t, s) f (s)ds. (1.2)

Here U (t, s) is the evolution operator generated by the family of closed operators{
A(t)

}
t1≤t≤t2

according to Kato [7, page 246] (see precisely the assumptions on A(t)
in Sect. 2).

The classic ofKato [6] from1953 represents the beginning.After his introduction of
the stability concept in his revision [7] from 1970 intense activities arose with respect
to the homogeneous part of (1.1) while the inhomogeneous problem was remaining
disregarded. So, this paper is devoted to this topic. For details on these activities around
the homogeneous equation, we refer to the paper of Bárta [1].

The stability concept due to Katomeans essentially the admission that the operators
A(t) generate C0-semigroups instead of the merely C0-semigroups of contractions at
Kato [6].

As is to be observed, the integral term in (1.2) plays the leading role. In this context,
we show in Theorem 3.1(I) for f ∈ BV

([t1, t2], X
)
first of all the relation:

v(t) :=
∫ t

t1
U (t, s) f (s)ds ∈ D, t ∈ [t1, t2]. (1.3)

This relation means nearness to the a.e. differentiability of v(t). For comparison
see Kato [7, page 255] and Pazy [8, page 148].

Further we also obtain in Theorem 3.1 a similar estimate to the estimate (3.2) for
‖A(t)v(t)‖ in [t1, t2] from Jawad [5].

The chapter after deals with the investigation of the differentiability of v(t) by
showing of the Lipschitz continuity of v(t) so that u(t) := U (t, t1)ϕ − v(t) fullfils
(1.1) strongly and uniquely for f ∈ BV

([t1, t2], X
)
and strictly for additionally f ∈

C0
([t1, t2], X

)
. Regarding the strict solution, thatmeans the renunciation of the usually

requirement of the continuously differentiability of f (t) (see Kato [6, Theorem 5] and
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Unique strong and strict solutions for inhomogeneous… 127

Kato [7, Theorem 7.2]). Further we show the uniqueness of u(t) even for absolutely
instead of Lipschitz continuous u(t).

Regarding the classification of the solution, we note:

1. Mild solution The solution u(t) satisfies the integral equation (1.2). For that it is
sufficient that f ∈ L1

(
(t1, t2), X

)
.

2. Strong solution u(t) fullfils the differential equation (1.1) a.e. in [t1, t2] with
u′(t) ∈ L1

(
(t1, t2), X

)
and u(t) ∈ D, t ∈ [t1, t2]. Pazy [8, page 109].

3. Classical solution u(t) ∈ C0
([t1, t2], X

) ⋂
C1

(
(t1, t2], X

)
, u(t) ∈ D, t ∈ [t1, t2].

The differential equation (1.1) is satisfied on (t1, t2], see Pazy [8, page 139].
4. Strict solution u(t) ∈ C0

([t1, t2], D
) ⋂

C1
([t1, t2], X

)
and u(t) satisfies the dif-

ferential equation on the whole [t1, t2].

2 Preliminaries

In this chapter we state the conditions on the operator family
{
A(t)

}
t1≤t≤t2

as well as
the resulting conclusions and tools:

(1) The closed operators A(t) are infinitesimal generators of C0 -semigroups on the
reflexive Banach space X.

(2) The operator family
{
A(t)

}
t1≤t≤t2

is stable, i.e. there exist constants M ≥ 1 and
ω such that: ∥∥∥∥∥

∥

k∏

j=1

(
λ + A(τ j )

)−1

∥∥∥∥∥
∥

≤ M

(λ − ω)k
(2.1)

for λ > ω and every finite sequence t1 ≤ τ1 ≤ τ2 ≤ · · · ≤ τk ≤ t2, k = 1, 2, . . ..
The constants M, ω are called the stability constants.

(3) The domains of definition D
(
A(t)

)
are independent of t , i.e. D

(
A(t)

) = D, t ∈
[t1, t2].

(4) For every x ∈ D, A(t)x is continuously differentiable in [t1, t2].
These conditions are the basis for Theorem7.2 ofKato [7].They imply the following

propositions:

(a) For the operator family
{
A(t)

}
t1≤t≤t2

there exists the unique evolution operator
U (t, s) ∈ B(X), t1 ≤ s ≤ t ≤ t2, with the following properties according to
Kato [7] (Theorem 6.1, page 252):

(b) For every x ∈ X, U (t, s)x is jointly continuous in t, s ∈ [t1, t2]withU (s, s) = I
and ‖U (t, s)‖ ≤ Meω(t−s).

(c) U (t, s) = U (t, r)U (r, s), s ≤ r ≤ t .
(d) U (t, s)D ⊂ D.
(e) For x ∈ D it is in [t1, t2]:

∂

∂t
U (t, s)x = −A(t)U (t, s)x (2.2)

∂

∂s
U (t, s)x = U (t, s)A(s)x . (2.3)
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128 S. Jawad

(f) For every y ∈ D, A(t)U (t, s)y and U (t, s)A(s)y are continuous in t, s.

As it is usual in the sources (see Kato [7, page 254, 255]) we may also assume
for simplicity and without loss of generality the existence of the inverses A−1(t), t ∈
[t1, t2], on X .

By setting S(t) := A(t) on page 253 from Kato [7], we have further:

(g) For every x ∈ X , the expression A(t)U (t, s)A−1(s)x is continuous in t, s (sepa-
rately) and there is a constant k1 such that:

‖A(t)U (t, s)A−1(s)‖ ≤ k1 , t, s ∈ [t1, t2]. (2.4)

(h) For every x ∈ X, A′(s)A−1(s)x is continuous in s with:

‖A′(s)A−1(s)‖ ≤ k2 on [t1, t2]. (2.5)

For the proof of (h) see the author [5], Hilfssatz 2.3.

Lemma 2.1 Let B be a reflexive Banach space and A be a closed linear operator
with non-empty resolvent set. Let {xn} be a sequence such that xn ∈ D(A), xn ⇀

x (n → ∞) and {‖Axn‖} is bounded. Then x ∈ D(A) and Axn ⇀ Ax (n → ∞).

Proof We may assume without loss of generality that λ = 0 belongs to the resolvent
set of A. Thus A−1 exists and is bounded so that (A−1)∗ also exists. Since {‖Axn‖}
is bounded, there exists a weakly convergent subsequence {Axnk }. Set Axnk ⇀ y ∈
B (k → ∞). It is for z ∈ B∗:

〈Axnk , (A−1)∗z〉 → 〈y, (A−1)∗z〉 = 〈A−1y, z〉 (k → ∞).
On the other hand we have for the same convergent sequence of complex numbers:

〈Axnk , (A−1)∗z〉 = 〈A−1Axnk , z〉 = 〈xnk , z〉 → 〈x, z〉 (k → ∞).

That implies: 〈A−1y, z〉 = 〈x, z〉, precisely for every z ∈ B∗, i.e. A−1y = x . Hence
x ∈ D(A), y = Ax .

Let {Axn j } be any another weakly convergent subsequence with Axn j ⇀ y′ ( j →
∞). The same procedure shows y′ = Ax = y. Therefore {Axn} is weakly convergent
and Axn ⇀ Ax (n → ∞). ��

3 The regularity of v

Theorem 3.1 Let the Banach space X be reflexive and the conditions (1)–(4) from the
Preliminaries be satisfied. Then it holds:

(I) For f ∈ BV
([t1, t2], X

)
and every t ∈ [t1, t2] it is:

v(t) =
∫ t

t1
U (t, s) f (s)ds ∈ D (3.1)
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Unique strong and strict solutions for inhomogeneous… 129

with

‖A(t)v(t)‖ ≤ ‖{I − A(t)U (t, t1)A
−1(t1)} f (t1)‖

+ k1k2

(

sup
s∈[t1,t2]

‖ f (s)‖
)

(t − t1) + (2k1 + 1)
∫ t

t1
‖d f (s)‖ (3.2)

in [t1, t2], where k1, k2 are from (2.4) and (2.5).
(II) v(t) ∈ C0,1

([t1, t2], X
)
.

(III) If additionally f ∈ C0
([t1, t2], X

)
then:

A(t)v(t) ∈ C0([t1, t2], X
)
.

Proof (I) For a fixed t ∈ [t1, t2], our proceeding consists of the approximation of
the integral v(t) by a sequence of elements vn ∈ D, n = 1, 2, . . .. Afterwards we
show the boundedness of A(t)vn so that finally v(t) ∈ D because X is reflexive. The
estimate (3.2) is then a consequence of the weak convergence:

A(t)vn ⇀ A(t)v(t), (n → ∞).

So, let t ∈ [t1, t2] be fixed. Since f ∈ BV
([t1, t2]X

)
, there exists a sequence of step

functions
{
fn(s)

}∞
n=0 which converges uniformly to f (s) on [t1, t2] (see Dieudonné

[2, page 139]). For every fn(s), n = 0, 1, 2, . . ., there exists a partition of the interval
[t1, t]:

Z : t1 = s0 < s1 < s2 < · · · < sm < sm+1 = t

so that it holds with fn = ci on (si−1, si ) for i = 1, . . . ,m:

vn(t) :=
∫ t

t1
U (t, s) fn(s)ds

=
∫ s1

t1=s0
U (t, s)c0ds +

∫ s2

s1
U (t, s)c1ds +

∫ s3

s2
U (t, s)c2ds

+
∫ s4

s3
U (t, s)c3ds +

∫ s5

s4
U (t, s)c4ds +

∫ s6

s5
U (t, s)c5ds

+ · · · +
∫ sm

sm−1

U (t, s)cm−1ds +
∫ sm+1=t

sm
U (t, s)cmds, (3.3)

where ci = f (s∗
i ), si < s∗

i < si+1, i = 0, 1, . . . ,m and ci ∈ X are constants.
We show now that every one of these integrals belongs to D and that A(t) applied

on these integrals (i.e. on vn) implies the boundedness of the sequence A(t)vn(t).
Since f (s) is of bounded variation on [t1, t2], f (s) is bounded on [t1, t2]. The uni-

form boundedness of the operatorU (t, s) : X → X implies the uniform convergence:

U (t, s) fn(s) −→ U (t, s) f (s), (n → ∞)
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130 S. Jawad

on [t1, t] so that it holds via Lebesgue’s Theorem:

v(t) =
∫ t

t1
U (t, s) f (s)ds =

∫ t

t1
lim
n→∞U (t, s) fn(s)ds

= lim
n→∞

∫ t

t1
U (t, s) fn(s)ds = lim

n→∞ vn(t).

For x ∈ D, A(s)x is continuously differentiable in s. Moreover the inverses A−1(s)
exist and are bounded. Using the identity:

(
A−1(s)x

)′ = −A−1(s)A′(s)A−1(s)x, x ∈
X , and applying (e) from Preliminaries yields via integration by parts on an arbitrary
integral from (3.3):

Ii : =
∫ si+1

si
U (t, s)cids

=
∫ si+1

si

{ ∂

∂s
U (t, s)

}
A−1(s)cids

= {U (t, si+1)A
−1(si+1) −U (t, si )A

−1(si )}ci
+

∫ si+1

si
U (t, s)A−1(s)A′(s)A−1(s)cids.

That means via (g) and (h) from Prliminaries:

vn =
m∑

i=0

Ii

=
m∑

i=0

{
U (t, si+1)A

−1(si+1) −U (t, si )A
−1(si )

}
ci

+
m∑

i=0

∫ si+1

si
U (t, s)A−1(s)A′(s)A−1(s)cids

= A−1(t)

( m∑

i=0

{
A(t)U (t, si+1)A

−1(si+1) − A(t)U (t, si )A
−1(si )

}
ci

+
m∑

i=0

∫ si+1

si

{
A(t)U (t, s)A−1(s)

}{
A′(s)A−1(s)

}
cids

)
∈ D.

So, we have by reordering of the terms of the finite sum:

A(t)vn(t) = cm − A(t)U (t, t1)A
−1(t1)c0

− A(t)U (t, s1)A
−1(s1)

(
c1 − c0

) − A(t)U (t, s2)A
−1(s2)

(
c2 − c1

)

− A(t)U (t, s3)A
−1(s3)

(
c3 − c2

) − . . .
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Unique strong and strict solutions for inhomogeneous… 131

− A(t)U (t, sm)A−1(sm)
(
cm − cm−1

)

+
m∑

i=0

∫ si+1

si

{
A(t)U (t, s)A−1(s)

}{
A′(s)A−1(s)

}
cids,

i.e. with ‖ci‖ ≤ sups∈[t1,t2] ‖ f (s)‖ and si ≤ s∗
i ≤ si+1:

‖A(t)vn(t)‖ ≤ ‖ f (s∗
m) − A(t)U (t, t1)A

−1(t1) f (s
∗
0 )‖

+ k1

m−1∑

i=0

‖ci+1 − ci‖ + k1k2
(

sup
s∈[t1,t2]

‖ f (s)‖)(t − t1)

= ‖ f (s∗
m) − f (t1) + f (t1) − A(t)U (t, t1)A

−1(t1){ f (s∗
0 ) − f (t1) + f (t1)}‖

+ . . .

≤ ‖ f (s∗
m) − f (t1)‖ + k1‖ f (s∗

0 ) − f (t1)‖ + ‖{I − A(t)U (t, t1)A
−1(t1)} f (t1)‖

+ k1

∫ t

t1
‖d f (s)‖ + k1k2

(
sups∈[t1,t2]‖ f (s)‖)(t − t1)

≤ ‖{I − A(t)U (t, t1)A
−1(t1)} f (t1)‖ + (1 + 2k1)

∫ t

t1
‖d f (s)‖

+ k1k2
(

sup
s∈[t1,t2]

‖ f (s)‖)(t − t1).

Lemma 2.1 yields finally that v(t) ∈ D and A(t)vn(t) ⇀ A(t)v(t) (n → ∞) and the
reflexivity of X implies:

‖A(t)v(t)‖ ≤ lim inf
n→∞ ‖A(t)vn(t)‖

≤ ‖{I − A(t)U (t, t1)A
−1(t1)} f (t1)‖ + (1 + 2k1)

∫ t

t1
‖d f (s)‖

+ k1k2
(
sups∈[t1,t2]‖ f (s)‖)(t − t1),

i.e. the desired estimate (3.2).
(II)We prove now theLipschitz continuity of v(t). By the properties of the evolution

operator (see Sect. 2):

v(t + ε) − v(t) =
∫ t+ε

t1
U (t + ε, s) f (s)ds −

∫ t

t1
U (t, s) f (s)ds

= U (t + ε, t)
∫ t

t1
U (t, s) f (s)ds +

∫ t+ε

t
U (t + ε, s) f (s)ds

−
∫ t

t1
U (t, s) f (s)ds

= {
U (t + ε, t) − I

}
v(t) +

∫ t+ε

t
U (t + ε, s) f (s)ds.
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132 S. Jawad

Here Lipschitzcontinuity of the integral term is obvious. By the just proved bounded-
ness of ‖A(t)v(t)‖ we obtain:

∥∥∥
{
U (t + ε, t) − I

}
v(t)

∥∥∥ =
∥∥∥

∫ 1

0

∂

∂τ
U (t + τε, t)v(t)dτ

∥∥∥

= ε

∥∥
∥

∫ 1

0
A(t + τε)U (t + τε, t)v(t)dτ

∥∥
∥

≤ ε

∫ 1

0

∥∥∥A(t + τε)U (t + τε, t)A−1(t)
∥∥∥‖A(t)v(t)‖dτ

≤ K1ε.

So, we have v(t) ∈ C0,1
([t1, t2], X

)
.

(III) Let f ∈ C0
([t1, t2], X

)
. We show in [t1, t2] :

A(t + ε)v(t + ε) − A(t)v(t) −→ 0, (ε → 0).

For ε > 0 (for ε < 0 it is similar), it is:

A(t + ε)

∫ t+ε

t1
U (t + ε, s) f (s)ds − A(t)

∫ t

t1
U (t, s) f (s)ds

= A(t + ε)

∫ t

t1
U (t + ε, s) f (s)ds − A(t)

∫ t

t1
U (t, s) f (s)ds

+A(t + ε)

∫ t+ε

t
U (t + ε, s) f (s)ds

= {
A(t + ε)U (t + ε, t) − A(t)

} ∫ t

t1
U (t, s) f (s)ds

+A(t + ε)

∫ t+ε

t
U (t + ε, s) f (s)ds

=: T1(ε) + T2(ε).

Part (I) above together with (g) from Preliminaries yields:
T1(ε) = {

A(t+ε)U (t+ε, t)A−1(t)− I
}
A(t)

∫ t
t1
U (t, s) f (s)ds −→ 0, (ε → 0).

Regarding the second term above, it is first according to estimate (3.2) from part
(I):

∥∥∥T2(ε)
∥∥∥ =

∥∥∥A(t + ε)

∫ t+ε

t
U (t + ε, s) f (s)ds

∥∥∥

≤
∥∥∥
{
I − A(t + ε)U (t + ε, t)A−1(t)

}
f (t)

∥∥∥

+ k1k2
(
sups∈[t1,t2]‖ f (s)‖)ε + (2k1 + 1)

∫ t+ε

t
‖d f (s)‖.
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With (ε → 0), the first term tends to 0 due to (g) from Preliminaries, the same holds
for the last integral term because of the continuity of f (t) (see Jawad [4], Lemma 2.2,
holds in Banach space as well).

Summarized, the assertion of (III) follows. ��

4 The differentiability of v

In this closing chapter, we prove the differentiability of the integral:

v(t) =
∫ t

t1
U (t, s) f (s)ds.

We show then that u(t) := U (t, t1)ϕ − v(t) represents the unique strong solution of
our differential equation (1.1).

Theorem 4.1 (I) (Uniqueness) Let the function u : [t1, t2] → X be absolutely contin-
uous and satisfy (1.1) a.e. with f ∈ L1

([t1, t2], X
)
. Then u(t) is uniquely determind

by (1.2).
(II) Let f ∈ BV

([t1, t2], X
)
, then:

d±v(t)

dt
= f (t ± 0) + A(t)

∫ t

t1
U (t, s) f (s)ds (4.1)

= f (t ± 0) − A(t)v(t) , t ∈ [t1, t2) resp. (t1, t2]. (4.2)

According to (I), u(t) := U (t, t1)ϕ − v(t) is the unique strong solution of (1.1).
(III) If additionally f ∈ C0

([t1, t2], X
)
, then it is moreover:

v(t) ∈ C0([t1, t2], D
) ∩ C1([t1, t2], X

)
. (4.3)

This means that u(t) is a strict solution.

Proof (I) Multiplying both sides of (1.1) by U (t, s) yields:

U (t, s)
(
u′(s) + A(s)u(s) + f (s)

) = 0,

i.e.
∂

∂s
U (t, s)u(s) +U (t, s) f (s) = 0.

Now integration from s = t1 to t leads to the integral equation (1.2).
(II) Since the function f is of bounded variation, f (t ± 0) exist, t ∈ [t1, t2) resp.

(t1, t2]. It is for ε > 0:
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134 S. Jawad

v(t + ε) − v(t) =
∫ t+ε

t1
U (t + ε, s) f (s)ds −

∫ t

t1
U (t, s) f (s)ds

= {
U (t + ε, t) − I

} ∫ t

t1
U (t, s) f (s)ds +

∫ t+ε

t
U (t + ε, s) f (s)ds,

where according to Theorem 3.1(I) and (e) from Preliminaries:

1

ε

{
U (t + ε, s) − I

} ∫ t

t1
U (t, s) f (s)ds −→ A(t)

∫ t

t1
U (t, s) f (s)ds, (ε → 0).

So, it remains only to show:

1

ε

∫ t+ε

t
U (t + ε, s) f (s)ds −→ f (t + 0), (ε → 0+). (4.4)

It is first:

1

ε

∫ t+ε

t
U (t + ε, s) f (s)ds

(s:=t+τ)= 1

ε

∫ ε

0
U (t + ε, t + τ) f (t + τ)dτ

= 1

ε

∫ ε

0
U (t + ε, t + τ){ f (t + τ) − f (t + 0)}dτ

+ 1

ε

∫ ε

0
U (t + ε, t + τ) f (t + 0)dτ

=: I1(ε) + I2(ε)

with ((b) from Preliminaries):

lim
ε→0

‖I1(ε)‖ ≤ lim
ε→0

1

ε

∫ ε

0
Meω(ε−τ)‖ f (t + τ) − f (t + 0)‖dτ

≤ M lim
ε→0

1

ε

∫ ε

0
‖ f (t + τ) − f (t + 0)‖dτ = 0.

So, we just have to show:

lim
ε→0

I2(ε) = lim
ε→0

1

ε

∫ ε

0
U (t + ε, t + τ) f (t + 0)dτ = f (t + 0), (4.5)

which is equivalent to:

lim
ε→0

1

ε

∫ ε

0

{
U (t + ε, t + τ) − I

}
f (t + 0)dτ = 0.
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It is in this context:

1

ε

∥∥∥
∫ ε

0

{
U (t + ε, t + τ) − I

}
f (t + 0)dτ

∥∥∥

≤ 1

ε

∫ ε

0
‖{U (t + ε, t + τ) − I } f (t + 0)‖dτ

≤ sup
τ∈[0,ε]

‖{U (t + ε, t + τ) − I } f (t + 0)‖ · 1
ε

∫ ε

0
dτ

= ‖{U (t + ε, t + ε0) − I } f (t + 0)‖, ε0 ∈ [0, ε].

For every ε > 0 there exists at least one ε0 ∈ [0, ε] so that this relation holds. On
the other hand, we have according to (b) from Preliminaries that for every x ∈ X ,
U (t, s)x is jointly continuous in s and t . It follows:

lim
ε→0

‖{U (t + ε, t + ε0) − I } f (t + 0)‖ = lim
ε0≤ε→0

‖{U (t + ε, t + ε0) − I } f (t + 0)‖
= 0,

and (4.5) holds. Summarized, we have:

d+v(t)

dt
= lim

ε→0

1

ε
{v(t + ε) − v(t)}

= f (t + 0) − A(t)
∫ t

t1
U (t, s) f (s)ds

= f (t + 0) − A(t)v(t), t ∈ [t1, t2).

Arguing similarly for ε < 0 we obtain:

d−v(t)

dt
= f (t − 0) − A(t)

∫ t

t1
U (t, s) f (s)ds

= f (t − 0) − A(t)v(t), t ∈ (t1, t2].

Consequently, u(t):= U (t, t1)ϕ − v(t) is the unique strong solution of (1.1), for
obviously u′(t) ∈ L1

([t1, t2], X
)
(see also (3.2)).

(III) Follows immediately from part (II) and Theorem 3.1(III). ��
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