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Abstract Let f = h + g be a normalized harmonic mapping in the unit disk D :=
{z ∈ C : |z| < 1}. In this paper, we study the radius of fully starlikeness and the radius
of fully convexity of the following harmonic operator

∧

0,1

[ f ] =
∫ z

0

h(ξ)

ξ
dξ +

∫ z

0

g(ξ)

ξ
dξ,

where the coefficients of the analytic functions h and g satisfy the conditions of
the harmonic Bieberbach coefficient conjecture. We also study the radius of uniform
starlikeness, and uniform convexity of harmonic mappings.
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654 N. Ghosh, A. Vasudevarao

1 Introduction and definitions

Acontinuous complex-valued function f = u+iv is harmonic in a domain D ⊂ C, ifu
and v are real harmonic in D. If D is a simply connected domain, f can be decomposed
as f = h + g, where h and g are analytic functions in D. Here h and g are called the
analytic and co-analytic parts of f respectively. LetH be the class of complex-valued
harmonic mappings f = h + g defined on the unit disk D := {z ∈ C : |z| < 1},
normalized by h(0) = 0 = h′(0) − 1, and having the following series representation

h(z) = z +
∞∑

n=2

anz
n and g(z) =

∞∑

n=1

bnz
n .

Also letH0 := { f ∈ H : fz = 0}. The Jacobian of a function f is defined as J f (z) =
| fz(z)|2 −| fz(z)|2. A result of Lewy [12], together with the inverse function theorem,
shows that a harmonic function f ∈ H is locally univalent and sense preserving in D
if, and only if, the Jacobian J f (z) > 0 inD. Let SH be the subclass ofH consisting of
univalent, i.e., one-to-one, and sense-preserving harmonic mappings on D, and also
S0
H = { f ∈ SH : fz(0) = 0}. For any function f = h + g ∈ S0

H, its analytic and
co-analytic parts can be represented as

h(z) = z +
∞∑

n=2

anz
n and g(z) =

∞∑

n=2

bnz
n . (1.1)

We note that if the co-analytic part of functions in the class SH is zero, then SH
reduces to S, the class of normalized analytic and univalent functions in D. The
geometric subclasses of SH consisting of the convex, starlike and close-to-convex
functions in D are denoted by KH, S∗

H and CH respectively. Let K0
H, S∗0H and C0H

denote the subclasses of KH, S∗
H and CH with the condition fz(0) = 0 respectively.

The class SH and its subclasses on D have been extensively discussed by Clunie and
Sheil-Small in [6] (see also [4,5,9]).

In 2012, Aleman and Constantin [1] studied nice a connection between harmonic
mappings and ideal fluid flows. Indeed, they have developed ingenious technique
to solve the incompressible two dimensional Euler equations in terms of univalent
harmonic mappings. More precisely, the problem of finding all solutions which in
Lagrangian variables describing the particle paths of the flow present a labelling by
harmonic mappings is reduced to solve on explicit nonlinear differential system inCn

with n = 3 or n = 4 (see also [8]).
Let K and S∗ be the subclass of S consisting of univalent and analytic functions

φ : D → C with convex and starlike ranges respectively, and satisfying φ(0) = 0 =
φ′(0)−1. By a classical theorem of Alexander [2],K and S∗ are related in that φ ∈ S∗
if, and only if,

∫ z
0 φ(ξ)/ξ dξ ∈ K. In 1990, Sheil-Small [15] extended this theorem to

harmonic mappings and proved the following.
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Theorem A [15] If f = h + g : D → C fixes zero, is univalent, and has a starlike
range, and H and G are the analytic functions in D defined by

zH ′(z) = h(z), zG ′(z) = −g(z), H(0) = G(0) = 0,

then F = H + G is univalent, and has a convex range.

In 1969, Bernardi [3] generalized Alexander’s theorem by introducing the function
φλ : D → C defined by

φλ(z) = λ + 1

zλ

∫ z

0
ξλ−1φ(ξ) dξ,

where φ is analytic in D, with φ(0) = 0 = φ′(0) − 1.
In [6], it was conjectured that if f ∈ S0

H, with h(z) and g(z) given by (1.1), then

|an| ≤ 1

6
(2n + 1)(n + 1) and |bn| ≤ 1

6
(2n − 1)(n − 1) (1.2)

for all n ≥ 2. This coefficient conjecture remains an open problem for the full class
S0
H. However, it has been verified for some subclasses of S0

H, such as typically real
functions [6], starlike functions [15] and close-to-convex functions [16]. The extremal
function in these cases is the harmonic Koebe function K , given by

K (z) = z − 1
2 z

2 + 1
6 z

3

(1 − z)3
+

1
2 z

2 + 1
6 z

3

(1 − z)3

= z +
∞∑

n=2

1

6
(2n + 1)(n + 1)zn +

∞∑

n=2

1

6
(2n − 1)(n − 1)zn . (1.3)

If f ∈ K0
H, then Clunie and Sheil-Small [6] proved that

|an| ≤ 1

2
(n + 1) and |bn| ≤ 1

2
(n − 1) (1.4)

for all n ≥ 2, with equality for all harmonic left-plane mappings

L(z) = z − z2/2

(1 − z)2
+ −z2/2

(1 − z)2

= z +
∞∑

n=2

1

2
(n + 1)zn +

∞∑

n=2

1

2
(n − 1)zn . (1.5)

Convexity and starlikeness are hereditary properties for conformal mappings. That
is, if an analytic function maps D on to a convex, or a starlike domain, then it also
maps each concentric subdisk onto a convex, or starlike domain respectively. However
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656 N. Ghosh, A. Vasudevarao

such hereditary properties cannot be generalized to harmonic mappings. The failure
of hereditary properties such as starlike and convex harmonic mappings leads to the
notion of fully starlike and fully convex functions, discussed in [7], which we define
next.

Definition 1.1 A harmonic map f on D is said to be fully convex of order α, 0 ≤
α < 1, if it maps every circle |z| = r < 1 in a one-to-one manner onto a convex curve
satisfying

∂

∂θ

(
arg

(
∂

∂θ
f (reiθ )

))
> α, 0 ≤ θ < 2π, 0 < r < 1. (1.6)

If α = 0, then f is said to be fully convex.

Definition 1.2 A harmonic map f on D with f (0) = 0 is said to be fully starlike of
order α, 0 ≤ α < 1, if it maps every circle |z| = r < 1 in a one-to-one manner onto a
curve that bounds a domain starlike with respect to the origin satisfying

∂

∂θ

(
arg

(
f (reiθ )

))
> α, 0 ≤ θ < 2π, 0 < r < 1. (1.7)

If α = 0, then f is said to be fully starlike.
Let FKH(α) and FS∗

H(α) denote the subclass of KH consisting of fully convex
functions of order α, and the subclass of S∗

H(α) consisting of fully starlike functions
of order α respectively.

The following two lemmas give sufficient conditions for functions f inH to belong
to FKH(α) and FS∗

H(α) respectively.

Lemma 1.1 [10] Let f = h + g, where h and g are given by (1.1). Further, let

∞∑

n=2

n(n − α)

(1 − α)
|an| +

∞∑

n=2

n(n + α)

(1 − α)
|bn| ≤ 1

and 0 ≤ α < 1. Then f is harmonic univalent in D, and f ∈ FKH(α).

Lemma 1.2 [11] Let f = h + g, where h and g are given by (1.1). Further, let

∞∑

n=2

(n − α)

(1 − α)
|an| +

∞∑

n=2

(n + α)

(1 − α)
|bn| ≤ 1

and 0 ≤ α < 1. Then f is harmonic univalent in D, and f ∈ FS∗
H(α).

According to the Radó–Kaneser–Choquet theorem (see [6]), fully convex harmonic
functions of order α are necessarily univalent in D. However, fully harmonic starlike
functions need not be univalent in D.
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For Re λ ≥ 0, α ∈ D and f ∈ SH, Muir [13] generalized the Bernardi integral
operator to harmonic functions, by defining

∧
λ,α[ f ] : D → C as follows.

∧

λ,α

[ f ](z) = λ + 1

zλ

∫ z

0
ξλ−1h(ξ) dξ + α

λ + 1

zλ

∫ z

0
ξλ−1g(ξ) dξ . (1.8)

Clearly
∧

0,−1 is the harmonic analogue of Alexander’s operator, given in TheoremA.
In view of TheoremA, the classesKH andS∗

H are preserved under the operator
∧

0,−1.
However KH and S∗

H are not necessarily preserved under the operator
∧

0,1. Indeed∧
0,1[K ] /∈ S∗

H
0 and

∧
0,1[L] /∈ K0

H, where K is the harmonic Koebe function defined
by (1.3), and L is the harmonic right half-plane mapping defined by (1.5).

Definition 1.3 A locally univalent function f = h+ g is said to be uniformly starlike
in the unit disk D, if f is fully starlike in D, and maps every circular arc γζ contained
in D with center ζ also in D, to the arc f (γζ ) which is starlike with respect to f (ζ ).

Definition 1.4 A locally univalent function f = h+ g is said to be uniformly convex
in the unit disk D, if f is fully convex in D, and maps every circular arc γζ contained
in D with center ζ also in D, onto a convex arc f (γζ ).

Let US∗
H (respectively US∗

H
0) denote the classes of functions in f ∈ SH (respec-

tively f ∈ S0
H) which are uniformly starlike in D. Clearly US∗

H ⊂ FS∗
H. Let UKH

(respectively UK0
H) denote the classes of all functions f ∈ SH (respectively f ∈ S0

H)
which are uniformly convex in D.

The following two lemmas give sufficient conditions for functions in H to belong
to US∗

H and UKH, respectively.

Lemma 1.3 [14] Let f = h + g, where h and g are given by (1.1), and satisfy the
condition ∞∑

n=2

n (|an| + |bn|) ≤ 1

2
. (1.9)

Then f ∈ US∗
H

0.

Lemma 1.4 [14] Let f = h + g, where h and g are given by (1.1), and satisfy the
condition ∞∑

n=2

n(2n − 1) (|an| + |bn|) ≤ 1. (1.10)

Then f ∈ UK0
H.

The remainder of this paper is organized as follows. In Sect. 2, we study the radii
of fully starlikeness and fully convexity of order α of the harmonic operator

∧
0,1[ f ].

As a consequence (by taking α = 0), we obtain the radii of fully starlikeness and
fully convexity of the harmonic operator

∧
0,1[ f ]. In Sect. 3, we obtain the radii of

uniformly starlikeness and uniformly convexity of the harmonic mappings.
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658 N. Ghosh, A. Vasudevarao

2 Radii of fully starlikeness and fully convexity of harmonic operator of
order α

In this section, we obtain the radii of fully starlikeness and fully convexity of order
α of the harmonic operator

∧
0,1[ f ]. The following elementary identities are used to

prove our results.

Lemma 2.1 We have

(i)
∑∞

n=2 nr
n−1 = r(2 − r)

(1 − r)2
,

(ii)
∑∞

n=2 n
2rn−1 = r(4 − 3r + r2)

(1 − r)3
,

(iii)
∑∞

n=2 n
3rn−1 = r(8 − 5r + 4r2 − r3)

(1 − r)4
.

Theorem 2.1 Let f = h + g ∈ S0
H be given by (1.1), and the coefficients satisfy the

conditions

|an| ≤ 1

2
(n + 1) and |bn| ≤ 1

2
(n − 1) (2.1)

for n ≥ 2. Then F = ∧
0,1[ f ] is fully convex of order alpha in |z| < rc(α), where

rc(α) is the unique real root of pc(r, α) = 0 in (0, 1), and where

pc(r, α) = (1 − α) − (7 − 4α)r + (6 − 5α)r2 − 2(1 − α)r3. (2.2)

Proof Let f = h+g be in S0
H where h(z) = z+∑∞

n=2 anz
n and g(z) = ∑∞

n=2 bnz
n .

Then

F(z) =
∧

0,1

[ f ](z) =
∫ z

0

h(ξ)

ξ
dξ +

∫ z

0

g(ξ)

ξ
dξ (2.3)

= z +
∞∑

n=2

an
n
zn +

∞∑

n=2

bn
n
zn .

For r ∈ (0, 1), it is sufficient to show that Fr ∈ FKH(α) where

Fr (z) = F(r z)

r
= z +

∞∑

n=2

an
n
rn−1zn +

∞∑

n=2

bn
n
rn−1zn . (2.4)

Consider this time, the sum

S(α) =
∞∑

n=2

(
n(n − α)

(1 − α)

|an|
n

+ n(n + α)

(1 − α)

|bn|
n

)
rn−1

=
∞∑

n=2

(
(n − α)

(1 − α)
|an| + (n + α)

(1 − α)
|bn|

)
rn−1. (2.5)
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In view of (2.1) and Lemma 2.1, (2.5) gives

S(α) ≤
∞∑

n=2

(
(n − α)(n + 1)

2(1 − α)
+ (n + α)(n − 1)

2(1 − α)

)
rn−1

= r(4 − 3r + r2) − αr(1 − r)2

(1 − α)(1 − r)3
=: X1.

Thus Lemma 1.1 implies that in order to show that Fr ∈ FKH(α), it is sufficient
to show that X1 ≤ 1. It is easy to show that X1 ≤ 1, when pc(r, α) ≥ 0. Since
pc(r, 0) = 1 − α ≥ 0 and pc(r, 1) = −2 < 0, pc(r, α) has at least one zero in (0, 1).
Now we shall show that (2.2) has exactly one zero in the interval (0, 1) for every
α ∈ [0, 1). A straight forward computation shows that

p′
c(r, α) = −6(1 − α)r2 + 2(6 − 5α)r − (7 − 4α).

To prove pc(r, α) has exactly one zero in (0, 1), it is sufficient to prove that pc(r, α)

has a monotonic property on (0, 1).
A direct computation shows that

p′
c(0, α) = −(7 − 4α) < 0,

p′
c(1, α) = −1 < 0,

p′′
c (r, α) = −12(1 − α)r + 2(6 − 5α).

Again, by straightforward computation we have

p′′
c (0, α) = 2(6 − 5α) > 0,

p′′
c (1, α) = 2α ≥ 0,

p′′′
c (r, α) = −12(1 − α) < 0 for α ∈ [0, 1).

Hence p′′
c (r, α) is strictly monotonically decreasing on (0, 1) for every α ∈ [0, 1). By

combining the monotonic property of p′′
c (r, α) with p′′

c (1, α) ≥ 0, we conclude that
p′′
c (r, α) is strictly positive on (0, 1) for every α ∈ [0, 1). This shows that p′

c(r, α)

is strictly monotonically increasing on (0, 1). Again, by combining the monotonic
increasing property of p′

c(r, α) with p′
c(1, α) < 0, we conclude that p′

c(r, α) < 0 on
(0, 1) for every α ∈ [0, 1), and so pc(r, α) is strictly monotonically decreasing on
(0, 1) for every α ∈ [0, 1). Thus pc(r, α) = 0 has exactly one real root (say rc(α)) in
(0, 1). Therefore pc(r, α) ≥ 0 for 0 < r < rc(α). Hence Fr belongs to FKH(α) for
|z| < rc(α). 
�
Theorem 2.2 Let f = h + g ∈ S0

H be given by (1.1), and the coefficients satisfy the
conditions

|an| ≤ 1

6
(2n + 1)(n + 1) and |bn| ≤ 1

6
(2n − 1)(n − 1) (2.6)
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660 N. Ghosh, A. Vasudevarao

for n ≥ 2. Then F = ∧
0,1[ f ] is fully convex of order α in |z| < rc(α), where rc(α)

is the unique real root of qc(r, α) = 0 in (0, 1), and where

qc(r, α) = 3(1−α)−(30−18α)r+33(1−α)r2−24(1−α)r3+6(1−α)r4. (2.7)

Proof Let f = h + g ∈ S0
H where h(z) = z + ∑∞

n=2 anz
n and g(z) = ∑∞

n=2 bnz
n .

Then

F(z) =
∧

0,1

[ f ](z) =
∫ z

0

h(ξ)

ξ
dξ +

∫ z

0

g(ξ)

ξ
dξ (2.8)

= z +
∞∑

n=2

an
n
zn +

∞∑

n=2

bn
n
zn .

For r ∈ (0, 1), it is sufficient to show that Fr ∈ FKH(α), where

Fr (z) = F(r z)

r
= z +

∞∑

n=2

an
n
rn−1zn +

∞∑

n=2

bn
n
rn−1zn . (2.9)

Consider again the sum

S(α) =
∞∑

n=2

(
n(n − α)

(1 − α)

|an|
n

+ n(n + α)

(1 − α)

|bn|
n

)
rn−1 (2.10)

=
∞∑

n=2

(
(n − α)

(1 − α)
|an| + (n + α)

(1 − α)
|bn|

)
rn−1.

Using the coefficient conditions (2.6) and applying Lemma 2.1 in (2.10), we obtain

S(α) ≤
∞∑

n=2

(
(n − α)(2n + 1)(n + 1)

6(1 − α)
+ (n + α)(2n − 1)(n − 1)

6(1 − α)

)
rn−1

= (18 − 6α)r − 15(1 − α)r2 + 12(1 − α)r3 − 3(1 − α)r4

3(1 − α)(1 − r)4
=: X3.

As before, in view of Lemma 1.1, in order to show that Fr ∈ FKH(α), it is sufficient to
show that X3 ≤ 1.A straightforward calculation shows that X3 ≤ 1whenqc(r, α) ≥ 0,
where qc(r, α) is defined by (2.7). Since qc(0, α) = 3(1 − α) ≥ 0 and qc(1, α) =
−12 < 0, the polynomial qc(r, α) has at least one zero in (0, 1). We now need to show
that qc(r, α) = 0 defined by (2.7), has exactly one zero in (0, 1) for every α ∈ [0, 1).
Thus in order to show that the polynomial qc(r, α) has exactly one zero in (0, 1), it
sufficies to show that qc(r, α) has a monotonic property on (0, 1).

Using the fact that 0 < r3 < r < 1, a simple computation gives
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q ′
c(r, α) = −(30 − 18α) + 66(1 − α)r − 72(1 − α)r2 + 24(1 − α)r3

< −(30 − 18α) + 66(1 − α)r − 72(1 − α)r2 + 24(1 − α)r

= −(30 − 18α) + 90(1 − α)r − 72(1 − α)r2 =: l(r, α).

To prove that qc(r, α) is monotonically decreasing, we need to show that l(r, α) is
negative in r ∈ (0, 1) for every α ∈ [0, 1). Further,

l ′(r, α) = 90(1 − α) − 144(1 − α)r

= 18(1 − α)(5 − 8r)

= 0

if r = 5/8. As, l ′′(r, α) = −144(1 − α) < 0 for α ∈ [0, 1), it is evident that l(r, α)

attains its maximum value at r = 5/8. Clearly the value of l(r, α) at r = 5/8 is

l

(
5

8
, α

)
= −(15 + 81α)

8
< 0.

This shows that l(r, α) < 0 on r ∈ (0, 1) for every α ∈ [0, 1). Hence q ′
c(r, α) < 0 on

r ∈ (0, 1) for every α ∈ [0, 1). Therefore qc(r, α) is strictly monotonically decreasing
on (0, 1) for every α ∈ [0, 1), and so qc(r, α) has a unique real root (say rc(α)) in
(0, 1). A simple computation shows that qc(r, α) is positive for 0 < r < rc(α). Hence
Fr belongs to FKH(α) for |z| < rc(α). 
�
Theorem 2.3 Under the hypothesis of Theorem 2.1, F = ∧

0,1[ f ] is fully starlike of
order α in |z| < rs(α), where rs(α) is the unique real root of ps(r, α) = 0 in (0, 1),
where

ps(r, α) = 2(1 − α)r3 − 4(1 − α)r2 + (1 − 2α)r − α(1 − r)2 ln(1 − r). (2.11)

Proof Let f = h + g ∈ S0
H, where h(z) = z + ∑∞

n=2 anz
n and g(z) = ∑∞

n=2 bnz
n .

Then

F(z) =
∧

0,1

[ f ](z) =
∫ z

0

h(ξ)

ξ
dξ +

∫ z

0

g(ξ)

ξ
dξ (2.12)

= z +
∞∑

n=2

an
n
zn +

∞∑

n=2

bn
n
zn .

For r ∈ (0, 1), it is sufficient to show that Fr ∈ FS∗
H(α), where

Fr (z) = F(r z)

r
= z +

∞∑

n=2

an
n
rn−1zn +

∞∑

n=2

bn
n
rn−1zn . (2.13)
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As above, consider the sum

S(α) =
∞∑

n=2

(
(n − α)

(1 − α)

|an|
n

+ (n + α)

(1 − α)

|bn|
n

)
rn−1. (2.14)

In view of Lemma 2.1, and the coefficient inequalities in (2.1), we can see that (2.14)
gives

S(α) ≤
∞∑

n=2

(
(n − α)(n + 1)

2n(1 − α)
+ (n + α)(n − 1)

2n(1 − α)

)
rn−1

= 1

(1 − α)

r2(2 − r) + αr(1 − r)2 + α(1 − r)2 ln(1 − r)

r(1 − r)2
=: X2.

An application of Lemma 1.2 shows that Fr ∈ FS∗
H(α) if X2 ≤ 1. A simple com-

putation show that X2 ≤ 1 if, and only if, ps(r, α) ≥ 0, where ps(r, α) is defined by
(2.11). It is not difficult to shows that ps(r, α) ≥ 0 for |z| < rs(α), where rs(α) is the
unique real root of ps(r, α) = 0. Thus Fr ∈ FS∗

H(α) for |z| < rs(α). 
�
By taking α = 0 in Theorems 2.1, 2.2 and 2.3, we obtain the followings results on
radii of fully starlikeness and fully convexity of harmonic operator

∧
0,1[ f ].

Corollary 2.1 Under the hypothesis of Theorem 2.1, F = ∧
0,1[ f ] is fully convex in|z| < rc, where rc ≈ 0.16487 is the unique real root of pc(r) = 0 in (0, 1), where

pc(r) = 1 − 7r + 6r2 − 2r3.

Corollary 2.2 Under the hypothesis of Theorem 2.2, F = ∧
0,1[ f ] is fully convex in|z| < rc, where rc ≈ 0.112903 is the unique real root of qc(r) = 0 in the interval

(0, 1), where
qc(r) = 1 − 10r + 11r2 − 8r3 + 2r4.

Corollary 2.3 Under the hypothesis of Theorem 2.1, F = ∧
0,1[ f ] is fully starlike in|z| < rs , where rs ≈ 0.2928 is the unique real root of ps(r) in (0, 1), where

ps(r) = 1 − 4r + 2r2.

Since the proofs of Corollaries 2.1, 2.2 and 2.3 are similar to that of Theorems 2.1,
2.2 and 2.3 respectively, we omit the details.

3 Radii of uniformly starlikeness and uniformly convexity of harmonic
mappings

In this section we study the radii of uniformly starlikeness and uniformly convexity
for functions in S0

H .
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Theorem 3.1 Let f = h + g ∈ S0
H be given by (1.1), and the coefficients satisfy the

conditions

|an| ≤ 1

2
(n + 1) and |bn| ≤ 1

2
(n − 1) (3.1)

for n ≥ 2. Then f is uniformly starlike on the disk |z| < rus , where rus ≈ 0.0986023
is the unique positive root of pus(r) = 0 in (0, 1), where

pus(r) = 1 − 11r + 9r2 − 3r3. (3.2)

Proof Let f = h+g ∈ S0
H be given by (1.1), and the coefficients satisfy the conditions

(3.1) for n ≥ 2. For 0 < r < 1, let

fr (z) = r−1 f (r z) = z +
∞∑

n=2

anr
n−1zn +

∞∑

n=2

bnrn−1zn, z ∈ D. (3.3)

Consider the sum

S =
∞∑

n=2

n|an|rn−1 +
∞∑

n=2

n|bn|rn−1. (3.4)

In view of lemma 3.1 and the conditions in (3.1), we see that (3.4) satisfies

S ≤
∞∑

n=2

n2rn−1 = r(4 − 3r + r2)

(1 − r)3
=: S4. (3.5)

From Lemma 1.3, we note that fr (z) is uniformly starlike on D if S4 ≤ 1/2, which
implies that 1 − 11r + 9r2 − 3r3 ≥ 0.

Now let pus := 1− 11r + 9r2 − 3r3, so that S4 ≤ 1/2 whenever pus(r) ≥ 0. It is
easy to see that pus(0) = 1 > 0 and pus(1) = −4 < 0, and hence pus has a real root
in (0, 1).

To show that pus(r) has exactly one zero in (0, 1), it is sufficient to prove that
pus(r) is monotonic on (0, 1). A simple computation shows that

p′
us(0) = −11 < 0

p′
us(1) = −2 < 0

p′′
us(r) = 18(1 − r) > 0 for r ∈ (0, 1).

Hence p′
us(r) is a strictly monotonic increasing function in (0, 1). Combining the

monotonicity property of p′
us(r) with p′

us(1) < 0, we conclude that p′
us(r) < 0 on

(0, 1). This shows that pus(r) is strictly monotonically decreasing in (0, 1). Thus
pus(r) has exactly one zero (say rus ≈ 0.0986023) in (0, 1). Since pus(r) is strictly
monotonically decreasing in (0, 1) with pus(0) > 0 and pus(rus) = 0, it is easy to see
that pus(r) ≥ 0 for 0 < r ≤ rus . Hence f is uniformly starlike in |z| < rus . 
�
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Theorem 3.2 Under the hypothesis of Theorem 3.1, f is uniformly convex on the disk
|z| < ruc, where ruc ≈ 0.064723 is the unique positive real root of puc(r) = 0 in
(0, 1), and where

puc(r) = 2r4 − 8r3 + 9r2 − 16r + 1. (3.6)

Proof Let f = h+g ∈ S0
H be given by (1.1), and the coefficients satisfy the conditions

(3.1) for n ≥ 2. For 0 < r < 1, let

fr (z) = r−1 f (r z) = z +
∞∑

n=2

anr
n−1zn +

∞∑

n=2

bnrn−1zn, z ∈ D. (3.7)

Consider again the sum

S =
∞∑

n=2

n(2n − 1) (|an| + |bn|) rn−1. (3.8)

Using (3.1) and Lemma 2.1 in (3.8), we obtain

S ≤
∞∑

n=2

(2n − 1)n2rn−1 = r(12 − 3r + 4r2 − r3)

(1 − r)4
=: S5. (3.9)

In order to show that fr is uniformly convex on D, in view of Lemma 1.4, it is enough
to show that S5 ≤ 1. It is easy to see that S5 ≤ 1 implies

12r − 3r2 + 4r3 − r4 ≤ 1 − 4r + 6r2 − 4r3 + r4,

which is equivalent to

2r4 − 8r3 + 9r2 − 16r + 1 ≥ 0.

Therefore S5 ≤ 1, when puc(r) ≥ 0. Since puc(0) = 1 > 0 and puc(1) = −12 < 0,
puc(r) has a real root in (0, 1). We now show that puc(r) has exactly one real root in
(0, 1). As before, it is sufficient to show that puc(r) is either monotonically increasing,
or monotonically decreasing on (0, 1). A direct computation shows that

p′
uc(r) = −16 + 18r − 24r2 + 8r3

≤ −16 + 18r − 24r2 + 8r

= −16 + 26r − 24r2 =: ξ(r).

We note that ξ ′(r) = 0 at r = 13/24. Since ξ ′′(r) < 0, ξ(r) attains its maximum value
at r = 13/24 and ξ(13/24) < 0. Hence ξ(r) < 0 for all r ∈ (0, 1). Thus p′

uc(r) < 0
in (0, 1). This shows that puc(r) is strictly monotonically decreasing in (0, 1), and
hence puc(r) has exactly one real root (say ruc ≈ 0.064723 ) in (0, 1). Since puc(r)
is monotonically decreasing with puc(0) > 0 and puc(ruc) = 0, we conclude that
puc(r) ≥ 0 for 0 < r ≤ ruc. Thus f is uniformly convex in |z| < ruc. 
�
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Theorem 3.3 Let f = h + g ∈ S0
H be given by (1.1), and satisfy the coefficient

conditions

|an| ≤ 1

6
(2n + 1)(n + 1) and |bn| ≤ 1

6
(2n − 1)(n − 1) (3.10)

for n ≥ 2. Then f is uniformly starlike on the disk |z| < rus , where rus ≈ 0.0667343
is the unique positive real root of qus(r) = 0 in (0, 1), and where

qus(r) = 3r4 − 12r3 + 16r2 − 16r + 1. (3.11)

Proof Let f = h + g ∈ S0
H be given by (1.1), and the coefficients an and bn satisfy

the conditions (3.11) for n ≥ 2. For 0 < r < 1, let

fr (z) = r−1 f (r z) = z +
∞∑

n=2

anr
n−1zn +

∞∑

n=2

bnrn−1zn, z ∈ D. (3.12)

Again consider the sum

S =
∞∑

n=2

n|an|rn−1 +
∞∑

n=2

n|bn|rn−1. (3.13)

In view of (3.11) and Lemma 2.1, (3.13) reduces to

S ≤
∞∑

n=2

n
2n2 + 1

3
rn−1 = r(6 − 5r + 4r2 − r3)

(1 − r)4
=: S6. (3.14)

To show that fr (z) is uniformly starlike on D, in view of Lemma 1.3, it is sufficient
to show that S6 ≤ 1/2. A simple calculation shows that S6 ≤ 1/2 implies

12r − 10r2 + 8r3 − 2r4 ≤ 1 − 4r + 6r2 − 4r3 + r4,

or

3r4 − 12r3 + 16r2 − 16r + 1 ≥ 0.

Let qus(r) := 3r4 − 12r3 + 16r2 − 16r + 1. Therefore S6 ≤ 1/2 if, and only if,
qus(r) ≥ 0. Since qus(0) = 1 > 0 and qus(1) = −8 < 0, qus(r) has a real root in
(0, 1). As before we now show that qus(r) has exactly one real root in (0, 1), so it is
sufficient to show that qus(r) has a monotonicity property on (0, 1). It is easy to see
that

q ′
us(r) = −16 + 32r − 36r2 + 12r3

≤ −16 + 32r − 36r2 + 12r
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= −16 + 44r − 36r2 =: φ(r).

Therefore φ′(r) = 44 − 72r = 0 at r = 11/18. Since φ′′(r) < 0, φ(r) attains its
maximum value at r = 11/18 and φ(11/18) < 0. Hence φ(r) < 0 for all r ∈ (0, 1).
Thus p′

uc(r) < 0 in (0, 1). Therefore qus(r) is strictly monotonically decreasing in
(0, 1), and qus(r) has exactly one real root (say rus ≈ 0.0667343 ) in (0, 1). Since
qus(r) is monotonically decreasing with qus(0) > 0 and qus(rus) = 0, we conclude
that qus(r) ≥ 0 for 0 < r ≤ rus . Hence f is uniformly convex in |z| < rus . 
�
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