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Abstract
In this work, we shall be concerned with the existence and uniqueness result to the
nonlinear parabolic equations whose prototype is

⎧
⎪⎨

⎪⎩

∂b(u)

∂t
− ΔMu − div

(
c(x, t)M

−1
M

(α0

λ
|b(u)|

))
= f in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

b(u)(t = 0) = b(u0) in Ω,

where −ΔMu= − div((1 + |u|)2Du log(e+Du)
|Du| ), c ∈ (L∞(QT ))N and M(t) =

t log(e + t) is an N -function. The data f and b(u0) in L1(QT ) and L1(Ω).
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196 A. Aberqi et al.

1 Introduction

Let Ω be a bounded open set of IRN (N ≥ 2), T is a positive real number, and
QT = Ω × (0, T ). Consider the following nonlinear Dirichlet equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂b(u)

∂t
− div(a(x, t, u,∇u)) + div(Φ(x, t, u)) = f in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

b(u)(t = 0) = b(u0) in Ω,

(1)

where A(u) = −div(a(x, t, u,∇u)) is a Leary-Lions operator defined on the inho-
mogeneous Orlicz–Sobolev space W 1,x

0 LM (QT ), M is an N -function related to the
growth of A(u) (see Assumptions (9)–(11)), and to the growth of the lower order
Carathéodory function Φ(x, t, u) (see Assumption (12)). b : IR −→ IR is a strictly
increasing C1-function, the second term f in L1(QT ).

In the classical Lebesgue spaces L p(0, T ,W 1,p
0 (Ω)), the notion of renormalized

solution of (1) was early introduced by Di-Perna and Lions [14] for the study of
Boltzmann equation and Blanchard, Murat and Redwane were adapted it to parabolic
equations with L1-data in [9,11] where they treated the existence and uniqueness with
b(u) a linear function (b(u) = u) and a(x, t, u,∇u) + Φ(u) with Φ ∈ C∞(IR),
u ∈ L∞(0, T , L1(Ω)) and the source data is a measure μ = f − div(G).

Recently Blanchard et al. [12] have studied Stefan problem the function in the
evolution term b is maximal graph on IR and Aberqi et al. [1] where b is a general
strictly increasing C1(IR)-function.

Another approach to define a suitable generalized solution is that of entropy solution
which was introduced in [8] in the elliptic case and by Prignet [26] in the parabolic
case.

Aharouch and Bennouna [3] have proved the existence and uniqueness of entropy
solutions in the framework of Orlicz-Sobolev spaces W 1

0 LM (Ω) assuming the �2-
condition on the N -functionM . Recently,Mukminov [24,25] proved the uniqueness of
renormalized solutions to theCauchyproblem for parabolic equation usingKruzhkovis
method of doubling the variable.

In the generalized-Orlicz spaces, the work [5] is a continuation of [3] where Al-
Hawmi, Benkirane, Hjiaj and Touzani proved the existence and uniqueness of entropy
solution for

{−div(a(x, u,∇u)) = f in Ω,

u(x) = 0 on ∂Ω,
(2)

where Φ = 0 and M satisfy the �2-condition. Antontsev and Shmarev [6] proved
theorems of existence and uniqueness ofweak solutions ofDirichlet problem for a class
of nonlinear parabolic equations with nonstandard anisotropic growth conditions in
the variable exponent Lebesgue spaces. Equations of this class generalize the evolution
p(x, t)-Laplacian of the type
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Existence and uniqueness of a renormalized solution of… 197

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
−

∑

i

∂

∂xi
[ai (x, t, u)|Diu|pi (x,t)−2Diu + bi (x, t, u)] = 0 in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω.

(3)
The study of the problem in the framework of renormalized solutions is motivated by
the lack of regularity of the distributional formulation (it’s not enough to assure the
uniqueness, for more detail see [26] and the counterexample in [29]).

Our novelty in the present paper is to give an existence and uniqueness result of
renormalized solution of (1) in the general framework of inohomogeneous Orlicz
spaces with a lower order term Φ which depends on x, t and u, that is with
a(x, t, u,∇u) replaced by a(x, t, u,∇u) + Φ(x, t, u). The difficulty encountered
during the proof of the existence of the solution is that the term Φ does not sat-
isfy the coercivity condition. Nonlinearities are characterized by N -functions M , for
which �2-conditions are not imposed, losing the reflexivity of the spaces LM (QT )

and W 1
0 LM (QT ).

In the literature up to our knowledge there is no result on the uniqueness of the
operator a(x, t, u,∇u) + Φ(x, t, u) in the framework of Orlicz spaces. So the crucial
question that we will focus in this paper is to impose appropriate conditions on each
term of problem (1) in order to obtain a uniqueness result (see Theorem 3).

This paper is organized as follows. In the Sect. 2, we recall some well-known
preliminaries properties and results of Orlicz-Sobolev spaces. Section 3 is devoted to
specify the essential assumptions on b, a, Φ and f and we introduce the Definition
1 of a renormalized solution of (1) and the existence result given in Theorem 2. In
Sect. 4 we prove Theorem 2 and in Sect. 5 we establish the uniqueness result. The
proof of Lemma 8 is given in the “Appendix”.

2 N-function and Orlicz spaces

Let M : IR+ → IR+ be an N -function, that is, M is continuous, convex, with
M(t) > 0 for t > 0, M(t)/t → 0 as t → 0, and M(t)/t → +∞ as t → +∞. Equiv-

alently, M admits the representation M(t) =
∫ t

0
a(s)ds, where a : IR+ → IR+ is

nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0, and a(t) → +∞
as t → +∞. The N -function M conjugate to M is defined by M(t) =

∫ t

0
a(s)ds,

where a : IR+ → IR+, is given by a(t) = sup{s : a(s) ≤ t}.
We extend these N -functions to even functions on all IR.

Example 1 For M(t) = |t |p
p

, M(t) = |t |q
q

where
1

p
+ 1

q
= 1 and p, q ∈ (1;+∞).

For M(t) = exp(t2) − 1 − |t |, M(t) = (1 + |t |) ln(1 + |t |) − |t |.
The N -function M is said to satisfy the �2-condition if, for some k,

M(2t) ≤ kM(t) for all t ∈ IR.
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198 A. Aberqi et al.

Let P and Q be two N -functions. P 	 Q means that P grows essentially less rapidly

than Q, that is, for each ε > 0, limt→+∞
P(t)

Q(εt)
= 0.

Proposition 1 P 	 M if and only if, for all ε > 0 there exists a constant cε such that,

P(t) ≤ M(εt) + cε, ∀t ≥ 0. (4)

Proof Let ε > 0, then by the definition of P 	 M , there exists tε > 0 such that
∀t > tε ,

P(t) ≤ M(εt). (5)

On the other hand, for t ∈ [0, tε], we use the continuity of P and then there exists a
constant Cε such that

P(t) ≤ Cε, (6)

where Cε = supt∈[0,tε ] P(t). We combine (5) and (6) we conclude (4).
The Orlicz class KM (Ω) (resp. the Orlicz space LM (Ω)) is defined as the set of

(equivalence classes of) real valued measurable functions u on Ω such that

∫

Ω

M(u(x))dx < +∞
(

resp.
∫

Ω

M

(
u(x)

λ

)

dx < +∞ for some λ > 0

)

.

The set LM (Ω) is Banach space under the norm

‖u‖M,Ω = inf{λ > 0 :
∫

Ω

M

(
u(x)

λ

)

dx ≤ 1},

and KM (Ω) is a convex subset of LM (Ω) . The closure in LM (Ω) of the set of bounded
measurable functions with compact support in Ω is denoted by EM (Ω) . The dual

EM (Ω) can be identified with LM (Ω) by means of the duality pairing
∫

Ω

uvdx and

the dual norm of LM (Ω) is equivalent to ‖u‖M,Ω . We now turn to the Orlicz-Sobolev
space, W 1LM (Ω) [resp. W 1EM (Ω) ] is the space of all functions u such that u and
its distributional derivatives up to order 1 lie in LM (Ω) [resp. EM (Ω) ]. It is a Banach
space under the norm

‖u‖1,M =
∑

|α|≤1

‖Dαu‖M,Ω .

Thus,W 1LM (Ω) andW 1EM (Ω) can be identifiedwith subspaces of product of N+1
copies of LM (Ω) . Denoting this product by ΠLM we will use the weak topologies
σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ). The spaceW 1

0 EM (Ω) is defined as the (norm)
closure of the Schwartz space D(Ω) in W 1EM (Ω) and the space W 1

0 LM (Ω) as the
σ(ΠLM ,ΠEM ) closure of D(Ω) in W 1LM (Ω) .

Let W−1LM (Ω) [resp. W−1EM (Ω) ] denote the space of distributions on Ω

which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω)
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Existence and uniqueness of a renormalized solution of… 199

[resp. EM (Ω)]. It is a Banach space under the usual quotient norm (for more details
see [2]). �


We recall the following lemmas:

Theorem 1 (Banach–Alaoglu–Bourbaki [13]) Let E be a Banach space and E ′ be the
dual space.
The closed unit ball BE ′ = { f ∈ E ′; ‖ f ‖ ≤ 1} is compact in the weak-* topology
σ(E ′, E).

Lemma 1 (Dominated convergence) Let fk, f in LM (Ω).

If fk → f a.e. and | fk | ≤ |g| a.e. and
∫

Ω

M(λ|g|)dx < ∞ for every λ > 0, then

fk → f in LM (Ω).

Lemma 2 (See [19], [22, p. 132]) If a sequence gn ∈ LM (Ω) converges a.e. to g and
gn remains bounded in LM (Ω), then g ∈ LM (Ω) and gn → g in σ(LM , EM ).

Lemma 3 Let F : IR → IR be uniformly Lipschitzian, with F(0) = 0. Let u ∈
W 1LM (Ω). Then F(u) ∈ W 1LM (Ω).

Moreover if the set D of discontinuity points of F ′ is finite, then

∂

∂xi
F(u) =

{
F ′(u) ∂u

∂xi
a.e. in {x ∈ Ω; u(x) /∈ D}

0 a.e. in {x ∈ Ω; u(x) ∈ D}.

Proof It is easily adapted from that given in [21] in the case W 1LM (Ω), by Theorem
1 of [20] instead of Theorem 4 of [20] (see also Remark 5 of [21]). �

Lemma 4 (See [17]) Let F : IR → IR be uniformly Lipschitzian, with F(0) = 0. We
suppose that the set of discontinuity points of F ′ is finite. Let M be an N-function.
Then the mapping F : W 1LM (Ω) → W 1LM (Ω) is sequentially continuous with
respect to the weak-* topology σ(ΠLM ,ΠEM ).

Inhomogeneous Orlicz-Sobolev spaces :
Let M be an N -function, for each α ∈ IN N , denote by∇α

x the distributional deriva-
tive on QT of order α with respect to the variable x ∈ IRN . The inhomogeneous
Orlicz-Sobolev spaces are defined as follows

W 1,x LM (QT ) = {u ∈ LM (QT ) : ∇α
x u ∈ LM (QT ), ∀α ∈ IN N , |α| ≤ 1},

W 1,x EM (QT ) = {u ∈ EM (QT ) : ∇α
x u ∈ EM (QT ), ∀α ∈ IN N , |α| ≤ 1}.

The last space is a subspace of the first one, and both are Banach spaces under the
norm

‖u‖ =
∑

|α|≤1

‖∇α
x u‖M,QT .

The space W 1,x
0 EM (QT ) is defined as the (norm) closure W 1,x EM (QT ) of D(QT ).

We can easily show that when Ω has the segment property, then each element u of
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200 A. Aberqi et al.

the closure of D(QT ) with respect of the weak* topology σ(ΠLM ,ΠEM ) is a limit
in W 1,x

0 EM (QT ), of some subsequence in D(QT ) for the modular convergence.

This implies that D(QT )
σ(ΠLM ,ΠEM ) = D(QT )

σ(ΠLM ,ΠLM )
. This space will be

denoted by W 1,x
0 LM (QT ) . Furthermore, W 1,x

0 EM (QT ) = W 1,x
0 LM (QT ) ∩ ΠEM ,

and the dual space of W 1,x
0 EM (QT ) will be denoted by

W−1,x LM (QT ) =
{

f =
∑

|α|≤1

∇α
x fα : fα ∈ LM (QT )

}

.

This spacewill be equippedwith the usual quotient norm ‖ f ‖= inf
∑

|α|≤1 ‖ fα‖M,QT
.

Remark 1 We can easily check, using Lemma 3, that each uniformly Lipschitzian
mapping F , with F(0) = 0, acts in inhomogeneous Orlicz-Sobolev spaces of order 1:
W 1,x LM (QT ) and W 1,x

0 LM (QT ).

Lemma 5 (See [15]) For all u ∈ W 1
0 LM (QT ) with meas(QT ) < +∞ one has

∫

QT

M

( |u|
λ

)

dxdt ≤
∫

QT

M(|∇u|)dxdt (7)

where λ = diam(QT ), is the diameter of QT .

3 Essential assumptions and the existence result

Throughout this paper, we assume that the following assumptions hold true.
Let M and P be two N -functions such that P 	 M .
b : IR → IR is a strictly increasing C1(IR)-function, b(0) = 0,

b0 < b′(s) < b1, ∀s ∈ IR such that b1 <
1

α0
. (8)

where α0 is the constant appearing in (12).
a : QT × IR × IRN → IRN is Carathéodory function and there exists a constant

ν > 0 such that for a.e. x ∈ Ω and for all s ∈ IR, ξ, ξ∗ ∈ IRN , ξ �= ξ∗:

|a(x, t, s, ξ)| ≤ ν(a0(x, t) + M
−1

P(|s|) + M
−1

M(|ξ |)) (9)

with a0(., .) ∈ EM (QT ),

(a(x, t, s, ξ) − a(x, t, s, ξ∗))(ξ − ξ∗) > 0, (10)

a(x, t, s, ξ).ξ ≥ αM(|ξ |). (11)

Φ : QT × IR → IRN is a Carathéodory function such that

|Φ(x, t, s)| ≤ c(x, t)M
−1

M
(α0

λ
|b(s)|

)
, (12)
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Existence and uniqueness of a renormalized solution of… 201

where λ = diam(QT ), ‖c(., .)‖L∞(QT ) ≤ min( α
α0+1 ; α

2(α0b1+1) ) and 0 < α0 < 1.

f ∈ L1(QT ), (13)

u0 ∈ L1(Ω) such that b(u0) ∈ L1(Ω). (14)

Note that 〈, 〉 means for either the pairing between W 1,x
0 LM (QT ) ∩ L∞(QT ) and

W−1,x LM (QT ) + L1(QT ) or between W 1,x
0 LM (QT ) and W−1,x LM (QT ).

Let Tk , k > 0 denotes the truncation function at level k defined on IR by Tk(r) =
max(−k;min(k; r)).

The definition of a renormalized solution of problem (1) can be stated as follows.

Definition 1 A measurable function u defined on QT is a renormalized solution of
problem (1), if it satisfies the following conditions:

b(u) ∈ L∞(0, T ; L1(Ω)), (15)

Tk(b(u)) ∈ W 1,x
0 LM (QT ), ∀k > 0, (16)

lim
m→+∞

∫

{(x,t)∈QT :m≤|u|≤m+1}
a(x, t, u,∇u)∇udxdt = 0, (17)

and if, for every function S ∈ W 2,∞(IR) which is piecewise C1 and such that S′ has
a compact support, we have in the sense of distributions

∂S(b(u))

∂t
− div

(
S′(b(u))(a(x, t, u,∇u) − Φ(x, t, u))

)

+S′′(b(u))
(
a(x, t, u,∇u) + Φ(x, t, u)

)
= f S′(b(u)) in D(QT ), (18)

S(b(u))(t = 0) = S(b(u0)) in Ω. (19)

Theorem 2 Assume that (8)–(14) hold true. Then there exists at least one renormalized
solution u of the problem (1) in the sense of the definition 1.

4 The stages of the Proof of Theorem 2

Truncated problem.
For each n > 0, we define the following approximations:

bn(s) = b(Tn(s)), ∀ s ∈ IR, (20)

an(x, t, s, ξ) = a(x, t, Tn(s), ξ) a.e. (x, t) ∈ QT , ∀ s ∈ IR, ∀ ξ ∈ IRN , (21)

Φn(x, t, s) = Φ(x, t, Tn(s)) a.e. (x, t) ∈ QT , ∀ s ∈ IR, (22)

Let fn be a smooth function such that fn → f strongly in L1(QT ) (23)

and
u0n ∈ C∞

0 (Ω) such that bn(u0n) → b(u0) strongly in L1(Ω). (24)
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202 A. Aberqi et al.

Consider the approximate problem:

⎧
⎪⎨

⎪⎩

∂bn(un)

∂t
− div(an(x, t, un,∇un) + Φn(x, t, un)) = fn in QT ,

un(x, t) = 0 on ∂Ω × (0, T ),

bn(un)(t = 0) = bn(x, u0n) in Ω.

(25)

Let un ∈ W 1,x
0 LM (QT ), then for any fixed n > 0, there exists at least one solution

un ∈ W 1,x
0 LM (QT ) of (25), (see [23]).

Note that by Lemma 3 and Remark 1, we have Tk(un) ∈ W 1,x
0 LM (QT ), and by

(8), (11), (12) and Young inequality, the quantity
∫

QT

M(|∇Tk(un)|)dxdt is finite for
all k > 0.

Remark 2 The explicit dependence in x and t of the functions a and Φ will be omitted
so that a(x, t, u,∇u) = a(u,∇u) and Φ(x, t, u) = Φ(u).

Step 1: A priori estimates.

Lemma 6 Let un be a solution of the approximate problem (25), then for all k > 0,
there exists a constant C and for a subsequence, still indexed by n we have

∫

QT

M(|∇Tk(un)|)dxdt ≤ kC, (26)

un → u a.e in QT , where u is a measurable function on QT , (27)

bn(un) → b(u) a.e in QT , b(u) ∈ L∞(0, T , L1(Ω)), (28)

an(Tk(un),∇Tk(un)) is bounded in (LM (QT ))N , (29)

Proof Fix k > 0 and τ ∈ (0, T ). Let Tk(un)χ(0,τ ) a test function in problem (25).
Using the Young inequality we get

∫

Ω

Bn(un(τ ))dx +
∫

Qτ

an(un,∇un)∇Tk(un)dxdt +
∫

Qτ

Φn(un)∇Tk(un)dxdt

≤ k[‖ fn‖L1(QT ) + ‖b(u0)‖L1(QT )], (30)

where Bn(r) =
∫ r

0

∂bn(s)

∂s
Tk(s)ds.

By definition, we have
∫

Ω

Bn(un(τ ))dx ≥ 0 and
∫

Ω

Bn(un(0))dx ≤ kb1‖b(u0)
‖L1(QT ).

By (12), (8) and Young inequality we have

∫

Qτ

Φn(un)∇Tk(un)dxdt ≤ ‖c(., .)‖L∞(QT )[α0b1

∫

Qτ

M(
|Tk(un)|

λ
)dxdt

+
∫

Qτ

M(|∇Tk(un)|)dxdt],

123



Existence and uniqueness of a renormalized solution of… 203

thanks to Lemma 5, we obtain
∫

Qτ

Φn(un)∇Tk(un)dxdt ≤ ‖c(., .)‖L∞(QT )(α0b1 + 1)
∫

Qτ

M(|∇Tk(un)|)dxdt,

return to (30) and using (11) we get
∫

Qτ

an(un,∇un)∇Tk(un)dxdt ≤ (α0b1 + 1)

α

∫

Qτ

an(un,∇un)∇Tk(un)dxdt

+ k[‖ fn‖L1(QT ) + ‖b(u0)‖L1(QT )],

thus
[

1 − (α0b1 + 1)

α
‖c(., .)‖L∞(QT )

] ∫

QT

an(un,∇un)∇Tk(un)dxdt ≤ kc1.

We take
1

c2
= [1 − (α0b1 + 1)

α
‖c(., .)‖L∞(QT )].

By (12) we have c2 > 0 and we obtain
∫

Qτ

a(un,∇un)∇Tk(un)dxdt ≤ kC,

where C = c1c2. And by (11) we have (26).
We conclude that (Tk(un)) is bounded in W 1,x

0 LM (QT ) independently of n. Since
(EM (QT ))′ = LM (QT ) then by Theorem 1, the set {(Tk(un))} is compact for the
weak topology σ(ΠLM ,ΠEM ) so there exists a subsequence still denoted by un and
there exists a measurable function ξk such that Tk(un)⇀ξk for the weak topology
σ(ΠLM ,ΠEM ).

On the other hand, using Lemma 5, we have

M

(
k

λ

)

meas{|un| > k} =
∫

{|un |>k}
M

( |Tk(un)|
λ

)

dxdt

≤
∫

QT

M(|∇Tk(un)|)dxdt ≤ kC,

then meas{|un| > k} ≤ kC

M( k
λ
)
for all n and for all k.

Thus, we get lim
k→∞meas{|un| > k} = 0. �


Proof of (27) and (28): For k < n, let gk ∈ W 2,∞(IR), such that g′
k , has a compact

support supp(g′
k) ⊂ [−k, k].Wemultiply the Eq. (25) by g′

k(un), to obtain inD′(QT ),

∂Bn
gk (un)

∂t
= div(g′

k(un)(an(un,∇un) + Φn(un))

−g′′
k (un)(an(un,∇un) + Φn(un))∇un + fng

′
k(un) (31)
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204 A. Aberqi et al.

where Bn
gk (r) =

∫ r

0
g′
k(s)

∂bn(s)

∂s
ds.

Then, we show that

(
Bn
gk (un)

)
is bounded in W 1,x

0 LM (QT ), (32)

and
(∂Bn

gk (un)

∂t

)
is bounded in L1(QT ) + W−1,x LM (QT ) (33)

independently of n.
Indeed, first we have |∇Bn

gk (un)| ≤ b1|∇Tk(un)|‖g′
k‖L∞(IR) a.e. in QT , and using

(26) we obtain (32). To show that (33) holds true, since supp(g′
k) and supp(g

′′
k ) are both

included in [−k, k], un may be replaced by Tk(un) in each of these terms. As a conse-
quence, each term in the right hand side of (31) is bounded either in W−1,x LM (QT )

or in L1(QT ) which shows that (33) holds true.
Arguing again as in [10] estimates (32), (33) and the following remark, imply that,

for a subsequence, still indexed by n,

un → u a.e in QT and b(u) ∈ L∞(0, T , L1(Ω)),

where u is a measurable function defined on QT .

Remark 3 For every g ∈ W 2,∞(IR), nondecreasing function such that supp(g′) ⊂
[−k, k] and (8), we have

b0|g(r) − g(r ′)| ≤ |Bg(r) − Bg(r
′)| ≤ b1|g(r) − g(r ′)| for every in IR. (34)

Proof of (29) : As in [4], we may deduce that an(Tk(un),∇Tk(un)) is a bounded
sequence in (LM (QT ))N , and we obtain (29).
Step 2: Almost everywhere convergence of the gradients. In order to show that the
gradient converges almost everywhere, we need to prove the next proposition.

Proposition 2 Let un be a solution of the approximate problem (25), then

lim
m→∞ lim sup

n→∞

∫

{m≤|un |≤m+1}
a(un,∇un)∇undxdt = 0, (35)

lim
m→∞ lim sup

n→∞

∫

{m≤|un |≤m+1}
Φ(un)∇undxdt = 0. (36)

For any r > 0 and 0 < δ < 1, we have

lim
n→+∞

∫

QT

[(a(Tk(un),∇Tk(un)) − a(Tk(un),∇Tk(u)χ{|∇Tk (u)|≤k})

×(∇Tk(un) − ∇Tk(u)χ{|∇Tk (u)|≤k})]δ dxdt = 0, (37)

∇un → ∇u a.e. in QT . (38)
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Proof Taking Zm(un) = T1(un−Tm(un)) as a test function in the approximateEq. (25)
we get

∫

{m≤|un |≤m+1}
an(un,∇un)∇undxdt ≤ C[

∫

QT

fn Zm(un) dxdt

+
∫

{|u0n |>m}
|bn(u0n)|dxdt,

where
1

C
= [1 − (α0b1 + 1)

α
‖c(., .)‖L∞(QT )] > 0.

Passing to the limit as n → +∞, using the pointwise convergence of un and
strongly convergence in L1(QT ) of fn we get

lim
n→+∞

∫

{m≤|un |≤m+1}
an(un,∇un)∇undxdt ≤ C[

∫

QT

f Zm(u) dxdt

+
∫

{|u0|>m}
|b(u0)|dxdt .

Owning to Lebesgue’s theorem and passing to the limit as m → +∞, in the all terms
of the right-hand side, we get (35).

From (11), we deduce also

lim
m→+∞ lim

n→+∞

∫

{m≤|un |≤m+1}
M(|∇Zm(un)|)dxdt = 0. (39)

On the other hand, we have

lim
m→+∞ lim

n→+∞

∫

QT

Φn(un)∇Zm(un)dxdt ≤ lim
m→+∞ lim

n→+∞

∫

QT

M(|∇Zm(un)|)dxdt,

+ lim
m→+∞ lim

n→+∞

∫

{m≤|un |≤m+1}
M(|Φn(un)|)dxdt .

Using the pointwise convergence of un and by Lebegue’s theorem, in the second term
of the right side of this last expression, we get

lim
n→+∞

∫

{m≤|un |≤m+1}
M(|Φn(un)|)dxdt =

∫

{m≤|u|≤m+1}
M(|Φ(u)|)dxdt,

and also, by Lebesgue’s theorem

lim
m→+∞

∫

{m≤|u|≤m+1}
M(|Φ(u)|)dxdt = 0. (40)

Thus with (39) and (40), we get the (36).
The proof of (37) is the same as the corresponding result in [18,27].
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Finally, for the almost everywhere convergence of the gradientsweuse the following
lemma and same techniques as in [4] and [18].

Lemma 7 (See [7]) Under the Assumptions (8)–(14), let (zn) be a sequence in
W 1,x

0 LM (QT ) such that:

zn⇀z for σ(ΠLM ,ΠEM ), (41)

(a(x, t, zn,∇zn)) is bounded in (LM (QT ))N , (42)
∫

QT

[a(x, t, zn,∇zn) − a(x, t, zn,∇zχs)][∇zn − ∇zχs]dxdt → 0 (43)

as n and s tend to +∞, and where χs is the characteristic function of
Qs = {x ∈ QT ; |∇z| ≤ s}.

Then,

∇zn → ∇z a.e. in QT , (44)

lim
n→+∞

∫

QT

a(x, t, zn,∇zn)∇zndxdt =
∫

QT

a(x, t, z,∇z)∇zdxdt, (45)

M(|∇zn|) → M(|∇z|) in L1(QT ). (46)

�

Step 3: We show that u satisfies the conditions of Definition 1 For this, let show that
(17) holds.

We have for any m > 0,
∫

{m≤|un |≤m+1}
a(un,∇un)∇undxdt =

∫

QT

a(un,∇un)[∇Tm+1(un) − ∇Tm(un)]dxdt

=
∫

QT

a(Tm+1(un),∇Tm+1(un))∇Tm+1(un)dxdt

−
∫

QT

a(Tm(un),∇Tm(un))∇Tm(un)dxdt .

According to (45), we pass to the limit as n tends to +∞ for fixed m > 0 and we
obtain

lim
n→+∞

∫

{m≤|un |≤m+1}
a(un,∇un)∇undxdt

=
∫

QT

a(Tm+1(u),∇Tm+1(u))∇Tm+1(u)dxdt

−
∫

QT

a(Tm(u),∇Tm(u))∇Tm(u)dxdt

=
∫

{m≤|u|≤m+1}
a(u,∇u)∇udxdt,

with (35), we easily obtain (17).
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Similarly we deduce

lim
m→+∞

∫

{m≤|u|≤m+1}
Φ(u)∇udxdt = 0. (47)

Let S ∈ W 2,∞(IR) which is a piecewise C1-function and such that S′ has a compact
support, Let K > 0 such that supp(S′) ⊂ [−K , K ]. Pointwise multiplication of the
approximate problem (25) by S′(un), we get

⎧
⎪⎪⎨

⎪⎪⎩

∂S(b(un))

∂t
+ div

(
S′(b(un))(a(x, t, un,∇un) − Φ(x, t, un))

)

+S′′(b(un))
(
a(x, t, un,∇un) − Φ(x, t, un)

)
∇b(un)

= f S′(b(un)).

(48)

Now we will pass to the limit as n → +∞ of each term of (48),

– Limit of ∂S(b(un))
∂t

since S is bounded, and S(b(un)) converges to S(b(u)) a.e. in QT and weakly in
L∞(QT ), then ∂S(b(un))

∂t converges to ∂S(b(u))
∂t in D′(QT ).

– Limit of S′(b(un))a(un,∇un)

since supp(S′) ⊂ [−K , K ] and (8) we have

S′(b(un))a(un,∇un) = S′(b(un))a(T k
b0

(un),∇T k
b0

(un)) a.e. in QT .

Owing to the pointwise convergence of un to u, the bounded character of S′,
and by Lemma 7 and Proposition 2, we conclude a(T k

b0
(un),∇T k

b0
(un)) con-

verges to a(T k
b0

(un),∇T k
b0

(un)) weakly in (LM (QT ))N . This allows us to obtain

S′(b(un))a(T k
b0

(un),∇T k
b0

(un)) converges to

S′(b(u))a(T k
b0

(u),∇T k
b0

(u)) weakly for σ(ΠLM ,ΠEM ), and

S′(b(u))a(T k
b0

(u),∇T k
b0

(u) = S′(b(u))a(u,∇u) a.e. in QT .

– Limit of S′′(b(un))a(un,∇un)∇b(un)
since supp(S′) ⊂ [−K , K ] and (8), we get

S′′(b(un))a(un,∇un)∇b(un) = S′′(b(un))a(T k
b0

(un),∇T k
b0

(un))∇b(un) a.e. in

QT . Owing to the pointwise convergence of S′′(b(un)) to S′′(b(un)) as n tends to
+∞, the bounded character of S′′ and by Lemma 7 and Proposition 2, we conclude
S′′(b(un))a(T k

b0
(un),∇T k

b0
(un))∇b(un)⇀S′′(b(u))a(T k

b0
(u),∇T k

b0
(u))∇b(u)

weakly in L1(QT ) as n → +∞, and S′′(b(u))a(T k
b0

(u),∇T k
b0

(u))∇b(u) =
S′′(b(u))a(u,∇u)∇b(u) a.e. in QT .
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– Limit of S′(b(un))Φ(un)

since supp(S′) ⊂ [−K , K ] and (8) we have S′(b(un))Φ(un) = S′(b(un))
Φ(T k

b0
(un)) a.e. in QT .

In a similar way, we obtain S′(b(un))Φ(un) → S′(b(u))Φ(u) weakly for
σ(ΠLM ,ΠEM ).

– Limit of S′′(b(un))Φ(x, t, un)∇b(un)

Also we have

S′′(b(un))Φ(un)∇b(un) = S′′(b(un))Φ(T k
b0

(un))∇T k
b0

(un)b
′(un)

using the weakly convergence of truncation, it is possible to prove that,

S′′(b(un))Φ(un)∇b(un) → S′′(b(u))Φ(u)∇b(u) strongly in L1(QT ).

– Limit of fn S′(b(un))

we have un → u a.e. in QT , S′ and b are piecewise C1. It is enough to use (23) to
get that fn S′(b(un)) → f S′(b(u)) strongly in L1(QT ).

Finally, to show (19), remark that S being bounded, S(b(un)) is bounded in L∞(QT ).
The Eq. (48) allows to show that ∂S(b(un))

∂t is bounded inW−1,x LM (QT )+L1(QT ). By
Lemma5 in [16] this implies that S(b(un)) lies in a compact set ofC0([0, T ]; L∞(Ω)).
It follows that, on one hand, S(b(un)(t = 0)) converges to S(b(u)(t = 0)) strongly
in L1(QT ). On the other hand, the smoothness of S imply that S(b(u)(t = 0)) =
S(b(u0)) in Ω . This complete the proof of the existence result.

Example 2 As an example of equations to which the present result on the existence of
renormalized solutions can be applied, we give:

1. For M(t) = 1

p
|u|p, b(u) = |u|p−2u, a(x, t, u,∇u) = |∇u|p−2∇u

and Φ(x, t, u) = exp
( η

‖x‖ + t + 2

)
β(

α0

λ
)
p
q |u| p

q .

⎧
⎪⎪⎨

⎪⎪⎩

∂b(u)

∂t
− �M − div

(
exp

( η

‖x‖ + t + 2

)
β
(α0

λ

) p
q |u| p

q

)
= f in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

b(u(x, 0)) = b(u0)(x) in Ω.

2. For −�M = −div(
m(|∇u|)

|∇u| .∇u) where m is the derivative of M , b(u) = u and

c ∈ (L∞(QT ))N .
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⎧
⎪⎨

⎪⎩

∂u

∂t
− �M − div(c(x, t)M

−1
M(

α0

λ
|b(u)|)) = f in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω.

3. For M(t) = t log(1 + t), a(x, t, u,∇u) = (1 + |u|)2∇u
log(1 + |∇u|)

|∇u| and c ∈
(L∞(QT ))N .

⎧
⎪⎪⎨

⎪⎪⎩

∂b(u)

∂t
− div(1 + |u|)2∇u

log(1 + |∇u|)
|∇u| − div(c(x, t)M

−1
M(

α0

λ
b(u))) = f in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

b(u(x, 0)) = b(u0)(x) in Ω.

5 Uniqueness result

Before showing the uniqueness of the solution of the problem (1), we will give the
following technical lemma.

Let u and v be two renormalized solutions of the problem (1) and let us define for
any 0 < k < s,

Γ (u, v, s, k) =
∫

{b(s) − k < b(u) < b(s) + k}
∪{b(−s) − k < b(u) < b(−s) + k}

b′(u)
(
a(u,∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{b(s) − k < b(v) < b(s) + k}
∪{b(−s) − k < b(v) < b(−s) + k}

b′(v)
(
a(v,∇v)∇v + |Φ(v)||∇v|

)
dxdt .

(49)

Lemma 8 Assume that (8)–(14) hold. Then for any r > 0 we have

lim inf
s→+∞ lim sup

k→0

1

k
Γ (u, v, s, k) = 0. (50)

Proof See “Appendix”. �

Theorem 3 Assume that Assumptions (8)–(14) hold true and moreover that for any
compact set D ⊂ IR, there exists LD ∈ EM (QT ) and ρD > 0 such that ∀s, s ∈ D,

|a(x, t, s, ξ) − a(x, t, s, ξ)| ≤
(
LD(x, t) + ρDP

−1
P(|ξ |)

)
|s − s|, (51)

|Φ(x, t, s) − Φ(x, t, s)| ≤ LD(x, t)|s − s|, (52)

|b′(s) − b′(s)| ≤ βD|s − s|, (53)
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for almost every (x, t) ∈ QT and for every ξ ∈ IRN . Then the problem (1) has a
unique renormalized solution.

Proof We define a smooth approximation of T̃n(r) = min(b(n),max(r , b(−n))) by
T̃ σ
n where T̃ σ

n (0) = 0 and

(T̃ σ
n )′(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for r ≥ b(n) + σ,

b(n)+σ−r
σ

for b(n) ≤ r ≤ b(n) + σ,

1 for b(−n) ≤ r ≤ b(n),

r+σ−b(−n)
σ

for b(−n) − σ ≤ r ≤ b(−n),

0 for r ≤ b(−n) − σ.

(54)

For a fixed n > 0, we have for any z ∈ L1(QT ),

lim
σ→0

(T̃ σ
n )′(b(z)) = χ{|z|≤n} a.e. in QT , (55)

and
lim
σ→0

T̃ σ
n (b(z)) = T̃n(b(z)) a.e. in QT . (56)

Consider now two renormalized solutions u and v of (15)–(18) for the data f and
b(u0). Since T̃ σ

n ∈ W 2,∞(IR) and supp((T̃ σ
n )′) ⊂ [b(−n) − σ, b(n) + σ ] , then we

take S = T̃ σ
n andwe use 1

k Tk(T̃
σ
n (b(u))− T̃ σ

n (b(v))) as a test function in the difference
of equations (18) for u and v, we get

1

k

∫ T

0

∫ t

0

〈
∂

(
T̃ σ
n (b(u)) − T̃ σ

n (b(v)))
)

∂t
; Tk(T̃ σ

n (b(u)) − T̃ σ
n (b(v))

〉

dsdt

+I σ
1,n + I σ

2,n + I σ
3,n + I σ

4,n = I σ
5,n, (57)

where

I σ
1,n = 1

k

∫ T

0

∫ t

0

∫

Ω

[
(T̃ σ

n )′(b(u))a(u,∇u)

−(T̃ σ
n )′(b(v))a(v,∇v)

]
∇Tk(T̃

σ
n (b(u)) − T̃ σ

n (b(v)))dxdsdt,

I σ
2,n = 1

k

∫ T

0

∫ t

0

∫

Ω

[
(T̃ σ

n )′′(b(u))a(u,∇u)∇b(u)

−(T̃ σ
n )′′(b(v))a(v,∇v)∇b(v)

]
Tk(T̃

σ
n (b(u)) − T̃ σ

n (b(v)))dxdsdt,
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I σ
3,n = 1

k

∫ T

0

∫ t

0

∫

Ω

[
(T̃ σ

n )′(b(u))Φ(u) − (T̃ σ
n )′(b(v))Φ(v)

]
∇Tk(T̃

σ
n (b(u))

−T̃ σ
n (b(v)))dxdsdt,

I σ
4,n = 1

k

∫ T

0

∫ t

0

∫

Ω

[
(T̃ σ

n )′′(b(u))Φ(u)∇b(u)

−(T̃ σ
n )′′(b(v))Φ(v)∇b(v)

]
Tk(T̃

σ
n (b(u)) − T̃ σ

n (b(v)))dxdsdt,

I σ
5,n = 1

k

∫ T

0

∫ t

0

∫

Ω

f
[
(T̃ σ

n )′(b(u)) − (T̃ σ
n )′(b(v))

]
Tk(T̃

σ
n (b(u))

−T̃ σ
n (b(v)))dxdsdt,

for any k > 0, n > 0, σ > 0.

The following lemma will be useful in the sequel,
Lemma 9

lim
n→+∞ lim

k→0
lim
σ→0

1

k

∫ T

0

∫ t

0

〈
∂
(
T̃ σ
n (b(u)) − T̃ σ

n (b(v))
)

∂t
; Tk(T̃ σ

n (b(u)) − T̃ σ
n (b(v)))

〉

dsdt

=
∫

QT

|b(u) − b(v)|dxdt . (58)

Proof Notice that

T̃ σ
n (b(u))(t = 0) = T̃ σ

n (b(v))(t = 0) = T̃ σ
n (b(u0)) a.e. in Ω,

and

1

k

∫ T

0

∫ t

0

〈
∂
(
T̃ σ
n (b(u)) − T̃ σ

n (b(v))
)

∂t
; Tk(T̃ σ

n (b(u)) − T̃ σ
n (b(v))

)
〉

dsdt

= 1

k

∫

QT

T k(T̃
σ
n (b(u)) − T̃ σ

n (b(v)))dxdt,

where T k(r) =
∫ r

0
Tk(z)dz.

Passing to the limit we obtain

lim
k→0

lim
σ→0

1

k

∫

QT

T k(T̃
σ
n (b(u)) − T̃ σ

n (b(v)))dxdt

=
∫

QT

|T̃n(b(u)) − T̃n(b(v))|dxdt,

and letting n → +∞ in this last equality, we deduce (58). �
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Now, we analyze the limit of I σ
1,n, I

σ
2,n, I

σ
3,n, I

σ
4,n and I σ

5,n one by one.
The limit of I σ

1,n : Notice that

I σ
1,n = 1

k

∫ T

0

∫ t

0

∫

Ω

Qσ
n dxdsdt = 1

k

∫

QT

(T − t)Qσ
n dxdt,

where Qσ
n = (T̃ σ

n )′(b(u))a(u,∇u) − (T̃ σ
n )′(b(v))a(v,∇v)]∇Tk(T̃ σ

n (b(u)) − T̃ σ
n

(b(v))).

Since supp((T̃ σ
n )′) ⊂ [b(−n) − σ, b(n) + σ ],

then

(T̃ σ
n )′(b(u))a(u,∇u) = (T̃ σ

n )′(b(u))a(Tn+1(u),∇Tn+1(u))

and

(T̃ σ
n )′(b(v))a(v,∇v) = (T̃ σ

n )′(b(u))a(Tn+1(v),∇Tn+1(v)).

Then by (55), (56) and (54) one has

⎧
⎪⎪⎨

⎪⎪⎩

Qσ
n converges to [χ{|u|≤n}a(u,∇u) − χ{|v|≤n}a(v,∇v)]∇Tk(T̃n(b(u)) − T̃n(b(v))),

|Qσ
n | ≤ C2

nb1[|a(Tn+1(u),∇Tn+1(u))| + |a(Tn+1(v),∇Tn+1(v))|]
×(|∇Tn+1(u)| + |∇Tn+1(v)|)χ{|T̃n(b(u))−T̃n(b(v))|≤k} = Rn .

where Cn = max(|b(−n) − σ |, b(n) + σ).

Since Rn ∈ L1(QT ) we use the Lebesgue dominated convergence theorem to have

lim
σ→0

I σ
1,n = lim

σ→0

1

k

∫

QT

(T − t)Qσ
n dxdt

= 1

k

∫

QT

(T − t)[χ{|u|≤n}a(u,∇u)

−χ{|v|≤n}a(v,∇v)]∇Tk(Tn(b(u)) − Tn(b(v)))dxdt

= J1 + J2 + J3 + J4 + J5, (59)

where

J1 = 1

k

∫

{|b(u)−b(v)|≤k,|u|≤n,|v|≤n}
(T − t)

(
a(u, ∇u) − a(u,∇v)

)
(∇u − ∇v)b′(u)dxdt,

J2 = 1

k

∫

{|b(u)−b(v)|≤k,|u|≤n,|v|≤n}
(T − t)

(
a(u, ∇v) − a(v, ∇v)

)
(∇u − ∇v)b′(u)dxdt,

J3 = 1

k

∫

{|b(u)−b(v)|≤k,|u|≤n,|v|≤n}
(T − t)

(
a(u, ∇u) − a(v, ∇v)

)
∇v(b′(u) − b′(v))dxdt,

J4 = 1

k

∫

{|T̃n(b(u))−T̃n(b(v))|≤k,|u|>n,|v|≤n}
(T − t)a(v,∇v)∇b(v)dxdt,
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J5 = 1

k

∫

{|T̃n(b(u))−T̃n(b(v))|≤k,|u|≤n,|v|>n}
(T − t)a(u,∇u)∇b(u)dxdt .

Since a(u,∇u) satisfies the condition (11), one has

J1 ≥ 0. (60)

On the other hand by (51) we have

|J2| ≤ b1
k
T

∫

QT

χ{|b(u)−b(v)|≤k},|u|≤n,|v|≤n}|u − v|
(
LD(x, t) + ρDP

−1
P(|v|)

)

×(|∇u| + |∇v|)dxdt .

Using (8), one has |u − v| ≤ 1
b0

|b(u) − b(v)| ≤ 1
b0
, then

|J2| ≤ b1
b0

T
∫

{|b(u)−b(v)|≤k}

(
LD(x, t) + ρDP

−1
P(|v|)

)
(|∇u| + |∇v|)dxdt .

Since LD(x, t) ∈ EM (QT ), u and v in W 1,x LM (QT ) and using (4), one has

(LD(x, t) + ρDP
−1

P(|v|))(|∇u| + |∇v|) ∈ L1(QT ) and the Lebesgue dominated
convergence theorem allows us to conclude that for all n ≥ 1

lim sup
k→0

J2 = 0. (61)

We denote by Cn the compact subset [−n − 1, n + 1]. Due to (53), there exists a
positive number βn such that |b′(r1) − b′(r2)| ≤ βn|r1 − r2| for all r1 and r2 lying in
Cn . Using (8) and Rolle’s theorem, we get

|b′(r1) − b′(r2)| ≤ βn

b0
|b(r1) − b(r2)|.

Then |b′(r1) − b′(r2)| ≤ k βn
b0

on {|b(u) − b(v)| ≤ k, |u| ≤ n, |v| ≤ n} and we get

|J3| ≤ βn

b0
T

∫

QT

(
a(Tn(u), ∇Tn(u)) − a(Tn(v), ∇Tn(v))

)
|∇v|χ{|b(u)−b(v)|≤k,|u|≤n,|v|≤n,u �=v}dxdt .

Since

{
lim
k→0

χ{|b(u)−b(v)|≤k,|u|≤n,|v|≤n,u �=v} = 0 a.e. in QT ,

|a(Tn(u),∇Tn(u)) − a(Tn(v),∇Tn(v))||∇Tn(v)| ∈ L1(QT ),

we use the Lebesgue dominated convergence theorem to conclude that, for all n ≥ 1,

lim
k→0

J3 = 0. (62)
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In view of the definition of T̃n , we have

J4 = 1

k

∫

{b(n) − k ≤ b(v) ≤ b(n)}
∪{b(−n) ≤ b(v) ≤ b(−n) + k}

(T − t)a(v,∇v)∇b(v)dxdt,

and using (11) we deduce
lim inf
n→+∞ lim sup

k→0
J4 ≥ 0. (63)

Similarly we have

J5 = 1

k

∫

{b(n) − k ≤ b(u) ≤ b(n)}
∪{b(−n) ≤ b(u) ≤ b(−n) + k}

(T − t)a(u,∇u)∇b(u)dxdt,

and
lim inf
n→+∞ lim sup

k→0
J5 ≥ 0. (64)

Now from (59)–(64) we obtain

lim inf
n→+∞ lim sup

k→0
lim
σ→0

I σ
1,n ≥ 0. (65)

The limit of I σ
2,n and I σ

4,n : Now we claim that

|I σ
2,n| + |I σ

4,n| ≤ T

σ
Γ (u, v, n, σ ). (66)

From a simple derivation of the function (T̃ σ
n )′ it yields that for any σ > 0 and k > 0

|I σ
2,n| ≤ T

σ

∫

{b(n) − σ ≤ b(u) ≤ b(n)}
∪{b(−n) ≤ b(u) ≤ b(−n) + σ }

a(u,∇u))∇b(u)dxdt

+T

σ

∫

{b(n) − σ ≤ b(v) ≤ b(n)}
∪{b(−n) ≤ b(v) ≤ b(−n) + σ }

a(v,∇v))∇b(v)dxdt . (67)

Similarly we have

|I σ
4,n| ≤ T

σ

∫

{b(n) − σ ≤ b(u) ≤ b(n)}
∪{b(−n) ≤ b(u) ≤ b(−n) + σ }

Φ(u)∇b(u)dxdt

+T

σ

∫

{b(n) − σ ≤ b(v) ≤ b(n)}
∪{b(−n) ≤ b(v) ≤ b(−n) + σ }

Φ(v)∇b(v)dxdt . (68)

By combining (67) and (68) we readily deduce (66).
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The limit of I σ
3,n : There we prove that

lim sup
σ→0

|I σ
3,n| ≤ T

k
Γ (u, v, n, k) + ε(k), (69)

where ε(k) is a positive function such that limk→0 ε(k) = 0.
For n ≥ 0 we have

lim sup
σ→0

|I σ
3,n| =

∣
∣
∣
∣
1

k

∫

QT

(T − t)(χ{|u|≤n}Φ(u)

−χ{|v|≤n}Φ(v))∇Tk(T̃n(b(u)) − T̃n(b(v)))dxdt
∣
∣ .

≤ K1 + K2 + K3,

where

K1 = T

k

∫

QT

χ{|u|≤n,|v|>n}|Φ(u)||∇Tk(T̃n(b(u)) − b(n. sgn(v))|dxdt,

K2 = T

k

∫

QT

χ{|u|>n,|v|≤n}|Φ(v)||∇Tk(T̃n(b(v)) − b(n. sgn(u))|dxdt,

K3 = T

k

∫

QT

χ{|u|≤n,|v|≤n}|Φ(u) − Φ(v)||∇Tk(T̃n(b(u)) − T̃n(b(v)))|dxdt .

We estimate K1 and K2 by (12) we have

K1 ≤ T

k

∫

QT

χ{|u|≤n,|v|>n}χ{|b(u)−b(n. sgn(v))|≤k}|Φ(u)||∇b(u)|dxdt

≤ T

k

∫

{b(n) − k ≤ b(u) ≤ b(n)}
∪{b(−n) ≤ b(u) ≤ b(−n) + k}

|Φ(u)||∇b(u)|dxdt, (70)

and similarly

K2 ≤ T

k

∫

{b(n) − k ≤ b(v) ≤ b(n)}
∪{b(−n) ≤ b(v) ≤ b(−n) + k}

|Φ(v)||∇b(v)|dxdt . (71)

On the other hand, by (53) one have since LD ∈ LM (QT ),

K3 ≤ T

k

∫

{|T̃n(b(u))−T̃n (b(v))|≤k}∩{|u|≤n,|v|≤n}
LD(x, t)|u − v||∇Tk(T̃n(b(u)) − T̃n(b(v)))|dxdt

by (8) we obtain

K3 ≤ T

k

∫

{|T̃n(b(u))−T̃n(b(v))|≤k}∩{|u|≤n,|v|≤n}
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1

b0
LD(x, t)|b(u) − b(v)||∇Tk(T̃n(b(u)) − T̃n(b(v)))|dxdt

= T

k

∫

{|T̃n(b(u))−T̃n(b(v))|≤k}∩{|u|≤n,|v|≤n}
T

b0
LD(x, t)|T̃n(b(u)) − T̃n(b(v))||∇Tk(T̃n(b(u)) − T̃n(b(v)))|dxdt

≤ T

b0

∫

{|T̃n(b(u))−T̃n(b(v))|≤k}∩{|u|≤n,|v|≤n}
LD(x, t)(|∇ T̃n(b(u))| + |∇ T̃n(b(v))|)dxdt = ε(k).

Since LD in LM (QT ) and due to (16), the function LD(x, t)(|∇Tn(b(u))| +
|∇Tn(b(v))|) ∈ L1(QT ). Using the Lebesgue dominated convergence theorem we
obtain limk→0 ε(k) = 0 and

lim
k→0

|K3| = 0. (72)

Estimates (70)–(72) imply (69).
The limit of I σ

5,n :
Using the Lebesgue theorem and (55) and (56), we obtain

lim
σ→0

|I σ
5,n| ≤ T

k

∫

QT

|Tk(T̃n(b(u) − T̃n(b(v))| × | f ||χ{|u|≤n} − χ{|v|≤n}|dxdt .

Since limk→0
Tk (z)
k = sgn(z) in IR and weakly-* in L∞ then

lim
k→0

lim
n→+∞ lim

σ→0
|I σ
5,n| ≤ T lim

n→+∞

(∫

{|u|≥n}
| f |dxdt +

∫

{|v|≥n}
| f |dxdt

)

= 0.

Then
lim
k→0

lim inf
n→+∞ lim

σ→0
I σ
5,n = 0. (73)

Finally, going back to (57) and using Lemma 8, one may deduce that u = v a.e. in
QT .

Appendix

Proof of Lemma 8 Define the functions

L1(s) =
∫

{0<b(u)<s}

(
a(u,∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{0<b(v)<s}

(
a(v,∇v)∇v + |Φ(v)||∇v|

)
dxdt, (74)
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and

L2(s) =
∫

{−s<b(u)<0}

(
a(u,∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{−s<b(v)<0}

(
a(v,∇v)∇v + |Φ(v)||∇v|

)
dxdt . (75)

Due to (10) the functions L1 and L2 are monotone increasing. L1 and L2 are differ-
entiable almost everywhere (see [28]), with L ′

1 and L ′
2 measurable and so we have for

any s > η > 0

L1(s) − L1(η) ≥
∫ s

η

L ′
1(ξ)dξ and L2(s) − L2(η) ≥

∫ s

η

L ′
2(ξ)dξ, (76)

and for almost any s > 0

L ′
1(s) = 1

2
lim sup
k→0

1

k

[∫

{s−k<b(u)<s+k}

(
a(u,∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{s−k<b(v)<s+k}

(
a(v,∇v)∇v + |Φ(v)||∇v|

)
dxdt

]

, (77)

and

L ′
2(s) = 1

2
lim sup
k→0

1

k

[∫

{−s−k<b(u)<−s+k}

(
a(u,∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{−s−k<b(v)<−s+k}

(
a(v,∇v)∇v + |Φ(v)||∇v|

)
dxdt

]

. (78)

If the thesis of the lemma is not true, let ε0 > 0 and let n0 > 0 be a real number such
that for every real number s ≥ n0 we have

lim sup
k→0

1

k
Γ (u, v, s, k) ≥ ε0. (79)

Since b′ is a continuous and positive function, we have for almost ξ ≥ n0,

lim sup
k→0

1

k
Γ (u, v, s, k)

≤ b′(s) lim sup
k→0

1

k

[∫

{b(s)−k<b(u)<b(s)+k}

(
a(u, ∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{b(s)−k<b(v)<b(s)+k}

(
a(v, ∇v)∇v + |Φ(v)||∇v|

)
dxdt

]
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+ b′(−s) lim sup
k→0

1

k

[∫

{b(−s)−k<b(u)<b(−s)+k}

(
a(u, ∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{b(−s)−k<b(v)<b(−s)+k}

(
a(v, ∇v)∇v + |Φ(v)||∇v|

)
dxdt

]

. (80)

From (77), (79) and (78) it follows that

b′(ξ)L ′
1(b(ξ)) + b′(−ξ)L ′

2(−b(−ξ)) ≥ ε0

2
.

In view of (76), we deduce that for any s > η > n0 we have

L1(b(s)) − L1(b(η)) + L2(−b(−s)) − L2(−b(−η)) ≥ ε0

2
(s − η). (81)

Taking s = n + 1 and η = n with n > n0 we have

∫

{n≤|u|≤n+1}

(
a(u,∇u)∇u + |Φ(u)||∇u|

)
dxdt

+
∫

{n≤|v|≤n+1}

(
a(v,∇v)∇v + |Φ(v)||∇v|

)
dxdt ≥ ε0

2
.

The last inequality contradicts (17) and (47). �
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