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Abstract Westudy periodic representations in number systemswith an algebraic base
β (not a rational integer). We show that if β has no Galois conjugate on the unit circle,
then there exists a finite integer alphabet A such that every element of Q(β) admits
an eventually periodic representation with base β and digits in A.

Keywords Pisot number · Salem number · Expansion in non-integer base · Periodic
representation

Mathematics Subject Classification 11A63 · 11K16 · 11R04

1 Introduction

Awell known result by Schmidt [10] states that if β > 1 is a Pisot number, then the set
of numbers with eventually periodic (greedy) β-expansions equals precisely to Q(β).

On the other hand, the only bases allowing eventually periodic β-expansions of Q(β)
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are Pisot and Salem numbers. However, no Salem base has been proved to possess
this property.

In [2], Baker, Masáková, Pelantová, and the second author studied the (β,A)-
representations, i.e., the expressions of the form

∑+∞
k≥−L akβ

−k, ak ∈ A, without the
greedy condition. One of the problems studied in [2] was the following: Given an
algebraic base β ∈ C, |β| > 1, is there a finite alphabet of digitsA ⊂ Q(β), such that

Q(β) = PerA(β) :=
⎧
⎨

⎩

+∞∑

k≥−L

akβ
−k : ak ∈ A, (ak)k≥−L is eventually periodic

⎫
⎬

⎭
.

(1)
This property indeed holds for the Pisot numbers, and their complex analogy. Our
main result is the following theorem.

Theorem 1.1 Let β be an algebraic number such that |β| > 1, and let |β ′| �= 1 for
each Galois conjugate β ′ of β. Then there exists A ⊂ Z finite such that PerA(β) =
Q(β).

Note that this is a stronger version of Theorem 25 of [2], as an additional condition was
required there, namely that 1

a ∈ Z[β, β−1], where a is the leading coefficient of the
minimal polynomial of β over Z. This additional condition is not typically satisfied;
the full classification of such bases is also given in [2].

We will see that our result follows from the fact that 1
n ∈ PerA(β) for all n ∈ N. To

obtain this statement we first prove a generalized form of the Fermat’s little theorem.
Namely, for any β algebraic, and for any n ∈ N, we show the existence of i, j ∈ Z

such that β i − β j ∈ nZ[β], see Theorem 3.4. This is surprisingly non-trivial for an
non-integer element β.

An important role in our proofs is played by parallel addition algorithms, see [5].
We use these algorithms for the reduction of the alphabet while preserving periodicity.
This approach fails if β has a conjugate on the unit circle because we then cannot make
use of parallel addition algorithms. Nevertheless, we will show that 1

n ∈ PerA(β) for
all n ∈ N even in these cases, see Sect. 4.We are unable, however, to use our technique
to extend the periodicity to the whole Q(β).

The technique used to prove the main result is rather non-constructive. However,
we provide a tool allowing the computation of a (β,A)-representation for any element
of Q(β) with certain alphabet of digits. These results are contained in Sect. 5.

2 Preliminaries

Let us provide precise definitions of the basic notions mentioned in the introduction.

Definition 2.1 Let β ∈ C, |β| > 1, and let A ⊂ C be a finite set containing 0. An
expression

123



Periodic representations in algebraic bases 111

x =
+∞∑

k=−L

akβ
−k, ai ∈ A

is called a (β,A)-representation of x .

One of possible constructions of (β,A)-representations is the following one given
by Thurston in [11]. Assume we have a set V ⊂ C such that βV ⊆ ⋃

a∈A(V + a),

then all the elements of V have a (β,A)-representation of the form
∑+∞

k=1 akβ
−k .

Moreover, as a consequence, every x ∈ ⋃
n∈N βnV has a (β,A)-representation. Here

we can see that if 0 ∈ int(V ), then there exist (β,A)-representations for all the real
(or complex) numbers. It has been shown that the assumption of each element ofQ(β)

having an eventually periodic (β,A)-representation arising from such a construction
is very restrictive. In particular, ifβ ∈ R, then necessarily |β| is a Pisot number, see [2].
More on finding (β,A)-representations can be found for example in [1,3,6,8,9].

Given two (β,A)-representations, one can study their behaviour under elementary
arithmetic operations. In [4,5], the authors proved that if β has no conjugates on the
unit circle, then there exists A ⊂ Z such that (β,A)-representations allow a parallel
addition algorithm defined as follows.

Definition 2.2 For a baseβ ∈ C, |β| > 1, and an alphabetA ⊂ C, denoteB = A+A.
We say that (β,A) allows parallel addition if there exist t, r ∈ N and� : Bt+r+1 → A
such that

• �(0t+r+1) = 0;
• For every x = ∑

k∈Z xkβ−k with xk = 0 for k < L for some L and xk ∈ B, it
holds that x = ∑

k∈Z zkβ−k , where zk = �(xk−t . . . xkxk+1 . . . xk+r ) ∈ A.

Theorem 2.3 [4,5]Letβ ∈ C, |β| > 1. Then there exists an alphabetA ⊂ C such that
(β,A) allows parallel addition if and only if β is an algebraic number and |β ′| �= 1 for
every conjugate β ′ of β. Moreover, we can choose A = {−M, . . . , 0, . . . , M} ⊂ Z.

We can thus see a parallel addition algorithm as an algorithm that reduces represen-
tations over some large (but finite) alphabet into a (β,A)-representation using only
a bounded neighbourhood of each digit. Therefore it rewrites finite (eventually peri-
odic) representations over Z into finite (eventually periodic) (β,A)-representations.
The following statement is thus an easy corollary.

Corollary 2.4 [2] Let β ∈ C, |β| > 1, and let A be a symmetric alphabet such that
(β,A) allows parallel addition. Let PerA(β) be as in (1), and let

FinA(β) =
{

∑

k∈I
akβ

−k : ak ∈ A, I ⊂ Z is finite

}

.

Then

(1) FinA(β) · PerA(β) ⊂ PerA(β);
(2) FinA(β) = Z[β, β−1].
In the rest of the text we denote by Zn the factorring Z/nZ.
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112 V. Kala, T. Vávra

3 The main theorem

The following proposition was one of the ingredients used in the proof of Theorem 25
of [2]. Since the proposition appeared as a part of the proof, we include it here for
completeness.

Proposition 3.1 Let β > 1 have no conjugate on the unit circle. Then the existence
of A such that 1

n ∈ PerA(β) is equivalent to the existence of i > j ∈ Z such that
β i − β j ∈ nZ[β].
Proof Suppose that 1

n has an eventually periodic (β,A)-representation

1

n
=

+∞∑

k≥−L

akβ
−k, with an = an+p for n > N .

By summing the period as a geometric series we obtain

1

n
= z1

βN
+ z2

βN+p(β p − 1)
for some z1, z2 ∈ Z[β],

which can be easily rewritten in the desired form.
Assume that β i − β j ∈ qZ[β] with i > j . Then we have that

1

n
= z · 1

β j
· 1

β i− j − 1
, for some z ∈ Z[β]. (2)

Then by Corollary 2.4 we know that z · 1
β j ∈ FinA(β). Furthemore,

1

β i− j − 1
= −

∞∑

k=0

β−k(i− j) ∈ PerA(β),

thus the expression (2) belongs to FinA(β) · PerA(β) ⊂ PerA(β). 
�
Theorem 3.2 Let β be an algebraic number with the minimal polynomial m(x) =
ad xd + · · · + a1x + a0 ∈ Z[x], and let n ∈ N. If gcd(ad , n) = gcd(a0, n) = 1, then
β i − 1 ∈ nZ[β] for some i ∈ N.

Proof Let m(x) ∈ Z[x] be the minimal polynomial of β. Define sequences z(k) =
(z(k)0 , . . . , z(k)d−1) ∈ Zd

n and pk ∈ Zn for k ∈ N0 by the relation

d−1∑

i=0

z(k)i x i + pkm(x) ≡
d−1∑

i=0

z(k+1)
i x i+1 (mod nZ[x]) with z(0) = (1, 0, . . . , 0).

(3)
The sequences {z(k)} and {pk} are uniquely defined. Indeed, each z(k) enforces that
pk := −z(k)0 m(0)−1 (mod n) (using the invertibility ofm(0) = a0), and consequently

123



Periodic representations in algebraic bases 113

z(k+1) is also defined. Conversely, note that to each z(k+1) there are unique z(k) and
pk , as ad is invertible modulo n.

Clearly, the sequence {z(k)} can take only finitely many values. Let r be the smallest
index such that z(r) = z(s) for some s < r. Then because of the uniqueness of the
followers and predecessors in {z(k)} we have z(r) = z(0) = (1, 0, . . . , 0), whence
necessarily z(r−d+1) = (0, . . . , 0, 1). Then by (3) we have

r−d∑

k=0

xk pkm(x) ≡ xr − 1 (mod nZ[x]), (4)

because z(0) = (1, 0, . . . , 0), z(r) = (0, . . . , 0, 1), and the rest of the summands
cancel out.We obtain the statement by applying the homomorphism x → β : Z[x] →
Z[β] on (4). 
�

We will need the following lemma to generalize Theorem 3.2 also to the cases
gcd(ad , n) �= 1 or/and gcd(a0, n) �= 1. We will denote the leading coefficient of the
minimal polynomial of β over Z as c(β).

Lemma 3.3 Let mi (x) be the minimal polynomial for β i , and let ci = c(β i ) be the
leading coefficient of mi (x). If p | c1 for a prime p, then for each j there is i such
that p j | ci .
Proof Let us first assume that c1 = pk for some k, and that there is j such that p j � ci
for each i .

Observe that if bβ is an algebraic integer for some b ∈ Z, then c(β) | b. Also c(β)β

is always an algebraic integer. Hence pkβ is an integer, and so also pikβ i is an integer.
Thus ci | pik and ci is a power of p. Since p j � ci , it is at most ( j − 1)st power. Since
ciβ i is an integer, we see that also p j−1β i is an integer for each i .

We conclude that Z[β] ⊂ 1
p j−1OK (where K = Q(β)). But 1

p j−1OK is a finitely
generated Z-module and Z is noetherian, and so also Z[β] is finitely generated Z-
module. But this implies that β is an algebraic integer. This is a contradiction with
c1 > 1.

For the general case, let a1 = pkb with p � b and consider γ := bβ. Let bi :=
c(γ i ); by the assumption we have that b1 = pk (because a candidate for the minimal
polynomial for γ is bd−1m(x/b); we may need to divide by the gcd of coefficients,
but not by p, because p was coprime to b).

By the first part of the proof, we know that for each j there is i such that p j | bi .
Let now ni (x) be the minimal polynomial for γ i = biβ i . Then ni (bi x) is a candidate
for the minimal polynomial for β i ; we may need to divide by the gcd of coefficients,
but again not by p, as it is coprime to bi . Thus p j | bi implies that p j | ai . 
�
Note that we get the same statement for constant coefficients just by considering β−1.

Now we are ready to prove the main technical result of this section, which can
be viewed as a generalized version of little Fermat’s theorem. There is a number of
these in the literature, including some that do not require β to be an algebraic integer
(e.g., Chapter 23 in [7]), but we could not locate our version, which seems to be in a
somewhat different vein than the others.
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114 V. Kala, T. Vávra

Theorem 3.4 Let β be an algebraic number of degree d. Then for each n ∈ N there
exist i > j ∈ Z such that β i − β j ∈ nZ[β].
Proof Let us first prove that if the statement holds for coprime n1, n2 ∈ N, then it also
holds for n1n2. Assuming its validity for n1, n2, we can suppose that 1−β i1 ∈ n1Z[β],
and 1−β i2 ∈ n2Z[β]. Then it is also true that for all k ∈ Nwe have 1−βki1 ∈ n1Z[β]
and 1 − βki2 ∈ n2Z[β]. From gcd(n1, n2) = 1 it follows that 1 − β i1i2 ∈ n1n2Z[β],
i.e., the statement is true for n = n1n2.

Hence it remains to prove the theorem when n = p� for a prime p and � ∈ N. The
case gcd(a0, p) = gcd(ad , p) = 1 is solved in Theorem 3.2. Thus assumew.l.o.g. that
p|ad , otherwise we consider β−1. We will proceed by induction on the degree of β.
According to Lemma 3.3 we can find k ∈ N such that βk has the minimal polynomial
mk(x), such that n divides its leading coefficient c(βk). Roots of mk(x) − c(βk)xd

are of a smaller degree, therefore by the induction we have that

p(x)(mk(x) − c(βk)xd) = xi − x j − nz(x)

for some p(x), z(x) ∈ Z[x]. Then after a simple rearrangement, and under the map
x → βk we obtain

βki − βk j = nz(βk) − βkdc(βk)p(βk) ∈ nZ[βk] ⊂ nZ[β].

The induction is complete by realizing that the statement is true for β ∈ Z. 
�
Proof of Theorem 1.1 Each x ∈ Q(β) can be written as x = z

n with z ∈ Z[β], and
n ∈ N.ByTheorem 3.4 together with Proposition 3.1we have that 1n ∈ PerA(β).Then
by Corollary 2.4 we have that z ∈ FinA(β), and subsequently also that x ∈ PerA(β).


�

4 Bases with conjugates on the unit circle

In the previous section, a necessary tool for obtaining our results was the existence
of the parallel addition in base β. The reason was that we were then able to convert
eventually periodic representations over the infinite alphabetZ to a finite one.However,
the existence of the parallel algorithms is possible only if there is no conjugate of β

lying on the unit circle. Nevertheless, finding periodic representations of 1
n is possible

if one proceeds more carefully. In this section we prove the following theorem.

Theorem 4.1 Let β be an algebraic number such that |β ′| = 1 for a conjugate β ′.
Then 1

n ∈ PerA(β) for some A ⊂ Z finite.

Lemma 4.2 Let β be an algebraic number. Then for each n ∈ N one can find i(n) >

j (n) ∈ Z such that β i(n) − β j (n) = n
∑m(n)

k=0 dk(n)βk = z(n), such that

(1) m(n) < 2(i(n) − j (n)),
(2) there exists C > 0 such that |dk(n)| < C for any k, n.
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Periodic representations in algebraic bases 115

Proof Fix an n ∈ N; the existence of i > j and dk’s satisfyingβ i −β j = n
∑m

i=0 dkβ
k

is given by Theorem 3.4. Multiplying both sides of this equation by βr(i− j) and
summing for r = 0, 1, . . . , s we obtain

β(s+1)i−s j − β j = n
(s+1)i−s j+m∑

k=0

d̃kβ
k .

We can satisfy item (1) by setting i(n) = (s + 1)i − s j , j (n) = j , dk(n) = d̃k , and
m(n) = (s + 1)i − s j + m for an appropriate value s.

Thus we have

xi(n) − x j (n) − n
m(n)∑

k=0

dk(n)xk = pn(x)m(x)

for some pn(x) ∈ Z[x]. We can reduce the coefficients of pn(x) modulo n to assume
that they are all between 0 and n. Let M be the maximum of absolute values of
coefficients of m(x). Then the polynomial pn(x)m(x) has all coefficients less than
nM(degm + 1) in absolute value. Consequently, we see that in item (2) we can take
C = M(degm + 1). 
�
Remark 4.3 Note that one can replace the factor 2 in item (1) by 1+ ε for any ε > 0.

Proof of Theorem 4.1 For fixed n ∈ N apply Lemma 4.2, i.e., we have that β i −β j =
nz for some i > j and z = ∑m

k=0 dk(n)βk ∈ Z[β]. Then

1

n
= 1

β i

z

1 − β j−i
= 1

β i

+∞∑

k=0

zβ−k(i− j).

The latter is indeed a periodic representation over an integer alphabet that is bounded
by 2max{|dk(n)| : 0 ≤ k ≤ m} (here we used that m < 2(i − j)). Since dk(n) are
bounded independently of n, we can choose a common alphabet for all n ∈ N. 
�

5 Computational point of view

The results so far showed the existence of the eventually periodic (β,A)-
representations. Because of the induction, the proof of Theorem 3.4 does not give
an explicit way of finding i, j such that β i − β j ∈ nZ[β]. In this section we show
how to compute the pair i, j . The method we use is in fact in the background of the
proof of Theorem 3.2.

From now on we will handle elements of Z[β] as elements of the quotient ring
Z[x]/m(x) ∼= Z[β], wherem(x) is the minimal polynomial of β, through the isomor-
phism x → β.

Let us start with an example which is not covered by the results of [2].
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116 V. Kala, T. Vávra

Example 5.1 Consider m(x) = 3x2 + 2x + 3 and n = 6. Then we have

0 ≡ (2x2 + 3x + 4)m(x) = 6x4 + 13x3 + 24x2 + 17x + 12 (mod m(x)),

hence

x3 − x ≡ −6x4 − 12x3 − 24x2 − 18x − 12 ∈ n(Z[x]/(m(x)),

or equivalently,

β3 − β = −6β4 − 12β3 − 24β2 − 18β − 12 ∈ nZ[β].

Let us show how such i, j can be found in general. Assume that xi − x j ≡ np(x) in
Z[x]/m(x) for some p(x) ∈ Z[x]. This is equivalent to the existence of r(x) ∈ Z[x]
such that

xi − x j − qp(x) = r(x)m(x) in Z[x]. (5)

The product r(x)m(x) can be viewed (roughly speaking) as a “sum of shiftedmultiples
of m(x)”. This idea is illustrated in the following table, where we continue with
Example 5.1.

2x2m(x) = 6 4 6
3xm(x) = 9 6 9
4m(x) = 12 8 12

(2x2 + 3x + 4)m(x) = 6 13 24 17 12

In each row lies a multiple of the minimal polynomial, the power of x corresponds to
the shift. In order to satisfy (5) for some p(x), we want the tuple of the sums of the
columns (in our case (6, 13, 24, 17, 12)) to be equivalent (mod n) to a vector with
the only two non-zero entries being 1 and − 1. In fact, we can also consider the table
to live in Zn to directly obtain the result

2x2m(x) = 0 4 0
3xm(x) = 3 0 3
4m(x) = 0 2 0

(x2 + 2x + 1)m(x) = 0 1 0 −1 0

When constructing r(x), we can proceed from higher powers of x to lower (or from left
to right in the table) wanting to add an appropriate multiple of the minimal polynomial
such that the leftmost digit sums to zero (or 1 at one position and−1 at another position)
during each step. However, we do not have prior knowledge of where the digits 1 and
−1 should be created.

Definition 5.2 Let m(x) = ∑d
i=0 ai x

i and let n ∈ N. The graph G(m, n) = (V, E)

is the oriented graph with vertices V = Zd
n ×{A, B,C}, and with the set E of labeled

edges (yd , . . . , y1; γ )
k−→ (zd , . . . , z1; δ), k ∈ Zn, if
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Periodic representations in algebraic bases 117

(1) γ = δ and
∑d

i=1 yi x
i + k

∑d
i=0 ai x

i ≡ ∑d
i=1 zi x

i−1 (mod nZ[x]),
(2) γ = A, δ = B and

∑d
i=1 yi x

i + k
∑d

i=0 ai x
i ≡ xd + ∑d

i=1 zi x
i−1

(mod nZ[x]),
(3) γ = B, δ = C and

∑d
i=1 yi x

i + k
∑d

i=0 ai x
i ≡ −xd + ∑d

i=1 zi x
i−1

(mod nZ[x]).

The graph G(m, n) has the following meaning. Consider again Example 5.1. The
labels of edges correspond to the coefficients of r(x) = 2x2 + 3x + 4, i.e., we have a
path

(0, 0; A)
2−→ (4, 0; A)

3−→ (0, 3; B)
4−→ (5, 0; B)

0−→ (0, 0;C)

Note that the change of the third entry of a vertex from A to B corresponds to the
situation that we created the digit 1, while the change from B toC means that the digit
−1 was produced.

Theorem 5.3 Let β be an algebraic number with no conjugate on the unit circle, let
m(x) be the minimal polynomial of β, and let n ∈ N. Then 1

n ∈ PerA(β) for some
A ⊂ C if and only if in the graph G(m, n) there exists a path from (0, . . . , 0; A) to
(0, . . . , 0;C).

Moreover, if this path has labels c0, c1, . . . , cs−1, then

(c0x
s−1 + c1x

s−2 + · · · + cs−1)m(x) ≡ xi − x j (mod nZ[x])

for some i, j ∈ Z.

Proof Let

(z(0), γ (0))
c0−→ (z(1), γ (1))

c1−→ · · · cs−1−−→ (z(s), γ (s)),

where z(k) = (z(k)d , . . . , z(k)1 ), z(0) = z(s) = (0, . . . , 0) and γ (0) = A, γ (s) = C be a
path in G(m, n).

According to the definition of G(m, n) we have that

ckm(x) ≡ αk x
d −

d∑

i=1

z(k)i x i +
d∑

i=1

z(k+1)
i x i−1 (mod nZ[x]), (6)

where

αk =

⎧
⎪⎨

⎪⎩

1 if γ (k) = A, γ (k+1) = B,

−1 if γ (k) = B, γ (k+1) = C,

0 otherwise.
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118 V. Kala, T. Vávra

Then by multiplying (6) by xs−k−1, and summing for each k = 0, . . . , s − 1, we
obtain

m(x)
n−1∑

k=0

xs−k−1ck ≡
s−1∑

k=0

xs−k−1αk (mod nZ[x]).

The right side is of this form because z(0) = z(s) = (0, . . . , 0), and the rest of the
summands cancel out.

Thus we have c(x)m(x) = xi − x j +np(x)with c(x), p(x) ∈ Z[x], i = s−k1−1

and j = s−k2−1 if (z(k1), A)
k1−→ (z(k1+1), B) and (z(k2), B)

k2−→ (z(k2+1),C).Hence
xi − x j ≡ −np(x) (mod Z[x]/m(x)), and using the isomorphism Z[x]/m(x) →
Z[β] we obtain β i − β j = −np(β) ∈ nZ[β]. The graph G(m, n) for Example 5.1 is
shown in Fig. 1. 
�

For a given base β, setA such that (β,A) allows parallel addition. Then computing
an eventually periodic (β,A)-representation of x := z

n ∈ Q(β), z ∈ Z[β] can be done
by the following steps:

(1) construct the graph G(m, n), and find i, j ∈ Z, and z ∈ Z[β] such that β i −β j =
nz using Theorem 5.3;

(2) construct an eventually periodic (β,A)-representation of 1
n as

1

n
= − z̃

β j

∞∑

k=0

β−k(i− j)

(see the proof of Proposition 3.1);

0,0,A

4,0,A

2,0,A 2,3,B

4,3,B

0,3,B

1,0,B

5,0,B

3,0,B

1,0,C

3,3,C

5,3,C

4,0,C

0,0,C

2,0,C

2

0

0

1

4

3
5

2

1

4

1

4
0
2

1

3

5

2

5

3

1

Fig. 1 The graph G(m, n) for m(x) = 3x2 + 2x + 3, n = 6 as in Example 5.1
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Periodic representations in algebraic bases 119

(3) use a parallel addition algorithm (see [5]) to reduce the digits of the eventually
periodic (β,A)-representation

x = − z̃z

β j

∞∑

k=0

β−k(i− j)

into the digit alphabet A.

Acknowledgements We wish to thank Zuzana Masáková for a careful reading of a draft of the paper and
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