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Abstract A recent model for the flow of the Antarctic Circumpolar Current, formu-
lated in spherical coordinates as a Dirichlet boundary-value problem for a nonlinear
elliptic partial differential equation, reduces for flows with no azimuthal variations to a
two-point boundary-value problem for a second-order ordinary differential equation.
We provide some general settings for which these apparently simpler solutions are the
unique solutions, due to an inherent symmetry of the model.
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1 Introduction

TheAntarctic Circumpolar Current (ACC) is one of themost significant ocean currents
and the only current that completely encircles the polar axis, flowing eastward through
the southern regions of the Atlantic, Indian, and Pacific Oceans (see [3]), being about
23,000km long, and with a width in excess of 800km (minimum attained in the region
of the Drake Passage). Unlike other ocean currents, the effect of the ACC is felt from
the ocean surface down to the ocean floor (with depths as much as 4–5km). Because
the ACC is linked to the three major oceans, it is important in global ocean circulation
and climate (see the discussion in [1]). The wave-current interactions in the Southern
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Ocean create some of the largest surface ocean waves on Earth (‘monster waves’—see
the discussion in [14]).

A recent model for ocean gyres in spherical coordinates, developed in [4], expresses
the horizontal velocity components of the ACC flow as

1

sin θ
ψϕ and − ψθ, (1)

in terms of the stream function ψ(θ, ϕ), where θ ∈ [0, π) is the polar angle (with
θ = 0 corresponding to the North Pole) and ϕ ∈ [0, 2π ) is the angle of longitude (or
azimuthal angle), the vertical velocity component being much smaller (by a factor of
about 10−4). The governing equation is

1

sin2 θ
ψϕϕ + ψθ cot θ + ψθθ − 2ω cos θ = F(ψ), (2)

where ω > 0 is the non-dimensional form of the Coriolis parameter (generating the
spin vorticity 2ω cos θ ) and where F(ψ) is the oceanic vorticity. In (2), the type of
ocean flow dictates the nature of the function F ; for example, wind-driven flows are
typically modeled by constant (non-zero) oceanic vorticity F (see [6] for data for
wind-driven flows, [2] for a general discussion of vorticity in water flows, and [5] for
some recent developments on geophysical wave-current interactions). The governing
Eq. (2) holds in a region whose boundary consists of a streamline (a level set of ψ).

Using the stereographic projection of the unit sphere centered at at origin from the
North Pole to the equatorial plane,

ξ = r ei ϕ with r = cot
(θ

2

)
= sin θ

1 − cos θ
, (3)

where (r, ϕ) are the polar coordinates in the equatorial plane, themodel (2) in spherical
coordinates can be transformed into the equivalent planar elliptic partial differential
equation

Δψ + 8ω
1 − (x2 + y2)

(1 + x2 + y2)3
− 4F(ψ)

(1 + x2 + y2)2
= 0, (4)

where Δ = ∂2x + ∂2y is the Laplace operator expressed in terms of the Cartesian
coordinates (x, y) in the equatorial plane (see the discussion in [10]). Since the ACC
lies in the region between the 56th and 60th parallel south, which crosses nothing
but ocean, and this region is mapped by the stereographic projection into an annular
region of the equatorial plane, to (4) we associate the Dirichlet boundary conditions

{
ψ = ψe on r = r−,

ψ = ψp on r = r+,
(5)

for suitable constants r− and r+ with 0 < r− < r+ < 1; here r = √
x2 + y2 ∈ (0, 1)

is the radius of the stereographic projection of a circle of latitude in the southern hemi-
sphere. In (5), the constants ψi and ψe are the values assigned to the two streamlines
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that represent the boundary of the ACC (one closer to the Equator and the other closer
to the South Pole). The aim of this paper is to show that for a large class of oceanic
vorticities F , the solution of (4)–(5) is radially symmetric. The physical interpretation
of this result is that the flow is uniform in the azimuthal direction (independent of ϕ

in spherical coordinates).

2 Flows with no azimuthal variations

Aflowwith no variation in the azimuthal direction corresponds to a radially symmetric
solution ψ = ψ(r) of the elliptic boundary-value problem (4)–(5). Setting

0 < t1 = − ln(r+) < t2 = − ln(r−),

the change of variables r = e−t/2 and

ψ(r) = u(t), t1 < t < t2, (6)

transforms (4) to the second-order differential equation

u′′(t) − et

(1 + et )2
F(u(t)) + 2ωet (1 − et )

(1 + et )3
= 0, t1 < t < t2, (7)

with the boundary conditions {
u(t1) = ψp,

u(t2) = ψe.
(8)

Explicit solutions to the boundary-value problem (7)–(8) were provided for constant
oceanic vorticity F in [10], and some existence result for a large class of nonlinear
functions F were recently obtained in [11].

3 A general symmetry result

In this section we will prove the main result of this paper.

Theorem Assume that the function F : R → R is continuous and non-decreasing.
Then, given ψp and ψe, if ψ solves (4)–(5) then ψ is radially symmetric, with
ψ(r) = u(t) for r = e−t/2 and u solution to (7)–(8).

Proof Let ψ0 be the solution of (4)–(5) related by means of (6) to the solution u(t)
of (7)–(8) and set Ψ = ψ − ψ0. Then

ΔΨ − 4[F(ψ) − F(ψ0)]
(1 + x2 + y2)2

= 0, r− <

√
x2 + y2 < r+, (9)

and
{

Ψ = 0 for x2 + y2 = r2−,

Ψ = 0 for x2 + y2 = r2+.
(10)
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Multiplying (9) by Ψ and integrating over the annulus

A = {(x, y) ∈ R
2 : r− <

√
x2 + y2 < r+}, (11)

Green’s first identity (see [13]) yields

4
∫∫

A
[F(ψ) − F(ψ0)]Ψ

(1 + x2 + y2)2
dxdy +

∫∫

A
|∇Ψ |2 dxdy = 0.

Since by hypothesis

[F(ψ) − F(ψ0)]Ψ = [F(ψ) − F(ψ0)]{ψ − ψ0} ≥ 0,

we deduce that Ψ is a constant, and due to (10) that constant can only be zero. The
proof is complete. ��
Remark (i) If F is continuously differentiable, then the conclusion of the above theo-
remcan be reached alternatively by combining themean-value theoremwithmaximum
principles since (9) yields

ΔΨ − 4F ′(ψ̃)

(1 + x2 + y2)2
Ψ = 0, r− <

√
x2 + y2 < r+, (12)

after determining ψ̃ with F(ψ)−F(ψ0) = F ′(ψ̃)[ψ−ψ0)]. Indeed, regarding (12) as
a linear equation in Ψ , the maximum principle yields ψ = ψ0 throughout the closure
A of A (see the discussion of elliptic boundary-value problems in the appendix of
Chapter 3 in [2]).

(ii) Since for linear functions F(u) = au + b we have F(ψ) − F(ψ0) = aΨ , the
above considerations indicate what may go wrong if the monotonicity assumption on
F is not satisfied. Note that the rotation symmetry of the circular annulus A allows
us use polar coordinates and separation of variables to obtain an sequence of positive
eigenvalues λkn > 0 for homogeneous boundary conditions on the boundary ∂A of
A:

{
ΔUkn + λknUkn = 0 in A,

Ukn = 0 on ∂A.

For example, an explicit representation of Ukn in terms of a linear combination of
the first and second kind Bessel functions of order n ≥ 1, multiplied by cos(nϕ)

and sin(nϕ), with the index k ≥ 1 keeping track of the coefficients and scales of the
Bessel functions (dependent on the radial variable r ), is available in [8]. By means
of a variational approach (see [13]), one can show that there are positive eigenvalues
λ > 0 of the problem

⎧⎨
⎩

ΔU + 4λ

(1 + r2)2
U = 0 in A,

U = 0 on ∂A.
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Consequently, for F(u) = −λu, the problem (4)–(5) does not have a unique solution
that is radially symmetric. ��
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