

Discrepancy estimates for generalized polynomials

Anirban Mukhopadhyay[1](http://orcid.org/0000-0002-5774-775X) · Olivier Ramaré² · G. K. Viswanadham³

Received: 30 June 2017 / Accepted: 13 October 2017 / Published online: 26 October 2017 © Springer-Verlag GmbH Austria 2017

Abstract We obtain an upper bound for the discrepancy of the sequence ($[p(n)]$) α] β _n>0 generated by the generalized polynomial [$p(x) \alpha$] β , where $p(x)$ is a monic polynomial with real coefficients, α and β are irrational numbers satisfying certain conditions.

Keywords Discrepancy · Generalized polynomial · Irrationality measure

Mathematics Subject Classification Primary 11K38; Secondary 11K31 · 11J82

Communicated by A. Constantin.

 \boxtimes Anirban Mukhopadhyay anirban@imsc.res.in

> Olivier Ramaré olivier.ramare@univ-amu.fr

G. K. Viswanadham vissu35@gmail.com

- ¹ The Institute of Mathematical Sciences, HBNI, C.I.T. Campus, Tharamani, Chennai, Tamilnadu 600 113, India
- ² CNRS/Institut de Mathématiques de Marseille, U.M.R. 7373, Aix Marseille Université, Site Sud, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France
- ³ Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

1 Introduction

A sequence $(x_n)_{n>0}$ of real numbers is said to be uniformly distributed modulo 1 if

$$
\lim_{N \to \infty} \frac{\# \{ n \le N : \{ x_n \} \in [a, b) \}}{N} = b - a \tag{1}
$$

holds for all real numbers *a*, *b* satisfying $0 \le a \le b \le 1$. Here and in what follows, $\{x\}$ denotes the fractional part of *x*. Weyl [\[10\]](#page-13-0) proved that if $P(x) \in \mathbb{R}[x]$ is any polynomial in which at least one of the coefficients other than the constant term is irrational, then the sequence $(P(n))_{n>0}$ is uniformly distributed modulo 1.

A natural extension of the family of real valued polynomials arises by adding the operation integral part, denoted by $[\cdot]$, to the arithmetic operations addition and multiplication. Polynomials which can be obtained in this way are called generalized polynomials. For example $[a_0+a_1x]$, $a_0+[a_1x+[a_2x^2]]$ are generalized polynomials.

In the spirit of Weyl's result it is natural to consider the uniform distribution of generalized polynomials. The case $([n\alpha]\beta)_{n>0}$ is treated in [\[8](#page-13-1)] (see Theorem 1.8, p. 310) and it follows from a result of Veech (see Theorem 1, [\[9](#page-13-2)]) that the sequence $(\lceil p(n)\rceil \beta)_{n>0}, p(x)$ is a polynomial with real coefficients, is uniformly distributed under certain conditions on the coefficients of $p(x)$ and β . Håland [\[4](#page-13-3)[,5](#page-13-4)] showed that if the coefficients of a generalized polynomial $q(x)$ are sufficiently independent then the sequence $(q(n))_{n>0}$ is uniformly distributed.

In order to quantify the convergence in [\(1\)](#page-1-0) the notion of discrepancy has been introduced. Let $(x_n)_{n>0}$ be a sequence of real numbers and N be any positive integer. The discrepancy of this sequence, denoted by $D_N(x_n)$, is defined by

$$
D_N(x_n) = \sup_{0 \le a < b \le 1} \left| \frac{\#\{n \le N : \{x_n\} \in [a, b)\}}{N} - (b - a) \right|.
$$

Now we have the following definition.

Definition 1 Let $t \ge 1$ be a real number. We say that a pair (α, β) of real numbers is of *finite type t* if for each $\epsilon > 0$ there is a positive constant $c = c(\epsilon, \alpha, \beta)$ such that for any pair of rational integers $(m, n) \neq (0, 0)$, we have

$$
(\max(1, |m|))^{t+\epsilon} (\max(1, |n|))^{t+\epsilon} ||m\alpha + n\beta|| \ge c
$$

where $\|x\|$ denotes the distance of x from the nearest integer.

The corresponding definition for a single real number α is the one of *irrationality measure*. The precise definition is the following.

Definition 2 Let $t \ge 1$ be a real number. We say that an irrational number γ has *irrationality measure* $t + 1$ if for any integer *n* and $\epsilon > 0$, we have

$$
\max(1, |n|)^{t+\epsilon} ||n\gamma|| \gg_{\epsilon, \gamma} 1.
$$

It is well known that when γ has irrationality measure $t + 1$, the discrepancy $D_N(n\gamma)$ of the sequence $(n\gamma)_{n>0}$ satisfies

$$
D_N(n\gamma) \ll_{\gamma,\epsilon} N^{\frac{-1}{t}+\epsilon}
$$

for each $\epsilon > 0$.

The discrepancy of non-trivial generalized polynomials was first considered by Hofer and Ramaré [\[6](#page-13-5)]. More precisely, they considered the discrepancy of the sequence $(\lfloor n\alpha \rfloor \beta)_{n>0}$ and proved that for each $\epsilon > 0$

$$
D_N([n\alpha]\beta) \ll_{\epsilon,\alpha,\beta} N^{\frac{-1}{3t-2}+\epsilon}
$$

when $(\alpha, \alpha\beta)$ and $(\beta, \frac{1}{\alpha})$ are of finite type *t*.

Let $p(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0 \in \mathbb{R}[x]$ be a monic polynomial of degree $d > 2$. In this paper we consider the discrepancy of the sequence $(\lceil p(n)\alpha \rceil \beta)_{n>0}$. We prove the following theorem.

Theorem 1 Let α , β and $N > 1$ be non-zero real numbers. Suppose that the pair $(\alpha, \alpha\beta)$ *is of finite type t for a real number t* ≥ 1 *. Then for any* $\epsilon > 0$ *,*

$$
D_N([p(n)\alpha]\beta) \ll_{\epsilon,\alpha,\beta,d} N^{-\frac{2-2^{-d+2}}{2^{d-1}(2t+1)+7t+2}+\epsilon}.
$$

We use a modified version of the method of Hofer and Ramaré [\[6\]](#page-13-5) for the proof of the above theorem.

Remark 1 The above theorem, in particular, shows that the sequence $(\lceil p(n)\alpha \rceil \beta)$ is uniformly distributed if $(\alpha, \alpha\beta)$ is of finite type *t* for $t \geq 1$. This fact also follows from a theorem of Carlson (see Theorem 2, [\[2\]](#page-13-6)). Theorem 1 of [\[9\]](#page-13-2) also implies uniform distribution of this sequence under certain conditions on the coefficients of the polynomial $p(x)$.

2 Preliminaries

For any real number τ , let $f_{\tau}(x) = e(\tau\{x\})$ where $e(x)$ denotes $e^{2\pi ix}$. Let $\delta > 0$ be a real number. We are going to approximate f_{τ} by a function $g_{\tau,\delta}$. Here $g_{\tau,\delta}$ is defined by

$$
g_{\tau,\delta}(x) = \frac{1}{(2\delta)^r} \mathbf{1}_{[-\delta,\delta]} * \cdots * \mathbf{1}_{[-\delta,\delta]} * f_\tau(x), \tag{2}
$$

where we have *r* copies of $1_{[-\delta,\delta]}$ each denoting the indicator function of the interval $[-\delta, \delta]$.

We have the following analog of Lemma 3.1 in [\[6](#page-13-5)].

Lemma 1 *For any sequence* $\{u_n\}_{n>0}$ *of real numbers, and any positive integer N we have*

$$
\sum_{n=0}^{N-1} |f_{\tau}(u_n) - g_{\tau,\delta}(u_n)| \ll Nr\delta + Nr^2\delta|\tau| + ND_N(u_n).
$$
 (3)

Using Fourier inversion formula, we have

$$
g_{\tau,\delta}(x) = \sum_{k\in\mathbb{Z}} \hat{g}_{\tau,\delta}(k)e(-kx) ,
$$

with

$$
\hat{g}_{\tau,\delta}(k) = \left(\frac{\sin 2\pi k\delta}{2\pi k\delta}\right)^r \frac{e(\tau+k)-1}{2\pi i(k+\tau)}.
$$

Since $\left|\frac{\sin 2\pi x}{x}\right|^r \ll_r \min\left(1, \frac{1}{|x|^r}\right)$, and for any irrational τ , $|e(\tau)-1| \ll ||\tau||$, we have the following lemma which holds trivially.

Lemma 2 *For any irrational number* τ, *we have*

$$
|\hat{g}_{\tau,\delta}(k)| \ll_r \frac{\|\tau+k\|}{|\tau+k|} \min\left(1, \frac{1}{(|k|\delta)^r}\right).
$$

We will state Lemmas [3](#page-3-0) and [4](#page-3-1) for arbitrary real number τ but we keep in mind that we will use these lemmas with $\tau = -h\beta$, for some positive integer *h*. The next lemma gives an upper bound for the tail of the Fourier series of *g*τ,δ.

Lemma 3 *Let K be sufficiently large real number such that* $|\tau + k| \geq \frac{k}{2}$ *for all* $k \in \mathbb{Z}$ *with* $|k| > K$ *. Then we have*

$$
\sum_{|k|>K} \hat{g}_{\tau,\delta}(k) \ll_r (\delta K)^{-r}.
$$

The following lemma shows that for any $p > 1$ the L^p -norm of $\hat{g}_{\tau,\delta}$ is bounded.

Lemma 4 *Let* τ *be a real number and* $0 < \delta < \min\left(\frac{1}{2|\tau|}, 1\right)$ *. Then for any real number* $p > 1$ *, we have*

$$
\sum_{k\in\mathbb{Z}}|\hat{g}_{\tau,\delta}(k)|^p\ll 1,
$$

where the implied constant depends only on p.

Proof We can assume the sum is running over $k \geq 1$. Using Lemma [2,](#page-3-2) we get

$$
\sum_{k\geq 1} |\hat{g}_{\tau,\delta}(k)|^p \leq \sum_{k\geq 1} \frac{||\tau + k||^p}{|\tau + k|^p} \min\left(1, \frac{1}{(k\delta)^{pr}}\right)
$$

=
$$
\sum_{k\leq \delta^{-1}} \frac{||\tau + k||^p}{|\tau + k|^p} + \delta^{-pr} \sum_{k > \delta^{-1}} \frac{1}{|\tau + k|^p k^{pr}}.
$$

Note that $k > \delta^{-1} > 2|\tau|$ implies $|\tau + k| \geq k/2$, hence

$$
\sum_{k>\delta^{-1}}\frac{1}{|\tau+k|^p k^{pr}} \ll \delta^{p(r+1)-1}.
$$

Hence we have

$$
\sum_{k\geq 1} |\hat{g}_{\tau,\delta}(k)|^p \ll \sum_{k\leq \delta^{-1}} \frac{||\tau+k||^p}{|\tau+k|^p} + 1.
$$

When τ is a non-negative real number, sum on the right hand side is clearly $\ll 1$. Hence we can assume that τ is a negative real number. The contributions for the sum above from the terms with $k = [-\tau]$ and $k = [-\tau] + 1$ are ≤ 1 . Hence we have

$$
\sum_{k\geq 1} |\hat{g}_{\tau,\delta}(k)|^p \ll S_1 + S_2 + 1,
$$

where

$$
S_1 = \sum_{k=1}^{[-\tau]-1} \frac{1}{|\tau+k|^p} \text{ and } S_2 = \sum_{k=[-\tau]+2}^{\delta^{-1}} \frac{1}{|\tau+k|^p}.
$$

Now the summand in S_1 is monotonically increasing, hence

$$
S_1 = \int_1^{[-\tau]-1} \frac{dx}{(\tau+x)^p} + O\left(\frac{1}{(\tau+[-\tau]-1)^p}\right) + O\left(\frac{1}{(\tau+1)^p}\right).
$$

It is easy to see that

$$
\int_{1}^{[-\tau]-1} \frac{dx}{(\tau+x)^p} \ll 1,
$$

as $p > 1$. Thus we conclude

 $S_1 \ll 1$.

In a similar way, with only difference being the summand is monotonically decreasing, one can show that

$$
S_2 \ll 1
$$

which finishes the proof. \Box

Now we need a variant of a lemma of Weyl–van der Corput (see Lemma 2.7, [\[1](#page-13-7)]) as given by Granville and Ramaré (see Lemma 8.3 of [\[3](#page-13-8)]).

Lemma 5 *Suppose that* $\lambda_1, \lambda_2, \ldots, \lambda_N$ *is a sequence of complex numbers, each with* $|\lambda_i| \leq 1$, and define $\Delta \lambda_m = \lambda_m$, $\Delta_r \lambda_m = \lambda_{m+r} \lambda_m$ and

$$
\Delta_{r_1,\ldots,r_k,s}\lambda_m = (\Delta_{r_1,\ldots,r_k}\lambda_{m+s})\overline{(\Delta_{r_1,\ldots,r_k}\lambda_m)}.
$$

Then for any given $k \geq 1$ *, and real number* $Q \in [1, N]$ *,*

$$
\left|\frac{1}{8N}\sum_{m=1}^{N}\lambda_m\right|^{2^k} \leq \frac{1}{8Q} + \frac{1}{8Q^{2-2^{-k+1}}}\sum_{r_1=1}^{Q}\sum_{r_2=1}^{Q^{\frac{1}{2}}} \cdots \sum_{r_k=1}^{Q^{2^{-k+1}}}\left|\frac{1}{N}\sum_{m=1}^{N-r_1-\cdots-r_k}\Delta_{r_1,\ldots,r_k}\lambda_m\right|.
$$

The following lemma, often called as Erdős–Turán inequality, is very useful to estimate the discrepancy of a given sequence (see Theorem 2.5, p. 112 of [\[8](#page-13-1)]).

Lemma 6 (Erdős–Turán) *Let* $(x_n)_{n>0}$ *be any sequence of real numbers and* $N \geq 1$ *. The discrepancy* $D_N(x_n)$ *of the sequence* $(x_n)_{n>0}$ *satisfies the following:*

$$
D_N(x_n) \le \frac{6}{H+1} + \frac{4}{\pi} \sum_{h=1}^H \frac{1}{h} \left| \frac{1}{N} \sum_{n=0}^{N-1} e(hx_n) \right|,
$$
 (4)

where H is any arbitrary positive integer.

The above lemma shows that the exponential sums play an important role not only in showing the uniform distribution of a sequence, but also in estimating the discrepancy of a given sequence.

The following lemma is an easy consequence of Lemma [6.](#page-5-0)

Lemma 7 Let θ be an irrational number. Then the discrepancy $D_L(\ell \theta)$ of the sequence $\{\ell \theta : 1 \leq \ell \leq L\}$ *satisfies the following upper bound.*

$$
D_L(\ell \theta) \le C \left(\frac{1}{H} + \frac{1}{L} \sum_{j=1}^H \frac{1}{j \| j \theta \|} \right)
$$

for any $H > 1$ *and for some absolute constant* $C > 0$ *.*

If α is of irrationality measure $t + 1$ for $t \ge 1$, it is known that the discrepancy of $(n^2\alpha)$ satisfies the following upper bound.

$$
D_N(n^2\alpha) \ll_{\epsilon,t} N^{-\frac{1}{t+1}+\epsilon} + N^{-\frac{2}{5}}\sqrt{\log N}
$$

for any $\epsilon > 0$ (see equation (50) p. 113 in [\[7\]](#page-13-9)). To estimate the discrepancy of $([p(n)\alpha]\beta)_{n>0}$, we need the following general version.

Proposition 1 *Let* α *be a non-zero real number of irrationality measure* $t + 1$ *for a real* $t \geq 1$ *. Then the discrepancy* $D_N(p(n)\alpha)$ *of the sequence* $(p(n)\alpha)_{n\geq 0}$ *satisfies*

$$
D_N(p(n)\alpha) \ll_{\epsilon,d,t} N^{-\frac{2-2^{-d+2}}{2^{d-1}(2t+1)}+\epsilon}
$$

for any $\epsilon > 0$ *.*

Proof Let $x_n = p(n)\alpha$ in Lemma [6.](#page-5-0) Then

$$
D_N(p(n)\alpha) \ll \frac{1}{H} + \frac{1}{N} \sum_{h=1}^{H} \frac{1}{h} \left| \sum_{n=0}^{N-1} e(p(n)h\alpha) \right|.
$$
 (5)

To estimate the exponential sum on the right hand side we use Lemma [5](#page-4-0) with $Q = N$ and $k = d - 1$. Hence we get that

$$
\left| \sum_{n=0}^{N-1} e(p(n)h\alpha) \right|^{2^{d-1}} \ll N^{2^{d-1}-1}
$$

+ $N^{2^{d-1}+2^{-d+2}-3} \sum_{r_1=1}^N \cdots \sum_{r_{d-1}=1}^{N^{2^{-d+2}} \left| \sum_{n=0}^{N-r_1-\cdots-r_{d-1}} e(d!hr_1 \cdots r_{d-1}n\alpha) \right|.$

Using the bound $|\sum_{n=0}^{N-1} e(n\lambda)| \ll \min(N, \frac{1}{\|\lambda\|})$ gives

$$
\left| \sum_{n=0}^{N-1} e(p(n)h\alpha) \right|^{2^{d-1}}
$$

\n
$$
\ll N^{2^{d-1}-1} + N^{2^{d-1}+2^{-d+2}-3} \sum_{r_1=1}^N \cdots \sum_{r_{d-1}=1}^{N^{2^{-d+2}}} \min\left(N, \frac{1}{\|d!hr_1 \cdots r_{d-1}\alpha\|}\right)
$$

\n
$$
\ll N^{2^{d-1}-1} + N^{2^{d-1}+2^{-d+2}-3} \sum_{m=1}^{N^{2-2^{-d+2}}} T(m) \min\left(N, \frac{1}{\|d!hm\alpha\|}\right),
$$
 (6)

where in the second line of the above inequality

$$
T(m) = \left| \left\{ (r_1, \ldots, r_{d-1}) \in [1, N] \times \cdots \times [1, N^{2^{-d+2}}] : r_1 \cdots r_{d-1} = m \right\} \right|.
$$

Hence $T(m) \ll \tau_{d-1}(m)$. Let $\epsilon_1 = \frac{\epsilon}{(2-2^{-d+2})}$. Using the fact that $\tau_{d-1}(m) \ll_{\epsilon_1} m^{\epsilon_1}$ we get that

$$
\left| \sum_{n=0}^{N-1} e(p(n)h\alpha) \right|^{2^{d-1}}
$$
\n
$$
\ll_{\epsilon,d} N^{2^{d-1}-1} + N^{2^{d-1}+2^{-d+2}-3+\epsilon} \sum_{m=1}^{N^{2-2^{-d+2}}} \min\left(N, \frac{1}{\|d!h m\alpha\|}\right).
$$
\n(7)

Let $L = N^{2-2^{-d+2}}$. We have

$$
\sum_{m=1}^{L} \min\left(N, \frac{1}{\|d!mh\alpha\|}\right) = N|E_0| + \sum_{m \notin E_0} \frac{1}{\|d!mh\alpha\|},
$$

where

$$
E_k = \left\{ m \le L : \frac{k}{N} < \|d!mh\alpha\| \le \frac{k+1}{N} \right\}.
$$

With this notation we have

$$
\sum_{m=1}^{L} \min\left(N, \frac{1}{\|d!mh\alpha\|}\right) \ll N|E_0| + \sum_{k=1}^{N-1} \frac{N}{k}|E_k|.
$$

Observe that

$$
|E_k| = \frac{2L}{N} + O(LD_L(d!mh\alpha)).
$$

Hence we have

$$
\sum_{m=1}^{L} \min\left(N, \frac{1}{\|d!mh\alpha\|}\right) \ll L\log N + NLD_L(d!mh\alpha)\log N. \tag{8}
$$

Since α has irrationality measure $t + 1$, $\|d!mh\alpha\| \geq_{\epsilon} (d!mh)^{-(t+\epsilon)}$. Then by Lemma [7](#page-5-1)

$$
D_L(d!mh\alpha) \ll_{\epsilon} \frac{1}{H} + \frac{1}{L} \sum_{j=1} \frac{1}{j||d!hj\alpha||}
$$

$$
\ll_{\epsilon,d,t} \frac{1}{H} + \frac{(d!h)^{t+\epsilon}}{L} \sum_{j=1}^{H} j^{t-1+\epsilon}
$$

$$
\ll_{\epsilon,d,t} \frac{1}{H} + L^{-1}H^{t+\epsilon}h^{t+\epsilon}.
$$

Choose $H = \left[L^{\frac{1}{t+1}} h^{-\frac{t}{t+1}} \right]$ to get

$$
D_L(d!mh\alpha) \ll_{\epsilon,d,t} L^{-\frac{1}{t+1}+\epsilon} h^{\frac{t}{t+1}+\epsilon}.
$$
\n(9)

Using this estimate in (8) gives us

$$
\sum_{m=1}^{L} \min\left(N, \frac{1}{\|d!m h\alpha\|}\right) \ll_{\epsilon, d, t} NL^{1-\frac{1}{t+1}+\epsilon} h^{\frac{t}{t+1}+\epsilon}.
$$
 (10)

The above estimate when $L = N^{2-2^{-d+2}}$ together with [\(7\)](#page-7-1) gives

$$
\left| \sum_{n=0}^{N-1} e(p(n)h\alpha) \right|^{2^{d-1}} \ll_{\epsilon,d,t} N^{2^{d-1}-1} + N^{2^{d-1}-\frac{2-2^{-d+2}}{t+1}+\epsilon}.
$$
 (11)

In the above estimate clearly the second term dominates. Hence we get

$$
\left| \sum_{n=0}^{N-1} e(p(n)h\alpha) \right| \ll_{\epsilon,d,t} N^{1 - \frac{2-2^{-d+2}}{2^{d-1}(t+1)} + \epsilon}.
$$
 (12)

Now [\(5\)](#page-6-0) and [\(12\)](#page-8-0) together gives

$$
D_N(p(n)\alpha) \ll_{\epsilon,d,t} \frac{1}{H} + N^{-\frac{2-2^{-d+2}}{2^{d-1}(t+1)} + \epsilon} H^{\frac{t}{t+1} + \epsilon}.
$$

Finally we choose $H =$ $\sqrt{\frac{2-2^{-d+2}}{2^{d-1}(2t+1)}}$ 1 to get

$$
D_N(p(n)\alpha) \ll_{\epsilon,d,t} N^{-\frac{2-2^{-d+2}}{2^{d-1}(2t+1)}+\epsilon}.
$$

 \Box

3 Proof of the theorem

Let H be any positive integer which will be chosen later. By Lemma 6 , we have

$$
D_N([p(n)\alpha]\beta) \le \frac{2}{H+1} + \frac{2}{N} \sum_{h=1}^H \frac{1}{h} \left| \sum_{n=0}^{N-1} e(h[p(n)\alpha]\beta) \right|.
$$
 (13)

Recall that $f_\tau(x) = e(\tau\{x\})$ and $g_{\tau,\delta}$ is defined as in [\(2\)](#page-2-0) with $\delta := \delta(h) = h^{-1}N^{-\theta}$ for some $0 < \theta < 1$. Writing $[x] = x - \{x\}$ we have

$$
\sum_{n=0}^{N-1} e(h[p(n)\alpha]\beta) = \sum_{n=0}^{N-1} e(hp(n)\alpha\beta) f_{-h\beta}(p(n)\alpha)
$$

$$
= \sum_{n=0}^{N-1} e(hp(n)\alpha\beta) g_{-h\beta,\delta}(p(n)\alpha)
$$

$$
+ O\left(\sum_{n=0}^{N-1} |f_{-h\beta}(p(n)\alpha) - g_{-h\beta,\delta}(p(n)\alpha)|\right).
$$
(14)

By Lemma [1](#page-2-1) for the *O*-term on the right hand side of [\(14\)](#page-9-0) and substituting it in the inequality [\(13\)](#page-8-1) we have

$$
D_N([p(n)\alpha]\beta) \ll \frac{1}{H} + \frac{1}{N} \sum_{h=1}^H \frac{1}{h} \left| \sum_{n=0}^{N-1} e(hp(n)\alpha\beta)g_{-h\beta,\delta}(p(n)\alpha) \right|
$$

+
$$
+ r \sum_{h=1}^H \frac{\delta}{h} + |\beta|r^2 \sum_{h=1}^H \delta + D_N(p(n)\alpha) \log H.
$$

The Fourier inversion formula for $g_{\tau,\delta}$ gives us

$$
D_N([p(n)\alpha]\beta) \ll \frac{1}{N} \sum_{h=1}^H \frac{1}{h} \left| \sum_{k \in \mathbb{Z}} \hat{g}_{-h\beta,\delta}(k) \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right| + \frac{1}{H}
$$

+
$$
r \sum_{h=1}^H \frac{\delta}{h} + |\beta|r^2 \sum_{h=1}^H \delta + D_N(p(n)\alpha) \log H.
$$
 (15)

Let

$$
S_N = \frac{1}{N} \sum_{h=1}^H \frac{1}{h} \left| \sum_{k \in \mathbb{Z}} \hat{g}_{-h\beta,\delta}(k) \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right|.
$$
 (16)

Let ρ be a real number such that $\rho \in [1, 2]$, which will be chosen later. We also suppose $N^{\theta} > 2|\beta|$. Splitting the first sum inside the modulus into $|k| > h^{\rho} N^{\theta}$ and $|k| \leq h^{\rho} N^{\theta}$ gives us

$$
S_N \ll \frac{1}{N} \sum_{h=1}^H \frac{1}{h} \left| \sum_{|k| \le h^{\rho} N^{\theta}} \hat{g}_{-h\beta,\delta}(k) \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right|
$$

+
$$
\sum_{h=1}^H \frac{1}{h} \sum_{|k| > h^{\rho} N^{\theta}} |\hat{g}_{-h\beta,\delta}(k)|.
$$

Lemma [3](#page-3-0) with $K = h^{\rho} N^{\theta}$ shows that the second term on the right hand side is *Hr*(1−ρ).

Hence we have

$$
S_N \ll \frac{1}{N} \sum_{h=1}^H \frac{1}{h} \left| \sum_{|k| \le h^{\rho} N^{\theta}} \hat{g}_{-h\beta,\delta}(k) \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right| + H^{r(1-\rho)}.
$$
 (17)

Using Hölder's inequality

$$
\left| \sum_{|k| \le h^{\rho} N^{\theta}} \hat{g}_{-h\beta,\delta}(k) \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right|
$$

\n
$$
\ll \left(\sum_{|k| \le h^{\rho} N^{\theta}} |\hat{g}_{-h\beta,\delta}(k)|^{\frac{2^{d-1}}{2^{d-1}-1}} \right)^{\frac{2^{d-1}-1}{2^{d-1}}} \left(\sum_{|k| \le h^{\rho} N^{\theta}} \left| \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right|^{2^{d-1}} \right)^{\frac{1}{2^{d-1}}} \n\ll \left(\sum_{|k| \le h^{\rho} N^{\theta}} \left| \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right|^{2^{d-1}} \right)^{\frac{1}{2^{d-1}}}.
$$
\n(18)

Here we have used Lemma [4](#page-3-1) to get the last inequality.

Let $\xi = \alpha(h\beta - k)$. Using Lemma [5,](#page-4-0) with $k = d - 1$ and $\lambda_m = e(p(m)\xi)$ we get that the following inequalities hold for any $Q \in [1, N]$:

$$
\left| \sum_{n=0}^{N-1} e(p(n)\xi) \right|^{2^{d-1}} \le \frac{N^{2^{d-1}}}{Q} + \frac{N^{2^{d-1}-1}}{Q^{2-2-d+2}} \sum_{r_1=1}^{Q} \sum_{r_2=1}^{Q^{\frac{1}{2}}} \cdots \sum_{r_{d-1}=1}^{Q^{2-d+2}} \left| \sum_{n=0}^{N-1-r_1-\cdots-r_{d-1}} e(d!r_1 \cdots r_{d-1}n\xi) \right|
$$

$$
\le \frac{N^{2^{d-1}}}{Q} + \frac{N^{2^{d-1}-1}}{Q^{2-2-d+2}} \sum_{r_1=1}^{Q} \sum_{r_2=1}^{Q^{\frac{1}{2}}} \cdots \sum_{r_{d-1}=1}^{Q^{2-d+2}} \left| \min \left(N, \frac{1}{\|d!r_1 \cdots r_{d-1}\xi \|} \right) \right|,
$$

where we have used $\sum_{n=0}^{N-1} e(n\lambda) \ll \min(N, \frac{1}{\|\lambda\|})$ to get the last inequality. Let $T(m) = |\{(r_1, \ldots, r_{d-1}) \in [1, Q] \times \cdots \times [1, Q^{2^{-d+2}}] : r_1 \cdots r_{d-1} = m\}|.$

With this notation the above inequality will be

$$
\left|\sum_{n=0}^{N-1} e(p(n)\xi)\right|^{2^{d-1}} \ll \frac{N^{2^{d-1}}}{Q} + \frac{N^{2^{d-1}-1}}{Q^{2-2^{-d+2}}} \sum_{m=1}^{Q^{2-2^{-d+2}}} T(m) \min\left(N, \frac{1}{\|d!\xi m\|}\right).
$$

Let $\epsilon > 0$ be any real number. Let $\epsilon_2 = \frac{\epsilon}{(2 - 2^{-d+2})}$. Since $T(m) \le \tau_{d-1}(m) \ll_{\epsilon_2} m^{\epsilon_2}$, we get

$$
\left| \sum_{n=0}^{N-1} e(p(n)\xi) \right|^{2^{d-1}} \ll_{\epsilon,d} \frac{N^{2^{d-1}}}{Q} + \frac{N^{2^{d-1}-1}}{Q^{2-2^{d+2}-\epsilon}} \sum_{m=1}^{Q^{2-2^{d+2}}} \min\left(N, \frac{1}{\|d!\xi m\|}\right). \tag{19}
$$

Now we prove the following lemma which will be used to estimate the right hand side of the above equation.

Lemma 8 *Let* $\xi = \alpha(h\beta - k)$ *. Then for any* $\epsilon > 0$ *we have*

$$
\sum_{\ell=1}^L \min\left(N, \frac{1}{\|d!\ell\xi\|}\right) \ll_{\alpha,\beta,\epsilon,d} L\log N + NL^{1-\frac{1}{2t+1}+\epsilon}(h|k|)^{\frac{t}{2t+1}+\epsilon}\log N.
$$

Proof For $0 \le m \le N - 1$, define

$$
E_m = \left\{ \ell \leq L : \frac{m}{N} < \|d!\ell\xi\| \leq \frac{m+1}{N} \right\}.
$$

We have

$$
\sum_{\ell=1}^{L} \min\left(N, \frac{1}{\|d!\ell\xi\|}\right) = N|E_0| + \sum_{\substack{l \notin E_0 \\ N-1}} \frac{1}{\|d!\ell\xi\|}
$$

$$
\leq N|E_0| + \sum_{m=1}^{N-1} \frac{N}{m}|E_m|.
$$

Observe that

$$
|E_k| = \frac{2L}{N} + O(LD_L(d! \ell \xi)).
$$

Thus

$$
\sum_{\ell=1}^{L} \min\left(N, \frac{1}{\|d!\ell\xi\|}\right) \ll L \log N + NLD_L(d!\ell\xi) \log N. \tag{20}
$$

Using Lemma [7](#page-5-1) and the fact that

$$
||d!\ell\xi|| = ||d!\ell\alpha(h\beta - k)|| \geq \frac{C(\alpha, \beta, \epsilon)}{((d!\ell)^2 h|k|)^{1+\epsilon}}
$$

for any positive integer $\ell \geq 1$, we get

$$
D_L(d!\ell\xi) \ll_{\alpha,\beta,\epsilon} \frac{1}{m} + \frac{1}{L}(h|k|(d!m)^2)^{t+\epsilon}
$$

for any positive integer *m*. Now we choose $m = L^{1/(2t+1)}(h|k|)^{-t/(2t+1)}$ to get

$$
D_L(d!\ell\xi) \ll_{\alpha,\beta,\epsilon,d} (h^t|k|^t)^{\frac{1}{2t+1}+\epsilon} L^{-\frac{1}{2t+1}+\epsilon}.
$$
 (21)

Substituting the above estimate in (20) gives us

$$
\sum_{\ell=1}^L \min\left(N, \frac{1}{\|d!\ell\xi\|}\right) \ll_{\alpha,\beta,\epsilon,d} L\log N + NL^{1-\frac{1}{2t+1}+\epsilon}(h|k|)^{\frac{t}{2t+1}+\epsilon}\log N.
$$

Apply Lemma [8](#page-11-1) in [\(19\)](#page-11-2) with $L = Q^{2-2^{-d+2}}$ and let $Q = N$ to get

$$
\left| \sum_{n=0}^{N-1} e(p(n)\xi) \right|^{2^{d-1}} \ll_{\alpha,\beta,\epsilon,d} N^{2^{d-1}-1} + N^{2^{d-1}-\left(\frac{2-2^{-d+2}}{2t+1}\right)+\epsilon} h^{\frac{t}{2t+1}+\epsilon} |k|^{\frac{t}{2t+1}+\epsilon}.
$$
 (22)

Summing both sides of the above inequality over *k* we get that

$$
\sum_{|k| \le h^{\rho} N^{\theta}} \left| \sum_{n=0}^{N-1} e(p(n)\xi) \right|^{2^{d-1}} \ll_{\alpha,\beta,\epsilon,d} N^{2^{d-1}-1+\theta} h^{\rho} + N^{2^{d-1}-(\frac{2-2^{-d+2}}{2t+1})+\theta(\frac{3t+1}{2t+1})+\epsilon} h^{\frac{t}{2t+1}+\rho(\frac{3t+1}{2t+1})+\epsilon}.
$$
\n(23)

Clearly the first term on the right hand side is dominated by the second term. Putting this inequality in (18) we get that

$$
\left| \sum_{\substack{|k| \le h^{\rho} N^{\theta}}} \hat{g}_{-h\beta}(k) \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right|
$$

$$
\ll_{\alpha, \beta, \epsilon, d} N^{1 - (\frac{2-2^{-d+2}}{2^{d-1}(2t+1)}) + \theta(\frac{3t+1}{2^{d-1}(2t+1)}) + \epsilon} h^{\frac{t}{2^{d-1}(2t+1)}} + \rho(\frac{3t+1}{2^{d-1}(2t+1)}) + \epsilon}.
$$

Hence we have

$$
\sum_{h=1}^{H} \frac{1}{h} \left| \sum_{|k| \le h^{\rho} N^{\theta}} \hat{g}_{-h\beta}(k) \sum_{n=0}^{N-1} e(p(n)\alpha(h\beta - k)) \right|
$$

$$
\ll_{\alpha, \beta, \epsilon, d} N^{1-(\frac{2-2^{-d+2}}{2^{d-1}(2t+1)})+\theta(\frac{3t+1}{2^{d-1}(2t+1)})+\epsilon} H^{\frac{t}{2^{d-1}(2t+1)}+\rho(\frac{3t+1}{2^{d-1}(2t+1)})+\epsilon}.
$$

From (17) and above inequality we have

$$
S_N\ll_{\alpha,\beta,\epsilon,d} N^{-(\frac{2-2^{-d+2}}{2^{d-1}(2t+1)})+\theta(\frac{3t+1}{2^{d-1}(2t+1)})+\epsilon}H^{\frac{t}{2^{d-1}(2t+1)}}+\rho(\frac{3t+1}{2^{d-1}(2t+1)})+\epsilon}+O(H^{r(1-\rho)}).
$$

 \Box

Hence we have from [\(15\)](#page-9-1) with $\delta^{-1} = hN^{\theta}$ that

$$
D_N([p(n)\alpha]\beta)
$$

\$\ll_{\alpha,\beta,\epsilon,d} H^{\frac{t}{2^{d-1}(2t+1)} + \rho(\frac{3t+1}{2^{d-1}(2t+1)}) + \epsilon} N^{-(\frac{2-2^{-d+2}}{2^{d-1}(2t+1)}) + \theta(\frac{3t+1}{2^{d-1}(2t+1)}) + \epsilon} + H^{r(1-\rho)}\$
+ $\frac{1}{H} + N^{-\theta} + N^{-\theta} \log H + D_N(p(n)\alpha) \log H$.

We choose $\rho = 1 + \epsilon_1$ with $\epsilon_1 = \epsilon_1(\epsilon, t) > 0$ sufficiently small real number, and *r* is an integer satisfying $r > \frac{1}{\epsilon_1}$. Hence the second term on the right hand side is $\ll H^{-1}$.

Now we choose $H = [N^{\theta}]$ with $\theta = \frac{2 - 2^{-d+2}}{2^{d-1}(2t+1) + (4t+1) + \rho(3t+1)}$. With these choices we have

$$
D_N([p(n)\alpha]\beta) \ll_{\alpha,\beta,\epsilon,d} N^{-\frac{2-2^{-d+2}}{2^{d-1}(2t+1)+7t+2}+\epsilon} + D_N(p(n)\alpha)\log N. \tag{24}
$$

By Lemma [1,](#page-5-2) we have

$$
D_N(p(n)\alpha)\ll_{\epsilon,d,t} N^{-\frac{2-2^{-d+2}}{2^{d-1}(2t+1)}+\epsilon}.
$$

Putting this in [\(24\)](#page-13-10), we get

$$
D_N([p(n)\alpha]\beta) \ll_{\alpha,\beta,\epsilon,d} N^{-\frac{2-2-d+2}{2^{d-1}(2t+1)+7t+2}+\epsilon}.
$$

References

- 1. Graham, S.W., Kolesnik, G.: van der Corput's method of exponential sums. In: London Mathematical Society Lecture Note Series, vol. 126. Cambridge University Press, Cambridge (1991)
- 2. Carlson, D.: Good sequences of integers. J. Number Theory **7**, 91–104 (1975)
- 3. Granville, A., Ramaré, O.: Explicit bounds on exponential sums and the scarcity of square-free binomial coefficients. Mathematika **43**(1), 73–107 (1996)
- 4. Håland, I.J.: Uniform distribution of generalized polynomials. J. Number Theory **45**, 327–366 (1993)
- 5. Håland, I.J.: Uniform distribution of generalized polynomials of the product type. Acta Arith. **67**, 13–27 (1994)
- 6. Hofer, R., Ramaré, O.: Discrepancy estimates for some linear generalized monomials. Acta Arith. **173**(2), 183–196 (2016)
- 7. Koksma, J.F.: Diophantische Approximationen (in German). Springer, Berlin (1936)
- 8. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974) (Reprint: Dover Publication, Mineola, NY, 2006)
- 9. Veech, W.A.: Well distributed sequences of integers. Trans. Am. Math. Soc. **161**, 63–70 (1971)
- 10. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. **77**(3), 313–352 (1916)