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Abstract We obtain an upper bound for the discrepancy of the sequence ([p(n)
a]B)n>0 generated by the generalized polynomial [p(x)«]B, where p(x) is a monic
polynomial with real coefficients, « and § are irrational numbers satisfying certain
conditions.
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1 Introduction

A sequence (x,),>0 of real numbers is said to be uniformly distributed modulo 1 if

. #{n < N:{x,}€la, b)}
lim =
N—oo N

b—a (D

holds for all real numbers a, b satisfying 0 < a < b < 1. Here and in what follows,
{x} denotes the fractional part of x. Weyl [10] proved that if P(x) € R[x] is any
polynomial in which at least one of the coefficients other than the constant term is
irrational, then the sequence (P (n)),>0 is uniformly distributed modulo 1.

A natural extension of the family of real valued polynomials arises by adding
the operation integral part, denoted by [-], to the arithmetic operations addition and
multiplication. Polynomials which can be obtained in this way are called generalized
polynomials. For example [ag+ax], ag+[a1x + [azxz]] are generalized polynomials.

In the spirit of Weyl’s result it is natural to consider the uniform distribution of
generalized polynomials. The case ([no]f),>0 is treated in [8] (see Theorem 1.8, p.
310) and it follows from a result of Veech (see Theorem 1, [9]) that the sequence
([p(n)1B)n=0, p(x) is a polynomial with real coefficients, is uniformly distributed
under certain conditions on the coefficients of p(x) and 8. Haland [4,5] showed that
if the coefficients of a generalized polynomial g (x) are sufficiently independent then
the sequence (g (n)),>0 is uniformly distributed.

In order to quantify the convergence in (1) the notion of discrepancy has been
introduced. Let (x,),>0 be a sequence of real numbers and N be any positive integer.
The discrepancy of this sequence, denoted by Dy (x,,), is defined by

Dy(x;) =  sup Hln= N: {;n} €la.b)} (b—a)l.
0<a<b<l

Now we have the following definition.

Definition 1 Let 7 > 1 be a real number. We say that a pair («, ) of real numbers is
of finite type t if for each € > 0 there is a positive constant ¢ = c(€, o, 8) such that
for any pair of rational integers (m, n) # (0, 0), we have

(max (1, [m]) € (max(1, [n[)"*|lma +np| =

where ||x|| denotes the distance of x from the nearest integer.

The corresponding definition for a single real number « is the one of irrationality
measure. The precise definition is the following.

Definition 2 Let 1 > 1 be a real number. We say that an irrational number y has
irrationality measure t 4 1 if for any integer n and € > 0, we have

max (1, [n))' T |ny || >, 1.
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It is well known that when y has irrationality measure ¢ 4 1, the discrepancy Dy (ny)
of the sequence (ny),>0 satisfies

-1
Dy(ny) <y.e N7 e

for each € > 0.

The discrepancy of non-trivial generalized polynomials was first considered by
Hofer and Ramaré [6]. More precisely, they considered the discrepancy of the sequence
([na]lB)n=0 and proved that for each € > 0

—1
Dy([na]p) <eqp N72€

when («, af) and (B, é) are of finite type 7.

Letp(x) = x44ag_ x4V 4 -+ax+ag € R[x]beamonic polynomial of degree
d > 2. In this paper we consider the discrepancy of the sequence ([p(n)x]8),>0. We
prove the following theorem.

Theorem 1 Let o, B and N > 1 be non-zero real numbers. Suppose that the pair
(o, ) is of finite type t for a real number t > 1. Then for any € > 0,

__2=0md¥?
Dy([p()a]B) Keapa N 26=1 Q1) +704+2 T
We use a modified version of the method of Hofer and Ramaré [6] for the proof of the
above theorem.

Remark 1 The above theorem, in particular, shows that the sequence ([p(n)«]g) is
uniformly distributed if (o, ¢f) is of finite type ¢ for + > 1. This fact also follows
from a theorem of Carlson (see Theorem 2, [2]). Theorem 1 of [9] also implies uni-
form distribution of this sequence under certain conditions on the coefficients of the
polynomial p(x).

2 Preliminaries

For any real number 7, let f7(x) = e(t{x}) where e(x) denotes e2™* Tets > Obea
real number. We are going to approximate f; by a function g s. Here g; s is defined
by

8rs(x) = sk Iog s * fr(X), (2)

—— 15,81 *
@28y 7]
where we have r copies of 1[_g 5] each denoting the indicator function of the interval
[—3,3].

We have the following analog of Lemma 3.1 in [6].

Lemma 1 For any sequence {u,},>0 of real numbers, and any positive integer N we

have
N—1

37 1 feun) = ges(un)l < Nrs+ Nr2s|e| + N Dy (uy). 3)
n=0
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346 A. Mukhopadhyay et al.

Using Fourier inversion formula, we have

grs(x) = Y &rske(—kx)

keZ

with

sin 271k8>r e(t+k)—1

2. s(k) = .
grs (k) <2nk8 2itk + 1)

Since |%}r <, min (1, ﬁ), and for any irrational 7, |e(t) — 1| < |||, we have

the following lemma which holds trivially.

Lemma 2 For any irrational number t, we have

Bestol <o A i (1, 2
eSS e (kI8 )

We will state Lemmas 3 and 4 for arbitrary real number t but we keep in mind that we
will use these lemmas with t = — hf, for some positive integer /4. The next lemma
gives an upper bound for the tail of the Fourier series of g; 5.

Lemma 3 Let K be sufficiently large real number such that |t + k| > % forallk € Z
with |k| > K. Then we have

D Grath) < GK)™.

lk|>K
The following lemma shows that for any p > 1 the L”-norm of g. s is bounded.

Lemma4 Let © be a real number and 0 < § < min (ﬁ 1). Then for any real

number p > 1, we have

D lgesblP < 1,

keZ
where the implied constant depends only on p.

Proof We can assume the sum is running over k > 1. Using Lemma 2, we get

n llT + k|17 . 1
18z.s(k)|P < ————min|{ I,
[T + k||P _ 1
= — 5P _ .
Zl EEY T 2 G
k<$§ k>8-1
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Note that k > §~! > 2|t| implies |t + k| > k/2, hence
3 L sptrn1
|7 + k|PkPr
k>8-1
Hence we have
Iz +k[I” +k||”
[P
D lgesb))P < Z Tt
k>1 k<81

When t is a non-negative real number, sum on the right hand side is clearly < 1.
Hence we can assume that t is a negative real number. The contributions for the sum
above from the terms with k = [— t]and k = [— t] + 1 are < 1. Hence we have

D 1grs 0P < S+ S+ 1,
k>1

where

[—1]-1 5! 1
S = Z ——— and $ = Z e
il L k=[— r+2|t+k|p

Now the summand in S; is monotonically increasing, hence

e o i) o )
L (T +x)P T+[-7]—DP T+nr)

It is easy to see that
[—7]-1 dx
— K1,
/1 (t +x)P

as p > 1. Thus we conclude
S« 1.

In a similar way, with only difference being the summand is monotonically decreasing,
one can show that

SH K1

which finishes the proof. O

Now we need a variant of a lemma of Weyl—van der Corput (see Lemma 2.7, [1]) as
given by Granville and Ramaré ( see Lemma 8.3 of [3]).
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348 A. Mukhopadhyay et al.

Lemma S Suppose that 11, Ay, ..., Ay is a sequence of complex numbers, each with
[Xi| <1, and define Al = dy, Ardy = hppsr A and

Ar1,...,rk,s)‘«m = (Arl ..... rk)\m+s)(Ar1 ..... rk)\m)~

Then for any given k > 1, and real number Q € [1, N7,

R 0 of @ Neren
DR B =D DD DR Dl [ Do |
m=1 ri=1r=1 re=1 m=1

The following lemma, often called as Erd6s—Turan inequality, is very useful to estimate
the discrepancy of a given sequence (see Theorem 2.5, p. 112 of [8]).

Lemma 6 (Erd8s—Turdn) Let (x,),>0 be any sequence of real numbers and N > 1.
The discrepancy Dy (x,) of the sequence (x,),>0 satisfies the following:

N—

—_

1
Dy (x,) <

4 I
R e(hxy)| . &

h=1

=0

3

where H is any arbitrary positive integer.

The above lemma shows that the exponential sums play an important role not only in
showing the uniform distribution of a sequence, but also in estimating the discrepancy
of a given sequence.

The following lemma is an easy consequence of Lemma 6.

Lemma 7 Let6 be anirrational number. Then the discrepancy Dy, (£0) of the sequence
{€6 : 1 < £ < L} satisfies the following upper bound.

H
1 1

Dp(t9) = C —+—E —
H L= jlliel

forany H > 1 and for some absolute constant C > 0.

If « is of irrationality measure t + 1 for + > 1, it is known that the discrepancy of
(n*a) satisfies the following upper bound.

Dy (@) <eq N™HTH 4 N73 flog N

for any € > 0 (see equation (50) p. 113 in [7]). To estimate the discrepancy of
([p(n)alP)n=0, we need the following general version.
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Proposition 1 Let o be a non-zero real number of irrationality measure t + 1 for a
real t > 1. Then the discrepancy Dy (p(n)a) of the sequence (p(n)o),>o satisfies

2_p—d+2

Dyn(p()a) Kegs N 2 Tan €

for any € > 0.
Proof Let x, = p(n)a in Lemma 6. Then
N-1

> e(pmyha)| .

n=0

Dy(pma) < = + Z

h=1

)

To estimate the exponential sum on the right hand side we use Lemma 5 with Q = N
and k = d — 1. Hence we get that

N—1 zdfl
Y epmha)| < N
n=0
N N —mr
d—1 —d+2
+ N¥ 2 -3 Z Z Z e(dhry---rqg_1na)|.
ri=1 ra—1=1 n=0

Using the bound | Zn 0 ! e(n1)| < min(N, HAH) gives

N_l zdfl
Y e(p(m)ha)
n=0
N2t |
d—1 d—1 d+2
& N* g N2 s m1n<N, )
rlzl ,dz,l ldthri = ra 1l
9 p—d+2
d-1_1 2d—14p—d+2_3 N 1 6
N* T4 N - T(m) min ( N, —— ),
< mg (m) < ”d!hma”) ©)
where in the second line of the above inequality
T = {01 orae) € LN NP gy = ml

Hence T (m) < t74—1(m). Let €] =

(2_267%. Using the fact that 14— (m) K¢, m©!
we get that
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2(1—1
N-1
> e(pha)
n=0
y2-2dH? @
d—1 d—1_ n—d+2 1
N2 —1 +N2 +2 —3+€ : N, .
e 2 i (N g
m=1
Let L = N227"* We have
1 1
= N|E _
Z min < ||d'mha||> Eol+ D ha
m¢E()
where
k k+1
Exr={m<L:— < |dmha| < ——}.
N N
With this notation we have
N-1
1 N
N|E — | Eg|.
Zmln( i h||><< | 0|+I;k| kl
Observe that
2L
|Ex| = N + O(LDy(d'mha)).
Hence we have
L 1
Z — ) « LlogN + NLDy (d'mha)log N. 8)
— " d'mhal||

Since « has irrationality measure t 4 1, ||d!mha|| > (d'mh)~“+€ Then by Lemma 7

1 1
Dp(d'mha) K¢ — + _
‘  jlldhjall
1 (d!h)H_E t—14€
Le,d,t H + -7 X;]
j:

1
<<5yd,t E + L_lHt+€ht+e.
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Choose H = [Lt%lhfrfl] to get

Dy(d'mha) Le g, L™FTHRFETTE ©)

Using this estimate in (8) gives us

1 1I—Lqe; Lote
NL 1T h+17¢, 10
Z mm< idimia ”) Le,d 1 (10)

The above estimate when L = N2=2"" together with (7) gives

d—1
N—1 2

> e(pmha)

n=0

_p—d+2

d— d—1
Leay N¥ 714 N2 e (11)

In the above estimate clearly the second term dominates. Hence we get

N-1

> e(p(mha)

n=0

_y—d+2
22 +€

1—272
Ledyr N 27 arn (12)

Now (5) and (12) together gives

2_p—d+2

1 _2-27477
Dn(p(me) Keds 57+ N T T g te

2.2 d+2
Finally we choose H = | N2~'e+D | to get

2_p—d+2

DN(p(n)a) <<5 d,t N 2d 1(2t+1)+ .

O
3 Proof of the theorem
Let H be any positive integer which will be chosen later. By Lemma 6, we have
M N—1
Dn(pmalp) < -~ + & Z Zoe“’[l’(")“]ﬂ)‘- (13)
h=1 n=

Recall that f; (x) = e(r{x}) and g s is defined as in (2) with § := &(h) = hIN—?
for some 0 < 6 < 1. Writing [x] = x — {x} we have
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352 A. Mukhopadhyay et al.

N-1 N-1
Y ethipmal) = Y e(hp(maB) f-ns(p(m))
n=0 n=0
N-1
=Y e(hpmap)g-ip.s(p(n)a)
n=0

N—-1
+0 (Z | f-np(p(n)er) — g_hﬁ,s(p(n)an) NG

n=0

By Lemma 1 for the O-term on the right hand side of (14) and substituting it in the
inequality (13) we have

H N—-1

> e(hp(map)g-ips(pn)e)

n=0

1 1
Dy(lpmelp) < 7+ &

il
H s H
—l—r}; n + Iﬂlrz};é + Dy (p(n)a)log H.

The Fourier inversion formula for g, s gives us

1 H 1 A N—1 1
Dy([p(m)alB) < ~ Z ’ Zg,hgg(g(k) Z e(p(m)a(hp —k))| + "
h=1 keZ n=0
H s H
—l—rZE+|ﬂ|r225+DN(P(n)05)10gH- (15)
h=1 h=1
Let
1 H 1 R N-—1
Sy = 5 hg E kezzg—hﬁ,a(k) g e(p(n)a(hp —k))|. (16)

Let p be a real number such that p € [1, 2], which will be chosen later. We also
suppose N? > 2|B|. Splitting the first sum inside the modulus into |k| > h* N? and
k| < h? NY gives us

1 &0 =
Sv < Do u | Dl s Y e(pmathp — k)
h=1"|lk|<h* N n=0

H
+ Z% > 1g-npsb)l.

h=1 " |k|>h* N?

Lemma 3 with K = h”N? shows that the second term on the right hand side is
< HV(I—P).
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Hence we have

1
S —
N<<N

M=

1
A gh,gs<k)2e(p(n>a(hﬂ )|+ H=P . (17)

h=1 |k|<hr N

Using Holder’s inequality

N—1
Yo &nps® Y e(pmyalhp — k)
|k|<h” N© n=0
21 2‘;171 N-1 21\ FT
< D 1gempsto)2 T Yo 1Y elpmahB —k)
lk|<h# N? |k|<h? NO | n=0
N-1 201\ 7T
< D |2 elpma(hp —k) (18)
lk|<h? N¥ | n=0

Here we have used Lemma 4 to get the last inequality.
Leté = a(hf — k). Using Lemma 5, with k = d — 1 and A, = e(p(m)&) we get
that the following inequalities hold for any Q € [1, N]:

N—1 2d—1
> e(pm)e)
n=0
N2d71 N2d Iy 0 Q% a2 N—1—rj——rg—1
< 0 i Z Z Z e(d'ry - -rg_1nk)
ri=1r=1 rg—1=1 n=0
1 o—d+2
de 1 N2d 1_q 0 Q2 (0] ( 1 )'
< min | N, ———— ||,
0 Q2 2 22 2 ldlry - ra—i€|

ri=1r=1 rg—1=1

where we have used Zﬁlv;ol e(n)) < min(N, i /\”) to get the last inequality.

d+2
Let T(m) = [{(r1,...,ra—1) € [1, Q1 x -++ x [1,07 T ryvorgy = ml.
With this notation the above inequality will be

N—1 247! N2 N2 22112 .
cpme| <« N T (m) min (w, _) .
,;) Q o mZ:l ld'gm|
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Let € > 0 be any real number. Let ¢, = #ﬂ) Since T'(m) < t4—1(m) K¢, m2,

-
we get
N—1 24! N2 N2 o272 |
Y epmE)| et et ) min(N,—).
=0 R N et ld!&m||

19)
Now we prove the following lemma which will be used to estimate the right hand side
of the above equation.

Lemma 8 Let & = a(hf — k). Then for any € > 0 we have

L . 1 l—#—ﬁ—e I —
Zmll’l N, m <<D(,/3,€,d LlOgN + NL 21 (h|k|)21+l log N.
=1 ’

Proof For0 <m < N — 1, define

E,=le<r:™ < jaue) < ™2
w={esL:%<ldg) < 1.

We have
L 1 1
> min (N, —> = N|Eo|+ Y ——r
] ]
— g 2 g |
N—1
N
< NIEo|+ ) —IEnl.
m=1
Observe that
2L
|Ex| = N 4+ O(LDy (d\t§)).
Thus

L
1
> min (N, m) &« L1logN 4+ NLDy (d¢€)1log N. (20)
=1 ’

Using Lemma 7 and the fact that
C(a, B, €)
dlé|| = ||dahf — k)| > ——————
4241 = I eath =)l 2 o
for any positive integer £ > 1, we get

1 1 2\t+e
Dy (d§) Kq,p,e —+ Z(hlkl(d!m) )
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for any positive integer m. Now we choose m = LY+ (p|k|)~1/C+D to get
DL(dVE) Kapoed (H k| T LT w514, @1

Substituting the above estimate in (20) gives us

L
Z ( |M€“> Kaped Llog N+ NL'=7 (h|k[) 751 log N
=

Apply Lemma 8 in (19) with L = 02727 and let Q = N to get

d—1
N-1 2 —d+2
_ d—1_(2=2
Y elpmE)|  Laped NN (= )+€hﬁ+€|k|ﬁ+‘. (22)
n=0

Summing both sides of the above inequality over k we get that

N_1 2d—]
d—1
Yo D elpmE)|  Lapea N¥THRP
lk|<h# NO | n=0 (23)

d—1_2-274+2 341 341
_|_N2 = (53 )+9(2;+1)+6h2t+]+p(2t+l)+€

Clearly the first term on the right hand side is dominated by the second term. Putting
this inequality in (18) we get that

N-—1
>0 gapk) Y e(pma(hp — k)
lk|<he N? n=0
2-p—d+2 3141 3+l
Laped Nl_(zdfl(2r+1))+9(2d*1[:r21+1))+6h2d*122z+1>+p(2d*11<2z+1))+E_

Hence we have

H N-—1
1 N
Yol 2 &w® Y epmahp — k)
h=1 |k|<hr N n=0
1—( 2—p—d+2 YHO(—3L ) te ' Fp(— 3Ly
La.pe.d N 2d=T(2141) 2d=T(21+1) H 29T+ P 2d=T(2141) .
From (17) and above inequality we have
2—d+2 3141 3141
SN Laped N (2d 1(2r+1))+ (2d 1t(2:+1))+ H2d71:2t+1)+p(2d71’(2t+1))+e + O(Hr(l_p)).
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356 A. Mukhopadhyay et al.

Hence we have from (15) with =1 = ZN? that

Dy ([p(m)alp)

I+ (2L ) te

3141 _2-p—d+2
+p( )+e ( 24=T(211)

q=T)” T N 24T @)

t
Lapred H 241+ + H1=p)

1
++ N9+ N%logH + Dy(p(n)a)log H .

We choose p = 1 4 €1 with €] = €1(¢€, t) > 0 sufficiently small real number, and r is
an integer satisfying r > é Hence the second term on the right hand side is <« H .
Now we choose H = [N?] with6 =

we have

2_27d+2

T T D) T @ DTGl With these choices

2_p—d+2

Dy ([p(m)alp) Ka,p.e.d N~ e 4 Dy (p(n)a) log N. (24)

By Lemma 1, we have

1_p—d+2

Dy(p(n)a) Ked, i N7 e e

Putting this in (24), we get

2_p—d+2

Dy(p(n)alB) Kaped N @l te
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