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Abstract We obtain an upper bound for the discrepancy of the sequence ([p(n)

α]β)n≥0 generated by the generalized polynomial [p(x)α]β, where p(x) is a monic
polynomial with real coefficients, α and β are irrational numbers satisfying certain
conditions.
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1 Introduction

A sequence (xn)n≥0 of real numbers is said to be uniformly distributed modulo 1 if

lim
N→∞

#{n ≤ N : {xn} ∈ [a, b)}
N

= b − a (1)

holds for all real numbers a, b satisfying 0 ≤ a < b ≤ 1. Here and in what follows,
{x} denotes the fractional part of x . Weyl [10] proved that if P(x) ∈ R[x] is any
polynomial in which at least one of the coefficients other than the constant term is
irrational, then the sequence (P(n))n≥0 is uniformly distributed modulo 1.

A natural extension of the family of real valued polynomials arises by adding
the operation integral part, denoted by [·], to the arithmetic operations addition and
multiplication. Polynomials which can be obtained in this way are called generalized
polynomials. For example [a0+a1x], a0+[a1x+[a2x2]] are generalized polynomials.

In the spirit of Weyl’s result it is natural to consider the uniform distribution of
generalized polynomials. The case ([nα]β)n≥0 is treated in [8] (see Theorem 1.8, p.
310) and it follows from a result of Veech (see Theorem 1, [9]) that the sequence
([p(n)]β)n≥0, p(x) is a polynomial with real coefficients, is uniformly distributed
under certain conditions on the coefficients of p(x) and β. Håland [4,5] showed that
if the coefficients of a generalized polynomial q(x) are sufficiently independent then
the sequence (q(n))n≥0 is uniformly distributed.

In order to quantify the convergence in (1) the notion of discrepancy has been
introduced. Let (xn)n≥0 be a sequence of real numbers and N be any positive integer.
The discrepancy of this sequence, denoted by DN (xn), is defined by

DN (xn) = sup
0≤a<b≤1

∣
∣
∣
∣

#{n ≤ N : {xn} ∈ [a, b)}
N

− (b − a)

∣
∣
∣
∣
.

Now we have the following definition.

Definition 1 Let t ≥ 1 be a real number. We say that a pair (α, β) of real numbers is
of finite type t if for each ε > 0 there is a positive constant c = c(ε, α, β) such that
for any pair of rational integers (m, n) �= (0, 0), we have

(max(1, |m|))t+ε(max(1, |n|))t+ε‖mα + nβ‖ ≥ c

where ‖x‖ denotes the distance of x from the nearest integer.

The corresponding definition for a single real number α is the one of irrationality
measure. The precise definition is the following.

Definition 2 Let t ≥ 1 be a real number. We say that an irrational number γ has
irrationality measure t + 1 if for any integer n and ε > 0, we have

max(1, |n|)t+ε‖nγ ‖ 	ε,γ 1.
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Discrepancy estimates for generalized polynomials 345

It is well known that when γ has irrationality measure t + 1, the discrepancy DN (nγ )

of the sequence (nγ )n≥0 satisfies

DN (nγ ) 
γ,ε N
−1
t +ε

for each ε > 0.
The discrepancy of non-trivial generalized polynomials was first considered by

Hofer andRamaré [6].More precisely, they considered the discrepancy of the sequence
([nα]β)n≥0 and proved that for each ε > 0

DN ([nα]β) 
ε,α,β N
−1
3t−2+ε

when (α, αβ) and (β, 1
α
) are of finite type t .

Let p(x) = xd+ad−1xd−1+· · ·+a1x+a0 ∈ R[x] be amonic polynomial of degree
d ≥ 2. In this paper we consider the discrepancy of the sequence ([p(n)α]β)n≥0. We
prove the following theorem.

Theorem 1 Let α, β and N > 1 be non-zero real numbers. Suppose that the pair
(α, αβ) is of finite type t for a real number t ≥ 1. Then for any ε > 0,

DN ([p(n)α]β) 
ε,α,β,d N
− 2−2−d+2

2d−1(2t+1)+7t+2
+ε

.

We use a modified version of the method of Hofer and Ramaré [6] for the proof of the
above theorem.

Remark 1 The above theorem, in particular, shows that the sequence ([p(n)α]β) is
uniformly distributed if (α, αβ) is of finite type t for t ≥ 1. This fact also follows
from a theorem of Carlson (see Theorem 2, [2]). Theorem 1 of [9] also implies uni-
form distribution of this sequence under certain conditions on the coefficients of the
polynomial p(x).

2 Preliminaries

For any real number τ , let fτ (x) = e(τ {x}) where e(x) denotes e2π i x . Let δ > 0 be a
real number. We are going to approximate fτ by a function gτ,δ . Here gτ,δ is defined
by

gτ,δ(x) = 1

(2δ)r
1[−δ,δ] ∗ · · · ∗ 1[−δ,δ] ∗ fτ (x), (2)

where we have r copies of 1[− δ,δ] each denoting the indicator function of the interval
[− δ, δ].

We have the following analog of Lemma 3.1 in [6].

Lemma 1 For any sequence {un}n≥0 of real numbers, and any positive integer N we
have

N−1
∑

n=0

| fτ (un) − gτ,δ(un)| 
 Nrδ + Nr2δ|τ | + NDN (un). (3)
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346 A. Mukhopadhyay et al.

Using Fourier inversion formula, we have

gτ,δ(x) =
∑

k∈Z
ĝτ,δ(k)e(−kx) ,

with

ĝτ,δ(k) =
(
sin 2πkδ

2πkδ

)r e(τ + k) − 1

2π i(k + τ)
.

Since
∣
∣ sin 2πx

x

∣
∣
r 
r min

(

1, 1
|x |r

)

, and for any irrational τ , |e(τ )−1| 
 ‖τ‖, we have
the following lemma which holds trivially.

Lemma 2 For any irrational number τ , we have

|ĝτ,δ(k)| 
r
‖τ + k‖
|τ + k| min

(

1,
1

(|k|δ)r
)

.

Wewill state Lemmas 3 and 4 for arbitrary real number τ but we keep in mind that we
will use these lemmas with τ = − hβ, for some positive integer h. The next lemma
gives an upper bound for the tail of the Fourier series of gτ,δ .

Lemma 3 Let K be sufficiently large real number such that |τ + k| ≥ k
2 for all k ∈ Z

with |k| > K. Then we have

∑

|k|>K

ĝτ,δ(k) 
r (δK )−r .

The following lemma shows that for any p > 1 the L p-norm of ĝτ,δ is bounded.

Lemma 4 Let τ be a real number and 0 < δ < min
(

1
2|τ | , 1

)

. Then for any real

number p > 1, we have

∑

k∈Z
|ĝτ,δ(k)|p 
 1 ,

where the implied constant depends only on p.

Proof We can assume the sum is running over k ≥ 1. Using Lemma 2, we get

∑

k≥1

|ĝτ,δ(k)|p ≤
∑

k≥1

||τ + k||p
|τ + k|p min

(

1,
1

(kδ)pr

)

=
∑

k≤δ−1

||τ + k||p
|τ + k|p + δ−pr

∑

k>δ−1

1

|τ + k|pk pr .
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Note that k > δ−1 > 2|τ | implies |τ + k| ≥ k/2, hence

∑

k>δ−1

1

|τ + k|pk pr 
 δ p(r+1)−1 .

Hence we have

∑

k≥1

|ĝτ,δ(k)|p 

∑

k≤δ−1

||τ + k||p
|τ + k|p + 1.

When τ is a non-negative real number, sum on the right hand side is clearly 
 1.
Hence we can assume that τ is a negative real number. The contributions for the sum
above from the terms with k = [− τ ] and k = [− τ ] + 1 are ≤ 1. Hence we have

∑

k≥1

|ĝτ,δ(k)|p 
 S1 + S2 + 1 ,

where

S1 =
[− τ ]−1
∑

k=1

1

|τ + k|p and S2 =
δ−1
∑

k=[− τ ]+2

1

|τ + k|p .

Now the summand in S1 is monotonically increasing, hence

S1 =
∫ [− τ ]−1

1

dx

(τ + x)p
+ O

(
1

(τ + [− τ ] − 1)p

)

+ O

(
1

(τ + 1)p

)

.

It is easy to see that

∫ [− τ ]−1

1

dx

(τ + x)p

 1,

as p > 1. Thus we conclude

S1 
 1.

In a similar way, with only difference being the summand ismonotonically decreasing,
one can show that

S2 
 1

which finishes the proof. �
Now we need a variant of a lemma of Weyl–van der Corput (see Lemma 2.7, [1]) as
given by Granville and Ramaré ( see Lemma 8.3 of [3]).
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348 A. Mukhopadhyay et al.

Lemma 5 Suppose that λ1, λ2, . . . , λN is a sequence of complex numbers, each with
|λi | ≤ 1, and define 
λm = λm, 
rλm = λm+rλm and


r1,...,rk ,sλm = (
r1,...,rkλm+s)(
r1,...,rkλm).

Then for any given k ≥ 1, and real number Q ∈ [1, N ],

∣
∣
∣
∣
∣

1

8N

N
∑

m=1

λm

∣
∣
∣
∣
∣

2k

≤ 1

8Q
+ 1

8Q2−2−k+1

Q
∑

r1=1

Q
1
2

∑

r2=1

· · ·
Q2−k+1

∑

rk=1

∣
∣
∣
∣
∣
∣

1

N

N−r1−···−rk∑

m=1


r1,...,rkλm

∣
∣
∣
∣
∣
∣

.

The following lemma, often called asErdős–Turán inequality, is very useful to estimate
the discrepancy of a given sequence (see Theorem 2.5, p. 112 of [8]).

Lemma 6 (Erdős–Turán) Let (xn)n≥0 be any sequence of real numbers and N ≥ 1.
The discrepancy DN (xn) of the sequence (xn)n≥0 satisfies the following:

DN (xn) ≤ 6

H + 1
+ 4

π

H
∑

h=1

1

h

∣
∣
∣
∣
∣

1

N

N−1
∑

n=0

e(hxn)

∣
∣
∣
∣
∣
, (4)

where H is any arbitrary positive integer.

The above lemma shows that the exponential sums play an important role not only in
showing the uniform distribution of a sequence, but also in estimating the discrepancy
of a given sequence.

The following lemma is an easy consequence of Lemma 6.

Lemma 7 Let θ bean irrational number. Then thediscrepancy DL (�θ)of the sequence
{�θ : 1 ≤ � ≤ L} satisfies the following upper bound.

DL(�θ) ≤ C

⎛

⎝
1

H
+ 1

L

H
∑

j=1

1

j‖ jθ‖

⎞

⎠

for any H > 1 and for some absolute constant C > 0.

If α is of irrationality measure t + 1 for t ≥ 1, it is known that the discrepancy of
(n2α) satisfies the following upper bound.

DN (n2α) 
ε,t N
− 1

t+1+ε + N− 2
5
√

log N

for any ε > 0 (see equation (50) p. 113 in [7]). To estimate the discrepancy of
([p(n)α]β)n≥0, we need the following general version.
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Proposition 1 Let α be a non-zero real number of irrationality measure t + 1 for a
real t ≥ 1. Then the discrepancy DN (p(n)α) of the sequence (p(n)α)n≥0 satisfies

DN (p(n)α) 
ε,d,t N
− 2−2−d+2

2d−1(2t+1)
+ε

for any ε > 0.

Proof Let xn = p(n)α in Lemma 6. Then

DN (p(n)α) 
 1

H
+ 1

N

H
∑

h=1

1

h

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)hα)

∣
∣
∣
∣
∣
. (5)

To estimate the exponential sum on the right hand side we use Lemma 5 with Q = N
and k = d − 1. Hence we get that

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)hα)

∣
∣
∣
∣
∣

2d−1


 N 2d−1−1

+ N 2d−1+2−d+2−3
N

∑

r1=1

· · ·
N2−d+2
∑

rd−1=1

∣
∣
∣
∣
∣
∣

N−r1−···−rd−1∑

n=0

e(d!hr1 · · · rd−1nα)

∣
∣
∣
∣
∣
∣

.

Using the bound |∑N−1
n=0 e(nλ)| 
 min(N , 1

‖λ‖ ) gives

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)hα)

∣
∣
∣
∣
∣

2d−1


 N 2d−1−1 + N 2d−1+2−d+2−3
N

∑

r1=1

· · ·
N2−d+2
∑

rd−1=1

min

(

N ,
1

‖d!hr1 · · · rd−1α‖
)


 N 2d−1−1 + N 2d−1+2−d+2−3
N2−2−d+2

∑

m=1

T (m)min

(

N ,
1

‖d!hmα‖
)

, (6)

where in the second line of the above inequality

T (m) =
∣
∣
∣

{

(r1, . . . , rd−1) ∈ [1, N ] × · · · × [1, N 2−d+2 ] : r1 · · · rd−1 = m
}∣
∣
∣ .

Hence T (m) 
 τd−1(m). Let ε1 = ε
(2−2−d+2)

. Using the fact that τd−1(m) 
ε1 mε1

we get that
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350 A. Mukhopadhyay et al.

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)hα)

∣
∣
∣
∣
∣

2d−1


ε,d N 2d−1−1 + N 2d−1+2−d+2−3+ε
N2−2−d+2

∑

m=1

min

(

N ,
1

‖d!hmα‖
)

.

(7)

Let L = N 2−2−d+2
. We have

L
∑

m=1

min

(

N ,
1

‖d!mhα‖
)

= N |E0| +
∑

m /∈E0

1

‖d!mhα‖ ,

where

Ek =
{

m ≤ L : k

N
< ‖d!mhα‖ ≤ k + 1

N

}

.

With this notation we have

L
∑

m=1

min

(

N ,
1

‖d!mhα‖
)


 N |E0| +
N−1
∑

k=1

N

k
|Ek |.

Observe that

|Ek | = 2L

N
+ O(LDL(d!mhα)).

Hence we have

L
∑

m=1

min

(

N ,
1

‖d!mhα‖
)


 L log N + NLDL(d!mhα) log N . (8)

Since α has irrationality measure t+1, ‖d!mhα‖ ≥ε (d!mh)−(t+ε). Then by Lemma 7

DL(d!mhα) 
ε

1

H
+ 1

L

∑

j=1

1

j‖d!hjα‖


ε,d,t
1

H
+ (d!h)t+ε

L

H
∑

j=1

j t−1+ε


ε,d,t
1

H
+ L−1Ht+εht+ε .
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Choose H =
[

L
1

t+1 h− t
t+1

]

to get

DL(d!mhα) 
ε,d,t L
− 1

t+1+εh
t

t+1+ε . (9)

Using this estimate in (8) gives us

L
∑

m=1

min

(

N ,
1

‖d!mhα‖
)


ε,d,t N L1− 1
t+1+εh

t
t+1+ε . (10)

The above estimate when L = N 2−2−d+2
together with (7) gives

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)hα)

∣
∣
∣
∣
∣

2d−1


ε,d,t N
2d−1−1 + N 2d−1− 2−2−d+2

t+1 +ε . (11)

In the above estimate clearly the second term dominates. Hence we get

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)hα)

∣
∣
∣
∣
∣

ε,d,t N

1− 2−2−d+2

2d−1(t+1)
+ε

. (12)

Now (5) and (12) together gives

DN (p(n)α) 
ε,d,t
1

H
+ N

− 2−2−d+2

2d−1(t+1)
+ε

H
t

t+1+ε .

Finally we choose H =
[

N
2−2−d+2

2d−1(2t+1)

]

to get

DN (p(n)α) 
ε,d,t N
− 2−2−d+2

2d−1(2t+1)
+ε

.

�

3 Proof of the theorem

Let H be any positive integer which will be chosen later. By Lemma 6, we have

DN ([p(n)α]β) ≤ 2

H + 1
+ 2

N

H
∑

h=1

1

h

∣
∣
∣
∣
∣

N−1
∑

n=0

e(h[p(n)α]β)

∣
∣
∣
∣
∣
. (13)

Recall that fτ (x) = e(τ {x}) and gτ,δ is defined as in (2) with δ := δ(h) = h−1N−θ

for some 0 < θ < 1. Writing [x] = x − {x} we have
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N−1
∑

n=0

e(h[p(n)α]β) =
N−1
∑

n=0

e(hp(n)αβ) f−hβ(p(n)α)

=
N−1
∑

n=0

e(hp(n)αβ)g−hβ,δ(p(n)α)

+ O

(
N−1
∑

n=0

| f−hβ(p(n)α) − g−hβ,δ(p(n)α)|
)

. (14)

By Lemma 1 for the O-term on the right hand side of (14) and substituting it in the
inequality (13) we have

DN ([p(n)α]β) 
 1

H
+ 1

N

H
∑

h=1

1

h

∣
∣
∣
∣
∣

N−1
∑

n=0

e(hp(n)αβ)g−hβ,δ(p(n)α)

∣
∣
∣
∣
∣

+r
H

∑

h=1

δ

h
+ |β|r2

H
∑

h=1

δ + DN (p(n)α) log H.

The Fourier inversion formula for gτ,δ gives us

DN ([p(n)α]β) 
 1

N

H
∑

h=1

1

h

∣
∣
∣
∣
∣

∑

k∈Z
ĝ−hβ,δ(k)

N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣
+ 1

H

+ r
H

∑

h=1

δ

h
+ |β|r2

H
∑

h=1

δ + DN (p(n)α) log H. (15)

Let

SN = 1

N

H
∑

h=1

1

h

∣
∣
∣
∣
∣

∑

k∈Z
ĝ−hβ,δ(k)

N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣
. (16)

Let ρ be a real number such that ρ ∈ [1, 2], which will be chosen later. We also
suppose N θ > 2|β|. Splitting the first sum inside the modulus into |k| > hρN θ and
|k| ≤ hρN θ gives us

SN 
 1

N

H
∑

h=1

1

h

∣
∣
∣
∣
∣
∣

∑

|k|≤hρN θ

ĝ−hβ,δ(k)
N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣
∣

+
H

∑

h=1

1

h

∑

|k|>hρN θ

|ĝ−hβ,δ(k)|.

Lemma 3 with K = hρN θ shows that the second term on the right hand side is

 Hr(1−ρ).
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Hence we have

SN 
 1

N

H
∑

h=1

1

h

∣
∣
∣
∣
∣
∣

∑

|k|≤hρN θ

ĝ−hβ,δ(k)
N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣
∣

+ Hr(1−ρ). (17)

Using Hölder’s inequality

∣
∣
∣
∣
∣
∣

∑

|k|≤hρN θ

ĝ−hβ,δ(k)
N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣
∣



⎛

⎝
∑

|k|≤hρN θ

|ĝ−hβ,δ(k)|
2d−1

2d−1−1

⎞

⎠

2d−1−1
2d−1

⎛

⎜
⎝

∑

|k|≤hρN θ

∣
∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣
∣

2d−1⎞

⎟
⎠

1
2d−1



⎛

⎜
⎝

∑

|k|≤hρN θ

∣
∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣
∣

2d−1⎞

⎟
⎠

1
2d−1

. (18)

Here we have used Lemma 4 to get the last inequality.
Let ξ = α(hβ − k). Using Lemma 5, with k = d − 1 and λm = e(p(m)ξ) we get

that the following inequalities hold for any Q ∈ [1, N ]:

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)ξ)

∣
∣
∣
∣
∣

2d−1


 N 2d−1

Q
+ N 2d−1−1

Q2−2−d+2

Q
∑

r1=1

Q
1
2

∑

r2=1

· · ·
Q2−d+2

∑

rd−1=1

∣
∣
∣
∣
∣
∣

N−1−r1−···−rd−1∑

n=0

e(d!r1 · · · rd−1nξ)

∣
∣
∣
∣
∣
∣


 N 2d−1

Q
+ N 2d−1−1

Q2−2−d+2

Q
∑

r1=1

Q
1
2

∑

r2=1

· · ·
Q2−d+2

∑

rd−1=1

∣
∣
∣
∣
min

(

N ,
1

‖d!r1 · · · rd−1ξ‖
)∣

∣
∣
∣
,

where we have used
∑N−1

n=0 e(nλ) 
 min(N , 1
‖λ‖ ) to get the last inequality.

Let T (m) = |{(r1, . . . , rd−1) ∈ [1, Q] × · · · × [1, Q2−d+2 ] : r1 · · · rd−1 = m}|.
With this notation the above inequality will be

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)ξ)

∣
∣
∣
∣
∣

2d−1


 N 2d−1

Q
+ N 2d−1−1

Q2−2−d+2

Q2−2−d+2

∑

m=1

T (m)min

(

N ,
1

‖d!ξm‖
)

.
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Let ε > 0 be any real number. Let ε2 = ε
(2−2−d+2)

. Since T (m) ≤ τd−1(m) 
ε2 m
ε2 ,

we get

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)ξ)

∣
∣
∣
∣
∣

2d−1


ε,d
N 2d−1

Q
+ N 2d−1−1

Q2−2−d+2−ε

Q2−2−d+2

∑

m=1

min

(

N ,
1

‖d!ξm‖
)

.

(19)
Now we prove the following lemma which will be used to estimate the right hand side
of the above equation.

Lemma 8 Let ξ = α(hβ − k). Then for any ε > 0 we have

L
∑

�=1

min

(

N ,
1

‖d!�ξ‖
)


α,β,ε,d L log N + NL1− 1
2t+1+ε(h|k|) t

2t+1+ε log N .

Proof For 0 ≤ m ≤ N − 1, define

Em =
{

� ≤ L : m
N

< ‖d!�ξ‖ ≤ m + 1

N

}

.

We have

L
∑

�=1

min

(

N ,
1

‖d!�ξ‖
)

= N |E0| +
∑

l /∈E0

1

‖d!�ξ‖

≤ N |E0| +
N−1
∑

m=1

N

m
|Em |.

Observe that

|Ek | = 2L

N
+ O(LDL(d!�ξ)).

Thus
L

∑

�=1

min

(

N ,
1

‖d!�ξ‖
)


 L log N + NLDL(d!�ξ) log N . (20)

Using Lemma 7 and the fact that

‖d!�ξ‖ = ‖d!�α(hβ − k)‖ ≥ C(α, β, ε)

((d!�)2h|k|)t+ε

for any positive integer � ≥ 1, we get

DL(d!�ξ) 
α,β,ε

1

m
+ 1

L
(h|k|(d!m)2)t+ε
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for any positive integer m. Now we choose m = L1/(2t+1)(h|k|)−t/(2t+1) to get

DL(d!�ξ) 
α,β,ε,d (ht |k|t ) 1
2t+1+εL− 1

2t+1+ε . (21)

Substituting the above estimate in (20) gives us

L
∑

�=1

min

(

N ,
1

‖d!�ξ‖
)


α,β,ε,d L log N + NL1− 1
2t+1+ε(h|k|) t

2t+1+ε log N .

�
Apply Lemma 8 in (19) with L = Q2−2−d+2

and let Q = N to get

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)ξ)

∣
∣
∣
∣
∣

2d−1


α,β,ε,d N 2d−1−1 + N
2d−1−

(
2−2−d+2

2t+1

)

+ε
h

t
2t+1+ε |k| t

2t+1+ε . (22)

Summing both sides of the above inequality over k we get that

∑

|k|≤hρN θ

∣
∣
∣
∣
∣

N−1
∑

n=0

e(p(n)ξ)

∣
∣
∣
∣
∣

2d−1


α,β,ε,d N 2d−1−1+θhρ

+ N 2d−1−( 2−2−d+2
2t+1 )+θ( 3t+1

2t+1 )+εh
t

2t+1+ρ( 3t+1
2t+1 )+ε .

(23)

Clearly the first term on the right hand side is dominated by the second term. Putting
this inequality in (18) we get that

∣
∣
∣
∣
∣
∣

∑

|k|≤hρN θ

ĝ−hβ(k)
N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣


α,β,ε,d N
1−( 2−2−d+2

2d−1(2t+1)
)+θ( 3t+1

2d−1(2t+1)
)+ε

h
t

2d−1(2t+1)
+ρ( 3t+1

2d−1(2t+1)
)+ε

.

Hence we have

H
∑

h=1

1

h

∣
∣
∣
∣
∣
∣

∑

|k|≤hρN θ

ĝ−hβ(k)
N−1
∑

n=0

e(p(n)α(hβ − k))

∣
∣
∣
∣
∣


α,β,ε,d N
1−( 2−2−d+2

2d−1(2t+1)
)+θ( 3t+1

2d−1(2t+1)
)+ε

H
t

2d−1(2t+1)
+ρ( 3t+1

2d−1(2t+1)
)+ε

.

From (17) and above inequality we have

SN 
α,β,ε,d N
−( 2−2−d+2

2d−1(2t+1)
)+θ( 3t+1

2d−1(2t+1)
)+ε

H
t

2d−1(2t+1)
+ρ( 3t+1

2d−1(2t+1)
)+ε + O(Hr(1−ρ)).
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Hence we have from (15) with δ−1 = hN θ that

DN ([p(n)α]β)


α,β,ε,d H
t

2d−1(2t+1)
+ρ( 3t+1

2d−1(2t+1)
)+ε

N
−( 2−2−d+2

2d−1(2t+1)
)+θ( 3t+1

2d−1(2t+1)
)+ε + Hr(1−ρ)

+ 1

H
+ N−θ + N−θ log H + DN (p(n)α) log H .

We choose ρ = 1+ ε1 with ε1 = ε1(ε, t) > 0 sufficiently small real number, and r is
an integer satisfying r > 1

ε1
. Hence the second term on the right hand side is 
 H−1.

Now we choose H = [N θ ] with θ = 2−2−d+2

2d−1(2t+1)+(4t+1)+ρ(3t+1)
. With these choices

we have

DN ([p(n)α]β) 
α,β,ε,d N
− 2−2−d+2

2d−1(2t+1)+7t+2
+ε + DN (p(n)α) log N . (24)

By Lemma 1, we have

DN (p(n)α) 
ε,d,t N
− 2−2−d+2

2d−1(2t+1)
+ε

.

Putting this in (24), we get

DN ([p(n)α]β) 
α,β,ε,d N
− 2−2−d+2

2d−1(2t+1)+7t+2
+ε

.
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