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Abstract In this paper we show the existence and multiplicity of positive solutions
for a class of elliptic problem of the type

−�u + λV (x)u = μuq−1 + u2
∗−1, in R

N , (P)λ,μ

whereλ,μ > 0, q ∈ (2, 2∗) and V : RN → R is a continuous function verifying some
conditions. By using variational methods, we have proved that the above problem has
at least cat (int (V−1)({0})) of positive solutions if λ is large and μ is small.
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Mathematics Subject Classifications 35B09 · 35B33 · 35A15

1 Introduction and main result

In this paper we study the existence and multiplicity of positive solutions for the
problem

Communicated by A. Constantin.

C. O. Alves was partially supported by CNPq/Brazil 301807/2013-2 and INCT-MAT.

B Claudianor O. Alves
coalves@mat.ufcg.edu.br

Luciano M. Barros
lucianomb@mat.ufcg.edu.br

1 Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática,
Campina Grande - Pb CEP: 58429-900, Brazil

2 Universidade Federal de Campina Grande, Unidade Acadêmica de Física eMatemática, Cuité-PB,
CEP:58175-000, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-017-1117-z&domain=pdf


196 C. O. Alves, L. M. Barros

−�u + λV (x)u = μuq−1 + u2
∗−1, in R

N , (P)λ,μ

where λ,μ > 0, 2 < q < 2∗ = 2N
N−2 with N ≥ 3 and V : RN → R is a continuous

function verifying

(V1) V (x) ≥ 0, ∀x ∈ R
N .

(V2) There exists M0 > 0 such that the set L = {x ∈ R
N : V (x) ≤ M0} is

nonempty and |L| < ∞, where |A| denotes the Lebesgue measure of A on
R

N .
(V3) � := int (V−1({0})) is a non-empty bounded open set with smooth boundary

∂�.

In [9], Bartsch andWang have established the existence and multiplicity of positive
solutions for the problem

−�u + (λV (x) + 1)u = u p−1, in R
N , (1.1)

for N ≥ 3, λ > 0, p ∈ (2, 2∗) and V verifying (V1)−(V3). In that paper, the authors
combined variational methods with the Lusternik–Schnirelman category to show that
(1.1) has at least cat (�) positive solution when p is close to 2∗ and λ is large. We
recall that if Y is a closed subset of a topological space X , the Lusternik–Schnirelman
category catX (Y ) is the least number of closed and contractible sets in X which cover
Y . Hereafter, cat (X) denotes catX (X). The reader can find in Bartsch et al. [6] and
Bartsch and Tang [7] and their references other results for related problems with (1.1).

Later, Ding and Tanaka [11] have considered the existence and multiplicity of
solutions for the problem

{−�u + (λV (x) + Z(x))u = u p, in R
N ,

u > 0, in RN ,
(1.2)

by supposing that the first eigenvalue of −� + Z(x) on � j under Dirichlet boundary

condition is positive for each j ∈ {1, 2, . . . , k}, p ∈
(
1, N+2

N−2

)
and N ≥ 3. In that

paper, it was showed that (1.2) has at least 2k − 1 solutions for λ large enough, which
are called multi-bump solutions. These solutions have the following characteristics:
For each non-empty subset � ⊂ {1, 2, . . . , k} and ε > 0 fixed, there is λ∗ > 0 such
that (1.2) possesses a solution uλ, for λ ≥ λ∗ = λ∗(ε), satisfying:

∣∣∣∣∣
∫

� j

[
|∇uλ|2 + (λV (x) + Z(x))u2λ

]
−

(
1

2
− 1

p + 1

)−1

c j

∣∣∣∣∣ < ε, ∀ j ∈ �

and

∫
RN \��

[
|∇uλ|2 + u2λ

]
dx < ε,

123



Existence and multiplicity of solutions for a class of… 197

where �� = ⋃
j∈� � j and c j is the minimax level of the energy functional related to

the problem ⎧⎨
⎩

−�u + Z(x)u = u p, in � j ,

u > 0, in � j ,

u = 0, on ∂� j .

(1.3)

Motivated by study made in [11], Alves et al. [2] and Alves and Souto [4] have
considered a problem of the type (1.2), by assuming that the nonlinearity has a critical
growth for the case N ≥ 3 and exponential critical growth when N = 2 respectively.
Other results involving multi-bump solutions can be found in Alves et al. [3], Guo and
Tang [14], Gui [13] and Wang [17] and their references.

In [10], Clapp and Ding have established the existence and multiplicity of positive
solutions for the problem

−�u + λV (x)u = μu + u2
∗−1, in R

N , (1.4)

for N ≥ 4, λ,μ > 0 and V verifying (V1)−(V3). By using variational methods, the
authors were able to show that if λ is large and μ is small, (1.4) has a positive solution
that is concentrated near of the potential well.

The present paper has beenmotivated by results found in [9] and [10] and our inten-
tion is to prove that the same type of result holds for problem (P)λ,μ. The problem
(P)λ,μ aroused the interest of all due to the lack of compactness in the inclusion of
H1(RN ) in Ls(RN ) for all s ∈ [2, 2∗] and by the fact that we are considering a non-
linearity with critical growth. These fact bring a lot of difficulties to apply variational
methods, for example the associated energy functionals do not satisfy in general the
Palais–Smale condition at all level. Here, we overcome this difficulty by exploring the
parameters λ and μ.

Our main result is the following

Theorem 1.1 Assume that (V1)−(V3) hold. If

N ≥ 4 and 2 < q < 2∗ or N = 3 and 4 < q < 6,

then there are λ∗, μ∗ > 0 such that (P)λ,μ has at least cat (�) positive solutions for
λ ≥ λ∗ and μ ≤ μ∗.

We would like point out that Theorem 1.1 completes the study made in [9] and
[10] in the following sense: In [9], the nonlinearity has a subcritical growth, while in
our paper the nonlinearity has a critical growth, then we need to be careful to prove
the Palais–Smale for the energy functional. Related to the [10], we have observed that
only the case q = 2 was considered, while in the present paper we have considered
the case 2 < q < 2∗. The reader is invited to observe that our approach is totally
different from what can already be found in [10].

In the proof of Theorem 1.1 we have used variational methods by adapting for our
case some arguments explored in [9]. Moreover, another important paper in the proof
of our main theorem is due to Alves and Ding [1] where the existence of multiple
solutions has been established for the limit problem, for more details see Sect. 2.
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198 C. O. Alves, L. M. Barros

The plan of the paper is as follows: In Sect. 2 we will recall some facts involving the
limit problem, while in Sect. 3 we will focus our attention to prove our main theorem.

Notation In this paper, we have used the following notations:

• The usual norms in H1(RN ) and L p(RN ) will be denoted by ‖ ‖ and | |p
respectively.

• C denotes (possible different) any positive constant.
• BR(z) denotes the open ball with center z and radius R in RN .
• Bc

R(z) = R
N\BR(z).

• We say that un → u in L p
loc(R

N ) when

un → u in L p(BR(0)), ∀R > 0.

• If g is a measurable function, the integral
∫
RN g(x) dx will be denoted by∫

g(x) dx .

2 The limit problem

In this section, we recall some results proved by Alves and Ding [1] involving the
functional Iμ : H1

0 (�) → R given by

Iμ(u) =
∫

�

|∇u|2 dx − μ

q

∫
�

|u|q dx − 1

2∗

∫
�

|u|2∗
dx,

whose the critical points are weak solutions of the problem (limit problem)

{−�u = μ|u|q−2u + |u|2∗−2u, in �,

u = 0, on ∂�.
(P)∞

In the above mentioned paper, Alves and Ding have established the existence of at
least cat (�) positive solutions for problem (P)∞. If cμ denotes the mountain pass
level associated with Iμ, it is possible to show the estimate below

0 < cμ <
1

N
SN/2, ∀μ > 0, (see Miyagaki [15]) (2.1)

by supposing that

q ∈ (2, 2∗) if N ≥ 4 or q ∈ (4, 6) if N = 3, (2.2)

where S is the best Sobolev constant of the embedding H1
0 (�) ↪→ L2∗

(�) given by

S = inf

{∫
�

|∇u|2 dx : u ∈ H1
0 (�),

∫
�

|u|2∗
dx = 1

}
. (2.3)
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Existence and multiplicity of solutions for a class of… 199

By using well known results, we have

cμ = inf
u∈M

Iμ(u),

where

M = {u ∈ H1
0 (�) : u �= 0 and I ′

μ(u)u = 0}.
The setM is called of Nehari manifold of the functional Iμ.

In what follows, without loss of generality, we assume that 0 ∈ �. Moreover, since
� is a smooth bounded domain, we can fix r > 0 such that Br (0) ⊂ � and the sets

�+
r =

{
x ∈ R

N ; d(x,�) ≤ r
}

and

�−
r = {x ∈ � ; d(x, ∂�) ≥ r}

are homotopically equivalent to �. In the sequel, we denote by m(μ) the mountain
pass level associated with the functional

Iμ,r (u) =
∫
Br (0)

|∇u|2 dx − μ

q

∫
Br (0)

|u|q dx − 1

2∗

∫
Br (0)

|u|2∗
dx .

As above, we also have

0 < m(μ) <
1

N
SN/2, (2.4)

and
m(μ) = inf

u∈Mr

Iμ,r (u), (2.5)

with
Mr = {u ∈ H1

0 (Br (0)) : u �= 0 and I ′
μ,r (u)u = 0}. (2.6)

Below we define β0 : H1
0 (�)\{0} → R

N by setting

β0(u) =
∫
�

|u|2∗
x dx∫

�
|u|2∗ dx

.

The next three lemmas can be found in [1] and we will omit their proofs.

Lemma 2.1 limμ→0 cμ = limμ→0 m(μ) = 1
N SN/2.

Lemma 2.2 If u is a critical point of Iμ on M, then u is a critical point of Iμ in
H1
0 (�).

Lemma 2.3 There isμ∗ > 0 such that ifμ ∈ (0, μ∗) and u ∈ Mwith Iμ(u) ≤ m(μ),
then β0(u) ∈ �+

r/2.

Here and throughout this work we are assuming that μ ∈ (0, μ∗) and (2.2) holds.
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200 C. O. Alves, L. M. Barros

3 Preliminary results

From now on, we fix the space E ⊂ H1(RN ) given by

E =
{
u ∈ H1(RN ) :

∫
V (x)|u|2 dx < +∞

}

endowed with inner product

〈u, v〉λ =
∫

(∇u∇v + λV (x)uv) dx .

The induce norm by this inner product will be denoted by ‖ ‖λ, that is,

||u||λ =
(∫

(|∇u|2 + λV (x)|u|2) dx
) 1

2

.

From now on, we denote by Eλ, the space E endowed with the norm ‖ ‖λ.
The conditions (V1)−(V2) yield Eλ is a Hilbert space. Moreover, these conditions

also imply that there is ϒ > 0 satisfying

‖u‖λ ≥ ϒ‖u‖, ∀u ∈ Eλ and ∀λ ≥ 1.

This inequality says that the embedding Eλ ↪→ H1(RN ) is continuous for λ ≥ 1.
Hence, the embedding

Eλ ↪→ Ls(RN ), ∀s ∈ [2, 2∗],

are also continuous for λ ≥ 1.
Using the above notations, we define the functional Iλ,μ : Eλ → R given by

Iλ,μ(u) = 1

2
||u||2λ − μ

q

∫
|u|q dx − 1

2∗

∫
|u|2∗

dx,

which belongs to C1(Eλ,R) with

I ′
λ,μ(u)v = 〈u, v〉λ − μ

∫
|u|q−2uv dx −

∫
|u|2∗−2uv dx, ∀u, v ∈ Eλ,

or equivalently

I ′
λ,μ(u)v =

∫
(∇u∇v + λV (x)uv) dx − μ

∫
|u|q−2uv dx −

∫
|u|2∗−2uv dx .

From this, we see that critical points of Iλ,μ are weak solutions of (P)λ,μ.
Next, we recall the definitions of (PS) sequence and Palais-Smale condition.
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Existence and multiplicity of solutions for a class of… 201

Definition 3.1 A sequence (un) ⊂ Eλ is a (PS) sequence at level c ∈ R for Iλ,μ, or
simply (PS)c sequence for Iλ,μ, if

Iλ,μ(un) → c and I ′
λ,μ(un) → 0.

Definition 3.2 The functional Iλ,μ satisfies the (PS) condition if any (PS) sequence
of Iλ,μ possesses a convergent subsequence. Moreover, we say that Iλ,μ satisfies the
(PS)d condition if any (PS)d sequence possesses a convergent subsequence.

In what follows, we will show that Iλ,μ verifies the mountain pass geometry.

Lemma 3.3 The functional Iλ,μ satisfies the mountain pass geometry, that is,
(a) There are constants r, ρ > 0, which are independent of λ and μ, such that

Iλ,μ(u) ≥ ρ for ‖u‖λ = r.

(b) There is e ∈ C∞
0 (�) with ‖e‖λ > r verifying Iλ,μ(e) < 0.

Proof By using the Sobolev embedding

H1(RN ) ↪→ Ls(RN ), for 2 ≤ s ≤ 2∗, (3.1)

it follows that

Iλ,μ(u) ≥ 1

2
||u||2λ − C ||u||qλ − C ||u||2∗

λ .

As 2 < q < 2∗, there are ρ, r > 0 such that

Iλ,μ(u) ≥ ρ > 0, for ||u||λ = r,

showing (a). In order to prove (b), fix � ∈ C∞
0 (�) with supp� ⊂ �. Then,

Iλ,μ(t�) = t2

2

∫
�

(|∇�|2 + |�|2) dx − tqμ

q

∫
�

|�|q dx − t2
∗

2∗

∫
�

|�|2∗
dx .

Since 2 < q < 2∗,

Iλ,μ(t�) → −∞ as t → ∞.

Thereby, (b) follows by taking e = t∗� with t∗ > 0 large enough. ��
Now, by using a version of the mountain pass theorem found in Willem [17], there

is a (PS)cλ,μ sequence (un) for Iλ,μ, that is,

Iλ,μ(un) → cλ,μ and I ′
λ,μ(un) → 0, (3.2)
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202 C. O. Alves, L. M. Barros

where cλ,μ is the mountain pass level associated with Iλ,μ given by

cλ,μ = inf
γ∈�

max
t∈[0,1] Iλ,μ(γ (t)), (3.3)

with

� = {γ ∈ C([0, 1], Eλ); γ (0) = 0 and γ (1) = e}.

As in Sect. 2, it is possible to prove that

cλ,μ = inf
u∈Mλ,μ

Iλ,μ(u),

where

Mλ,μ = {u ∈ Eλ : u �= 0 and I ′
λ,μ(u)u = 0}.

By employing standard arguments, there is σ > 0, which does not depend on μ such
that

σ ≤ ‖u‖λ, ∀u ∈ Mλ,μ. (3.4)

The next lemma establishes an important estimate from above involving the level
cλ,μ that is a key point in our argument.

Lemma 3.4 There is τ = τ(μ) > 0 such that the mountain pass level cλ,μ verifies
the following inequality

0 < cλ,μ <
1

N
SN/2 − τ, ∀λ > 0. (3.5)

Proof By definition of cλ,μ and cμ, we see that cλ,μ ≤ cμ for all λ,μ > 0. Then, it
is enough to apply (2.1) to get the desired result. ��

In the sequel, we will study some properties of the (PS) sequences of Iλ,μ, which
will be proved in some lemmas.

Lemma 3.5 If (wn) is a (PS)d sequence for Iλ,μ, then (wn) is bounded in Eλ. More-
over,

lim sup
n→+∞

‖wn‖2λ ≤ 2qd

q − 2
. (3.6)

Proof First of all, note that

Iλ,μ(wn) − 1

q
I ′
λ,μ(wn)wn ≥

(
1

2
− 1

q

)
||wn||2λ, ∀n ∈ N.

On the other hand, there is n0 ∈ N such that

Iλ,μ(wn) − 1

q
I ′
λ,μ(wn)wn ≤ d + on(1) + on(1)||wn||λ, for n ≥ n0.
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Existence and multiplicity of solutions for a class of… 203

Combining the above inequalities we get

(
1

2
− 1

q

)
||wn||2λ ≤ d + on(1) + on(1)||wn||λ, for n ≥ n0,

from where it follows the boundedness of (wn) and (3.6). ��
Lemma 3.6 Let � > 0 be a constant that does not depend on λ and μ. If (wn) ⊂ Eλ

is a (PS)d for Iλ,μ with 0 ≤ d ≤ �, then given δ > 0 there are λ∗ = λ∗(δ,�) and
R = R(δ,�) such that

lim sup
n→+∞

∫
Bc
R

|wn|q dx < δ, ∀λ ≥ λ∗.

Proof The proof follows the same arguments found in [9], however we will write it
for convenience of the reader. For R > 0, fix

XR =
{
x ∈ R

N : |x | > R, V (x) ≥ M0

}

and

YR =
{
x ∈ R

N : |x | > R, V (x) < M0

}
,

where M0 is given in (V2). Observe that,

∫
XR

|wn|2 dx ≤ 1

λM0

∫
XR

λV (x)|wn|2dx ≤ ||wn||2λ
λM0

(3.7)

and ∫
YR

|wn|2 dx ≤
(∫

YR

|wn|2∗
dx

) 2
2∗ |YR | 2

N ≤ C ||wn||2λ|YR | 2
N . (3.8)

Using interpolation inequality for 2 < q < 2∗, we can infer that

|wn|qLq (Bc
R)

≤ |wn|qθ

L2(Bc
R)

|wn|q(1−θ)

L2∗ (Bc
R)

≤ |wn|qθ

L2(Bc
R)

||wn||q(1−θ)
λ , (3.9)

for some θ ∈ (0, 1). From (3.7)–(3.9) and Lemma 3.5, there exists K > 0 such that

lim sup
n→∞

|wn|qLq (Bc
R)

≤ K

(
1

λM0
+ |YR | 2

N

) qθ
2

. (3.10)

From (V2), YR ⊂ L, and so,

lim
R→∞ |YR | = 0.
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204 C. O. Alves, L. M. Barros

The last limit together with (3.10) implies that for each δ > 0, there are R > 0 and
λ∗ > 0 such that

lim sup
n→∞

|wn|qLq (Bc
R)

< δ, ∀λ ≥ λ∗.

��
As a byproduct of the last lemma, we have the following corollary

Corollary 3.7 Let (vn) ⊂ Eλn be a sequence such that (‖vn‖λn ) is bounded with
λn → +∞. If vn ⇀ 0 in H1(RN ), then

vn → 0 in Lq(RN ).

The next proposition shows some levels where the function Iλ,μ satisfies the (PS)

condition.

Proposition 3.8 There is λ̂ = λ̂(τ ) > 0 such that Iλ,μ verifies the (PS)dλ condition
for any dλ ∈ (

0, 1
N SN/2 − τ

)
for all λ ≥ λ̂, where τ was given in Lemma 3.4.

Proof Let (wn) be a (PS)dλ sequence for Iλ,μ, that is,

Iλ,μ(wn) → dλ and I ′
λ,μ(wn) → 0.

By Lemma 3.5, the sequence (wn) is bounded in Eλ, then for some subsequence, still
denoted by itself, there is w ∈ Eλ such that

wn ⇀ w in Eλ,

wn(x) → w(x) a.e in R
N ,

and

wn → w in Ls
loc(R

N ), 1 ≤ s < 2∗.

A straightforward computation gives I ′
λ,μ(w) = 0, and so, I ′

λ,μ(w)w = 0. On the
other hand, since

∫
|wn|q dx =

∫
|vn|q dx +

∫
|w|q dx + on(1)

and
∫

|wn|2∗
dx =

∫
|vn|2∗

dx +
∫

|w|2∗
dx + on(1),

where vn = wn − w, we obtain

1

2
||vn||2λ − μ

q

∫
|vn|q dx − 1

2∗

∫
|vn|2∗

dx = dλ − Iλ,μ(w) + on(1). (3.11)
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Now, by using the fact that I ′
λ,μ(wn)wn = on(1) and I ′

λ,μ(w)w = 0, it follows that

||vn||2λ − μ

∫
|vn|qdx −

∫
|vn|2∗

dx = on(1). (3.12)

From boundedness of (wn), we can assume that

||vn||2λ → Lλ and μ

∫
RN

|vn|q dx +
∫

|vn|2∗
dx → Lλ.

If Lλ = 0, we deduce that vn → 0 in Eλ, or equivalently, wn → w in Eλ, which
finishes the proof. Next, we will show that Lλ > 0 does not hold for λ large enough.
To this end, let us assume that

∫
|vn|q dx → Aλ and

∫
|vn|2∗

dx → Bλ,

then μAλ + Bλ = Lλ. Arguing as in the proof of Lemma 3.6, we see that

lim sup
n→+∞

∫
|vn|q dx = oλ(1),

where oλ(1) → 0 as λ → +∞. Therefore,

Aλ = oλ(1) and Lλ = Bλ + oλ(1). (3.13)

From (3.12) and Sobolev embedding

||vn||2λ ≤ C
(||vn||qλ + ||vn||2∗

λ

) + on(1). (3.14)

Recalling that there is C > 0 verifying

|t |q ≤ 1

2
|t |2 + C |t |2∗

, ∀t ∈ R,

and supposing by contradiction that Lλ > 0, the last inequality ensures that

lim
n→+∞ ||vn||2λ ≥ (1/C)2/(2

∗−2) = C1 > 0,

or equivalently,
Lλ ≥ C1 > 0. (3.15)

On the other hand, we know that

S ≤ ||vn||2λ( ∫ |vn|2∗dx
)2/2∗ .
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206 C. O. Alves, L. M. Barros

Then, taking the limit of n → +∞, we find

S ≤ Lλ

(Bλ)2/2
∗ = Lλ

(Lλ + oλ(1))2/2
∗ .

Now, taking the limit of λ → +∞ and using (3.15), we get

SN/2 ≤ lim inf
λ→∞ Lλ. (3.16)

From (3.11),

(1
2

− 1

2∗
)
Lλ + oλ(1) ≤ dλ,

then

lim inf
λ→∞ dλ ≥

(
1

2
− 1

2∗

)
lim inf
λ→∞ Lλ.

The last inequality combines with (3.16) to give

lim inf
λ→∞ dλ ≥ 1

N
SN/2, (3.17)

which is absurd, because by hypothesis

lim sup
λ→+∞

dλ ≤ 1

N
SN/2 − τ <

1

N
SN/2.

Therefore, there is λ̂ > 0 such that Lλ = 0 for all λ ≥ λ̂, finishing the proof. ��
Corollary 3.9 There is λ̂ > 0 such that Iλ,μ verifies the (PS)dλ condition on Mλ,μ

for any dλ ∈ (
0, 1

N SN/2 − τ
)
and λ ≥ λ̂, where τ was given in Lemma 3.4.

Proof The proof is made as in [1, Lemma 4.1] ��
Theorem 3.10 There is λ∗ > 0 such that the mountain pass level cλ,μ is a critical
level of Iλ,μ for all λ ≥ λ∗, that is, there is uλ,μ ∈ Eλ verifying

Iλ,μ(uλ,μ) = cλ,μ and I ′
λ,μ(uλ,μ) = 0.

Proof Since by Lemma 3.4 cλ,μ < 1
N SN/2 − τ , the Proposition 3.8 ensures the

existence of λ∗ = λ∗(τ ) > 0 such that the functional Iλ,μ verifies the (PS)cλ,μ

condition for λ ≥ λ∗. Thus, by mountain pass theorem due to Ambrosetti–Rabinowitz
[5], there is uλ,μ ∈ Eλ verifying

Iλ,μ(uλ,μ) = cλ,μ and I ′
λ,μ(uλ,μ) = 0,

finishing the proof. ��
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Remark 3.11 The function uλ,μ obtained in Theorem 3.10 is called a ground state
solution of (P)λ,μ.

Now, our intention is to show an important relation between cλ,μ and cμ, however
to do this we need to study the behavior of the (PS)c,∞ sequences. Hereafter, (un) ⊂
H1(RN ) is a (PS)c,∞ if:

un ∈ Eλn and λn → +∞,

Iλn ,μ(un) → c, for some c ∈ R,

‖I ′
λn ,μ

(un)‖(Eλn )′ → 0.

where (Eλn )
′ denotes the dual space of Eλn .

Proposition 3.12 Let (un) be a (PS)c,∞ sequence with c ∈ (
0, 1

N SN/2
)
. Then, there

is a subsequence of (un) , still denoted by itself, and u ∈ H1(RN ) such that

un ⇀ u in H1(RN ).

Moreover,

(i) u ≡ 0 in RN\� and u is a solution of

{−�u = μ|u|q−2u + |u|2∗−2u, in �,

u = 0, on ∂�.
(P)∞

(ii) ||un − u||2λn → 0.
(iii) (un) also satisfies

un → u in H1(RN ),

λn

∫
V (x) |un|2 dx → 0,

∫
RN \�

(|∇un|2 + λnV (x)|un|2) dx → 0,

||un||2λn →
∫

�

|∇u|2 dx = ‖u‖2
H1
0 (�)

.

Proof Arguing as in Lemma 3.5,

lim sup
n→+∞

‖un‖2λn ≤ 2qc

q − 2
, (3.18)

implying that (||un||λn ) is bounded in R. Since

||un||λn ≥ ϒ ||un|| ∀n ∈ N,
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(un) is also bounded in H1(RN ), and so, there exists a subsequence of (un), still
denoted by itself, and u ∈ H1(RN ) such that

un ⇀ u in H1(RN ).

To show (i), we fix for each m ∈ N
∗ the set

Cm =
{
x ∈ R

N/V (x) >
1

m

}
.

Hence

R
N\� =

+∞⋃
m=1

Cm .

Note that,

∫
Cm

|un|2 dx =
∫
Cm

λnV (x)

λnV (x)
|un|2 dx ≤ m

λn
||un||2λn ≤ mM

λn
,

where M = supn∈N ‖un‖2λn . By Fatou’s Lemma

∫
Cm

|u|2 dx ≤ lim inf
n→+∞

∫
Cm

|un|2 dx ≤ lim inf
n→+∞

mM

λn
= 0.

From this, u = 0 almost everywhere in Cm , and consequently, u = 0 almost every-
where in R

N\�. To complete the proof of (i), consider a test function ϕ ∈ C∞
0 (�)

and note that

I ′
λn

(un)ϕ =
∫

�

∇un∇ϕ dx −
∫

�

(μ|un|q−2un + |un|2∗−2un)ϕ dx . (3.19)

As (un) is a (PS)c,∞ sequence, we derive that

I ′
λn

(un)ϕ → 0. (3.20)

Recalling that un ⇀ u in H1(RN ), we must have

∫
�

∇un∇ϕ dx →
∫

�

∇u∇ϕ dx (3.21)

and

∫
�

(μ|un|q−2un + |un|2∗−2un)ϕ dx →
∫

�

(μ|u|q−2u + |u|2∗−2u)ϕ dx . (3.22)
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Therefore, from (3.19)–(3.22),

∫
�

∇u∇ϕ dx =
∫

�

(μ|u|q−2u + |u|2∗−2u)ϕ dx, ∀ϕ ∈ C∞
0 (�).

As C∞
0 (�) is dense in H1

0 (�), the above equality gives

∫
�

∇u∇v dx =
∫

�

(μ|u|q−2u + |u|2∗−2u)v dx, ∀v ∈ H1
0 (�),

showing that u is a weak solution of the problem

{−�u = μ|u|q−2u + |u|2∗−2u, in�,

u = 0, on ∂�.
(3.23)

For (ii), note that

||un − u||2λn = ||un||2λn + ||u||2λn − 2
∫

(∇un∇u + λnV (x)unu) dx . (3.24)

From (i),

‖u‖2λn = ‖u‖2
H1
0 (�)

,

and so,

∫
(∇un∇u + λnV (x)unu) dx = ‖u‖2

H1
0 (�)

+ on(1).

From this, we can rewrite (3.24) as

||un − u||2λn = ||un||2λn − ||u||2
H1
0 (�)

+ on(1). (3.25)

Gathering the boundedness of (‖un‖λn ) with the limit ‖I ′
λn

(un)‖E ′
λn

→ 0, we find the
limit

I ′
λn

(un)un → 0.

Hence,

||un||2λn = I ′
λn

(un)un +
∫

(μ|un|q + |un|2∗
) dx =

∫
(μ|un|q + |un|2∗

) dx + on(1).

(3.26)
On the other hand, we know that the limit I ′

λn
(un)u → 0 is equivalent to

∫
�

∇un∇u dx −
∫

�

(μ|un|q−2unu + |un|2∗−2unu) dx = on(1),
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which leads to ∫
|∇u|2 dx =

∫
(μ|u|q + |u|2∗

) dx . (3.27)

Combining (3.25) with (3.26) and (3.27), we see that

||un − u||2λn =
∫

(μ|un|q + |un|2∗
) dx −

∫
(μ|u|q + |u|2∗

) dx + on(1),

that is,

‖vn‖2λn = μ|vn|qq + |vn|2∗
2∗ + on(1)

where vn = un − u. Since by Corollary 3.7 vn → 0 in Lq(RN ), we derive

‖vn‖2λn = |vn|2∗
2∗ + on(1).

Now, the same arguments used in the proof of Proposition 3.8 gives

‖vn‖2λn → 0,

finishing the proof of (ii). Finally, in order to prove (iii) it is enough to use the inequality
below

0 ≤ λn

∫
V (x) |un|2 dx = λn

∫
V (x) |un − u|2 dx ≤ ‖un − u‖2λn → 0.

��
Now, we are able to prove the estimate involving cλ,μ and cμ

Lemma 3.13 If λn → +∞, then limn→∞ cλn ,μ = cμ.

Proof By Theorem 3.10, for each n ∈ N there is un = uλn ,μ ∈ Eλn such that

Iλn ,μ(un) = cλn ,μ and I ′
λn ,μ

(un) = 0.

The Lemma 3.3 together with the definition of cλn ,μ yield

0 < ρ ≤ cλn ,μ ≤ cμ <
1

N
SN/2, ∀n ∈ N,

from where it follows that (cλnμ) is a bounded sequence and ‖un‖λn �→ 0. Now,
arguing as in the proof Lemma 3.5, we get

lim sup
n→+∞

‖un‖2λn ≤ 2qcμ

q − 2
,
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showing that (un) is a bounded sequence in H1(RN ). Thereby, by Proposition 3.12,
there is a subsequence of (un), still denoted by itself, and u ∈ H1

0 (�)\{0} such that

‖un − u‖2λn → 0,

un → u in H1(RN ),

un → u in Ls(RN ) ∀s ∈ [2, 2∗],
I ′
μ(u) = 0,

and

Iμ(u) ≤ cμ.

As u �= 0 and I ′
μ(u)u = 0, we have that u ∈ M. Thus,

cμ ≤ Iμ(u).

The last two inequalities imply that Iμ(u) = cμ and

lim
n→∞ cλn ,μ = cμ,

proving the desired result. ��
The last lemma gives us very important informations, which are listed in the corol-

laries below.

Corollary 3.14 Let (λn) ⊂ (0,+∞) be a sequence verifying λn → +∞ and uλn ,μ

be the ground state solution obtained in Theorem 3.10. Then, there is a subsequence
of (uλn ,μ), still denoted by itself, and u ∈ H1

0 (�) such that uλn ,μ → u in H1
0 (�) and

u is a ground state solution of the limit problem

{−�u = μ|u|q−2u + |u|2∗−2u, in �,

u = 0, on ∂�.
(P)∞

Corollary 3.15 There are λ∗ > 0 large and μ∗ > 0 small such that

m(μ) < 2cλ,μ, ∀λ ≥ λ∗ and ∀μ ∈ (0, μ∗).

Proof By Lemma 2.1 we can decreasing μ∗ if necessary, of a such way that

m(μ) < 2cμ, ∀μ ∈ (0, μ∗).

Since by Lemma 3.13 cλ,μ → cμ as λ → +∞ for each μ > 0 fixed, there is
λ∗ = λ∗(μ) such that

m(μ) < 2cλ,μ, ∀λ ≥ λ∗,

showing the result. ��
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Corollary 3.16 Assume that m(μ) < 2cλ,μ and u ∈ Eλ is a nontrivial critical point
of Iλ,μ with Iλ,μ(u) ≤ m(μ). Then, u is positive or u is negative.

Proof If u± �= 0, it is easy to see that u± ∈ Mλ,μ, and so,

m(μ) ≥ Iλ,μ(u) = Iλ,μ(u+) + Iλ,μ(u−) ≥ 2cλ,μ,

which is absurd. Now the result follows by applying maximum principle [12]. ��
Remark 3.17 As Iλ,μ is even, by the last corollary we can assume that the nontrivial
critical points of Iλ,μ are positive solutions of (P)λ,μ.

In the sequel, let us fix R > 2diam(�) such that � ⊂ BR(0) and consider the
function

ξ(t) =
{
1, 0 ≤ t ≤ R,
R
t , t ≥ R.

Moreover, we define β : H1(RN )\{0} → R
N by

β(u) =
∫

ξ(|x |)|u|2∗
x dx∫ |u|2∗dx

.

Lemma 3.18 There is λ̂ > 0 such that if u ∈ Mλ,μ and Iλ,μ(u) ≤ m(μ), then
β(u) ∈ �+

r for all λ ≥ λ̂.

Proof Suppose by contradiction that there exist sequences λn → +∞ and (un) ⊂
Mλn ,μ with Iλn ,μ(un) ≤ m(μ) and

β(un) /∈ �+
r , ∀n ∈ N.

As (||un||λn ) is bounded in R, there exists u ∈ H1
0 (�), such that for a subsequence,

⎧⎨
⎩
un ⇀ u in H1(RN ),

un(x) → u(x) a.e. in RN ,

un → u in Lt
loc(R

N ) for t ∈ [1, 2∗).

Moreover,

‖vn‖2λn = μ|vn|qq + |vn|2∗
2∗ + on(1),

where vn = un − u. By Corollary 3.7, we know that vn → 0 in Lq(�), then

‖vn‖2λn = |vn|2∗
2∗ + on(1).

Arguing as in the proof of Proposition 3.12, we derive

‖vn‖λn → 0 ⇔ ‖un − u‖λn → 0.
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This limit combined with (3.4) implies that

un → u in H1(RN ), u �= 0, I ′
μ(u)u = 0 and Iλn ,μ(un) → Iμ(u). (3.28)

Thereby, u ∈ Mμ and Iμ(u) ≤ m(μ).Applying the Lemma 2.3, we get β0(u) ∈ �+
r/2,

which is absurd because

β0(u) = lim
n→∞ β(un) /∈ �+

r/2.

This completes the proof. ��

3.1 Proof of main theorem

In what follows, ur ∈ H1
0 (Br (0)) is a positive radial ground state solution for the

functional Iμ,r , that is,

Iμ,r (ur ) = m(μ) = inf
u∈Mr

Iμ,r (u) and I ′
μ,r (ur ) = 0.

Using the function ur , we define the operator �r : �−
r −→ H1

0 (�) by

�r (y)(x) =
{
ur (|x − y|), x ∈ Br (y),
0, x ∈ �−

r \Br (y),

which is continuous and satisfies

β(�r (y)) = y, ∀ y ∈ �−
r . (3.29)

Using the above informations, we are ready to prove the following claim

Claim 3.19 For 0 < μ < μ∗,

cat (Im(μ)
λ,μ ) ≥ cat (�),

where Im(μ)
λ,μ := {

u ∈ Mλ,μ : Iλ,μ(u) ≤ m(μ)
}
and μ∗ is given in Lemma 2.3.

Indeed, assume that

Im(μ)
λ,μ = F1 ∪ F2 ∪ · · · ∪ Fn,

where Fj is closed and contractible in Im(μ)
λ,μ , for each j = 1, 2, . . . , n, that is, there

exist h j ∈ C([0, 1] × Fj , I
m(μ)
λ,μ ) and w j ∈ Fj such that

h j (0, u) = u and h j (1, u) = w j ,
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for all u ∈ Fj . Considering the closed sets Bj := �−1
r (Fj ), 1 ≤ j ≤ n, it follows

that

�−
r = �−1

r (Im(μ)
λ,μ ) = B1 ∪ B2 ∪ · · · ∪ Bn,

and defining the deformation g j : [0, 1] × Bj → �+
r given by

gi (t, y) = β(h j (t, �r (y))),

we conclude that, by Lemma 3.18, gi is well defined and thus, Bj is contractible in
�+

r for each j = 1, 2, . . . , n. Therefore,

cat (�) = cat�+
r
(�−

r ) ≤ n.

finishing the proof of the claim.
Since Iλ,μ satisfies the (PS)c condition on Mλ,μ for c ≤ m(μ) (see Corollary

3.9), we can apply the Lusternik–Schnirelman category theory and the Claim 3.19 to
ensure that Iλ,μ has at least cat (�) critical points inMλ,μ, and consequently, critical
points in Eλ.
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