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Abstract Let S denote the class of functions analytic and univalent (i.e. one-to-one)
in the unit disk D = {z ∈ C : |z| < 1} normalized by f (0) = 0 = f ′(0) − 1.
The logarithmic coefficients γn of f ∈ S are defined by log f (z)

z = 2
∑∞

n=1 γnzn . Let
F1(F2 and F3 resp.) denote the class of functions f ∈ A such that Re (1−z) f ′(z) >

0 ( Re (1 − z2) f ′(z) > 0 and Re (1 − z + z2) f ′(z) > 0 resp.) in D. The classes
F1,F2 and F3 are subclasses of the class of close-to-convex functions. In the present
paper, we determine the sharp upper bound for |γ1|, |γ2| and |γ3| for functions f in
the classes F1,F2 and F3.
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544 U. Pranav Kumar, A. Vasudevarao

1 Introduction

Let D := {z ∈ C : |z| < 1} denote the unit disk in the complex plane C. A single-
valued function f is said to be univalent in a domain � ⊆ C if it never takes the same
value twice, that is, if f (z1) = f (z2) for z1, z2 ∈ � then z1 = z2. Let A denote the
class of analytic functions f in D normalized by f (0) = 0 = f ′(0) − 1. If f ∈ A
then f (z) has the following representation

f (z) = z +
∞∑

n=2

anz
n . (1.1)

Let S denote the class of univalent functions in A. It is pertinent to mention that
recently, Aleman and Constantin [1] have provided a nice connection between the
theory of univalent function to fluid dynamics. Indeed, Aleman and Constantin [1]
provided an amicable approach towards obtaining explicit solutions to the incom-
pressible two-dimensional Euler equations bymeans of univalent harmonicmap.More
precisely, the problem of finding all solutions which in Lagrangian variables describ-
ing the particle paths of the flow present a labelling by harmonic functions is reduced
to solving an explicit nonlinear differential system in C

n with n = 3 or n = 4 (see
also [4]).

A domain � ⊆ C is said to be a starlike domain with respect to a point z0 ∈ �

if the line segment joining z0 to any point in � lies in �. If z0 is the origin then we
say that � is a starlike domain. A function f ∈ A is said to be a starlike function if
f (D) is a starlike domain. We denote by S∗ the class of starlike functions f in S. It
is well-known that [6] a function f ∈ A is in S∗ if and only if

Re

(
z f ′(z)
f (z)

)

> 0 for z ∈ D.

A domain � is said to be convex if it is starlike with respect to each point of �. A
function f ∈ A is said to be convex if f (D) is a convex domain. We denote the class
of convex univalent functions in D by C. A function f ∈ A is in C if and only if

Re

(

1 + z f ′′(z)
f ′(z)

)

> 0 for z ∈ D.

It is well-known that f ∈ C if and only if z f ′ ∈ S∗.

A function f ∈ A is said to be close-to-convex (having argumentα ∈ (−π/2, π/2))
with respect to g ∈ S∗ if

Re

(

eiα
z f ′(z)
g(z)

)

> 0 for z ∈ D.

We denote the class of all such functions by Kα(g). Let

K(g) :=
⋃

α∈(−π/2, π/2)

Kα(g) and Kα :=
⋃

g∈S∗
Kα(g)
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Logarithmic coefficients for certain subclasses of... 545

be the classes of close-to-convex functions with respect to g and close-to-convex
functions with argument α, respectively. Let

K :=
⋃

α∈(−π/2, π/2)

Kα =
⋃

g∈S∗
K(g)

denote the class of close-to-convex functions in A. It is well-known that every close-
to-convex function is univalent in D [13]. A domain � ⊆ C is said to be linearly
accessible if its complement is the union of a family of non-intersecting half-lines.
A function f ∈ S whose range is linearly accessible is called a linearly accessible
function. Kaplan’s theorem [13] makes it seem plausible that the class of linearly
accessible family and the class K coincide. In fact, Lewandowski [14] has observed
that the class K is the same as the class of linearly accessible functions introduced
by Biernacki [3] in 1936. In 1962, Bielecki and Lewandowski [2] proved that every
function in the class K is linearly accessible.

Let P denote the class of analytic functions h(z) of the form

h(z) = 1 +
∞∑

n=1

cnz
n (1.2)

such that Re h(z) > 0 in D. To prove our main results we need the following results.

Lemma 1.3 [15] Let h ∈ P be of the form (1.2). Then

2c2 = c21 + x(4 − c21)

4c3 = c31 + 2(4 − c21)c1x − c1(4 − c21)x
2 + 2(4 − c21)(1 − |x |2)t.

for some complex valued x and t with |x | ≤ 1 and |t | ≤ 1.

Lemma 1.4 [17, pp 166] Let h ∈ P be of the form (1.2). Then

∣
∣
∣c2 − c21

2

∣
∣
∣ ≤ 2 − |c1|2

2
.

The inequality is sharp for functions Lt,θ (z) of the form

Lt,θ (z) = t

(
1 + eiθ z

1 − eiθ z

)

+ (1 − t)

(
1 + ei2θ z2

1 − ei2θ z2

)

.

Lemma 1.5 [16] Let h ∈ P be of the form (1.2) and μ be a complex number. Then

|c2 − μc21| ≤ 2 max{1, |2μ − 1|}.

The result is sharp for the functions given by p(z) = 1+z2

1−z2
and p(z) = 1+z

1−z .
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546 U. Pranav Kumar, A. Vasudevarao

Given a function f ∈ S, the coefficients γn defined by

log
f (z)

z
= 2

∞∑

n=1

γnz
n (1.6)

are called the logarithmic coefficients of f (z). The logarithmic coefficients are central
to the theory of univalent functions for their role in the proof of Bieberbach conjecture.
Milin conjectured that for f ∈ S and n ≥ 2,

n∑

m=1

m∑

k=1

(

k|γk |2 − 1

k

)

≤ 0.

Since Milin’s conjecture implies Bieberbach conjecture, in 1985, De Branges proved
Milin conjecture to give an affirmative proof of the Bieberbach conjecture [5].

By differentiating (1.6) and equating coefficients we obtain

γ1 = 1

2
a2 (1.7)

γ2 = 1

2

(

a3 − 1

2
a22

)

(1.8)

γ3 = 1

2

(

a4 − a2a3 + 1

3
a32

)

. (1.9)

It is evident from (1.7) that |γ1| ≤ 1 if f ∈ S. An application of Fekete–Szegö
inequality [6, Theorem 3.8] in (1.8) yields the following sharp estimate

|γ2| ≤ 1

2
(1 + 2e−2) = 0.635 . . . for f ∈ S.

The problem of finding the sharp upper bound for |γn| for f ∈ S is still open for
n ≥ 3. The sharp upper bounds for modulus of logarithmic coefficients are known for
functions in very few subclasses of S. For the Koebe function k(z) = z/(1 − z)2, the
logarithmic coefficients are γn = 1/n. Since the Koebe function k(z) plays the role
of extremal function for most of the extremal problems in the class S, it is expected
that |γn| ≤ 1

n holds for functions in the class S. However, this is not true in general.
Indeed, there exists a bounded function f in the class S with logarithmic coefficients
γn 	= O(n−0.83) (see [6, Theorem 8.4]). A simple exercise shows that |γn| ≤ 1/n
for functions in S∗ and the equality holds for the Koebe function. Consequently,
attempts have been made to find bounds for logarithmic coefficients for close-to-
convex functions in the unit disk D. Elhosh [8] attempted to extend the result |γn| ≤
1/n to the class K. However Girela [11] pointed out an error in the proof and proved
that for every n ≥ 2 there exists a function f in K such that |γn| ≥ 1/n. Ye [23]
provided an estimate for |γn| for functions f in the class K, showing that |γn| ≤
An−1 log n where A is a constant. The sharp inequalities are known for sums involving
logarithmic coefficients (see [6,7]). For f ∈ S, Roth [21] proved the following sharp
inequality
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∞∑

n=1

(
n

n + 1

)2

|γn|2 ≤ 4
∞∑

n=1

(
n

n + 1

)2 1

n2
= 2π2 − 12

3
.

Recently, it has been proved that |γ3| ≤ 7/12 for functions in the class K0 with
the additional assumption that the second coefficient of the corresponding starlike
function g(z) is real [22]. However this bound is not sharp. Enough emphasis cannot
be laid on this fact as it highlights nature of complexity involved in obtaining the sharp
upper bound for |γ3|. More recently Firoz and Vasudevarao [10] improved the bound
on |γ3| by proving |γ3| ≤ 1

18 (3 + 4
√
2) = 0.4809 for functions f in the class K0

without the assumption requiring the second coefficient of the corresponding starlike
function g(z) be real. However, this improved bound is still not sharp. Consequently,
the problem of finding the sharp upper bound for |γ3| for the classes K0 as well as
K is still open. Recently, the sharp logarithmic coefficients ( |γn| for n = 1, 2, 3)
for close-to-convex functions (with argument 0) with respect to odd starlike functions
have been studied by Firoz and Vasudevarao [9].

In the present paper we consider the following three familiar subclasses of close-
to-convex functions

F1 : = {
f ∈ A : Re (1 − z) f ′(z) > 0 for z ∈ D

}

F2 : =
{
f ∈ A : Re (1 − z2) f ′(z) > 0 for z ∈ D

}

F3 : =
{
f ∈ A : Re (1 − z + z2) f ′(z) > 0 for z ∈ D

}
.

The region of variability for the classes F1,F2 and F3 have been extensively studied
by Ponnusamy, Vasudevarao and Yanagihara ([19,20]). The classes F1,F2 have been
generalized to the class of harmonic close-to-convex functions in D by Ponnusamy,
Rasila and Kaliraj [18]. In fact the harmonic analogue of the classF2 contains convex
functions in the vertical direction [18] (see also references therein).

The main aim of this paper is to determine the sharp upper bounds for |γ1|, |γ2| and
|γ3| for functions f in the classes F1,F2 and F3.

2 Main results

Throughout the remainder of this paper, we assume that f ∈ K0 and h ∈ P have the
series representations (1.1) and (1.2) respectively. Further, assume that g ∈ S∗ has the
following series representation:

g(z) = z +
∞∑

n=2

bnz
n . (2.1)

It is not difficult to see that the function Ht,μ(z) given by

Ht,μ(z) = (1 − 2t)

(
1 + z

1 − z

)

+ t

(
1 + μz

1 − μz

)

+ t

(
1 + μz

1 − μz

)
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548 U. Pranav Kumar, A. Vasudevarao

belongs to the class P for 0 ≤ t ≤ 1/2 and |μ| = 1. Since f ∈ K0, there exists an
h ∈ P such that

z f ′(z) = g(z)h(z). (2.2)

Using the representations (1.1), (1.2) and (2.1) in (2.2) we obtain

z +
∞∑

n=2

nanz
n =

(

z +
∞∑

n=2

bnz
n

) (

1 +
∞∑

n=1

cnz
n

)

. (2.3)

Comparing the coefficients on both the sides of (2.3), we obtain

2a2 = b2 + c1 (2.4)

3a3 = b3 + b2c1 + c2 (2.5)

4a4 = b4 + c1b3 + c2b2 + c3. (2.6)

A substitution of (2.4) in (1.7) gives

γ1 = 1

4
(b2 + c1) . (2.7)

An application of the triangle inequality to (2.7) gives

4|γ1| ≤ |b2| + |c1|. (2.8)

Substituting (2.4) and (2.5) in (1.8), we obtain

γ2 = 1

48

(
8b3 + 2b2c1 + 8c2 − 3b22 − 3c21

)
. (2.9)

Let c1 = deiα and q = cosα with 0 ≤ d ≤ 2 and 0 ≤ α < 2π . Applying the triangle
inequality in conjunction with Lemma 1.4 allows us to rewrite (2.9) as

6|γ2| ≤ 2 − d2

2
+ 1

8

∣
∣
∣

(

dq + b2 + id
√

1 − q2
)2

+ (8b3 − 4b22)
∣
∣
∣. (2.10)

Substituting (2.4), (2.5) and (2.6) in (1.9), we obtain

γ3 = 1

48

(
6c3 − b22c1 − b2c

2
1 + 2b2c2 + 2b3c1 + b32 − 4b3b2 + 6b4 + c31 − 4c1c2

)
.

(2.11)
A simple application of Lemma 1.3 to (2.11) shows that

96γ3 = 6t (1 − |x |2)(4 − c21) + c31 + (4b3 − 2b21)c1 + (2b32 − 8b2b3 + 2b4)

+ x(4 − c21)(2b2 + 2c1 − 3c1x). (2.12)
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Let bn be real for all n ∈ N. Let c1 = c and assume that 0 ≤ c ≤ 2. Let x = reiθ

and p = cos θ with 0 ≤ r ≤ 1 and 0 ≤ θ < 2π . Taking modulus on both the sides of
(2.12) and applying the triangle inequality we obtain

96|γ3| ≤ 6(1 − r2)(4 − c2) + |φ(c, r, p)| (2.13)

where

φ(c, r, p) = c3 + (4b3 − 2b21)c + (2b32 − 8b2b3 + 2b4)

+reiθ (4 − c2)(2b2 + 2c − 3creiθ ).

Theorem 2.14 Let f ∈ F1 be given by (1.1). Then

(i) |γ1| ≤ 3
4 ,

(ii) |γ2| ≤ 4
9 .

(iii) If 1/2 ≤ a2 ≤ 3/2 then |γ3| ≤ 1
288

(
11 + 15

√
30

)
.

The inequalities are sharp.

Proof Let f ∈ F1. Then f is a close-to-convex function with respect to the starlike
function g(z) = z/(1 − z). In view of (2.2) the function f (z) can be written as

z f ′(z) = z

1 − z
h(z). (2.15)

As |c1| ≤ 2 for h ∈ P (see [12, Ch 7, Theorem 3]) a comparison of the R.H.S. of (2.2)
and (2.15), shows that (2.8) reduces to

4|γ1| ≤ 1 + |c1| ≤ 3. (2.16)

A function p ∈ P having |c1| = 2 is given by p(z) = L1,θ (z) for 0 ≤ θ < 2π and
substituting p(z) in place of h(z) in (2.15) determines a function f ∈ F1 for which
the upper bound on |γ1| is sharp.

In view of (2.2) and (2.15), we can rewrite (2.10) as

6|γ2| ≤ 2 − |c1|2
2

+ 1

8

√

(d2 + 5 + 2dq)2 − 16d2(1 − q2) =: g(d, q). (2.17)

In view of (2.17) it suffices to find points in the square S := [0, 2] × [−1, 1] where
g(d, q) attains the maximum value to determine the maximum value of |γ2|. Solving
∂g(d,q)

∂d = 0 and ∂g(d,q)
∂q = 0 shows that there is no real valued solution to the pair of

equations. Thus g(d, q) does not attain maximum in the interior of S.
On the side d = 0, g(d, q) reduces to g(0, q) = 21/8. On the side d = 2, g(d, q)

can be written as g(2, q) = 1
8

√
80t2 + 72t + 17. An elementary calculation shows

that max−1≤q≤1 g(2, q) = g(2, 1) = 1.625.
On the sideq = −1, g(d, q)maybe simplified to g(d,−1) = (21−2d−3d2)/8. It is

not difficult to see that g(d, 1) is decreasing for c ∈ [0, 2]. Thusmax0≤d≤2 g(d,−1) =
d(0,−1) = 21/8 = 2.625.
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On the side q = 1, g(d, q) becomes g(d, 1) = (21+ 2d − 3d2)/8. An elementary
computation shows that max0≤d≤2 g(d, 1) = d(1/3, 1) = 8/3.

Thus the maximum value of g(d, q) and consequently that of |γ2| is attained at
(d, q) = (1/3, 1), i.e., at c1 = 1/3. Thus, from (2.17) we obtain |γ2| ≤ 4/9. Therefore
in view of (2.15) and Lemma 1.4 the equality holds in (ii) for the function F̃1 ∈ F1
such that z F̃1′(z) = z(1 − z)−1Lt,θ (z) with t = 1/6 and θ = 0.

In view of (2.15), we may rewrite (2.13) as

48|γ3| ≤ 3(4 − c2)(1 − r2) + √
φ1(c, r, p), (2.18)

where

φ1(c, r, p) =
(
c3

2
+ c + 3

)2

+ (4 − c2)2r2
(

−3c2pr + 9

4
c2r2

+ c2 − 3cpr + 2c + 1
)

+ 2

(
c3

2
+ c + 3

)

(4 − c2)r

(
3

2
cr − 3cp2r − 1 + cp + p

)

.

LetG(c, r, p) = 3(4−c2)(1−r2)+√
φ1(c, r, p). Thus it suffices to find points in the

closed cuboid R := [0, 2] × [0, 1] × [−1, 1] where G(c, r, p) attains the maximum
value. We accomplish this by finding the maximum values in the interior of the six
faces, on the twelve edges and in the interior of R.

On the face c = 0, it can be seen that G(c, r, p) reduces to

G(0, r, p) =
√

24pr + 16r2 + 9 + 12(1 − r2). (2.19)

To determine the points on this face where the maxima occur, we solve ∂G(0,r,p)
∂r = 0

and ∂G(0,r,p)
∂p = 0. The only solution for this pair of equations is (r, p) = (0, 0). Thus,

no maxima occur in the interior of the face c = 0.
On the face c = 2, G(c, r, p) becomes G(2, r, p) = 9 and hence

max
0<r<1, −1<p<1

G(2, r, p) = 9.

On the face r = 0, G(c, r, p) reduces to

G(c, 0, p) = 12 − 3c2 + 1

2
(c3 + 2c + 6). (2.20)

To determine points wheremaxima occur, it suffices to find points where ∂G(c,0,p)
∂c = 0

because G(c, 0, p) is independent of p. The set of all such points is { 13 (6− √
30)} ×

{0} × [−1, 1] and hence G( 13 (6 − √
30), 0, p) = 10

√
10

3
√
3

+ 9 = 15.0858. Thus
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max
0<c<2, −1<p<1

G(c, 0, p) = 10
√
10

3
√
3

+ 9 = 15.0858.

On the face r = 1, G(c, r, p) reduces to

G(c, 1, p) =
√

ψ1(c, p) + 1

2
(c2 − 4)(c3 + 2c + 6)(6cp2 − 2cp − 2p − 3c)

(2.21)
where

ψ1(c, p) =
(
c3

2
+ c + 3

)2

+ (c2 − 4)2
(
1

4
(c2 − 12pc + 8c) + 1

)

.

A computation shows that ∂G(c,1,p)
∂p = 0 yields

p = 2c4 + 2c3 − 5c2 − 2c + 3

3c
(
c3 + 2c + 6

) . (2.22)

A more involved computation shows that ∂G(c,1,p)
∂c = 0 implies

(9c5 − 12c3 + 27c2 − 24c − 36)p2 − (12c5 + 10c4 − 52c3 − 30c2 + 46c + 8)p

+(6c5 + 5c4 − 42c3 − 33c2 + 57c + 37) = 0. (2.23)

Substituting (2.22) in (2.23) and performing a lengthy computation gives

(c3 − 7c − 3)ζ1(c)

3c2
(
c3 + 2c + 6

)2 = 0 (2.24)

where

ζ1(c) = 6c10 − 5c9 + 20c8 + 86c7 − 49c6 + 257c5

+ 623c4 − 629c3 − 1095c2 − 60c + 36.

The numerical solutions of (2.24) such that 0 < c < 2 are c ≈ 0.151355 and
c ≈ 1.30718. Substituting these values of c in (2.22) gives p ≈ 0.904769 and p ≈
0.050509. The corresponding values of G(c, 1, p) are G(0.151355, 1, 0.904769) =
6.83676 and G(1.30718, 1, 0.050509) = 11.2488 respectively.

As G(c, 1, p) is uniformly continuous on [0, 2] × {1} × [−1, 1], the difference
between extremum values of G(c, 1, p) and either of 6.83676 or 11.2488 can be
made smaller than an ε � 1. Therefore

max
0<c<2, −1<p<1

G(c, 1, p) ≈ 11.2488. (2.25)
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On the face p = −1, G(c, r, p) reduces to

G(c, r,−1) = 1

2
(3r2+2r+1)c3+(3r2+r−3)c2−(6r2+4r−1)c−(12r2+4r−15).

Now we show that ∂G(c,r,−1)
∂c = 0 and ∂G(c,r,−1)

∂r = 0 have no solution in the interior

of this face. On the contrary, assume that ∂G(c,r,−1)
∂c = 0 and ∂G(c,r,−1)

∂r = 0 have a

solution in the interior of the face p = −1. Then ∂G(c,r,−1)
∂r = 0 gives

r = c + 1

3(2 − c)
. (2.26)

By substituting (2.26) in ∂G(c,r,−1)
∂c = 0, we obtain c = 1

6 (−4±√
190), both of which

lie outside the range of c ∈ [0, 2].
On the face p = 1, G(c, r, p) reduces to

G(c, r, 1) = 1

2
(3r2−2r+1)c3+(3r2−r−3)c2−(6r2+4r−1)c−(12r2−4r−15).

At the points where G(c, r, 1) attains the maximum value, ∂G(c,r,1)
∂c and ∂G(c,r,1)

∂r

necessarily vanish. The solution to the pair of equations ∂G(c,r,1)
∂c = 0 and ∂G(c,r,1)

∂r = 0

is (c, r) = ( 12 (60 − √
30), 1

105 (25 − √
30)) and subsequently

G

(
1

2
(6 − √

30),
1

105
(25 − √

30), 1

)

= 5

√
15

2
+ 11

6
= 15.5264.

Further computations show that

max
0<c<2, 0<r<1

G(c, r, 1) =
√
15

2
+ 11

6
= 15.5264.

Now we find out the maximum values attained by G(c, r, p) on the edges of R.
Evaluating (2.19) on the edge c = 0, p = 1we obtainG(0, r, 1) = 12(1−r2)+4r+3.
A simple computation shows that the maximum of G(0, r, 1) is 46/3 which occurs at
r = 1/6. At the end points of this edge, we have G(0, 0, 1) = 15 and G(0, 1, 1) = 7.
Hence

max
0≤r≤1

G(0, r, 1) = 46

3
.

In view of (2.19), we obtain by a series of straightforward computations the maximum
value of G(c, r, p) on the edges c = 0, r = 0; c = 0, r = 1 and c = 0, p = −1 as

max−1≤p≤1
G(0, 0, p) = 15, max−1≤p≤1

G(0, 1, p) = 7 and max
0≤r≤1

G(0, r,−1) = 15.
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A simple observation shows that G(2, r, p) = 9 implies

max−1≤p≤1
G(2, 0, p) = max−1≤p≤1

G(2, 1, p) = max
0≤r≤1

G(2, r,−1) = max
0≤r≤1

G(2, r, 1) = 9.

As (2.20) is independent of p, the maximum value of G(c, r, p) on the edges r =
0, p = −1 and r = 0, p = 1 is

max
0≤c≤2

G(c, 0,−1) = max
0≤c≤2

G(c, 0, 1) = 15.0858.

On the edge r = 1, p = −1, (2.21) can be simplified to G(c, 1,−1) = |3c3 + c2 −
9c − 1|. A straightforward calculation shows that

max
0≤c≤2

G(c, 1,−1) = 9.

On the edge r = 1, p = 1, (2.21) reduces to G(c, 1, 1) = c3 − c2 − c + 7. A simple
computation shows that

max
0≤c≤2

G(c, 1, 1) = 9.

Now we show that G(c, r, p) does not attain maximum value in the interior of the
cuboid R. In order to find the points where the maximum value is obtained in the
interior of R, we solve ∂G(c,r,p)

∂c = 0, ∂G(c,r,p)
∂r = 0 and ∂G(c,r,p)

∂p = 0. A computation

shows that ∂G(c,r,p)
∂p = 0 implies

p = 3c4r2 + c4 + 3c3r2 + c3 − 12c2r2 + 2c2 − 12cr2 + 8c + 6

6c(c3 + 2c + 6)r
. (2.27)

By substituting (2.27) in ∂G(c,r,p)
∂r = 0, we get

r =
√
c3 + 2c + 6√
3
√
c3 − 4c

. (2.28)

It is easy to see that c
3+2c+6
3(c3−4c)

is negative for all values of c ∈ [0, 2]. Hence there cannot
be an extremum inside the cuboid R. This shows that the maximum value of |γ3| is
1
48 (5

√
15
2 + 11

6 ) for (c, r, p) = ( 12 (6 − √
30), 1

105 (25 − √
30), 1).

Let c = c1 and (c, r, p) = ( 12 (6 − √
30), 1

105 (25 − √
30), 1). Then in view of

Lemma 1.3 we obtain c2 = 1
12 (76 − 13

√
30) and c3 = 1

72 (554 − 75
√
30). It is not

difficult to see that a function G∗ ∈ P having

(c1, c2, c3) =
(
1

2
(6 − √

30),
1

12
(76 − 13

√
30),

1

72
(554 − 75

√
30)

)
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is given by G∗(z) = Ht1,μ1(z) where μ1 = 1
12 (−1− √

30) + i 1
12

√
113 − 2

√
30, and

t1 = 3
278 (15

√
30 − 56). Therefore the bound in (iii) is sharp for the function F1(z)

such that

zF ′
1(z) = z

1 − z
G∗(z).

�
Theorem 2.29 Let f ∈ F2 be given by (1.1). Then

(i) |γ1| ≤ 1
2 ,

(ii) |γ2| ≤ 1
2 .

(iii) If 0 ≤ a2 ≤ 1 then |γ3| ≤ 1
972 (95 + 23

√
46).

The inequalities are sharp.

Proof Let f ∈ F2. It is evident that f is close-to-convex with respect to the starlike
function g(z) = z/(1 − z2). From (2.2), f (z) can be written as

z f ′(z) = z

1 − z2
h(z). (2.30)

Thus in view of (2.30), (2.8) reduces to

4|γ1| ≤ |c1|. (2.31)

Noting that |c1| ≤ 2, (2.31) then implies that |γ1| ≤ 1/2. It is easy to see that A
function p ∈ P having |c1| = 2 is given by p(z) = L1,θ (z) for 0 ≤ θ < 2π .
Substituting L1,θ (z) in place of h(z) in (2.30) shows that (i) is sharp.

A comparison of (2.30) and (2.2) shows that (2.9) reduces to

6γ2 ≤
(

c2 − 3

8
c21

)

+ 1.

Applying the triangle inequality in conjunction with Lemma 1.5 with μ = 3/8 shows
that |γ2| ≤ 1/2. It is evident from Lemma 1.5 that the equality holds in (ii) for the
function F̃2(z) such that z F̃2′(z) = z(1 − z2)2L0,0(z).

Considering (2.30) as an instance of (2.2), (2.13) can be simplified to

96|γ3| ≤ 6(4 − c2)(1 − r2) + c
√

φ2 (c, r, p), (2.32)

where

φ2(c, r, p) = (c2 + 4)2 + 2r(4 − c2)(4 + c2)(2p + 3r − 6p2r)

+ r2(4 − c2)2(4 + 9r2 − 12rp).
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Let F(c, r, p) = 6(1− r2)(4− c2) + c
√

φ2(c, r, p). We find points where F(c, r, p)
attains the maximum value by finding its local maxima on the six faces and in the
interior of R. On the face c = 0, F(c, r, p) becomes

F(0, r, p) = 24(1 − r2). (2.33)

As F(0, r, p) is a decreasing function of r , themaximumvalue of F(0, r, p) is attained
on the edge c = 0, r = 0. Consequently, we have

max
0≤r≤1, −1≤p≤1

F(0, r, p) = 24.

On the face c = 2, F(c, r, p) becomes F(2, r, p) = 16 and hence

max
0≤r≤1, −1≤p≤1

F(2, r, p) = 16.

On the face r = 0, we can simplify F(c, r, p) as

F(c, 0, p) = 24 − 6c2 + c
(
c2 + 4

)
. (2.34)

Since F(c, 0, p) is independent of p, we find the set of all points where ∂F(c,0,p)
∂c

vanishes as { 23
(
3 − √

6
)
}×{0}×[−1, 1] and hence F

(
2
3

(
3 − √

6
)

, 0, p
)

= 16
9 (9+

2
√
6) = 24.7093. Evaluating (2.34) on the edges c = 0, r = 0 and c = 2, r = 0, we

obtain

max
0≤c≤2, −1≤p≤1

F(c, 0, p) = 24.7093.

On the face r = 1, F(c, r, p) reduces to

F(c, 1, p) = 2c
√

24c2(p − 1) − 16(p − 1)(5 + 3p) + c4(2 − 4p + 3p2). (2.35)

We solve ∂F(c,1,p)
∂c = 0 and ∂F(c,1,p)

∂p = 0 to determine points where maxima occur

in the face r = 1. A computation shows that ∂F(c,1,p)
∂p = 0 implies

p = 2
(
c2 − 2

)

3
(
c2 + 4

) . (2.36)

A slightly involved computation shows that ∂F(c,1,p)
∂c = 0 gives

(18c4 − 96)p2 − 8(3c4 − 12c2 + 8)p + (12c4 − 96c2 + 160) = 0. (2.37)
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Substituting (2.36) in (2.37) followed by a computation gives

4(3c8 − 160c4 − 512c2 + 2048)

3(c2 + 4)2
= 0. (2.38)

The numerical solution of (2.38) in 0 < c < 2 is c ≈ 1.54836. Using (2.36) we then
obtain p ≈ 0.414152. Therefore F(1.54836, 1, 0.414152) = 18.0595.

Using uniform continuity of F(c, 1, p) on [0, 2] × {1} × [−1, 1] we infer that the
difference between themaximumvalue of F(c, 1, p) and 18.0595 can bemade smaller
than an ε � 1. On the edge c = 0, r = 1, F(c, r, p) becomes F(0, 1, p) = 0. On the
edge c = 2, r = 1, F(c, r, p) becomes F(2, 1, p) = 16. On the edge r = 1, p = −1,
(2.35) can be simplified to F(c, 1,−1) = 2c|3c2−8|. It is easy to see that F(c, 1,−1)
has the maximum value 16 on [0, 2].

A simple computation shows that the maximum value of F(c, r, p) on the edge
r = 1, p = 1 is 16. Therefore,

max
0≤c≤2, −1≤p≤1

F(c, 1, p) ≈ 18.0595.

On the face p = −1, F(c, r, p) reduces to

F(c, r,−1) = 6(4 − c2)(1 − r2) + c|c2 + 4 − (2r − 3r2)(4 − c2)|.

A computation similar to the one on the face p = −1 in Theorem 2.14 shows that
∂F(c,r,−1)

∂c = 0 and ∂F(c,r,−1)
∂r = 0 have no solution in the interior of the face p = −1.

Thus the maximum value is attained on the edges.
On the edge c = 0, p = −1, F(c, r, p) becomes F(0, r,−1) = 24(1 − r2). The

maximum value of F(0, r,−1) is clearly 24. On the edge r = 0, p = −1, F(c, r, p)
becomes

F(c, 0,−1) = 6(4 − c2) + c(4 + c2).

The maximum value of F(c, 0,−1) is 16
9 (9 + 2

√
6) = 24.7093 (see the face r = 0).

The maximum values of F(c, r, p) on the edges c = 2, p = −1 and r = 1, p = −1
are 16 and 10.0566 respectively (see the faces c = 2 and r = 1). Therefore

max
0≤c≤2, 0≤r≤1

F(c, r,−1) = 16

9
(9 + 2

√
6) = 24.7093.

On the face p = 1, F(c, r, p) reduces to

F(c, r, 1) = 6(4 − c2)(1 − r2) + c|c2 + 4 + (2r + 3r2)(4 − c2)|.

Solving ∂F(c,r,1)
∂c = 0 and ∂F(c,r,1)

∂r = 0 we obtain (c, r) = ( 1
3 (8 − √

46), 1
75 (11 −√

46)
)
and hence F

( 1
3 (8− √

46), 1
75 (11− √

46), 1
) = 8

81 (95+ 23
√
46) = 24.7895.

It is not difficult to see that the maximum value of F(c, r, 1) on the edges is 24.7093,
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which occurs on the edge r = 0, p = 1 (see the face r = 0) as the computations for
the edges have been done on earlier faces. Therefore

max
0≤c≤2, 0≤r≤1

F(c, r, 1) = 8

81
(95 + 23

√
46) = 24.7895.

We now show that F(c, r, p) cannot attain a maximum in the interior of the cuboid
R. To determine points in the interior of R where the maxima occurs (if any), we
solve ∂F(c,r,p)

∂c = 0, ∂F(c,r,p)
∂r = 0 and ∂F(c,r,p)

∂p = 0. A computation shows that
∂F(c,r,p)

∂p = 0 implies

p = 3c2r2 + c2 − 12r2 + 4

6(c2 + 4)r
. (2.39)

Using (2.39) in ∂F(c,r,p)
∂r = 0 and then solving for r yields

r =
√
c2 + 4√

3
√
c2 − 4

.

As c2+4
3(c2−4)

is negative for all values of c ∈ [0, 2], there cannot be an extremum in the

interior of R. This proves that the maximum value of |γ3| is 1
972 (95 + 23

√
46) for

(c, r, p) =
(
1
3 (8 − √

46), 1
75 (11 − √

46), 1
)
.

Let c = c1 and (c, r, p) =
(
1
3 (8 − √

46), 1
75 (11 − √

46), 1
)
. Then in view of

Lemma 1.3, we obtain c2 = 1
27 (134− 19

√
46) and c3 = 2

243 (721− 71
√
46). It is not

difficult to see that a function F∗ ∈ P having

(c1, c2, c3) =
(
1

3
(8 − √

46),
1

27
(134 − 19

√
46),

2

243
(721 − 71

√
46)

)

is given by F∗(z) = Ht2,μ2(z)whereμ2 = 1
18 (−1−√

46)+i 1
18

√
277 − 2

√
46 and t2

= 1
10 (

√
46−4). This shows that the bound in (iii) is sharp for the function F2(z) such

that zF ′
2(z) = z(1 − z2)−1F∗(z). �

Theorem 2.40 Let f ∈ F3 be given by (1.1). Then

(i) |γ1| ≤ 3
4 ,

(ii) |γ2| ≤ 2
5 .

(iii) If 1/2 ≤ a2 ≤ 3/2 then |γ3| ≤ 743+131
√
262

7776 .

The inequalities are sharp.

Proof Let f ∈ F3. Then f is close-to-convex with respect to the starlike function
g(z) = z/(1 − z + z2). In view of (2.2), f (z) can be written as

z f ′(z) = z

1 − z + z2
h(z). (2.41)
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Therefore (2.8) reduces to
4|γ1| ≤ 1 + |c1|. (2.42)

Thus from (2.42) we obtain |γ1| ≤ 3/4 as |c1| ≤ 2 for h ∈ P . A function in P having
|c1| = 2 is given by L1,θ (z), 0 ≤ θ < 2π The equality in (i) is attained for a function
f̃ (z) such that z f̃ ′(z) = z(1 − z + z2)−1L1,θ (z).
In view of (2.41), (2.10) becomes

6|γ2| ≤ 2 − |c1|2
2

+ 1

8

√
(d2 + 1 − 2dt)(d2 + 9 + 6dt) =: k(d, q). (2.43)

It is evident from (2.43) that it is sufficient to find the maximum value of k(d, q) in
the square S to obtain the same for |γ2|.

To obtain points where k(d, q) attains maximum, we solve ∂k(d,q)
∂d = 0 and

∂k(d,q)
∂q = 0. The solutions obtained are complex, showing that k(d, q) does not attain

maximum in the interior of S.
On the side d = 0, k(d, q) reduces to k(d, q) = 2.375. On the side d = 2,

we see that k(d, q) = (
√
65 + 8t − 48t)/8. An elementary computation shows that

max−1≤q≤1 k(2, q) = k(2, 1/12) = 1.01036.
On the side q = −1, k(d, q) becomes k(d,−1) = (19+ 2d − 5d2)/8. A straight-

forward computation shows that max0≤d≤2 k(d,−1) = k(1/5,−1) = 12/5 = 2.4.
On the side q = 1, k(d, q) may be simplified as k(d, 1) = (19 − 2d − 5d2)/8.

As k(d, 1) is a decreasing function for d ∈ [0, 2], we see that max0≤d≤2 k(d, 1) =
k(0, 1) = 19/8 = 2.375.

Thus the maximum value of k(d, q) in S is 12/5 and occurs at (d, q) = (1/5,−1).
Consequently, (2.43) implies that |γ2| ≤ 2/5, with the equality occurring for c1 =
−1/5.

Therefore, in view of Lemma 1.4, the equality in (ii) holds for the function F̃2(z)
such that z F̃2′(z) = z(1 − z + z2)−1Lt,θ (z) where t = 1/10 and θ = π .

Using (2.41) we may rewrite (2.13) as

96|γ3| ≤ 6(1 − r2)(4 − c2) + √
φ3(c, r, p) (2.44)

where

φ3(c, r, p) = (c3 − 2c − 10)2 + 2r(4 − c2)(c3 − 2c−10)(2p + 2cp − 6crp2 + 3rc)

+ r2(4 − c2)2(4c2 + 4 + 9c2r2 + 8c − 12c2rp − 12crp).

Let K (c, r, p) = 6(1 − r2)(4 − c2) + √
φ3(c, r, p). We find the points in the cuboid

R where the maxima of K (c, r, p) occur.
On the face c = 0, K (c, r, p) takes the following form

K (0, r, p) = 24(1 − r2) + 2
√

25 − 40rp + 16r2. (2.45)
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By solving ∂K (0,r,p)
∂r = 0 and ∂K (0,r,p)

∂p = 0 we obtain (r, p) = (0, 0). Thus K (c, r, p)
does not attain maximum in the interior of the face c = 0.

On the face c = 2, K (c, r, p) reduces to K (2, r, p) = 6 and hence

max
0<r<1, −1<p<1

K (2, r, p) = 6.

On the face r = 0, K (c, r, p) may be simplified as

K (c, 0, p) = 6(4 − c2) + |c3 − 2c − 10|. (2.46)

Since K (c, 0, p) is independent of p, it suffices to find out points such that ∂K (c,0,p)
∂c =

0. The set of all such points is { 13 (−6 + √
42)} × {0} × [−1, 1] and

K

(
1

3
(−6 + √

42), 0, p

)

= 14

9
(9 + 2

√
42) = 34.1623.

Therefore

max
0<c<2, −1<p<1

K (c, 0, p) = 14

9
(9 + 2

√
42) = 34.1623.

On the face r = 1, K (c, r, p) becomes

K (c, 1, p) =
√

ψ3(c, p) + 2(c3 − 2c − 10)(c2 − 4)(6cp2 − 2cp − 2p − 3c)
(2.47)

where

ψ3(c, p) = (c3 − 2c − 10)2 + (c2 − 4)2(13c2 − 12c2 p + 8c − 12cp + 4).

A computation shows that ∂K (c,1,p)
∂p = 0 implies

p = 2c4 + 2c3 − 7c2 − 12c − 5

3c(c3 − 2c − 10)
. (2.48)

A lengthy computation shows that ∂K (c,1,p)
∂c implies

(9c5 − 36c3 − 45c2 + 24c + 60)p2

− (12c5 + 10c4 − 60c3 − 60c2 + 46c + 48)p

+ (6c5 + 5c4 − 34c3 − 9c2 + 33c − 9) = 0.

(2.49)

Substituting (2.48) in (2.49) and then performing another lengthy computation gives

(c3 − 5c + 5)ζ2(c)

3c2(c3 − 2c − 10)2
= 0 (2.50)
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where

ζ2(c) = 6c10 − 5c9 − 32c8 − 104c7 + 147c6 + 375c5

+459c4 − 375c3 − 1135c2 + 140c + 100.

The numerical solutions of (2.50) are obtained as c ≈ 0.354278 and c ≈ 1.27688.
Further computations show that K (c, 1, p) does not attain a maxima at these points
even though the partial derivatives vanish. On the face p = −1, K (c, r, p) reduces to

K (c, r,−1) = 6(1 − r2)(4 − c2) − (c3 − 2c − 10) + 2(4 − c2)(2 + 2c + 3cr2).

By solving ∂K (c,r,−1)
∂c = 0 and ∂K (c,r,−1)

∂r = 0 we obtain c = 1
6 (−14 + √

262) and

r = 1
69 (3 + √

262). The corresponding maximum value is

K

(
1

6
(−14 + √

262),
1

69
(3 + √

262),−1

)

= 1

81
(743 + 131

√
262) = 35.3509.

Therefore

max
0<c<2, 0<r<1

K (c, r,−1) = 35.3509.

On the face p = 1, K (c, r, p) reduces to

K (c, r, 1) = 6(1− r2)(4− c2) − (c3 − 2c− 10) + (4− c2)(3cr2 − 2− 2c). (2.51)

It is not difficult to see that ∂K (c,r,1)
∂c = 0 and ∂K (c,r,1)

∂r = 0 have no solution in the
interior of the face p = 1. Thus K (c, r, p) does not attain maximum in the interior of
this face.

Now we find the maximum values attained on the edges of R. It is evident from
(2.45) that on the edges c = 0, r = 0 and c = 0, r = 1, the maximum values of
K (c, r, p) are

max−1≤p≤1
K (0, 0, p) = 34 and max−1≤p≤1

K (0, 1,−1) = 18.

On the edge c = 0, p = −1, (2.45) reduces to K (0, r,−1) = 24(1− r2)+ 2(5+ 4r).
An elementary computation shows that the maximum value of K (0, r,−1) is attained
at

(
0, 1

6 ,−1
)
and max

0≤r≤1
K (0, r,−1) = 104/3.

On the edge c = 0, p = 1, (2.45) reduces to K (0, r, 1) = 24(1− r2) + 2(5− 4r).
A computation shows that max

0≤r≤1
K (0, r, 1) = 34.

It is evident that K (2, r, p) = 6 implies

max−1≤p≤1
K (2, 0, p) = max−1≤p≤1

K (2, 1, p) = max
0≤r≤1

K (2, r,−1) = max
0≤r≤1

K (2, r, 1) = 6.
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Considering (2.46) and the maximum value of K (c, 0, p) we obtain the maximum
values on the edges r = 0, p = −1 and r = 0, p = 1 as

max
0≤c≤2

K (c, 0,−1) = max
0≤c≤2

K (c, 0, 1) = 34.1623.

On the edge r = 1, p = −1, (2.47) maybe be simplified as

K (c, 1,−1)

=
√

(
c3 − 2c − 10

)2 − 2(5c + 2)
(
c3 − 2c − 10

)
(4 − c2) + (

25c2 + 20c + 4
)
(4 − c2)2.

A computation shows that K (c, 1,−1) attains the local maximum at (1, 1,−1) and
max0≤c≤2 K (c, 1,−1) = 32.

On the edge r = 1, p = 1, (2.47) reduces to K (c, 1, 1) = 2(1+ 3c+ c2 − c3). An
elementary computation shows that

max
0≤c≤2

K (c, 1, 1) = K

(
1

3
(1 + √

10), 1, 1

)

= 8

27
(14 + 5

√
10) = 8.833.

Nowwe show that K (c, r, p) does not attain maximum in the interior of the cuboid
R. At the points where the maxima occur in the cuboid R we have ∂K (c,r,p)

∂c =
0, ∂K (c,r,p)

∂r = 0 and ∂K (c,r,p)
∂p = 0. A computation shows that ∂K (c,r,p)

∂p = 0 implies

p = 3c4r2 + c4 + 3c3r2 + c3 − 12c2r2 − 2c2 − 12cr2 − 12c − 10

6c
(
c3 − 2c − 10

)
r

. (2.52)

Substituting (2.52) in ∂K (c,r,p)
∂r = 0 and then solving for r we obtain

r =
√
c3 − 2c − 10√
3c3 − 12c

. (2.53)

Substituting (2.53) in (2.52) gives

p = (c + 1)
√
c(c2 − 4)√

3c
√
c3 − 2c − 10

. (2.54)

Substituting (2.53) and (2.54) in ∂K (c,r,p)
∂c = 0, we obtain

8
(
c3 − 5c + 5

)

c2 − 4
= 0.

It can be seen that the roots to the above equation are either negative or imaginary. This
shows that a maximum cannot be attained inside R. Thus we see that the maximum
value for |γ3| is attained for
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(c, r, p) =
(
1

6
(−14 + √

262),
1

69
(3 + √

262),−1

)

and is equal to (743 + 131
√
262)/81 = 35.3509. Using these values of (c, r, p)

in Lemma 1.3, we obtain c2 = 1
108 (548 − 37

√
262) and c3 = 47525

√
262−698926
44712 .

Therefore for given

(c1, c2, c3) =
(
1

6
(−14 + √

262),
1

108
(548 − 37

√
262),

47525
√
262 − 698926

44712

)

there exists a function K ∗ ∈ P given by K ∗(z) = Ht3,μ3(z), where

μ3 = −769 + 35
√
262

828
+ i

√
−226727 + 53830

√
262

828

and t3 = 32352 − 687
√
262

64622
.

The inequality (iii) is sharp for the function F3(z) such that

zF ′
3(z) = z

1 − z + z2
K ∗(z).
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