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Abstract The aim of this paper is to obtain the Schwarz–Pick type inequality for
α-harmonic functions f in the unit disk and get estimates on the coefficients of f . As
an application, a Landau type theorem of α-harmonic functions is established.
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1 Introduction and main results

Let C be the complex plane. For a ∈ C, let D(a, r) = {z : |z − a| < r} (r > 0) and
D(0, r) = Dr . Also, we use the notations D = D1 and T = ∂D, the boundary of D.
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628 P. Li et al.

Let

A =
(
a b
c d

)
∈ R

2×2.

We will consider the matrix norm

|A| = sup{|Az| : z ∈ C, |z| = 1}

and the matrix function

l(A) = inf{|Az| : z ∈ C, |z| = 1}.

Let D and � be domains in C, and let f = u + iv: D → � be a function that
has both partial derivatives at z = x + iy in D, where u and v are real functions. The
Jacobian matrix of f at z is denoted by

Df (z) =
(
ux uy

vx vy

)
.

Set

∂

∂z
= 1

2

( ∂

∂x
− i

∂

∂y

)
and

∂

∂z
= 1

2

( ∂

∂x
+ i

∂

∂y

)
.

Then

|Df (z)| = sup{|Df (z)ς | : |ς | = 1} = | fz(z)| + | fz(z)|, (1.1)

l(Df (z)) = inf{|Df (z)ς | : |ς | = 1} = ∣∣| fz(z)| − | fz(z)|
∣∣ (1.2)

and

|J f (z)| = |Df (z)| · l(Df (z)),

where J f (z) stands for the Jacobian of f at z.
We denote by �α the weighted Laplace operator corresponding to the so-called

standard weight wα = (1 − |z|2)α , that is,

�α,z = ∂

∂z
(wα)−1 ∂

∂z
= ∂

∂z
(1 − |z|2)−α ∂

∂z

in D, where α > −1 (see [20, Proposition 1.5] for the reason for this constraint).
Olofsson and Wittsten [20] introduced this operator �α and a counterpart of the

classical Poisson integral formula was given.
We remark that in the study of Bergman spaces of D, one often considers the

weights wα in D (α > −1). For an account of recent developments in Bergman space
theory, we mention the monograph by Hedenmalm et al. [13]. The case α = 0 is
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Several properties of α-harmonic functions in the unit disk 629

commonly referred to as the unweighted case, whereas the case α = 1 has attracted
special attention recently with contributions by Hedenmalm, Shimorin and others (see
for instance [14–16,22] etc).

Of particular interest to us is the following α-harmonic equation in D:

�α( f ) = 0. (1.3)

Denote the associated Dirichlet boundary value problem of functions f satisfying
the Eq. (1.3) by

{
�α( f ) = 0 in D,

f = f ∗ on T.
(1.4)

Here the boundary data f ∗ is a distribution on T, i.e. f ∗ ∈ D′(T), and the boundary
condition in the Eq. (1.4) is to be understood as fr → f ∗ ∈ D′(T) as r → 1−, where

fr (e
iθ ) = f (reiθ ) (1.5)

for θ ∈ [0, 2π ] and r ∈ [0, 1).
For simplicity, we introduce the following definition.

Definition 1.1 For α > −1, a complex-valued function f is said to be α-harmonic if
f is twice continuously differentiable in D and satisfies the condition (1.3).

Olofsson and Wittsten [20] showed that if an α-harmonic function f satisfies

lim
r→1− fr = f ∗ ∈ D′(T) (α > −1),

then it has the form of a Poisson type integral

f (z) = 1

2π

∫ 2π

0
Pα(ze−iθ ) f ∗(eiθ )dθ (1.6)

in D, where

Pα(z) = (1 − |z|2)α+1

(1 − z)(1 − z)α+1 .

In the following, we always assume that any α-harmonic function has such a rep-
resentation which plays a key role in the discussions of this paper.

Obviously, α-harmonicity coincides with harmonicity when α = 0. See [12] and
the references therein for the properties of harmonic mappings. Particularly, Colonna
proved the following Schwarz–Pick type inequality.

Theorem A [11, Theorems 3 and 4] Let f be a harmonic function of D into D. Then
for z ∈ D,

|Df (z)| ≤ 4

π
· 1

1 − |z|2 .
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630 P. Li et al.

This estimate is sharp and all the extremal functions are

f (z) = 2δ

π
arg

(1 + ψ(z)

1 − ψ(z)

)
,

where δ ∈ C, |δ| = 1 and ψ is a conformal automorphism of D.

For the related discussions on this topic, see [2,4,7,10,17,21] etc.
As the first aim of this paper, we shall generalize Theorem A to the case of α-

harmonic functions. Our first result is as follows.

Theorem 1.1 Suppose that f is an α-harmonic function in D with α > −1, that
f ∗ ∈ C(T) and that supz∈D | f (z)| ≤ M, where M is a constant. Then for z ∈ D,

|Df (z)| ≤ M(α + 2)

cα

· 1

1 − |z| ≤ 2M(α + 2)

cα

· 1

1 − |z|2 ,

where cα = (�( α
2 +1))2

�(α+1) and �(s) = ∫ ∞
0 t s−1e−t dt (s > 0) is the Gamma function.

In particular, if f maps D into D, then

|Df (z)| ≤ 2(α + 2)

cα

· 1

1 − |z|2 .

Let λD(z)|dz| be the hyperbolic metric of the domain D having constant Gaussian
curvature −1. The hyperbolic distance dhD (z1, z2) between two points z1 and z2 in D
is defined by

inf
γ

{ ∫
γ

λD(z)|dz|
}
,

where the infimum is taken over all rectifiable curves γ in D connecting z1 and z2.
We have known that if D = D, then (cf. [1])

λD(z) = 2

1 − |z|2 and dhD(z1, z2) = log
|1 − z1z2| + |z1 − z2|
|1 − z1z2| − |z1 − z2| .

As a consequence of Theorem 1.1, we have

Corollary 1.1 Under the assumptions of Theorem 1.1, if f maps D into D, then for
z1 and z2 ∈ D,

| f (z1) − f (z2)| ≤ α + 2

cα

dhD(z1, z2).

In [20], the authors got the following homogeneous expansion of α-harmonic func-
tions (see [20, Theorem 1.2]):

123



Several properties of α-harmonic functions in the unit disk 631

A function f in D is α-harmonic if and only if it has the following convergent
power series expansion:

f (z) =
∞∑
k=0

ckz
k +

∞∑
k=1

c−k Pα,k(|z|2)zk, (1.7)

where Pα,k(x) = ∫ 1
0 tk−1(1−t x)αdt (−1 < x < 1) and {ck}∞k=−∞ denotes a sequence

of complex numbers with lim|k|→∞ sup |ck |
1
|k| ≤ 1.

The second aim of this paper is to prove the following estimates on coefficients ck
and c−k .

Theorem 1.2 Suppose that f is an α-harmonic function in D with α > −1 and that
supz∈D | f (z)| ≤ M, where M is a constant. If f has the series expansion (1.7), then
for k ∈ {0, 1, 2, ...},

|ck | ≤ M, (1.8)

and for k ∈ {1, 2, ...},

|ck | + |c−k |B(k, α + 1) ≤ 4M

π
, (1.9)

where B(p, q) denotes the Beta function.

By [20, Definition 2.1], we find that

Pα(ze−iθ ) =
∞∑
k=0

e−ikθ zk +
∞∑
k=1

�(k + α + 1)

�(k)�(α + 1)
Pα,k(|z|2)eikθ zk .

If | f ∗(z)| ≤ M , then by (1.6), we get

|c−k | =
∣∣∣∣ �(k + α + 1)

�(k)�(α + 1)

1

2π

∫ 2π

0
eikθ f ∗(eiθ )dθ

∣∣∣∣ ≤ M
�(k + α + 1)

�(k)�(α + 1)
→ ∞

as k → ∞.
Moreover, from the proof of [20, Theorem 1.2], we see that

(1 − |z|2)−α ∂

∂z
f (z) = h(z),

where h(z) = ∑∞
k=0 akz

k , z ∈ D and c−k = ak−1 for k ≥ 1. Note that if h(z) is a
normalized (in the sense that h(0) = h′(0) − 1 = 0) univalent analytic function in D,
then by Louis de Branges’s theorem it is well-known that |ak | ≤ k for all k ≥ 2 so
that

c−1 = 0, c−2 = 1 and |c−k | = |ak−1| ≤ k − 1 for all k ≥ 3. (1.10)
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632 P. Li et al.

The classical Landau theorem says that there is a ρ = 1
M+√

M2−1
such that every

function f , analytic in D with f (0) = f
′
(0) − 1 = 0 and | f (z)| < M , is univalent in

the disk Dρ . Moreover, the range f (Dρ) contains a disk of radius Mρ2, where M ≥ 1
is a constant (see [18]). Recently, many authors considered Landau type theorem for
α-harmonic functions f when α = 0 (see [3,5–9] etc).

As an application of Theorems 1.1 and 1.2, we get the following Landau type
theorem for α-harmonic functions.

Theorem 1.3 Suppose that f is an α-harmonic function in D with α ≥ 0, that f ∗ ∈
C(T), that supz∈D | f (z)| ≤ M,where M is a constant, and that f (0) = |J f (0)|−β =
0. If f satisfies (1.10), then we have the following:

(1) f is univalent in Dρ0 , where ρ0 satisfies the following equation

βcα

M(α + 2)
− (M + 5)

ρ0(2 − ρ0)

(1 − ρ0)2
= 0; (1.11)

(2) f (Dρ0) contains a univalent disk DR0 with

R0 ≥ (M + 5)
( ρ0

1 − ρ0

)2
.

The arrangement of the rest of this paper is as follows. In Sect. 2, we shall prove
Theorem 1.1 and Corollary 1.1. Section 3 will be devoted to the proof of Theorem
1.2. In Sect. 4, Theorem 1.3 will be demonstrated.

2 Schwarz–Pick type inequality

The aim of this section is to prove Theorem 1.1 and Corollary 1.1. The proofs need a
result from [19]. Before the statement of this result, we do some preparation.

In [19], the author considered the following integral means:

Mα(r) = 1

2π

∫ 2π

0
Kα(reiθ )dθ, (2.1)

where r ∈ [0, 1) and

Kα(z) = cα|Pα(z)| = cα

(1 − |z|2)α+1

|1 − z|α+2

in D.
Let us recall the following result from [19].

Theorem B [19, Theorem 3.1] Let α > −1. The integral means function Mα(r)
given by (2.1) satisfies the following assertions.

(1) limr→1− Mα(r) = 1;
(2) M(n)

α (r) ≥ 0 for r ∈ [0, 1) and n ≥ 0.
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Several properties of α-harmonic functions in the unit disk 633

The following result also plays a key role in the proof of Theorem 1.1.

Lemma 2.1 If α > −1 and f ∗ ∈ C(T), then

∂

∂z

∫ 2π

0
Pα(ze−iθ ) f ∗(eiθ )dθ =

∫ 2π

0

∂

∂z
Pα(ze−iθ ) f ∗(eiθ )dθ

and

∂

∂z

∫ 2π

0
Pα(ze−iθ ) f ∗(eiθ )dθ =

∫ 2π

0

∂

∂z
Pα(ze−iθ ) f ∗(eiθ )dθ.

Proof By elementary calculations we see that the following equalities hold:

∂

∂z
Pα(ze−iθ ) = (1 − |z|2)α [

e−iθ (1 − |z|2) − (α + 1)z(1 − ze−iθ )
]

(1 − ze−iθ )2(1 − zeiθ )α+1 (2.2)

and

∂

∂z
Pα(ze−iθ ) = (α + 1)(1 − |z|2)αeiθ

(1 − zeiθ )α+2 . (2.3)

Then we know that functions

∂

∂z
Pα(ze−iθ ) f ∗(eiθ ) and

∂

∂z
Pα(ze−iθ ) f ∗(eiθ )

are continuous on Dr × [0, 2π ], where r ∈ [0, 1).
Let z = ρeiϕ ∈ Dr . It follows from

∂

∂ρ
Pα(ze−iθ ) = ∂

∂z
Pα(ze−iθ )eiϕ + ∂

∂z
Pα(ze−iθ )e−iϕ

and

∂

∂ϕ
Pα(ze−iθ ) = ∂

∂z
Pα(ze−iθ )i z − ∂

∂z
Pα(ze−iθ )i z

that both

∂

∂ρ
Pα(ze−iθ ) f (eiθ ) and

∂

∂ϕ
Pα(ze−iθ ) f (eiθ )

are continuous in Dr × [0, 2π ]. Hence
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634 P. Li et al.

∫ ρ

0

∫ 2π

0

∂

∂ρ
Pα(ze−iθ ) f ∗(eiθ )dθdρ =

∫ 2π

0

∫ ρ

0

∂

∂ρ
Pα(ze−iθ ) f ∗(eiθ )dρdθ

=
∫ 2π

0

(Pα(ze−iθ ) − Pα(0)
)
f ∗(eiθ )dθ

and

∫ ϕ

0

∫ 2π

0

∂

∂ϕ
Pα(ze−iθ ) f ∗(eiθ )dθdϕ =

∫ 2π

0

∫ ϕ

0

∂

∂ϕ
Pα(ze−iθ ) f ∗(eiθ )dϕdθ

=
∫ 2π

0

(Pα(ze−iθ ) − Pα(ρe−iθ )
)
f ∗(eiθ )dθ.

By differentiating with respect to ρ and ϕ, respectively, we get

∫ 2π

0

∂

∂ρ
Pα(ze−iθ ) f ∗(eiθ )dθ = ∂

∂ρ

∫ 2π

0
Pα(ze−iθ ) f ∗(eiθ )dθ (2.4)

and

∫ 2π

0

∂

∂ϕ
Pα(ze−iθ ) f ∗(eiθ )dθ = ∂

∂ϕ

∫ 2π

0
Pα(ze−iθ ) f ∗(eiθ )dθ. (2.5)

Since

∂

∂z
Pα(ze−iθ ) = e−iϕ

2

(
∂

∂ρ
Pα(ze−iθ ) − i

ρ

∂

∂ϕ
Pα(ze−iθ )

)

and

∂

∂z
Pα(ze−iθ ) = eiϕ

2

(
∂

∂ρ
Pα(ze−iθ ) + i

ρ

∂

∂ϕ
Pα(ze−iθ )

)
,

it follows from (2.4) and (2.5) that the proof of the lemma is complete. 
�
Now, we are ready to present the proofs of Theorem 1.1 and Corollary 1.1.

Proof of Theorem 1.1 From (2.2) and (2.3), we can easily get

∣∣∣∣ ∂

∂z
Pα(ze−iθ )

∣∣∣∣ ≤ 1

cα

· (α + 2)|z| + 1

1 − |z|2 Kα(ze−iθ )

and

∣∣∣∣ ∂

∂z
Pα(ze−iθ )

∣∣∣∣ = α + 1

cα

· 1

1 − |z|2 Kα(ze−iθ ).
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Several properties of α-harmonic functions in the unit disk 635

In the first inequality above, the fact “1−|z| ≤ |1− ze−iθ |” is applied. By (1.1), (1.6)
and Lemma 2.1 yield

|Df (z)| =
∣∣∣∣ 1

2π

∫ 2π

0

∂

∂z
Pα(ze−iθ ) f ∗(eiθ )dθ

∣∣∣∣ +
∣∣∣∣ 1

2π

∫ 2π

0

∂

∂z
Pα(ze−iθ ) f ∗(eiθ )dθ

∣∣∣∣ ,

we see from (2.1) and Theorem B that

|Df (z)| ≤ M(α + 2)

cα

· 1

1 − |z|Mα(|z|) ≤ M(α + 2)

cα

· 1

1 − |z| ,

and so the proof of Theorem 1.1 is complete. 
�
Proof of Corollary 1.1 For any z1 and z2 ∈ D, let γ be the hyperbolic geodesic con-
necting z1 and z2. It follows from Theorem 1.1 that

| f (z1) − f (z2)| ≤
∫

γ

|Df (z)| · |dz| ≤ α + 2

cα

∫
γ

2

1 − |z|2 |dz| = α + 2

cα

dhD(z1, z2),

as required. 
�

3 Estimates on coefficients

The aim of this paper is to prove Theorem 1.2. We start with a lemma.

Lemma 3.1 Under the assumptions of Theorem 1.2, if f has the series expansion
(1.7), then

(1) |ck | ≤ M for k ≥ 0;
(2) (|ck | + |c−k |Pα,k(r2))rk ≤ 4

π
M for k > 0 and r ∈ (0, 1).

Proof If k �= 0, let z = reiθ ∈ D. Then by (1.7), we have

ckr
k = 1

2π

∫ 2π

0
f (reiθ )e−ikθdθ and c−k Pα,k(r

2)rk = 1

2π

∫ 2π

0
f (reiθ )eikθdθ.

Letting ck = |ck |eiμk and c−k = |c−k |eiνk leads to

(|ck | + |c−k |Pα,k(r
2))rk = 1

2π

∫ 2π

0
f (reiθ )

(
e−i(kθ+μk ) + ei(kθ−νk )

)
dθ

≤ 1

2π

∫ 2π

0
| f (reiθ )| ·

∣∣∣e−i(kθ+μk ) + ei(kθ−νk )
∣∣∣ dθ

≤ M

π

∫ 2π

0

∣∣∣∣cos
(
kθ + μk − νk

2

)∣∣∣∣ dθ,
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636 P. Li et al.

and so [4, Lemma 1] gives

(|ck | + |c−k |Pα,k(r
2))rk ≤ 4M

π
.

Thus the assertion (2) in the lemma is true.
To prove the assertions (1), we first recall from [20, Definition 2.1] that

Pα(ze−iθ ) =
∞∑
k=0

e−ikθ zk +
∞∑
k=1

�(k + α + 1)

�(k)�(α + 1)
Pα,k(|z|2)eikθ zk .

Then by (1.6), we get

f (z) =
∞∑
k=0

zk
1

2π

∫ 2π

0
e−ikθ f ∗(eiθ )dθ

+
∞∑
k=1

�(k + α + 1)

�(k)�(α + 1)
Pα,k(|z|2)zk 1

2π

∫ 2π

0
eikθ f ∗(eiθ )dθ,

which implies

|ck | =
∣∣∣∣ 1

2π

∫ 2π

0
e−ikθ f ∗(eiθ )dθ

∣∣∣∣ ≤ M

as required. 
�
Proof of Theorem 1.2 To prove this theorem, by Lemma 3.1, we only need to check
(1.9) in the theorem. By letting r → 1− in Lemma 3.1(2), we see that the inequalities
(1.9) easily follows. 
�

4 Landau type theorem

This section consists of two subsections. In the first subsection, we shall prove an
auxiliary result. In the second subsection, Theorem 1.3 will be checked.

4.1 A lemma

Lemma 4.1 For constants α > −2, β > 0 and M > 0, let

ϕ(x) = βcα

M(α + 2)
+ (M + 5)

x(x − 2)

(1 − x)2

in [0, 1). Then
(1) ϕ is continuous in [0, 1) and strictly decreasing in (0, 1);
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Several properties of α-harmonic functions in the unit disk 637

(2) there is a unique x0 ∈ (0, 1) such that ϕ(x0) = 0.

Proof For x ∈ [0, 1), obviously,

ϕ′(x) = −2(M + 5)

(1 − x)3
< 0.

Hence ϕ(x) is continuous and strictly decreasing in [0, 1). It follows from

ϕ(0) = βcα

M(α + 2)
> 0 and lim

x→1− ϕ(x) = −∞ < 0

that there is a unique x0 ∈ (0, 1) such that ϕ(x0) = 0. The proof of this lemma is
complete. 
�

4.2 Proof of Theorem 1.3

To prove this theorem, we need estimates on two quantities | fz(z)− fz(0)|+ | fz(z)−
fz(0)| and l(Df (0)). First, we estimate | fz(z) − fz(0)| + | fz(z) − fz(0)|. Obviously,
by (1.7), we see that

fz(z) − fz(0) =
∞∑
k=2

kckz
k−1 +

∞∑
k=2

c−k
d

dw
Pα,k(w)zk+1

and

fz(z) − fz(0) =
∞∑
k=2

kc−k Pα,k(w)zk−1 +
∞∑
k=2

c−k
d

dw
Pα,k(w)zzk,

where w = |z|2.
Since

d

dw
Pα,k(w) = −

∫ 1

0
tkα(1 − tw)α−1dt ≤ 0,

we get that

Pα,k(w) ≤ Pα,k(0) = 1

k
. (4.1)

Moreover, since

Pα,k(w) = 1

wk

∫ w

0
xk−1(1 − x)αdx,
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638 P. Li et al.

we easily get

d

dw
Pα,k(w) = − k

w
Pα,k(w) + (1 − w)α

w
. (4.2)

Then (1.9), (1.10), (4.1) and (4.2) guarantee that

| fz(z) − fz(0)| + | fz(z) − fz(0)| ≤
∞∑
k=2

k
(|ck | + |c−k |Pα,k(w)

)|z|k−1

+2
∞∑
k=2

|c−k |
(
kPα,k(w) + 1

)|z|k−1

≤ (M + 5)
∞∑
k=2

k|z|k−1

= (M + 5)
|z|(2 − |z|)
(1 − |z|)2 , (4.3)

which is what we want.
Next, we estimate l(Df (0)). Applying Theorem 1.1 leads to

β = |J f (0)| = |Df (0)| l(Df (0)) ≤ M(α + 2)

cα

l(Df (0)),

which gives

l(Df (0)) ≥ βcα

M(α + 2)
. (4.4)

Now, we are ready to finish the proof of the theorem. First, we demonstrate the
univalence of f in Dρ0 , where ρ0 is determined by Eq. (1.11). For this, let z1, z2
be two points in Dρ0 with z1 �= z2, and denote the segment from z1 to z2 with the
endpoints z1 and z2 by [z1, z2]. Since

| f (z2) − f (z1)| =
∣∣∣∣
∫

[z1,z2]
fz(z)dz + fz(z)dz

∣∣∣∣
≥

∣∣∣∣
∫

[z1,z2]
fz(0)dz + fz(0)dz

∣∣∣∣
−

∣∣∣∣
∫

[z1,z2]
[ fz(z) − fz(0)]dz + [ fz(z) − fz(0)]dz

∣∣∣∣ ,

we see from (4.3), (4.4) and Lemma 4.1 that
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Several properties of α-harmonic functions in the unit disk 639

| f (z2) − f (z1)| ≥ l(Df (0)) · |z2 − z1| − (M + 5)
∫ |z2−z1|

0

|z|(2 − |z|)
(1 − |z|)2 |dz|

>

[
βcα

M(α + 2)
− (M + 5)

ρ0(2 − ρ0)

(1 − ρ0)2

]
|z2 − z1|

= 0.

Thus, for arbitrary z1 and z2 ∈ Dρ0 with z1 �= z2, we have

f (z1) �= f (z2),

which implies the univalence of f in Dρ0 .
Next, we prove Theorem 1.3(2). For any ζ = ρ0eiθ ∈ ∂Dρ0 , we obtain that

| f (ζ ) − f (0)| =
∣∣∣∣
∫

[0,ζ ]
fz(z)dz + fz(z)dz

∣∣∣∣
≥

∣∣∣∣
∫

[0,ζ ]
fz(0)dz + fz(0)dz

∣∣∣∣
−

∣∣∣∣
∫

[0,ζ ]
[ fz(z) − fz(0)]dz + [ fz(z) − fz(0)]dz

∣∣∣∣
≥ l(Df (0))ρ0 − (M + 5)

∫ ρ0

0

|z|(2 − |z|)
(1 − |z|)2 |dz| (by (4.3))

= βcαρ0

M(α + 2)
− (M + 5)

ρ2
0

1 − ρ0
.

= (M + 5)
( ρ0

1 − ρ0

)2
. (by (1.11))

Hence f (Dρ0) contains a univalent disk DR0 , where

R0 ≥ (M + 5)
( ρ0

1 − ρ0

)2
.

The proof of this theorem is complete. 
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