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Abstract A group G is almost Engel if for every g ∈ G there is a finite set E(g) such
that for every x ∈ G all sufficiently long commutators [x, n g] belong to E(g), that is,
for every x ∈ G there is a positive integer n(x, g) such that [x, n g] ∈ E(g) whenever
n(x, g) ≤ n. A group G is almost nil if it is almost Engel and for every g ∈ G there is
a positive integer n depending on g such that [x, sg] ∈ E(g) for every x ∈ G and every
s ≥ n. We prove that if a linear group G is almost Engel, then G is finite-by-
hypercentral. If G is almost nil, then G is finite-by-nilpotent.
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1 Introduction

By a linear group we understand here a subgroup of GL(m, F) for some field F and
a positive integer m. An element g of a group G is called a (left) Engel element if
for any x ∈ G there exists n = n(x, g) ≥ 1 such that [x, n g] = 1. As usual, the
commutator [x, n g] is defined recursively by the rule
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712 P. Shumyatsky

[x, n g] = [[x, n−1 g], g]

assuming [x, 0 g] = x . If n can be chosen independently of x , then g is a (left) n-Engel
element. A group G is called Engel if all elements of G are Engel. It is called n-Engel
if all its elements are n-Engel. A group is said to be locally nilpotent if every finite
subset generates a nilpotent subgroup. Clearly, any locally nilpotent group is an Engel
group. It is a long-standing problem whether any n-Engel group is locally nilpotent.
Engel linear groups are known to be locally nilpotent (cf. [2,3]).

We say that a group G is almost Engel if for every g ∈ G there is a finite set E(g)
such that for every x ∈ G all sufficiently long commutators [x, n g] belong to E(g),
that is, for every x ∈ G there is a positive integer n(x, g) such that [x, n g] ∈ E(g)
whenever n(x, g) ≤ n. (Thus, Engel groups are precisely the almost Engel groups for
which we can choose E(g) = {1} for all g ∈ G.) We say that a group G is nil if for
every g ∈ G there is a positive integer n depending on g such that g is n-Engel. The
group G will be called almost nil if it is almost Engel and for every g ∈ G there is a
positive integer n depending on g such that [x, s g] ∈ E(g) for every x ∈ G and every
s ≥ n.

Almost Engel groups were introduced in [6] where it was proved that an almost
Engel compact group is necessarily finite-by-(locally nilpotent). The purpose of the
present article is to prove the following related result.

Theorem 1.1 Let G be a linear group.

1. If G is almost Engel, then G is finite-by-hypercentral.
2. If G is almost nil, then G is finite-by-nilpotent.

Recall that the union of all terms of the (transfinite) upper central series of G is
called the hypercenter. The groupG is hypercentral if it coincides with its hypercenter.
The hypercentral groups are known to be locally nilpotent (see [10, P. 365]). By well-
known results obtained in [2,3], if under the hypotheses of Theorem 1.1 the group G
is Engel or nil, then G is hypercentral or nilpotent, respectively.

As a warning to the reader, we mention that in many articles (including some of the
author) the expression “the group G is almost an X -group” for a property X means
“G has an X -subgroup of finite index”. In the present paper, however, the meaning of
the term “almost Engel” is different. It is hoped that this discrepancy does not lead to
a confusion.

2 Preliminaries

Let G be a group and g ∈ G an almost Engel element, so that there is a finite set E(g)
such that for every x ∈ G there is a positive integer n(x, g) with the property that
[x, n g] belongs to E(g) whenever n(x, g) ≤ n. If E ′(g) is another finite set with the
same property for possibly different numbers n′(x, g), then E(g)∩E ′(g) also satisfies
the same condition with the numbers n′′(x, g) = max{n(x, g), n′(x, g)}. Hence there
is a minimal set with the above property. The minimal set will again be denoted by
E(g) and, following [6], called the Engel sink for g, or simply g-sink for short. From
now on we will always use the notation E(g) to denote the (minimal) Engel sinks. In
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Almost Engel linear groups 713

particular, it follows that for each x ∈ E(g) there exists y ∈ E(g) such that x = [y, g].
More generally, given a subset K ⊆ G and an almost Engel element g ∈ G, we write
E(g, K ) to denote the minimal subset of G with the property that for every x ∈ K
there is a positive integer n(x, g) such that [x, n g] belongs to E(g, K ) whenever
n(x, g) ≤ n. Throughout the article we use the symbols 〈X〉 and 〈XG〉 to denote the
subgroup generated by a set X and the minimal normal subgroup of G containing X ,
respectively.

A group is said to have a property virtually if some subgroup of finite index has
the property. The following lemma can be found in [8, Ch. 12, Lemma 1.2] or in [5,
Lemma 21.1.4].

Lemma 2.1 A virtually abelian group contains a characteristic abelian subgroup of
finite index.

As usual, we write Zi (G) for the i th term of the upper central series ofG and γi (G)

for the i th term of the lower central series. A well-known theorem of Schur states that
if G is central-by-finite, then the commutator subgroup G ′ is finite (see [10, 10.1.4]).
Baer proved that if, for a positive integer k, the quotient G/Zk(G) is finite, then so is
γk+1(G) (see [10, 14.5.1]). Recently, the following related result was obtained in [1]
(see also [7]).

Theorem 2.2 Let G be a group and let H be the hypercenter of G. If G/H is finite,
then G has a finite normal subgroup N such that G/N is hypercentral.

We will also require the Dicman Lemma (see [10, 14.5.7]).

Lemma 2.3 In any group a normal finite subset consisting of elements of finite order
generates a finite subgroup.

In [9] Plotkin proved that if a group G has an ascending series whose quotients
locally satisfy the maximal condition, then the Engel elements of G form a locally
nilpotent subgroup. In particular we have the following lemma.

Lemma 2.4 Let G be a group having an ascending series whose quotients locally
satisfy the maximal condition and let a ∈ G be an Engel element. Then 〈aG〉 is locally
nilpotent.

Linear groups are naturally equipped with the Zariski topology. If G is a linear
group, the connected component of G containing 1 is denoted by G0. We will use
(sometimes implicitly) the following facts on linear groups. All these facts are well-
known and are provided here just for the reader’s convenience.

• If G is a linear group and N a normal subgroup which is closed in the Zarissky
topology, then G/N is linear (see [12, Theorem 6.4]).

• Since finite subsets ofG are closed in the Zariski topology, it follows that any finite
subgroup of a linear group is closed. Hence G/N is linear for any finite normal
subgroup N .

• If G is a linear group, the connected component G0 has finite index in G (see [12,
Lemma 5.3]).
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714 P. Shumyatsky

• Each finite conjugacy class in a linear group centralizesG0 (see [12, Lemma 5.5]).
• In a linear group any descending chain of centralizers is finite.
• Alinear groupgeneratedbynormal nilpotent subgroups is nilpotent (seeGruenberg
[3]).

• Tits alternative: A finitely generated linear group either is virtually soluble or
contains a subgroup isomorphic to a nonabelian free group (see [11]).

• The Burnside–Schur theorem: A periodic linear group is locally finite (see [12,
9.1]).

• Zassenhaus theorem: A locally soluble linear group is soluble. Every linear group
contains a unique maximal soluble normal subgroup (see [12, Corollary 3.8]).

• Since the closure in the Zariski topology of a soluble subgroup is again soluble (see
[12, Lemma 5.11]), it follows that the unique maximal soluble normal subgroup
of a linear group is closed. In particular, if G is linear and R is the unique maximal
soluble normal subgroup of G, then G/R is linear and has no nontrivial normal
soluble subgroups.

• A locally nilpotent linear group is hypercentral (see [2] or [3]).
• Gruenberg theorem: The set of Engel elements in a linear group G coincides with
the Hirsch–Plotkin radical of G. The set of right Engel elements coincides with
the hypercenter of G (see [3]).

Here, as usual, the Hirsch–Plotkin radical of a group is the maximal normal locally
nilpotent subgroup. An element g ∈ G is a right Engel element if for each x ∈ G
there exists a positive integer n such that [g, n x] = 1.

3 Almost Engel elements in virtually soluble groups

In the present section we give certain criteria for a group containing almost Engel
elements to be finite-by-nilpotent or finite-by-hypercentral. In particular, we prove
that a virtually soluble group generated by finitely many almost Engel elements is
finite-by-nilpotent (Theorem 3.3).

Lemma 3.1 Let G = H〈a1, . . . , as〉, where H is a normal subgroup and ai are almost
Engel elements. Assume that G/H is nilpotent. If N ≤ H is a finite normal subgroup
of H, then 〈NG〉 is finite.
Proof Suppose first that s = 1 and write a in place of a1. Let M be the subgroup
generated by all commutators of the form [x, j a], where x ∈ N and j is a nonnegative
integer. Since both N and E(a) are finite, it follows that there exists an integer k such
that M is contained in the product

∏k
i=0 N

ai . It is clear that the product
∏k

i=0 N
ai is

normal in H and a normalizes M . Therefore 〈MH 〉 is normal in G and is contained in
∏k

i=0 N
ai . Moreover, 〈NG〉 = 〈MH 〉 so in the case where s = 1 the lemma follows.

Therefore we will assume that s ≥ 2 and use induction on s. Assume additionally
thatG/H is abelian. Set H0 = H and Hi = Hi−1〈ai 〉 for i = 1, . . . , s. The subgroups
Hi are normal in G and Hs = G. By induction, K = 〈NHs−1〉 is finite. Since G =
Hs−1〈as〉, the above paragraph shows that 〈KG〉 is finite. Obviously, 〈KG〉 = 〈NG〉
and so in the case where G/H is abelian the lemma follows.
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Almost Engel linear groups 715

We will now allow G/H to be nonabelian, say of nilpotency class c. We will use
induction on c. Set B = 〈aGs 〉 and G1 = HB. Since G/H is a finitely generated
nilpotent group, it follows that each subgroup of G/H is finitely generated and so B
has finitely many conjugates of as , say ag1s . . . , agrs such that G1 = H〈ag1s . . . , agrs 〉.
Since G1/H has nilpotency class at most c− 1, by induction 〈NG1〉 is finite. We now
note that G = G1〈a1, . . . , as−1〉 so the induction on s completes the proof. 
�
Lemma 3.2 Let G = H〈a〉, where H is a virtually abelian normal subgroup and a
is an almost Engel element. Then 〈aG〉 is finite-by-(locally nilpotent).
Proof Assume thatG is a counter-example with |E(a)| as small as possible. In view of
Lemma 2.1 we can choose a maximal characteristic abelian subgroup V in H . Since
V is abelian, we have [v1, a][v2, a] = [v1v2, a] for any v1, v2 ∈ V . In other words, a
product of two commutators of the form [v, a], where v ∈ V , again has the same form.
Therefore E(a, V ) is a finite subgroup. Obviously, the normalizer in G of E(a, V ) has
finite index. It follows that E(a, V ) is contained in a finite normal subgroup N . If
E(a, V ) �= 1, we pass to the quotient G/N and use induction on |E(a)|. Therefore
without loss of generality we will assume that E(a, V ) = 1, that is, a is Engel in V 〈a〉.
Since E(a) consists of commutators of the form [x, a] with x ∈ E(a), it follows that
E(a) ∩ V = {1}. Let C0 = 1 and

Ci = {v ∈ V | [v, a] ∈ Ci−1}

for i = 1, 2, . . . . Since a is Engel in V , we have V = ∪iCi .
Let T = 〈E(a), a〉 and U = V ∩ T . We observe that U is a finitely generated

abelian subgroup. In view of the fact that V is the union of the Ci we deduce that there
exists a positive integer n such that U = Cn ∩U .

For i = 0, . . . , n setUi = Ci ∩U . Thus,U = Un . Observe thatU1 centralizes a and
therefore U1 normalizes the set E(a). Denote by W1 the intersection U1 ∩ CG(E(a)).
Since E(a) is finite, it follows that W1 has finite index in U1. Further, it is clear that
W1 is contained in the center Z(T ).

The finiteness of the index [U1 : W1] implies that U2 contains a normal in T
subgroup W2 such that the index [U2 : W2] is finite, and [W2, T ] ≤ W1. Thus, W2 is
contained in Z2(T ), the second term of the upper central series of T .

Next, in a similar way we conclude that U3 ∩ Z3(T ) has finite index in U3 and so
on. Eventually, we deduce that U ∩ Zn(T ) has finite index in U . Thus, T/Zn(T ) is
finite-by-cyclic and therefore there exists a positive integer k such that ak ∈ Zn+1(T ).
Hence, T/Zn+1(T ) is finite and so, in view of Baer’s theorem, we deduce that T
is finite-by-nilpotent. In particular, for some positive integer r the subgroup γr (T )

is finite. The observation that for each x ∈ E(a) there exists y ∈ E(a) such that
x = [y, g] guarantees that E(a) is contained in γr (T ). In particular, we proved that
the subgroup 〈E(a)〉 is finite. Because V is abelian, it is obvious that V normalizes
V ∩ 〈E(a)〉. Thus, V ∩ 〈E(a)〉 is a finite subgroup with normalizer of finite index. It
follows that V ∩ 〈E(a)〉 is contained in a finite normal subgroup of G. We can factor
out the latter and without loss of generality assume that V ∩ 〈E(a)〉 = 1.

Recall that C1 = CV (a). Therefore C1 normalizes 〈E(a)〉 and in view of the fact
that V ∩ 〈E(a)〉 = 1 we conclude that C1 centralizes 〈E(a)〉. So C1 ≤ Z(VT ).
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716 P. Shumyatsky

Same argument shows that C2/C1 ≤ Z(VT/C1) and, more generally, Ci+1/Ci ≤
Z(VT/Ci ) for i = 0, 1, 2 . . . . Thus, V ≤ Z∞(VT ) where Z∞(VT ) stands for the
hypercenter of T . Of course, it follows that there exists a positive integer k such that
ak ∈ Z∞(VT ). We deduce that Z∞(VT ) has finite index in VT . Theorem 2.2 now
tells us that VT has a finite normal subgroup N such that the quotient group (VT )/N
is hypercentral. The hypercentral groups are locally nilpotent and so VT is finite-by-
(locally nilpotent). The observation that for each x ∈ E(a) there exists y ∈ E(a) such
that x = [y, g] guarantees that E(a) is contained in N .

Since VT has finite index in G, Dicman’s lemma tells us that G contains a finite
normal subgroup R such that E(a) ⊆ N ≤ R. The image of a in G/R is Engel and
the required result follows from Lemma 2.4. 
�
Theorem 3.3 A virtually soluble group generated by finitely many almost Engel ele-
ments is finite-by-nilpotent.

Proof Let G be a virtually soluble group generated by finitely many almost Engel
elements a1, . . . , as and let S be a normal soluble subgroup of finite index in G. We
assume that S �= 1 and let V be the last nontrivial term of the derived series of S.
By induction on the derived length of S we assume that G/V is finite-by-nilpotent.
Therefore G contains a normal subgroup H such that V has finite index in H and
the quotient G/H is nilpotent. For i = 1, . . . , s set Gi = H〈ai 〉. By Lemma 3.2
each subgroup 〈aGi

i 〉 has a finite normal subgroup Ni such that 〈aGi
i 〉/Ni is locally

nilpotent. Since Gi/H are abelian, it is clear that all quotients Gi/H ∩ Ni are locally
nilpotent and so, replacing if necessary Ni by H ∩ Ni , without loss of generality we
can assume that all subgroups Ni are normal subgroups of H . Therefore the product
of the subgroups Ni is finite. By Lemma 3.1 the product of N1 · · · Ns is contained
in a finite subgroup N which is normal in G. Obviously the images in G/N of the
generators a1, . . . , as are Engel. Thus, G/N is a virtually soluble group generated by
finitely many Engel elements. It follows from Lemma 2.4 that G/N is nilpotent. The
proof is complete. 
�

The next lemma is well-known. For the reader’s convenience we provide the proof.

Lemma 3.4 Let G = H〈a〉, where H is a nilpotent normal subgroup and a is a nil
element. Then G is nilpotent.

Proof Suppose that a is n-Engel. Let K = Z(H) and set K0 = K and Ki+1 = [Ki , a]
for i = 0, 1, . . . . Then Kn−1 ≤ K ∩ CK (a) and so Kn−1 ≤ Z(G). Moreover we
observe that [Ki−1,G] ≤ Ki and it follows that Kn−i ≤ Zi (G) for i = 1, 2, . . . , n.
Therefore K ≤ Zn(G). Passing to the quotient G/Zn(G) and using induction on the
nilpotency class of H we deduce that if H is nilpotent with class c, then G is nilpotent
with class at most cn. 
�
Lemma 3.5 Let G = H〈a〉, where H is a hypercentral normal subgroup and a is an
Engel element. Then G is hypercentral.

Proof It is sufficient to show that Z(G) �= 1. Let Z = Z(H). Since a is an Engel
element, CZ (a) �= 1. Obviously, CZ (a) ≤ Z(G). The proof is complete. 
�
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Almost Engel linear groups 717

Lemma 3.6 Let a be an almost Engel element in a group G and assume that E(a) is
contained in a locally nilpotent subgroup. Then the subgroup 〈E(a)〉 is finite.
Proof Set D = 〈E(a)〉. Without loss of generality we can assume that G = D〈a〉.
Since E(a) is finite, D is nilpotent and we can use induction on the nilpotency class
of D. Thus, by induction assume that the quotient of D over its center is finite. By
Schur’s theorem the derived group D′ is finite as well. Factoring out D′ we can assume
that D is abelian. So now D is abelian and D = [D, a]. By [6, Lemma 2.3], D = E(a)

and hence D is finite. 
�
Lemma 3.7 Let G = H〈a〉, where H is a hypercentral normal subgroup.

1. If a is almost Engel, then G is finite-by-hypercentral.
2. If H is nilpotent and a is almost nil, then G is finite-by-nilpotent.

Proof Wewill prove Claim 1 first. Assume that a is almost Engel. Let N be the product
of all normal subgroups of G whose intersection with E(a) is {1}. It is easy to see that
N ∩ E(a) = {1} and N is the unique maximal normal subgroup with that property.
Therefore K ∩E(a) �= {1}whenever K is a normal subgroup containing N as a proper
subgroup. Since E(a) is finite, the group G contains a minimal normal subgroup M
such that N < M . Taking into account that H is hypercentral, we observe that M/N
is central in H/N .

Let D = 〈E(a)〉 ∩ M . It follows that M = ND. Suppose that D is not normal
in M and set L = NM (NM (D)). Since M is hypercentral, it satisfies the normalizer
condition and so L �= NM (D). Obviously a normalizes both L and NM (D). Since a
acts on L/NM (D) as an Engel element, the centralizer of a in L/NM (D) is nontrivial.
Thus, L has a subgroup C such that NM (D) < C and C normalizes NM (D)〈a〉.
Of course, D is normal in NM (D)〈a〉. By Lemma 3.5 the quotient of NM (D)〈a〉 by
D is hypercentral. It is easy to see that D is a unique minimal normal subgroup of
NM (D)〈a〉whose quotient is hypercentral. Therefore D is characteristic in NM (D)〈a〉
and so C normalizes D. This is a contradiction since NM (D) < C .

Hence, D is normal in M . Again, it is easy to see that D is a unique minimal normal
subgroup of M〈a〉 whose quotient is hypercentral. Therefore D is characteristic in M
and so it is normal in G. We pass to the quotient G/D and Claim 1 now follows by
straightforward induction on |E(a)|.

We now assume that H is nilpotent and a is almost nil. We already know that G is
finite-by-hypercentral. Factoring out a finite normal subgroup we can assume that G
is hypercentral. In that case a is actually nil and so by Lemma 3.4 G is nilpotent. The
proof of the lemma is complete. 
�

4 Linear groups

Lemma 4.1 A virtually soluble almost Engel linear group is finite-by-hypercentral.

Proof Suppose that G is a virtually soluble almost Engel linear group. Let S be a
normal soluble subgroup of finite index in G. By induction on the derived length of
S we assume that S′ is finite-by-hypercentral. Passing to the quotient over a normal
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718 P. Shumyatsky

finite subgroup without loss of generality we can assume that S′ is hypercentral. By
Lemma 3.7 the subgroup 〈S′, x〉 is finite-by-hypercentral for each x ∈ G. Thus,
for each x ∈ G there exists a finite characteristic subgroup Rx ≤ 〈S′, x〉 such that
〈S′, x〉/Rx is hypercentral. Since 〈S′, x〉 is normal in S, it follows that each element
in Rx has centralizer of finite index in S, hence centralizer of finite index in G.
Therefore G0 centralizes Rx and it follows that 〈S′, x〉 is hypercentral for each x ∈
G0. The subgroup

∏〈S′, x〉, where x ranges over S ∩ G0, is locally nilpotent and
therefore hypercentral. In particular N = S ∩G0 is hypercentral and so G is virtually
hypercentral. By Lemma 3.7 the subgroup 〈N , x〉 is finite-by-hypercentral for each
x ∈ G. In other words, for each x ∈ G there exists a finite characteristic subgroup
Qx ≤ 〈N , x〉 such that the quotient 〈N , x〉/Qx is hypercentral. Since N hasfinite index
in G, it follows that G contains only finitely many subgroups of the form 〈N , x〉. Set
N0 = ∏

x∈G Qx . We see that N0 is a finite normal subgroup. Pass to the quotient
G/N0. Now the subgroup 〈N , x〉 is hypercentral for each x ∈ G. It follows that N
consists of right Engel elements and so, by the result of Gruenberg, N is contained in
the hypercenter of G. It follows from Theorem 2.2 that G is finite-by-hypercentral, as
required. 
�

We are now ready to prove Theorem 1.1 in its full generality. For the reader’s
convenience we restate it here.

Theorem 4.2 Let G be a linear group. If G is almost Engel, then G is finite-by-
hypercentral. If G is almost nil, then G is finite-by-nilpotent.

Proof Assume that G is almost Engel. In view of Lemma 4.1 it is sufficient to show
that G is virtually soluble. By the Zassenhaus theorem a linear group is soluble if and
only if it is locally soluble. Therefore it is sufficient to show that G is virtually locally
soluble. It is clear that G does not contain a subgroup isomorphic to a nonabelian free
group. Hence, by Tits alternative, any finitely generated subgroup of G is virtually
soluble. Therefore, by Theorem 3.3, any finitely generated subgroup of G is finite-by-
nilpotent. It becomes obvious that elements of finite order in G generate a periodic
subgroup. Moreover, the quotient of G over the subgroup generated by all elements
of finite order is locally nilpotent. Hence, G is virtually locally soluble if and only
if so is the subgroup generated by elements of finite order. Therefore without loss of
generality we can assume that G is an infinite periodic (and locally finite) group.

Let R be the soluble radical of G. We can pass to the quotient and without loss of
generality assume that R = 1. So in particular G has no nontrivial Engel elements.
By the theorem of Hall–Kulatilaka G contains an infinite abelian subgroup [4]. We
conclude that some centralizers in G are infinite. Since G satisfies the minimal condi-
tion on centralizers, it follows that G has a subgroup D �= 1 such that the centralizer
C = CG(D) is infinite while CG(〈D, x〉) is finite for each x ∈ G \ D. Using that
C is infinite we deduce from the Hall–Kulatilaka theorem that C contains an infinite
abelian subgroup A. Obviously A ≤ CG(〈D, A〉) and it follows that A ≤ D. Thus,
A ≤ Z(C).

Now choose 1 �= a ∈ A. The centralizer C normalizes the finite set E(a) because
a ∈ Z(C). Hence, C contains a subgroup of finite index which centralizes E(a). It
follows that CG(〈D, E(a)〉) is infinite and we conclude that E(a) is contained in D
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Almost Engel linear groups 719

and C centralizes E(a). In particular, a centralizes E(a) and so E(a) = {1}. Thus, a
is an Engel element, a contradiction. This completes the proof of Claim 1.

Suppose now thatG is almost nil.We already know thatG is finite-by-hypercentral.
Passing to a quotient over a finite normal subgroup we can assume that G is hyper-
central. Then obviously G, being both hypercentral and almost nil, must be nil. By
the result of Gruenberg, G is nilpotent. 
�
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