

Almost Engel linear groups

Pavel Shumyatsky¹

Received: 16 March 2017 / Accepted: 19 May 2017 / Published online: 12 June 2017 © Springer-Verlag Wien 2017

Abstract A group *G* is almost Engel if for every $g \in G$ there is a finite set $\mathcal{E}(g)$ such that for every $x \in G$ all sufficiently long commutators $[x, n, g]$ belong to $\mathcal{E}(g)$, that is, for every $x \in G$ there is a positive integer $n(x, g)$ such that $[x, n g] \in \mathcal{E}(g)$ whenever $n(x, g) \le n$. A group *G* is almost nil if it is almost Engel and for every $g \in G$ there is a positive integer *n* depending on *g* such that $[x, g] \in \mathcal{E}(g)$ for every $x \in G$ and every $s > n$. We prove that if a linear group *G* is almost Engel, then *G* is finite-byhypercentral. If *G* is almost nil, then *G* is finite-by-nilpotent.

Keywords Linear groups · Engel condition · Locally nilpotent groups

Mathematics Subject Classification 20E99 · 20F45 · 20H20

1 Introduction

By a linear group we understand here a subgroup of *G L*(*m*, *F*) for some field *F* and a positive integer *m*. An element *g* of a group *G* is called a (left) Engel element if for any $x \in G$ there exists $n = n(x, g) \ge 1$ such that $[x, n, g] = 1$. As usual, the commutator $[x, n, g]$ is defined recursively by the rule

 \boxtimes Pavel Shumyatsky pavel@unb.br

Communicated by A. Constantin.

This research was supported by FAPDF and CNPq-Brazil.

¹ Department of Mathematics, University of Brasilia, Brasília, DF 70910-900, Brazil

$$
[x, {}_{n}g] = [[x, {}_{n-1}g], g]
$$

assuming $[x, 0, g] = x$. If *n* can be chosen independently of *x*, then *g* is a *(left) n*-*Engel element*. A group *G* is called Engel if all elements of *G* are Engel. It is called *n*-Engel if all its elements are *n*-Engel. A group is said to be locally nilpotent if every finite subset generates a nilpotent subgroup. Clearly, any locally nilpotent group is an Engel group. It is a long-standing problem whether any *n*-Engel group is locally nilpotent. Engel linear groups are known to be locally nilpotent (cf. [\[2](#page-8-0),[3\]](#page-8-1)).

We say that a group *G* is almost Engel if for every $g \in G$ there is a finite set $\mathcal{E}(g)$ such that for every $x \in G$ all sufficiently long commutators $[x, n, g]$ belong to $\mathcal{E}(g)$, that is, for every $x \in G$ there is a positive integer $n(x, g)$ such that $[x, g] \in \mathcal{E}(g)$ whenever $n(x, g) \leq n$. (Thus, Engel groups are precisely the almost Engel groups for which we can choose $\mathcal{E}(g) = \{1\}$ for all $g \in G$.) We say that a group G is nil if for every $g \in G$ there is a positive integer *n* depending on *g* such that *g* is *n*-Engel. The group *G* will be called almost nil if it is almost Engel and for every $g \in G$ there is a positive integer *n* depending on *g* such that $[x, g] \in \mathcal{E}(g)$ for every $x \in G$ and every *s* ≥ *n*.

Almost Engel groups were introduced in [\[6\]](#page-8-2) where it was proved that an almost Engel compact group is necessarily finite-by-(locally nilpotent). The purpose of the present article is to prove the following related result.

Theorem 1.1 *Let G be a linear group.*

- *1. If G is almost Engel, then G is finite-by-hypercentral.*
- *2. If G is almost nil, then G is finite-by-nilpotent.*

Recall that the union of all terms of the (transfinite) upper central series of *G* is called the hypercenter. The group *G* is hypercentral if it coincides with its hypercenter. The hypercentral groups are known to be locally nilpotent (see [\[10,](#page-8-3) P. 365]). By wellknown results obtained in [\[2](#page-8-0)[,3](#page-8-1)], if under the hypotheses of Theorem [1.1](#page-1-0) the group *G* is Engel or nil, then *G* is hypercentral or nilpotent, respectively.

As a warning to the reader, we mention that in many articles (including some of the author) the expression "the group *G* is almost an *X*-group" for a property *X* means "G has an *X*-subgroup of finite index". In the present paper, however, the meaning of the term "almost Engel" is different. It is hoped that this discrepancy does not lead to a confusion.

2 Preliminaries

Let *G* be a group and $g \in G$ an almost Engel element, so that there is a finite set $\mathcal{E}(g)$ such that for every $x \in G$ there is a positive integer $n(x, g)$ with the property that [*x*, *n g*] belongs to $\mathcal{E}(g)$ whenever $n(x, g) \leq n$. If $\mathcal{E}'(g)$ is another finite set with the same property for possibly different numbers $n'(x, g)$, then $\mathcal{E}(g) \cap \mathcal{E}'(g)$ also satisfies the same condition with the numbers $n''(x, g) = \max\{n(x, g), n'(x, g)\}\.$ Hence there is a *minimal* set with the above property. The minimal set will again be denoted by $E(g)$ and, following [\[6\]](#page-8-2), called the *Engel sink for g*, or simply *g-sink* for short. From now on we will always use the notation $\mathcal{E}(g)$ to denote the (minimal) Engel sinks. In particular, it follows that for each $x \in \mathcal{E}(g)$ there exists $y \in \mathcal{E}(g)$ such that $x = [y, g]$. More generally, given a subset $K \subseteq G$ and an almost Engel element $g \in G$, we write $\mathcal{E}(g, K)$ to denote the minimal subset of *G* with the property that for every $x \in K$ there is a positive integer $n(x, g)$ such that $[x, g]$ belongs to $\mathcal{E}(g, K)$ whenever $n(x, g) \leq n$. Throughout the article we use the symbols $\langle X \rangle$ and $\langle X^G \rangle$ to denote the subgroup generated by a set *X* and the minimal normal subgroup of *G* containing *X*, respectively.

A group is said to have a property virtually if some subgroup of finite index has the property. The following lemma can be found in $[8, Ch. 12, Lemma 1.2]$ $[8, Ch. 12, Lemma 1.2]$ or in $[5,$ Lemma 21.1.4].

Lemma 2.1 *A virtually abelian group contains a characteristic abelian subgroup of finite index.*

As usual, we write $Z_i(G)$ for the *i*th term of the upper central series of G and $\gamma_i(G)$ for the *i*th term of the lower central series. A well-known theorem of Schur states that if *G* is central-by-finite, then the commutator subgroup G' is finite (see [\[10](#page-8-3), 10.1.4]). Baer proved that if, for a positive integer k, the quotient $G/Z_k(G)$ is finite, then so is $\gamma_{k+1}(G)$ (see [\[10,](#page-8-3) 14.5.1]). Recently, the following related result was obtained in [\[1\]](#page-8-6) (see also [\[7](#page-8-7)]).

Theorem 2.2 *Let G be a group and let H be the hypercenter of G. If G*/*H is finite, then G has a finite normal subgroup N such that G*/*N is hypercentral.*

We will also require the Dicman Lemma (see [\[10](#page-8-3), 14.5.7]).

Lemma 2.3 *In any group a normal finite subset consisting of elements of finite order generates a finite subgroup.*

In [\[9\]](#page-8-8) Plotkin proved that if a group *G* has an ascending series whose quotients locally satisfy the maximal condition, then the Engel elements of *G* form a locally nilpotent subgroup. In particular we have the following lemma.

Lemma 2.4 *Let G be a group having an ascending series whose quotients locally satisfy the maximal condition and let* $a \in G$ *be an Engel element. Then* $\langle a^G \rangle$ *is locally nilpotent.*

Linear groups are naturally equipped with the Zariski topology. If *G* is a linear group, the connected component of *G* containing 1 is denoted by G^0 . We will use (sometimes implicitly) the following facts on linear groups. All these facts are wellknown and are provided here just for the reader's convenience.

- If *G* is a linear group and *N* a normal subgroup which is closed in the Zarissky topology, then G/N is linear (see [\[12,](#page-8-9) Theorem 6.4]).
- Since finite subsets of *G* are closed in the Zariski topology, it follows that any finite subgroup of a linear group is closed. Hence *G*/*N* is linear for any finite normal subgroup *N*.
- If *G* is a linear group, the connected component G^0 has finite index in *G* (see [\[12,](#page-8-9) Lemma 5.3]).
- Each finite conjugacy class in a linear group centralizes G^0 (see [\[12,](#page-8-9) Lemma 5.5]).
- In a linear group any descending chain of centralizers is finite.
- A linear group generated by normal nilpotent subgroups is nilpotent (see Gruenberg [\[3\]](#page-8-1)).
- Tits alternative: A finitely generated linear group either is virtually soluble or contains a subgroup isomorphic to a nonabelian free group (see [\[11](#page-8-10)]).
- The Burnside–Schur theorem: A periodic linear group is locally finite (see [\[12,](#page-8-9) 9.1]).
- Zassenhaus theorem: A locally soluble linear group is soluble. Every linear group contains a unique maximal soluble normal subgroup (see [\[12,](#page-8-9) Corollary 3.8]).
- Since the closure in the Zariski topology of a soluble subgroup is again soluble (see [\[12,](#page-8-9) Lemma 5.11]), it follows that the unique maximal soluble normal subgroup of a linear group is closed. In particular, if *G* is linear and *R* is the unique maximal soluble normal subgroup of G , then G/R is linear and has no nontrivial normal soluble subgroups.
- A locally nilpotent linear group is hypercentral (see [\[2](#page-8-0)] or [\[3\]](#page-8-1)).
- Gruenberg theorem: The set of Engel elements in a linear group *G* coincides with the Hirsch–Plotkin radical of *G*. The set of right Engel elements coincides with the hypercenter of G (see [\[3\]](#page-8-1)).

Here, as usual, the Hirsch–Plotkin radical of a group is the maximal normal locally nilpotent subgroup. An element $g \in G$ is a right Engel element if for each $x \in G$ there exists a positive integer *n* such that $[g, n] = 1$.

3 Almost Engel elements in virtually soluble groups

In the present section we give certain criteria for a group containing almost Engel elements to be finite-by-nilpotent or finite-by-hypercentral. In particular, we prove that a virtually soluble group generated by finitely many almost Engel elements is finite-by-nilpotent (Theorem [3.3\)](#page-5-0).

Lemma 3.1 Let $G = H\langle a_1, \ldots, a_s \rangle$, where H is a normal subgroup and a_i are almost *Engel elements. Assume that G/H is nilpotent. If* $N \leq H$ *is a finite normal subgroup of H, then* $\langle N^G \rangle$ *is finite.*

Proof Suppose first that $s = 1$ and write *a* in place of a_1 . Let *M* be the subgroup generated by all commutators of the form $[x, j, a]$, where $x \in N$ and j is a nonnegative integer. Since both *N* and $\mathcal{E}(a)$ are finite, it follows that there exists an integer *k* such that *M* is contained in the product $\prod_{i=0}^{k} N^{a^i}$. It is clear that the product $\prod_{i=0}^{k} N^{a^i}$ is normal in *H* and *a* normalizes *M*. Therefore $\langle M^H \rangle$ is normal in *G* and is contained in $\prod_{i=0}^{k} N^{a^{i}}$. Moreover, $\langle N^{G} \rangle = \langle M^{H} \rangle$ so in the case where $s = 1$ the lemma follows.

Therefore we will assume that $s \geq 2$ and use induction on *s*. Assume additionally that *G*/*H* is abelian. Set $H_0 = H$ and $H_i = H_{i-1} \langle a_i \rangle$ for $i = 1, \ldots, s$. The subgroups *H_i* are normal in *G* and $H_s = G$. By induction, $K = \langle N^{H_{s-1}} \rangle$ is finite. Since $G =$ $H_{s-1}\langle a_s \rangle$, the above paragraph shows that $\langle K^G \rangle$ is finite. Obviously, $\langle K^G \rangle = \langle N^G \rangle$ and so in the case where G/H is abelian the lemma follows.

We will now allow *G*/*H* to be nonabelian, say of nilpotency class *c*. We will use induction on *c*. Set $B = \langle a_s^G \rangle$ and $G_1 = HB$. Since G/H is a finitely generated nilpotent group, it follows that each subgroup of *G*/*H* is finitely generated and so *B* has finitely many conjugates of a_s , say $a_s^{g_1}$, \ldots , $a_s^{g_r}$ such that $G_1 = H \langle a_s^{g_1} \ldots, a_s^{g_r} \rangle$. Since G_1/H has nilpotency class at most $c - 1$, by induction $\langle N^{G_1} \rangle$ is finite. We now note that $G = G_1 \langle a_1, \ldots, a_{s-1} \rangle$ so the induction on *s* completes the proof. \Box

Lemma 3.2 *Let* $G = H\langle a \rangle$, where *H* is a virtually abelian normal subgroup and a *is an almost Engel element. Then* $\langle a^G \rangle$ *is finite-by-(locally nilpotent).*

Proof Assume that *G* is a counter-example with $|\mathcal{E}(a)|$ as small as possible. In view of Lemma [2.1](#page-2-0) we can choose a maximal characteristic abelian subgroup *V* in *H*. Since *V* is abelian, we have $[v_1, a][v_2, a] = [v_1v_2, a]$ for any $v_1, v_2 \in V$. In other words, a product of two commutators of the form $[v, a]$, where $v \in V$, again has the same form. Therefore $\mathcal{E}(a, V)$ is a finite subgroup. Obviously, the normalizer in *G* of $\mathcal{E}(a, V)$ has finite index. It follows that $\mathcal{E}(a, V)$ is contained in a finite normal subgroup N. If $\mathcal{E}(a, V) \neq 1$, we pass to the quotient *G*/*N* and use induction on $|\mathcal{E}(a)|$. Therefore without loss of generality we will assume that $\mathcal{E}(a, V) = 1$, that is, *a* is Engel in $V\langle a \rangle$. Since $\mathcal{E}(a)$ consists of commutators of the form [*x*, *a*] with $x \in \mathcal{E}(a)$, it follows that *E*(*a*) ∩ *V* = {1}. Let *C*₀ = 1 and

$$
C_i = \{v \in V \mid [v, a] \in C_{i-1}\}\
$$

for $i = 1, 2, \ldots$ Since *a* is Engel in *V*, we have $V = \bigcup_i C_i$.

Let $T = \langle \mathcal{E}(a), a \rangle$ and $U = V \cap T$. We observe that *U* is a finitely generated abelian subgroup. In view of the fact that V is the union of the C_i we deduce that there exists a positive integer *n* such that $U = C_n \cap U$.

For $i = 0, \ldots, n$ set $U_i = C_i \cap U$. Thus, $U = U_n$. Observe that U_1 centralizes a and therefore U_1 normalizes the set $\mathcal{E}(a)$. Denote by W_1 the intersection $U_1 \cap C_G(\mathcal{E}(a))$. Since $\mathcal{E}(a)$ is finite, it follows that W_1 has finite index in U_1 . Further, it is clear that W_1 is contained in the center $Z(T)$.

The finiteness of the index $[U_1 : W_1]$ implies that U_2 contains a normal in *T* subgroup W_2 such that the index $[U_2 : W_2]$ is finite, and $[W_2, T] \leq W_1$. Thus, W_2 is contained in $Z_2(T)$, the second term of the upper central series of T.

Next, in a similar way we conclude that $U_3 \cap Z_3(T)$ has finite index in U_3 and so on. Eventually, we deduce that $U \cap Z_n(T)$ has finite index in *U*. Thus, $T/Z_n(T)$ is finite-by-cyclic and therefore there exists a positive integer *k* such that $a^k \in Z_{n+1}(T)$. Hence, $T/Z_{n+1}(T)$ is finite and so, in view of Baer's theorem, we deduce that T is finite-by-nilpotent. In particular, for some positive integer *r* the subgroup $\gamma_r(T)$ is finite. The observation that for each $x \in \mathcal{E}(a)$ there exists $y \in \mathcal{E}(a)$ such that $x = [y, g]$ guarantees that $\mathcal{E}(a)$ is contained in $\gamma_r(T)$. In particular, we proved that the subgroup $\langle \mathcal{E}(a) \rangle$ is finite. Because *V* is abelian, it is obvious that *V* normalizes $V \cap \langle \mathcal{E}(a) \rangle$. Thus, $V \cap \langle \mathcal{E}(a) \rangle$ is a finite subgroup with normalizer of finite index. It follows that $V \cap \langle \mathcal{E}(a) \rangle$ is contained in a finite normal subgroup of G. We can factor out the latter and without loss of generality assume that $V \cap \langle \mathcal{E}(a) \rangle = 1$.

Recall that $C_1 = C_V(a)$. Therefore C_1 normalizes $\langle \mathcal{E}(a) \rangle$ and in view of the fact that $V \cap \langle \mathcal{E}(a) \rangle = 1$ we conclude that C_1 centralizes $\langle \mathcal{E}(a) \rangle$. So $C_1 \leq Z(VT)$.

Same argument shows that $C_2/C_1 \leq Z(VT/C_1)$ and, more generally, $C_{i+1}/C_i \leq$ $Z(VT/C_i)$ for $i = 0, 1, 2, \ldots$ Thus, $V \leq Z_{\infty}(VT)$ where $Z_{\infty}(VT)$ stands for the hypercenter of *T* . Of course, it follows that there exists a positive integer *k* such that $a^k \in Z_{\infty}(VT)$. We deduce that $Z_{\infty}(VT)$ has finite index in *VT*. Theorem [2.2](#page-2-1) now tells us that *VT* has a finite normal subgroup *N* such that the quotient group $(VT)/N$ is hypercentral. The hypercentral groups are locally nilpotent and so *V T* is finite-by- (locally nilpotent). The observation that for each $x \in \mathcal{E}(a)$ there exists $y \in \mathcal{E}(a)$ such that $x = [y, g]$ guarantees that $\mathcal{E}(a)$ is contained in N.

Since *V T* has finite index in *G*, Dicman's lemma tells us that *G* contains a finite normal subgroup *R* such that $\mathcal{E}(a) \subseteq N \leq R$. The image of *a* in G/R is Engel and the required result follows from Lemma [2.4.](#page-2-2) \Box

Theorem 3.3 *A virtually soluble group generated by finitely many almost Engel elements is finite-by-nilpotent.*

Proof Let *G* be a virtually soluble group generated by finitely many almost Engel elements a_1, \ldots, a_s and let *S* be a normal soluble subgroup of finite index in *G*. We assume that $S \neq 1$ and let *V* be the last nontrivial term of the derived series of *S*. By induction on the derived length of *S* we assume that *G*/*V* is finite-by-nilpotent. Therefore *G* contains a normal subgroup *H* such that *V* has finite index in *H* and the quotient G/H is nilpotent. For $i = 1, \ldots, s$ set $G_i = H \langle a_i \rangle$. By Lemma [3.2](#page-4-0) each subgroup $\langle a_i^{G_i} \rangle$ has a finite normal subgroup N_i such that $\langle a_i^{G_i} \rangle / N_i$ is locally nilpotent. Since G_i/H are abelian, it is clear that all quotients $G_i/H \cap N_i$ are locally nilpotent and so, replacing if necessary N_i by $H \cap N_i$, without loss of generality we can assume that all subgroups N_i are normal subgroups of H . Therefore the product of the subgroups N_i is finite. By Lemma [3.1](#page-3-0) the product of $N_1 \cdots N_s$ is contained in a finite subgroup *N* which is normal in *G*. Obviously the images in *G*/*N* of the generators a_1, \ldots, a_s are Engel. Thus, G/N is a virtually soluble group generated by finitely many Engel elements. It follows from Lemma [2.4](#page-2-2) that *G*/*N* is nilpotent. The proof is complete. \Box

The next lemma is well-known. For the reader's convenience we provide the proof.

Lemma 3.4 *Let* $G = H\langle a \rangle$, where H is a nilpotent normal subgroup and a is a nil *element. Then G is nilpotent.*

Proof Suppose that *a* is *n*-Engel. Let $K = Z(H)$ and set $K_0 = K$ and $K_{i+1} = [K_i, a]$ for $i = 0, 1, \ldots$ Then $K_{n-1} \leq K \cap C_K(a)$ and so $K_{n-1} \leq Z(G)$. Moreover we observe that $[K_{i-1}, G]$ ≤ K_i and it follows that K_{n-i} ≤ $Z_i(G)$ for $i = 1, 2, ..., n$. Therefore $K \leq Z_n(G)$. Passing to the quotient $G/Z_n(G)$ and using induction on the nilpotency class of *H* we deduce that if *H* is nilpotent with class *c*, then *G* is nilpotent with class at most *cn*. \Box

Lemma 3.5 Let $G = H \langle a \rangle$, where H is a hypercentral normal subgroup and a is an *Engel element. Then G is hypercentral.*

Proof It is sufficient to show that $Z(G) \neq 1$. Let $Z = Z(H)$. Since *a* is an Engel element, $C_Z(a) \neq 1$. Obviously, $C_Z(a) \leq Z(G)$. The proof is complete. \Box **Lemma 3.6** Let a be an almost Engel element in a group G and assume that $\mathcal{E}(a)$ is *contained in a locally nilpotent subgroup. Then the subgroup* $\mathcal{E}(a)$ *is finite.*

Proof Set $D = \langle \mathcal{E}(a) \rangle$. Without loss of generality we can assume that $G = D\langle a \rangle$. Since $\mathcal{E}(a)$ is finite, *D* is nilpotent and we can use induction on the nilpotency class of *D*. Thus, by induction assume that the quotient of *D* over its center is finite. By Schur's theorem the derived group D' is finite as well. Factoring out D' we can assume that *D* is abelian. So now *D* is abelian and $D = [D, a]$. By [\[6](#page-8-2), Lemma 2.3], $D = \mathcal{E}(a)$ and hence *D* is finite. \Box

Lemma 3.7 *Let* $G = H(a)$ *, where* H *is a hypercentral normal subgroup.*

1. If a is almost Engel, then G is finite-by-hypercentral.

2. If H is nilpotent and a is almost nil, then G is finite-by-nilpotent.

Proof We will prove Claim 1 first. Assume that *a* is almost Engel. Let *N* be the product of all normal subgroups of *G* whose intersection with $\mathcal{E}(a)$ is {1}. It is easy to see that $N \cap \mathcal{E}(a) = \{1\}$ and *N* is the unique maximal normal subgroup with that property. Therefore $K \cap \mathcal{E}(a) \neq \{1\}$ whenever *K* is a normal subgroup containing *N* as a proper subgroup. Since $\mathcal{E}(a)$ is finite, the group G contains a minimal normal subgroup M such that $N < M$. Taking into account that *H* is hypercentral, we observe that M/N is central in *H*/*N*.

Let $D = \langle \mathcal{E}(a) \rangle \cap M$. It follows that $M = ND$. Suppose that *D* is not normal in *M* and set $L = N_M(N_M(D))$. Since *M* is hypercentral, it satisfies the normalizer condition and so $L \neq N_M(D)$. Obviously *a* normalizes both *L* and $N_M(D)$. Since *a* acts on $L/N_M(D)$ as an Engel element, the centralizer of *a* in $L/N_M(D)$ is nontrivial. Thus, *L* has a subgroup *C* such that $N_M(D) < C$ and *C* normalizes $N_M(D)/a$. Of course, *D* is normal in $N_M(D)\langle a \rangle$. By Lemma [3.5](#page-5-1) the quotient of $N_M(D)\langle a \rangle$ by *D* is hypercentral. It is easy to see that *D* is a unique minimal normal subgroup of $N_M(D)$ *a*) whose quotient is hypercentral. Therefore *D* is characteristic in $N_M(D)$ *a*) and so *C* normalizes *D*. This is a contradiction since $N_M(D) < C$.

Hence, *D* is normal in *M*. Again, it is easy to see that *D* is a unique minimal normal subgroup of $M\langle a \rangle$ whose quotient is hypercentral. Therefore *D* is characteristic in *M* and so it is normal in *G*. We pass to the quotient G/D and Claim 1 now follows by straightforward induction on $|\mathcal{E}(a)|$.

We now assume that *H* is nilpotent and *a* is almost nil. We already know that *G* is finite-by-hypercentral. Factoring out a finite normal subgroup we can assume that *G* is hypercentral. In that case *a* is actually nil and so by Lemma [3.4](#page-5-2) *G* is nilpotent. The proof of the lemma is complete. \Box

4 Linear groups

Lemma 4.1 *A virtually soluble almost Engel linear group is finite-by-hypercentral.*

Proof Suppose that *G* is a virtually soluble almost Engel linear group. Let *S* be a normal soluble subgroup of finite index in *G*. By induction on the derived length of *S* we assume that *S'* is finite-by-hypercentral. Passing to the quotient over a normal finite subgroup without loss of generality we can assume that S' is hypercentral. By Lemma [3.7](#page-6-0) the subgroup $\langle S', x \rangle$ is finite-by-hypercentral for each $x \in G$. Thus, for each $x \in G$ there exists a finite characteristic subgroup $R_x \leq \langle S', x \rangle$ such that $\langle S', x \rangle / R_x$ is hypercentral. Since $\langle S', x \rangle$ is normal in *S*, it follows that each element in *Rx* has centralizer of finite index in *S*, hence centralizer of finite index in *G*. Therefore G^0 centralizes R_x and it follows that $\langle S', x \rangle$ is hypercentral for each $x \in$ G^0 . The subgroup $\prod \langle S', x \rangle$, where *x* ranges over $S \cap G^0$, is locally nilpotent and therefore hypercentral. In particular $N = S \cap G^0$ is hypercentral and so *G* is virtually hypercentral. By Lemma [3.7](#page-6-0) the subgroup $\langle N, x \rangle$ is finite-by-hypercentral for each $x \in G$. In other words, for each $x \in G$ there exists a finite characteristic subgroup $Q_x \leq \langle N, x \rangle$ such that the quotient $\langle N, x \rangle / Q_x$ is hypercentral. Since *N* has finite index in *G*, it follows that *G* contains only finitely many subgroups of the form $\langle N, x \rangle$. Set $N_0 = \prod_{x \in G} Q_x$. We see that N_0 is a finite normal subgroup. Pass to the quotient G/N_0 . Now the subgroup $\langle N, x \rangle$ is hypercentral for each $x \in G$. It follows that N consists of right Engel elements and so, by the result of Gruenberg, *N* is contained in the hypercenter of *G*. It follows from Theorem [2.2](#page-2-1) that *G* is finite-by-hypercentral, as required. \Box

We are now ready to prove Theorem [1.1](#page-1-0) in its full generality. For the reader's convenience we restate it here.

Theorem 4.2 *Let G be a linear group. If G is almost Engel, then G is finite-byhypercentral. If G is almost nil, then G is finite-by-nilpotent.*

Proof Assume that *G* is almost Engel. In view of Lemma [4.1](#page-6-1) it is sufficient to show that *G* is virtually soluble. By the Zassenhaus theorem a linear group is soluble if and only if it is locally soluble. Therefore it is sufficient to show that *G* is virtually locally soluble. It is clear that *G* does not contain a subgroup isomorphic to a nonabelian free group. Hence, by Tits alternative, any finitely generated subgroup of *G* is virtually soluble. Therefore, by Theorem [3.3,](#page-5-0) any finitely generated subgroup of *G* is finite-bynilpotent. It becomes obvious that elements of finite order in *G* generate a periodic subgroup. Moreover, the quotient of *G* over the subgroup generated by all elements of finite order is locally nilpotent. Hence, *G* is virtually locally soluble if and only if so is the subgroup generated by elements of finite order. Therefore without loss of generality we can assume that *G* is an infinite periodic (and locally finite) group.

Let *R* be the soluble radical of *G*. We can pass to the quotient and without loss of generality assume that $R = 1$. So in particular G has no nontrivial Engel elements. By the theorem of Hall–Kulatilaka *G* contains an infinite abelian subgroup [\[4](#page-8-11)]. We conclude that some centralizers in *G* are infinite. Since *G* satisfies the minimal condition on centralizers, it follows that *G* has a subgroup $D \neq 1$ such that the centralizer $C = C_G(D)$ is infinite while $C_G(\langle D, x \rangle)$ is finite for each $x \in G \setminus D$. Using that *C* is infinite we deduce from the Hall–Kulatilaka theorem that *C* contains an infinite abelian subgroup *A*. Obviously $A \leq C_G(\langle D, A \rangle)$ and it follows that $A \leq D$. Thus, $A \leq Z(C)$.

Now choose $1 \neq a \in A$. The centralizer *C* normalizes the finite set $\mathcal{E}(a)$ because $a \in Z(C)$. Hence, C contains a subgroup of finite index which centralizes $\mathcal{E}(a)$. It follows that $C_G(\langle D, \mathcal{E}(a) \rangle)$ is infinite and we conclude that $\mathcal{E}(a)$ is contained in *D*

and *C* centralizes $\mathcal{E}(a)$. In particular, *a* centralizes $\mathcal{E}(a)$ and so $\mathcal{E}(a) = \{1\}$. Thus, *a* is an Engel element, a contradiction. This completes the proof of Claim 1.

Suppose now that *G* is almost nil. We already know that *G* is finite-by-hypercentral. Passing to a quotient over a finite normal subgroup we can assume that *G* is hypercentral. Then obviously *G*, being both hypercentral and almost nil, must be nil. By the result of Gruenberg, *G* is nilpotent. \Box

References

- 1. De Falco, M., de Giovanni, F., Musella, C., Sysak, Ya.: On the upper central series of infinite groups. Proc. Am. Math. Soc. **139**, 385–389 (2011)
- 2. Garascuk, M.S.: On the theory of generalized nilpotent linear groups. Dokl. Akad. Nauk BSSR. **3**, 276–277 (1960)
- 3. Gruenberg, K.W.: The Engel structure of linear groups. J. Algebr. **3**, 291–303 (1966)
- 4. Hall, P., Kulatilaka, C.R.: A property of locally finite groups. J. Lond. Math. Soc. **39**, 235–239 (1964)
- 5. Kargapolov, M.I., Merzlyakov, Yu.I.: Fundamentals of the theory of groups. Nauka, Moscow (1982); Engl. transl. of 2nd ed. Springer, New York (1979)
- 6. Khukhro, E.I., Shumyatsky, P.: Almost Engel compact groups. J. Algebr. (2017). doi[:10.1016/j.](http://dx.doi.org/10.1016/j.jalgebra.2017.04.021) [jalgebra.2017.04.021](http://dx.doi.org/10.1016/j.jalgebra.2017.04.021)
- 7. Kurdachenko, L.A., Otal, J., Subbotin, I.Ya.: On a generalization of Baer theorem. Proc. Am. Math. Soc. **141**, 2597–2602 (2013)
- 8. Passman, D.S.: The Algebraic Theory of Group Rings. Wiley-Interscience, New York (1977)
- 9. Plotkin, B.I.: Radicals and nil-elements in groups. Izv. VysšUčebn. Zaved. Matematika. Matematika. **1**, 130–135 (1958)
- 10. Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer, New York (1996)
- 11. Tits, J.: Free subgroups in linear groups. J. Algebr. **20**, 250–270 (1972)
- 12. Wehrfritz, B.A.F.: Infinite Linear Groups. Springer, Berlin (1973)