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Abstract A group G is almost Engel if for every g € G there is a finite set £(g) such
that for every x € G all sufficiently long commutators [x, , g] belong to £(g), that s,
for every x € G there is a positive integer n(x, g) such that [x, , g] € £(g) whenever
n(x, g) < n.A group G is almost nil if it is almost Engel and for every g € G there is
a positive integer n depending on g such that [x, ;g] € £(g) forevery x € G and every
s > n. We prove that if a linear group G is almost Engel, then G is finite-by-
hypercentral. If G is almost nil, then G is finite-by-nilpotent.
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1 Introduction

By a linear group we understand here a subgroup of GL(m, F) for some field F and
a positive integer m. An element g of a group G is called a (left) Engel element if
for any x € G there exists n = n(x, g) > 1 such that [x,, g] = 1. As usual, the
commutator [x, , g] is defined recursively by the rule
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712 P. Shumyatsky

[x,n gl =[x, n-18] &l

assuming [x, o g] = x. If n can be chosen independently of x, then g is a (left) n-Engel
element. A group G is called Engel if all elements of G are Engel. It is called n-Engel
if all its elements are n-Engel. A group is said to be locally nilpotent if every finite
subset generates a nilpotent subgroup. Clearly, any locally nilpotent group is an Engel
group. It is a long-standing problem whether any n-Engel group is locally nilpotent.
Engel linear groups are known to be locally nilpotent (cf. [2,3]).

We say that a group G is almost Engel if for every g € G there is a finite set £(g)
such that for every x € G all sufficiently long commutators [x, , g] belong to £(g),
that is, for every x € G there is a positive integer n(x, g) such that [x, , g] € £(g)
whenever n(x, g) < n. (Thus, Engel groups are precisely the almost Engel groups for
which we can choose £(g) = {1} for all g € G.) We say that a group G is nil if for
every g € G there is a positive integer n depending on g such that g is n-Engel. The
group G will be called almost nil if it is almost Engel and for every g € G there is a
positive integer n depending on g such that [x, s g] € £(g) forevery x € G and every
s > n.

Almost Engel groups were introduced in [6] where it was proved that an almost
Engel compact group is necessarily finite-by-(locally nilpotent). The purpose of the
present article is to prove the following related result.

Theorem 1.1 Let G be a linear group.

1. If G is almost Engel, then G is finite-by-hypercentral.
2. If G is almost nil, then G is finite-by-nilpotent.

Recall that the union of all terms of the (transfinite) upper central series of G is
called the hypercenter. The group G is hypercentral if it coincides with its hypercenter.
The hypercentral groups are known to be locally nilpotent (see [10, P. 365]). By well-
known results obtained in [2,3], if under the hypotheses of Theorem 1.1 the group G
is Engel or nil, then G is hypercentral or nilpotent, respectively.

As a warning to the reader, we mention that in many articles (including some of the
author) the expression “the group G is almost an X-group” for a property X means
“G has an X-subgroup of finite index”. In the present paper, however, the meaning of
the term “almost Engel” is different. It is hoped that this discrepancy does not lead to
a confusion.

2 Preliminaries

Let G be a group and g € G an almost Engel element, so that there is a finite set £(g)
such that for every x € G there is a positive integer n(x, g) with the property that
[x, » g] belongs to £(g) whenever n(x, g) < n. If £'(g) is another finite set with the
same property for possibly different numbers n’(x, g), then £(g) N E’(g) also satisfies
the same condition with the numbers n”(x, g) = max{n(x, g), n’(x, g)}. Hence there
is a minimal set with the above property. The minimal set will again be denoted by
&(g) and, following [6], called the Engel sink for g, or simply g-sink for short. From
now on we will always use the notation £(g) to denote the (minimal) Engel sinks. In
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particular, it follows that for each x € £(g) there exists y € £(g) such that x = [y, g].
More generally, given a subset K € G and an almost Engel element g € G, we write
E(g, K) to denote the minimal subset of G with the property that for every x € K
there is a positive integer n(x, g) such that [x, , g] belongs to £(g, K) whenever
n(x, g) < n. Throughout the article we use the symbols (X) and (X G to denote the
subgroup generated by a set X and the minimal normal subgroup of G containing X,
respectively.

A group is said to have a property virtually if some subgroup of finite index has
the property. The following lemma can be found in [8, Ch. 12, Lemma 1.2] or in [5,
Lemma 21.1.4].

Lemma 2.1 A virtually abelian group contains a characteristic abelian subgroup of
finite index.

As usual, we write Z; (G) for the ith term of the upper central series of G and y; (G)
for the ith term of the lower central series. A well-known theorem of Schur states that
if G is central-by-finite, then the commutator subgroup G’ is finite (see [10, 10.1.4]).
Baer proved that if, for a positive integer k, the quotient G/Zx (G) is finite, then so is
Yk+1(G) (see [10, 14.5.1]). Recently, the following related result was obtained in [1]
(see also [7]).

Theorem 2.2 Let G be a group and let H be the hypercenter of G. If G/ H is finite,
then G has a finite normal subgroup N such that G/N is hypercentral.

We will also require the Dicman Lemma (see [10, 14.5.7]).

Lemma 2.3 In any group a normal finite subset consisting of elements of finite order
generates a finite subgroup.

In [9] Plotkin proved that if a group G has an ascending series whose quotients
locally satisfy the maximal condition, then the Engel elements of G form a locally
nilpotent subgroup. In particular we have the following lemma.

Lemma 2.4 Let G be a group having an ascending series whose quotients locally
satisfy the maximal condition and leta € G be an Engel element. Then (a®) is locally
nilpotent.

Linear groups are naturally equipped with the Zariski topology. If G is a linear
group, the connected component of G containing 1 is denoted by G°. We will use
(sometimes implicitly) the following facts on linear groups. All these facts are well-
known and are provided here just for the reader’s convenience.

e If G is a linear group and N a normal subgroup which is closed in the Zarissky
topology, then G /N is linear (see [12, Theorem 6.4]).

e Since finite subsets of G are closed in the Zariski topology, it follows that any finite
subgroup of a linear group is closed. Hence G/N is linear for any finite normal
subgroup N.

e If G is a linear group, the connected component G has finite index in G (see [12,
Lemma 5.3)).
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714 P. Shumyatsky

e Each finite conjugacy class in a linear group centralizes GO (see [12, Lemma 5.5]).

e In alinear group any descending chain of centralizers is finite.

e Alinear group generated by normal nilpotent subgroups is nilpotent (see Gruenberg
(3D.

e Tits alternative: A finitely generated linear group either is virtually soluble or
contains a subgroup isomorphic to a nonabelian free group (see [11]).

e The Burnside—Schur theorem: A periodic linear group is locally finite (see [12,
9.1]).

e Zassenhaus theorem: A locally soluble linear group is soluble. Every linear group
contains a unique maximal soluble normal subgroup (see [12, Corollary 3.8]).

e Since the closure in the Zariski topology of a soluble subgroup is again soluble (see
[12, Lemma 5.11]), it follows that the unique maximal soluble normal subgroup
of alinear group is closed. In particular, if G is linear and R is the unique maximal
soluble normal subgroup of G, then G/R is linear and has no nontrivial normal
soluble subgroups.

e A locally nilpotent linear group is hypercentral (see [2] or [3]).

e Gruenberg theorem: The set of Engel elements in a linear group G coincides with
the Hirsch—Plotkin radical of G. The set of right Engel elements coincides with
the hypercenter of G (see [3]).

Here, as usual, the Hirsch—Plotkin radical of a group is the maximal normal locally
nilpotent subgroup. An element g € G is a right Engel element if for each x € G
there exists a positive integer n such that [g, , x] = 1.

3 Almost Engel elements in virtually soluble groups

In the present section we give certain criteria for a group containing almost Engel
elements to be finite-by-nilpotent or finite-by-hypercentral. In particular, we prove
that a virtually soluble group generated by finitely many almost Engel elements is
finite-by-nilpotent (Theorem 3.3).

Lemma 3.1 LetG = H{ay, ..., as), where H is anormal subgroup and a; are almost
Engel elements. Assume that G/ H is nilpotent. If N < H is a finite normal subgroup
of H, then (NC) is finite.

Proof Suppose first that s = 1 and write @ in place of a;. Let M be the subgroup
generated by all commutators of the form [x, ; a], where x € N and j is a nonnegative
integer. Since both N and £(a) are finite, it follows that there exists an integer k& such
that M is contained in the product Hf:o N@ Tt is clear that the product ]_[f-‘:() N is
normal in / and a normalizes M. Therefore (M HYy is normal in G and is contained in
]_[f:() N . Moreover, (NG) = (M™) so in the case where s = 1 the lemma follows.

Therefore we will assume that s > 2 and use induction on s. Assume additionally
that G/ H is abelian. Set Hy = H and H; = H;_1{(a;) fori = 1, ..., s. The subgroups
H; are normal in G and H; = G. By induction, K = (N1 is finite. Since G =
H,_1(as), the above paragraph shows that (K ©) is finite. Obviously, (K¢) = (N©)
and so in the case where G/ H is abelian the lemma follows.
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We will now allow G/H to be nonabelian, say of nilpotency class c. We will use
induction on ¢. Set B = (a¥) and G; = HB. Since G/H is a finitely generated

s
nilpotent group, it follows that each subgroup of G/H is finitely generated and so B

has finitely many conjugates of ay, say ai' ..., as" such that G| = H{(a' ..., a§").
Since G/ H has nilpotency class at most ¢ — 1, by induction (N 1) is finite. We now
note that G = G{ay, ..., as—1) so the induction on s completes the proof. O

Lemma 3.2 Let G = H{a), where H is a virtually abelian normal subgroup and a
is an almost Engel element. Then (a®) is finite-by-(locally nilpotent).

Proof Assume that G is a counter-example with |€ (a)| as small as possible. In view of
Lemma 2.1 we can choose a maximal characteristic abelian subgroup V in H. Since
V is abelian, we have [v1, a][v2, a] = [vva2, a] for any vy, vy € V. In other words, a
product of two commutators of the form [v, a], where v € V, again has the same form.
Therefore £(a, V) is a finite subgroup. Obviously, the normalizer in G of £(a, V') has
finite index. It follows that £(a, V) is contained in a finite normal subgroup N. If
E(a, V) # 1, we pass to the quotient G/N and use induction on |€(a)|. Therefore
without loss of generality we will assume that £(a, V) = 1, thatis, a is Engel in V (a).
Since £ (a) consists of commutators of the form [x, a] with x € £(a), it follows that
E@)NV ={l1}.Let Cy = 1 and

Ci={veV]lv,aleC_y}

fori =1,2,....Since a is Engel in V, we have V = U; C;.

Let T = (£(a),a) and U = V N T. We observe that U is a finitely generated
abelian subgroup. In view of the fact that V' is the union of the C; we deduce that there
exists a positive integer n such that U = C,, N U.

Fori =0,...,nsetU; = C;NU.Thus, U = U,. Observe that U; centralizes a and
therefore U; normalizes the set £(a). Denote by W the intersection Uy N Cg (E(a)).
Since £(a) is finite, it follows that W, has finite index in Uj. Further, it is clear that
W1 is contained in the center Z(T).

The finiteness of the index [U; : Wi] implies that U, contains a normal in 7
subgroup W, such that the index [U, : W3] is finite, and [W>, T] < Wj. Thus, W5 is
contained in Z,(T'), the second term of the upper central series of 7.

Next, in a similar way we conclude that Uz N Z3(T') has finite index in U3 and so
on. Eventually, we deduce that U N Z,(T) has finite index in U. Thus, T/Z,(T) is
finite-by-cyclic and therefore there exists a positive integer k such that a* € Z,,{(T).
Hence, T/Z,+1(T) is finite and so, in view of Baer’s theorem, we deduce that T
is finite-by-nilpotent. In particular, for some positive integer r the subgroup y,-(T)
is finite. The observation that for each x € £(a) there exists y € E£(a) such that
x = [y, g] guarantees that £(a) is contained in y,(T"). In particular, we proved that
the subgroup (€ (a)) is finite. Because V is abelian, it is obvious that V normalizes
V N {&(a)). Thus, V N (E(a)) is a finite subgroup with normalizer of finite index. It
follows that V N (€ (a)) is contained in a finite normal subgroup of G. We can factor
out the latter and without loss of generality assume that V N (£(a)) = 1.

Recall that C; = Cy (a). Therefore C; normalizes (£(a)) and in view of the fact
that V N (£(a)) = 1 we conclude that C; centralizes (£(a)). So C; < Z(VT).
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Same argument shows that C»/C; < Z(VT/Cy) and, more generally, C;y1/C; <
Z(VT/C;i)fori =0,1,2.... Thus, V < Z(VT) where Z,(VT) stands for the
hypercenter of T'. Of course, it follows that there exists a positive integer k such that
ak € Zoo(VT). We deduce that Z.,(V T) has finite index in V7. Theorem 2.2 now
tells us that VT has a finite normal subgroup N such that the quotient group (VT)/N
is hypercentral. The hypercentral groups are locally nilpotent and so VT is finite-by-
(locally nilpotent). The observation that for each x € £(a) there exists y € £(a) such
that x = [y, g] guarantees that £(a) is contained in N.

Since VT has finite index in G, Dicman’s lemma tells us that G contains a finite
normal subgroup R such that £(a) € N < R. The image of a in G/R is Engel and
the required result follows from Lemma 2.4. O

Theorem 3.3 A virtually soluble group generated by finitely many almost Engel ele-
ments is finite-by-nilpotent.

Proof Let G be a virtually soluble group generated by finitely many almost Engel
elements ay, ..., as and let S be a normal soluble subgroup of finite index in G. We
assume that S % 1 and let V be the last nontrivial term of the derived series of S.
By induction on the derived length of S we assume that G/V is finite-by-nilpotent.
Therefore G contains a normal subgroup H such that V has finite index in H and
the quotient G/H is nilpotent. For i = 1,...,s set G; = H{(a;). By Lemma 3.2
each subgroup (aiG ") has a finite normal subgroup N; such that (al.G 1Y/ N; is locally
nilpotent. Since G;/H are abelian, it is clear that all quotients G; /H N N; are locally
nilpotent and so, replacing if necessary N; by H N N;, without loss of generality we
can assume that all subgroups N; are normal subgroups of H. Therefore the product
of the subgroups N; is finite. By Lemma 3.1 the product of Ny --- Ny is contained
in a finite subgroup N which is normal in G. Obviously the images in G/N of the
generators aj, . . ., ag are Engel. Thus, G/N is a virtually soluble group generated by
finitely many Engel elements. It follows from Lemma 2.4 that G/N is nilpotent. The
proof is complete. O

The next lemma is well-known. For the reader’s convenience we provide the proof.

Lemma 3.4 Let G = H{a), where H is a nilpotent normal subgroup and a is a nil
element. Then G is nilpotent.

Proof Suppose thata is n-Engel. Let K = Z(H) andset Ko = K and K; 4| = [K;, a]
fori =0,1,.... Then K,,_; < KN Cgk(a) and so K,,_; < Z(G). Moreover we
observe that [K;_1, G] < K; and it follows that K,,_; < Z;(G) fori =1,2,...,n.
Therefore K < Z,(G). Passing to the quotient G/Z, (G) and using induction on the
nilpotency class of H we deduce that if H is nilpotent with class ¢, then G is nilpotent
with class at most cn. O

Lemma 3.5 Let G = H (a), where H is a hypercentral normal subgroup and a is an
Engel element. Then G is hypercentral.

Proof 1Tt is sufficient to show that Z(G) # 1. Let Z = Z(H). Since a is an Engel
element, Cz(a) # 1. Obviously, Cz(a) < Z(G). The proof is complete. m|
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Lemma 3.6 Let a be an almost Engel element in a group G and assume that €(a) is
contained in a locally nilpotent subgroup. Then the subgroup (€(a)) is finite.

Proof Set D = (E(a)). Without loss of generality we can assume that G = D{a).
Since £(a) is finite, D is nilpotent and we can use induction on the nilpotency class
of D. Thus, by induction assume that the quotient of D over its center is finite. By
Schur’s theorem the derived group D’ is finite as well. Factoring out D’ we can assume
that D is abelian. So now D is abelian and D = [D, a]. By [6, Lemma 2.3], D = £(a)
and hence D is finite. O

Lemma 3.7 Let G = H{a), where H is a hypercentral normal subgroup.

1. If a is almost Engel, then G is finite-by-hypercentral.
2. If H is nilpotent and a is almost nil, then G is finite-by-nilpotent.

Proof We will prove Claim 1 first. Assume thata is almost Engel. Let N be the product
of all normal subgroups of G whose intersection with £(a) is {1}. It is easy to see that
N N &(a) = {1} and N is the unique maximal normal subgroup with that property.
Therefore K NE(a) # {1} whenever K is anormal subgroup containing N as a proper
subgroup. Since £(a) is finite, the group G contains a minimal normal subgroup M
such that N < M. Taking into account that H is hypercentral, we observe that M /N
is central in H/N.

Let D = (E(a)) N M. It follows that M = N D. Suppose that D is not normal
in M and set L = Np;(Np(D)). Since M is hypercentral, it satisfies the normalizer
condition and so L # Ny (D). Obviously a normalizes both L and Ny, (D). Since a
acts on L /Ny (D) as an Engel element, the centralizer of @ in L /Ny (D) is nontrivial.
Thus, L has a subgroup C such that Ny (D) < C and C normalizes Ny (D){(a).
Of course, D is normal in Ny (D)(a). By Lemma 3.5 the quotient of Ny (D)(a) by
D is hypercentral. It is easy to see that D is a unique minimal normal subgroup of
Ny (D){a) whose quotient is hypercentral. Therefore D is characteristic in Nys(D){(a)
and so C normalizes D. This is a contradiction since Ny; (D) < C.

Hence, D is normal in M. Again, itis easy to see that D is a unique minimal normal
subgroup of M (a) whose quotient is hypercentral. Therefore D is characteristic in M
and so it is normal in G. We pass to the quotient G/D and Claim 1 now follows by
straightforward induction on |E(a)|.

We now assume that H is nilpotent and a is almost nil. We already know that G is
finite-by-hypercentral. Factoring out a finite normal subgroup we can assume that G
is hypercentral. In that case a is actually nil and so by Lemma 3.4 G is nilpotent. The
proof of the lemma is complete. O

4 Linear groups

Lemma 4.1 A virtually soluble almost Engel linear group is finite-by-hypercentral.

Proof Suppose that G is a virtually soluble almost Engel linear group. Let S be a
normal soluble subgroup of finite index in G. By induction on the derived length of
S we assume that S’ is finite-by-hypercentral. Passing to the quotient over a normal
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finite subgroup without loss of generality we can assume that S’ is hypercentral. By
Lemma 3.7 the subgroup (S’, x) is finite-by-hypercentral for each x € G. Thus,
for each x € G there exists a finite characteristic subgroup R, < (S’, x) such that
(S, x)/ R, is hypercentral. Since (S’, x) is normal in S, it follows that each element
in R, has centralizer of finite index in S, hence centralizer of finite index in G.
Therefore G° centralizes R, and it follows that (S’, x) is hypercentral for each x €
G°. The subgroup [1¢S’, x), where x ranges over S N G, is locally nilpotent and
therefore hypercentral. In particular N = S N G is hypercentral and so G is virtually
hypercentral. By Lemma 3.7 the subgroup (N, x) is finite-by-hypercentral for each
x € G. In other words, for each x € G there exists a finite characteristic subgroup
0+ < (N, x) suchthatthe quotient (N, x)/Q ishypercentral. Since N has finite index
in G, it follows that G contains only finitely many subgroups of the form (N, x). Set
No = [lieq Qx- We see that Ny is a finite normal subgroup. Pass to the quotient
G /Ny. Now the subgroup (N, x) is hypercentral for each x € G. It follows that N
consists of right Engel elements and so, by the result of Gruenberg, N is contained in
the hypercenter of G. It follows from Theorem 2.2 that G is finite-by-hypercentral, as
required. O

We are now ready to prove Theorem 1.1 in its full generality. For the reader’s
convenience we restate it here.

Theorem 4.2 Let G be a linear group. If G is almost Engel, then G is finite-by-
hypercentral. If G is almost nil, then G is finite-by-nilpotent.

Proof Assume that G is almost Engel. In view of Lemma 4.1 it is sufficient to show
that G is virtually soluble. By the Zassenhaus theorem a linear group is soluble if and
only if it is locally soluble. Therefore it is sufficient to show that G is virtually locally
soluble. It is clear that G does not contain a subgroup isomorphic to a nonabelian free
group. Hence, by Tits alternative, any finitely generated subgroup of G is virtually
soluble. Therefore, by Theorem 3.3, any finitely generated subgroup of G is finite-by-
nilpotent. It becomes obvious that elements of finite order in G generate a periodic
subgroup. Moreover, the quotient of G over the subgroup generated by all elements
of finite order is locally nilpotent. Hence, G is virtually locally soluble if and only
if so is the subgroup generated by elements of finite order. Therefore without loss of
generality we can assume that G is an infinite periodic (and locally finite) group.

Let R be the soluble radical of G. We can pass to the quotient and without loss of
generality assume that R = 1. So in particular G has no nontrivial Engel elements.
By the theorem of Hall-Kulatilaka G contains an infinite abelian subgroup [4]. We
conclude that some centralizers in G are infinite. Since G satisfies the minimal condi-
tion on centralizers, it follows that G has a subgroup D # 1 such that the centralizer
C = Cg(D) is infinite while Cg({(D, x)) is finite for each x € G \ D. Using that
C is infinite we deduce from the Hall-Kulatilaka theorem that C contains an infinite
abelian subgroup A. Obviously A < Cg({D, A)) and it follows that A < D. Thus,
A < Z(0).

Now choose 1 # a € A. The centralizer C normalizes the finite set £(a) because
a € Z(C). Hence, C contains a subgroup of finite index which centralizes £(a). It
follows that Cg ({D, £(a))) is infinite and we conclude that £(a) is contained in D
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Almost Engel linear groups 719

and C centralizes £(a). In particular, a centralizes £(a) and so £(a) = {1}. Thus, a
is an Engel element, a contradiction. This completes the proof of Claim 1.

Suppose now that G is almost nil. We already know that G is finite-by-hypercentral.

Passing to a quotient over a finite normal subgroup we can assume that G is hyper-
central. Then obviously G, being both hypercentral and almost nil, must be nil. By
the result of Gruenberg, G is nilpotent. O
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