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Abstract A connected graph G is said to be k-connected if it has more than k vertices
and remains connected whenever fewer than k vertices are deleted. In this paper, we
present a tight sufficient condition for a connected graph with fixed minimum degree
to be k-connected based on its spectral radius, for sufficiently large order.
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1 Introduction

LetG be a connected graph with vertex set V (G) and edge set E(G) such that |V | = n
and |E | = m.We denote by dv the degree of a vertex v inG and δ theminimum degree.
Let Kn denote a complete graph on n vertices. For two vertex-disjoint graphs G and
H , we use G ∨ H to denote the join of G and H . A graph G is said to be k-connected
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if it has more than k vertices and remains connected whenever fewer than k vertices
are deleted. Similarly,G is k-edge-connected if it has at least two vertices and remains
connected whenever fewer than k edges are deleted.

The adjacency matrix of G is defined as A(G) = (ai j )n×n , where ai j = 1 if two
vertices i and j are adjacent in G, and ai j = 0 otherwise. The largest eigenvalue of
A(G), denoted by λ(G), is called the spectral radius of G.

In spectral graph theory, one of the most attractive problems is the Brualdi–Solheid
problem [5]: Given a set G of graphs, find an upper bound for the spectral radius in
this set and characterize the graphs in which the maximal spectral radius is attained.
In recent decades, many researchers [2,13,31] intended to investigate this problem for
various graph classes with certain constraints. For more details, one may refer to the
recent comprehensive monograph by Stevanović [30].

Analogous to the Brualdi–Solheid problem, Nikiforov [23] proposed the following
so-called Brualdi–Solheid–Turán type problem.

Problem 1 For a given graph F, what is the maximum spectral radius of a graph G
on n vertices without subgraph isomorphic to F?

Regarding Problem 1 and its variations, Nikiforov and many other mathematicians
discoveredwide recognized results. Fiedler andNikiforov [16] obtained tight sufficient
conditions for graphs to be hamiltonian or traceable, this paper became the motivation
ofmany related results [19,21,22,27,28]. Cioabǎ and his collaborators [10–12] studied
the matchings and the eigenvalues in regular graphs extensively. When we talk about
the connectivity and the eigenvalues, perhaps the most famous one is due to Fiedler
[15] which states that the second smallest Laplacian eigenvalue is at most the connec-
tivity for any non-complete graph. For adjacency eigenvalues, the relation between the
connectivity, edge-connectivity and the eigenvalues was reported in [8,9,17,20,29].
Extending and improving the result in [6], Cioabǎ [8] obtained that

Theorem 1.1 [8] Let d ≥ k ≥ 2. If the second largest eigenvalue λ2 of a d-regular
graph satisfies

λ2 < d − (k − 1)n

(d + 1)(n − d − 1)
,

then the edge-connectivity of G is at least k.

Let G be a simple graph of order n ≥ k + 1. It is known [3, Page 4] that, if
δ ≥ 1

2 (n + k − 2), then G is k-connected. From the spectral point of view, we
naturally ask the following question: can one find a sufficient spectral condition for
a connected graph to be k-connected? Along this line, the authors obtained such a
sufficient condition for a general graph without any minimum degree restriction [14].
Borrowing ideas from [25], in this paper, by utilizing the degree sequence and the
closure concept, we shall present a tight sufficient spectral condition for a graph with
fixed minimum degree to be k-connected, for sufficiently large order (and therefore
for relatively small δ). Such results may be of independent interest.
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2 Preliminaries

We first present several graph notations.
An integer sequence π = (d1 ≤ d2 ≤ · · · ≤ dn) is called graphical if there exists a

graph G having π as its vertex degree sequence; in that case, G is called a realization
of π . If P is a graph property, such as hamiltonian or k-connected, we call a graphical
sequence π forcibly P if every realization of π has property P . More results in this
subject can be found in the survey paper [1].

Bondy and Chvátal introduced the concept of stability in [4], which plays a promi-
nent role in many structural graph theory problems. Let P be a property defined on
all graphs of order n. Let k be a nonnegative integer. Then P is said to be k-stable if
whenever G + uv has property P and

dG(u) + dG(v) ≥ k,

where uv /∈ E , then G itself has property P . The most famous properties such as the
hamiltonicity and traceability are respectively n-stable and (n − 1)-stable. Among all
the graphs H of order n such that G ⊂ H and

dG(u) + dG(v) < k

for all uv /∈ E(H), there is a unique smallest one, we shall call this graph the k-closure
ofG, denoted clk(G). Obviously, clk(G) can be obtained fromG by iteratively joining
two nonadjacent vertices such that their degree sum is at least k.

The following lemmas will be used in this paper.

Lemma 2.1 [7] Let G be a connected graph and π = (d1 ≤ d2 ≤ · · · ≤ dn) be a
graphical sequence. Suppose n ≥ 2, and 1 ≤ k ≤ n − 1. If

di ≤ i + k − 2 ⇒ dn−k+1 ≥ n − i,

for 1 ≤ i ≤ 1
2 (n − k + 1), then π is forcibly k-connected.

Lemma 2.2 [4] The property that “G is k-connected” is (n + k − 2)-stable.

Lemma 2.3 [4] Let P be a property of graph G of order n ≥ 4. If P is k-stable and
clk(G) has property P, then G itself has property P.

Lemma 2.4 [18,24] If G is a graph of order n, size m, and minimum degree t, then

λ(G) ≤ 1

2

(
t − 1 +

√
8m − 4nt + (t + 1)2

)
.

Lemma 2.5 [18] If 2m ≤ n(n − 1), the function

f (x) = x − 1

2
+

√
2m − nx + (x + 1)2

4

is decreasing in x for x ≤ n − 1.
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3 Main results

For convenience, in the rest of this paper, we denote

A(n, k, δ) = Kk−1 ∨ (Kδ−k+2 ∪ Kn−δ−1),

F0(k, δ) = (δ − k + 2)(k2 − 2k + 4) + 3.

We first describe our strategy here. We will prove Theorem 3.4 by contradiction.
Assume that λ(G) ≥ n − δ + k − 3, but G is not k-connected. In order to get our
result, we need to show G = A(n, k, δ), and A(n, k, δ) is exactly the unique closure.
To prove the uniqueness of A(n, k, δ), we need to demonstrate that the spectral radius
of the subgraph of A(n, k, δ) is less than n−δ+k−3,which is stated in Theorem 3.1.
Thus Theorem 3.1 is the basis in the sense of closure in the proof of our main result.

In the proof the Theorem 3.1, it is required that the Kk−1 part of A(n, k, δ) has at
least 2 vertices, so we assume k ≥ 3 in Theorem 3.1.

Theorem 3.1 Let δ ≥ k ≥ 3, and let G be a connected graph of order n ≥ F0(k, δ)
and minimum degree δ. If G is a subgraph of A(n, k, δ), then

λ(G) < n − δ + k − 3,

unless G = A(n, k, δ).

Proof Wewrite λ := λ(G) for short. Let x = (x1, x2, . . . , xn)T be the unique positive
unit eigenvector corresponding to λ. According to the Rayleigh’s principle, we have

λ = 〈A(G)x, x〉 = xT A(G)x = 2
∑

i j∈E(G)

xi x j .

LetG be a proper subgraph of A(n, k, δ).Without loss of generality,wemay assume
that G is obtained by omitting just one edge {u, v} of A(n, k, δ). Now we denote by X
for the set of vertices in A(n, k, δ) of degree δ, Y the set of their neighbors, and Z the
set of the remaining n − δ − 1 vertices. Since G is a connected graph with minimum
degree δ, G must contain all the edges incident with X . Therefore {u, v} ⊂ Y ∪ Z ,
and this implies three possibilities: (a) {u, v} ⊂ Y ; (b) u ∈ Y, v ∈ Z ; (c) {u, v} ⊂ Z .

We denote the corresponding graph in each of these three cases by G1, G2 and G3,
respectively. We shall show that λ(G1) ≤ λ(G2) ≤ λ(G3).

Firstly, suppose that case (a) holds, that is, {u, v} ⊂ Y and G = G1. We will show
that λ(G1) ≤ λ(G2). We choose a vertex w ∈ Z , then remove the edge {u, w} and
add the edge {u, v}, we obtain one graph G ′, which is of the form G2 in case (b). If
xw ≤ xv = xu , then xT A(G ′)x − xT A(G1)x = 2xu(xv − xw) ≥ 0, by the Rayleigh
principle, we have λ(G ′) ≥ λ(G1). If xw > xv , we construct the vector x ′ of G ′ from
x by swap the entries xv and xw. In this case, we note that G1 \ {v,w} and G ′ \ {v,w}
are isomorphic, then we get that
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x ′T A(G ′)x ′ − xT A(G1)x

= 2xw

⎛
⎝∑

i∈X
xi +

∑
i∈Y\{u,v}

xi +
∑

i∈Z\{w}
xi + xu + xv

⎞
⎠ + 2xv

⎛
⎝ ∑

i∈Y\{u,v}
xi +

∑
i∈Z\{w}

xi

⎞
⎠

−2xv

⎛
⎝∑

i∈X
xi +

∑
i∈Y\{u,v}

xi +
∑

i∈Z\{w}
xi + xw

⎞
⎠ − 2xw

⎛
⎝ ∑

i∈Y\{u,v}
xi +

∑
i∈Z\{w}

xi + xu

⎞
⎠

= 2(xw − xv)
∑
i∈X

xi > 0,

so by the Rayleigh principle, we have λ(G ′) > λ(G1).
Secondly, suppose that case (b) holds, that is, u ∈ Y, v ∈ Z , and G = G2. We will

show that λ(G2) ≤ λ(G3). We choose a vertex w ∈ Z , then remove the edge {v,w}
and add the edge {u, v}, we obtain one graph G ′′, which is of the form G3 in case (c).
If xu ≥ xw, then xT A(G ′′)x − xT A(G2)x = 2xv(xu − xw) ≥ 0, by the Rayleigh
principle, we have λ(G ′′) ≥ λ(G2). If xu < xw, we construct the vector x ′ from x by
swap the entries xw and xu . Since G2 \ {u, w} and G ′′ \ {u, w} are isomorphic, then
we get that

x ′T A(G ′′)x ′ − xT A(G2)x

= 2xw

⎛
⎝∑

i∈X
xi +

∑
i∈Y\{u}

xi +
∑

i∈Z\{v,w}
xi + xu + xv

⎞
⎠ + 2xu

⎛
⎝ ∑

i∈Y\{u}
xi +

∑
i∈Z\{v,w}

xi

⎞
⎠

−2xu

⎛
⎝∑

i∈X
xi +

∑
i∈Y\{u}

xi +
∑

i∈Z\{v,w}
xi + xw

⎞
⎠ − 2xw

⎛
⎝ ∑

i∈Y\{u}
xi +

∑
i∈Z\{v,w}

xi + xv

⎞
⎠

= 2(xw − xu)
∑
i∈X

xi > 0,

again by the Rayleigh principle, we have λ(G ′′) > λ(G2).
Therefore, we may assume {u, v} ⊂ Z and G = G3 in the rest of this theorem.

From symmetry, we obtain xi = x j := x for any i, j ∈ X ; xi = x j := y for any
i, j ∈ Y ; and xi = x j := z for any i, j ∈ Z \ {u, v}. As the vertices u and v are
symmetric, we may write xu = xv := t. From λxi = ∑

j i∈E(G) x j , we have

λx = (δ − k + 1)x + (k − 1)y,

λy = (δ − k + 2)x + (k − 2)y + (n − δ − 3)z + 2t,

λz = (k − 1)y + (n − δ − 4)z + 2t,

λt = (k − 1)y + (n − δ − 3)z.

From the above system, we obtain

x =
(

k − 1

λ − δ + k − 1

)
y, (1)
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z =
(
1 − (δ − k + 2)(k − 1)

(λ + 1)(λ − δ + k − 1)

)
y,

t =
(

λ + 1

λ + 2

)(
1 − (δ − k + 2)(k − 1)

(λ + 1)(λ − δ + k − 1)

)
y. (2)

Note that if we delete all edges incident to X , and add the edge {u, v} to G, we
obtain the graph Kδ−k+2 ∪ Kn−δ+k−2. Let x ′′ be the restriction of x to Kn−δ+k−2. We
see that

〈
A(Kn−δ+k−2)x

′′, x ′′〉

= 〈A(G)x, x〉 + 2t2 − 2(k − 1)(δ − k + 2)xy − (δ − k + 2)(δ − k + 1)x2

= λ + 2t2 − 2(k − 1)(δ − k + 2)xy − (δ − k + 2)(δ − k + 1)x2.

Observe that

〈
A(Kn−δ+k−2)x

′′, x ′′〉 ≤ λ(Kn−δ+k−2) = n − δ + k − 3,

from the above, we have

λ + 2t2 − 2(k − 1)(δ − k + 2)xy − (δ − k + 2)(δ − k + 1)x2 ≤ n − δ + k − 3.

(3)

Suppose on the contrary that λ ≥ n − δ + k − 3, then (3) implies

2(k − 1)(δ − k + 2)xy + (δ − k + 2)(δ − k + 1)x2 ≥ 2t2.

By applying (1) and (2), we obtain

2
(k − 1)2(δ − k + 2)

λ − δ + k − 1
y2 + (δ − k + 2)(δ − k + 1)(k − 1)2

(λ − δ + k − 1)2
y2

> 2

(
1 − 1

λ + 2

)2 (
1 − (δ − k + 2)(k − 1)

(λ + 1)(λ − δ + k − 1)

)2

y2.

Recall that the Bernoulli inequality states that: for any nonzero real number x > −1,
and an integer n > 1, we have

(1 + x)n > 1 + nx . (4)

Eliminating y2 and applying (4) to the previous inequality, we get

2
(k − 1)2(δ − k + 2)

λ − δ + k − 1
+ (δ − k + 2)(δ − k + 1)(k − 1)2

(λ − δ + k − 1)2

> 2

(
1 − 2

λ + 2
− 2(δ − k + 2)(k − 1)

(λ + 1)(λ − δ + k − 1)

)
.
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Rewriting this inequality, we have

(δ − k + 2)(δ − k + 1)(k − 1)2

(λ − δ + k − 1)
+ 2(k − 1)2(δ − k + 2)

> 2

(
λ − δ + k − 1 − 2(λ − δ + k − 1)

λ + 2
− 2(δ − k + 2)(k − 1)

λ + 1

)

> 2 (λ − δ + k − 1 − 4) .

Note that

λ − δ + k − 1 > (n − δ + k − 3) − δ + k − 1 as n ≥ F0(k, δ)

≥ (δ − k + 2)(k2 − 2k + 4) + 3 − 2(δ − k + 2)

= (δ − k + 2)(k2 − 2k + 2) + 3,

the previous inequality in turn becomes

(δ − k + 2)(δ − k + 1)(k − 1)2

> 2(λ − δ + k − 1)
(
λ − δ + k − 1 − 4 − (k − 1)2(δ − k + 2)

)

> 2
(
(δ − k + 2)(k2 − 2k + 2) + 3

)
((δ − k + 2)(k2 − 2k + 2) + 3

− 4 − (k − 1)2(δ − k + 2))

= 2
(
(δ − k + 2)(k2 − 2k + 2) + 3

)
(δ − k + 1),

obviously, this is a contradiction and the proof is complete. �
The following result is of independent interest, and its ideas will be used in the

proof of Theorem 3.4.

Theorem 3.2 Let G be a connected graph of order n with minimum degree δ. If

2m ≥ n2 − (2δ − 2k + 5)n + 2(δ + 1)(δ − k + 2),

then G is k-connected unless G = A(n, k, δ).

Proof Suppose G is not k-connected. From Lemma 2.1, there exists an integer 1 ≤
i ≤ n−k+1

2 such that di ≤ i + k − 2 and dn−k+1 ≤ n − i − 1. Thus we have

2m ≤ i(i + k − 2) + (n − i − k + 1)(n − i − 1) + (k − 1)(n − 1)

= 2i2 − (2n − 2k + 2)i + n(n − 1). (5)

Since δ ≤ i + k − 2, we have δ − k + 2 ≤ i ≤ n−k+1
2 . We assume that f (x) =

2x2 − (2n − 2k + 2)x with δ − k + 2 ≤ x ≤ 1
2 (n − k + 1). As the symmetric axis of

f (x) is x0 = 1
2 (n − k + 1), we find that

fmax(x) = f (δ − k + 2) = 2(δ + 1 − n)(δ − k + 2).
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658 L. Feng et al.

Therefore 2m ≤ n2 − (2δ − 2k + 5)n + 2(δ + 1)(δ − k + 2).
If 2m = n2 − (2δ − 2k + 5)n + 2(δ + 1)(δ − k + 2), then i = δ − k + 2,

d1 = d2 = · · · = dδ−k+2 = δ, dδ−k+3 = · · · = dn−k+1 = n − δ + k − 3, dn−k+2 =
· · · = dn = n − 1. Thus G = Kk−1 ∨ (Kδ−k+2 ∪ Kn−δ−1), which is not k-connected
from the definition. �

Nikiforov [25] recently obtained a sufficient spectral condition for a graph to be
hamiltonian. Soon he [26] obtained the following refined result.

Theorem 3.3 Let t ≥ 1, n ≥ t3/2+ t+4, and let G be a graph of order n. If δ(G) ≥ t
and

λ(G) ≥ n − t − 1,

then G has a hamiltonian cycle unless G = Kt ∨(Kn−2t ∪Kt ) or G = K1∨(Kn−t−1∪
Kt ).

Thus, except for at most two graphs, when λ(G) ≥ n − t − 1, the graph G is
2-connected. So in the next main theorem, we only consider the case the connectivity
is at least 3.

Theorem 3.4 Let δ ≥ k ≥ 3, n ≥ F0(k, δ). Let G be a connected graph of order n
and minimum degree δ(G) ≥ δ. If

λ(G) ≥ n − δ + k − 3,

then G is k-connected unless G = A(n, k, δ).

Proof Suppose that λ(G) ≥ n−δ+k−3 andG is not k-connected. From Lemma 2.2,
we consider the closure H := cln+k−2(G) ofG. By Lemma 2.3, H is not k-connected,
and δ(H) ≥ δ(G) ≥ δ and λ(H) ≥ λ(G) ≥ n − δ + k − 3. Obviously, for any two
nonadjacent vertices i, j ∈ V (H), di + d j ≤ n + k − 3. From Theorem 3.1, we need
only to prove H = A(n, k, δ).

According to the assumptions of the theorem and Lemmas 2.4, 2.5, we have

n − δ + k − 3 ≤ λ(H) ≤ 1

2

(
δ − 1 +

√
(δ + 1)2 + 4(2m − nδ)

)
,

this implies

2m ≥ n2 + (2k − 2δ − 5)n + (2δ − k + 3)(δ − k + 2) := g1(n). (6)

We next prove that i = δ−k+2. Suppose on the contrary i ≥ δ−k+3. Since G is
not k-connected, from (5) of Theorem 3.2, we consider f (x) = 2x2 − (2n−2k+2)x
with δ − k + 3 ≤ x ≤ 1

2 (n − k + 1). Obviously fmax(x) = f (δ − k + 3), we have

2m ≤ n2 + (2k − 2δ − 7)n + 2(δ − k + 3)(δ + 2) := g2(n). (7)

123



Spectral radius and k-connectedness of a graph 659

From (6) and (7), bearing in mind that n ≥ 2kδ − 2k2 + 5k := F1(k, δ), F1(k, δ) ≤
F0(k, δ), we obtain

g1(n) − g2(n) = −6 − k + 2n − kδ − 3δ + k2

≥ −6 − k + 2(2kδ − 2k2 + 5k) − kδ − 3δ + k2

= 3(k − 1)(δ − k + 2) > 0,

hence inequality (7) cannot hold. Therefore, we have i = δ − k + 2, and thus

d1 = d2 = · · · = dδ−k+2 = δ.

Next, we shall show that dδ−k+3 ≥ n − δ + k − 3 − kδ + δ − 3k + 2 + k2. Since
n ≥ F0(k, δ), n − δ + k − 3 − kδ + δ − 3k + 2 + k2 > 0. Suppose on the contrary
that dδ−k+3 < n − δ + k − 3 − kδ + δ − 3k + 2 + k2, we have

2m < (δ − k + 2)δ + (n − δ + k − 3 − kδ + δ − 3k + 2 + k2)

+ (n − δ − 2)(n − δ + k − 3) + (k − 1)(n − 1)

= n2 + (2k − 2δ − 5)n + (2δ − k + 3)(δ − k + 2)

≤ 2m.

This is a contradiction. Hence di ≥ n − δ + k − 3 − kδ + δ − 3k + 2 + k2 for any
i ∈ {δ − k + 3, . . . , n}.

Now, we conclude that {δ − k + 3, . . . , n} induces a complete graph. Suppose
i, j ∈ {δ − k + 3, . . . , n} and i, j are not adjacent, we have

di + d j ≥ 2n − 2δ + 2k − 6 − 2kδ + 2δ − 6k + 4 + 2k2

≥ n + (2kδ − 2k2 + 5k) − 2δ + 2k − 6 − 2kδ + 2δ − 6k + 4 + 2k2

= n + k − 2 > n + k − 3,

the second inequality holds as n ≥ 2kδ − 2k2 + 5k. This contradicts the property of
H . Hence we can get {δ − k + 3, . . . , n} induces a complete graph.

Let X = {1, 2, . . . , δ − k+2}, Y be the set of vertices in {δ − k+3, . . . , n} having
neighbors in X . In fact, every vertex from Y is adjacent to every vertex in X . Indeed,
suppose that is not the case, and let w ∈ Y, u, v ∈ X be such that w is adjacent to u,
but not to v. We see that dw +dv ≥ (n−δ+k−2)+δ = n+k−2,which contradicts
the fact that H is the closure of G.

Next, let � := |Y |. As the degree of the vertices in X is δ, we have k − 1 ≤ � ≤ δ.

If � = k − 1, then H = A(n, k, δ). If we delete k − 1 vertices in Kk−1, we obtain
a graph that is not connected. Thus in this case, H is not k-connected.

If � = k, then H is k-connected from definition.
If � = δ, then H = Kδ ∨ (Kn−2δ+k−2 ∪ Kδ−k+2). Since every vertex from Y is

adjacent to every vertex in X , and δ ≥ k, it follows that if we delete any k−1 vertices,
the resulting graph is connected. Therefore in this case, H is k-connected.

If k ≤ � < δ, obviously H is k-connected.
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The proof is completed. �
Since λ(A(n, k, δ)) ≥ n − δ + k − 3, we immediately have

Corollary 3.5 Let δ ≥ k ≥ 3, n ≥ F0(k, δ). Let G be a connected graph of order n
and minimum degree δ(G) ≥ δ. If

λ(G) ≥ λ(A(n, k, δ)),

then G is k-connected unless G = A(n, k, δ).

Since A(n, k, δ) is k-edge-connected, we have the following corollary.

Corollary 3.6 Let δ ≥ k ≥ 3, n ≥ F0(k, δ). Let G be a connected graph of order n
and minimum degree δ(G) ≥ δ. If

λ(G) ≥ n − δ + k − 3,

then G is k-edge-connected.

At last, we would like to mention that we do not make too much efforts to optimize
the lower bound for n. For smaller n, we can not find the way to work out. We leave
it for further study.
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