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Abstract LetU(λ) denote the family of analytic functions f (z), f (0) = 0 = f ′(0)−
1, in the unit diskD, which satisfy the condition

∣
∣
(

z/ f (z)
)2

f ′(z)−1
∣
∣ < λ for some0 <

λ ≤ 1. The logarithmic coefficients γn of f are defined by the formula log( f (z)/z) =
2

∑∞
n=1 γnzn . In a recent paper, the present authors proposed a conjecture that if

f ∈ U(λ) for some 0 < λ ≤ 1, then |an| ≤ ∑n−1
k=0 λk for n ≥ 2 and provided a new

proof for the case n = 2. One of the aims of this article is to present a proof of this
conjecture for n = 3, 4 and an elegant proof of the inequality for n = 2, with equality
for f (z) = z/[(1 + z)(1 + λz)]. In addition, the authors prove the following sharp
inequality for f ∈ U(λ):

∞
∑

n=1

|γn|2 ≤ 1

4

(
π2

6
+ 2Li 2(λ) + Li 2(λ

2)

)

,
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where Li2 denotes the dilogarithm function. Furthermore, the authors prove two such
new inequalities satisfied by the corresponding logarithmic coefficients of some other
subfamilies of S.

Keywords Univalent · Starlike · Convex and close-to-convex functions · Subordina-
tion · Logarithmic coefficients and coefficient estimates

Mathematics Subject Classification 30C45

1 Introduction

LetA be the class of functions f analytic in the unit disk D = {z ∈ C : |z| < 1} with
the normalization f (0) = 0 = f ′(0) − 1. Let S denote the class of functions f from
A that are univalent in D. Then the logarithmic coefficients γn of f ∈ S are defined
by the formula

1

2
log

(
f (z)

z

)

=
∞
∑

n=1

γnz
n, z ∈ D. (1)

These coefficients play an important role for various estimates in the theory of univalent
functions. When we require a distinction, we use the notation γn( f ) instead of γn .
For example, the Koebe function k(z) = z(1 − eiθ z)−2 for each θ has logarithmic
coefficients γn(k) = einθ /n, n ≥ 1. If f ∈ S and f (z) = z + ∑∞

n=2 anz
n , then by

(1) it follows that 2γ1 = a2 and hence, by the Bieberbach inequality, |γ1| ≤ 1. Let
S� denote the class of functions f ∈ S such that f (D) is starlike with respect to the
origin. Functions f ∈ S� are characterized by the condition Re (z f ′(z)/ f (z)) > 0 in
D. The inequality |γn| ≤ 1/n holds for starlike functions f ∈ S, but is false for the full
class S, even in order of magnitude. See [4, Theorem 8.4 on page 242]. In [6], Girela
pointed out that this bound is actually false for the class of close-to-convex functions
inDwhich is defined as follows: A function f ∈ A is called close-to-convex, denoted
by f ∈ K, if there exists a real α and a g ∈ S� such that

Re

(

eiα
z f ′(z)
g(z)

)

> 0, z ∈ D.

For 0 ≤ β < 1, a function f ∈ S is said to belong to the class of starlike functions
of order β, denoted by f ∈ S�(β), if Re

(

z f ′(z)/ f (z)
)

> β for z ∈ D. Note that
S(0) =: S�. The class of all convex functions of order β, denoted by C(β), is then
defined by C(β) = { f ∈ S : z f ′ ∈ S�(β)}. The class C(0) =: C is usually referred
to as the class of convex functions in D. With the class S being of the first priority,
its subclasses such as S�, K, and C, respectively, have been extensively studied in
the literature and they appear in different contexts. We refer to [4,7,10,12] for a
general reference related to the present study. In [5, Theorem 4], it was shown that the
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logarithmic coefficients γn of every function f ∈ S satisfy

∞
∑

n=1

|γn|2 ≤ π2

6
(2)

and the equality is attained for the Koebe function. The proof uses ideas from the
work of Baernstein [3] on integral means. However, this result is easy to prove (see
Theorem 1) in the case of functions in the classU := U(1)which is defined as follows:

U(λ) =
{

f ∈ A :
∣
∣
∣
∣
∣

(
z

f (z)

)2

f ′(z) − 1

∣
∣
∣
∣
∣
< λ, z ∈ D

}

,

where λ ∈ (0, 1]. It is known that [1,2,11] every f ∈ U is univalent in D and hence,
U(λ) ⊂ U ⊂ S for λ ∈ (0, 1]. The present authors have established many interesting
properties of the family U(λ). See [10] and the references therein. For example, if
f ∈ U(λ) for some 0 < λ ≤ 1 and a2 = f ′′(0)/2, then we have the subordination
relations

f (z)

z
≺ 1

1 + (1 + λ)z + λz2
= 1

(1 + z)(1 + λz)
, z ∈ D, (3)

and

z

f (z)
+ a2z ≺ 1 + 2λz + λz2, z ∈ D.

Here≺ denotes the usual subordination [4,7,12]. In addition, the following conjecture
was proposed in [10].

Conjecture 1 Suppose that f ∈ U(λ) for some 0 < λ ≤ 1. Then |an| ≤ ∑n−1
k=0 λk for

n ≥ 2.

In Theorem 1, we present a direct proof of an inequality analogous to (2) for
functions in U(λ) and in Corollary 1, we obtain the inequality (2) as a special case for
U . At the end of Sect. 2, we also consider estimates of the type (2) for some interesting
subclasses of univalent functions. However, Conjecture 1 remains open for n ≥ 5. On
the other hand, the proof for the case n = 2 of this conjecture is due to [17] and an
alternate proof was obtained recently by the present authors in [10, Theorem 1]. In
this paper, we show that Conjecture 1 is true for n = 3, 4, and our proof includes an
elegant proof of the case n = 2. The main results and their proofs are presented in
Sects. 2 and 3.

2 Logarithmic coefficients of functions in U(λ)

Theorem 1 For 0 < λ ≤ 1, the logarithmic coefficients of f ∈ U(λ) satisfy the
inequality

∞
∑

n=1

|γn|2 ≤ 1

4

(
π2

6
+ 2Li 2(λ) + Li 2(λ

2)

)

, (4)
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492 M. Obradović et al.

where Li2 denotes the dilogarithm function given by

Li2(z) =
∞
∑

n=1

zn

n2
= z

∫ 1

0

log(1/t)

1 − t z
dt.

The inequality (4) is sharp. Further, there exists a function f ∈ U such that |γn| >

(1 + λn)/(2n) for some n.

Proof Let f ∈ U(λ). Then, by (3), we have

z

f (z)
≺ (1 − z)(1 − λz)

which clearly gives

∞
∑

n=1

γnz
n = log

√

f (z)

z
≺ − log(1 − z) − log(1 − λz)

2
=

∞
∑

n=1

1

2n
(1 + λn)zn . (5)

Again, by Rogosinski’s theorem (see [4, 6.2]), we obtain

∞
∑

n=1

|γn|2 ≤
∞
∑

n=1

1

4n2
(1 + λn)2 = 1

4

( ∞
∑

n=1

1

n2
+ 2

∞
∑

n=1

λn

n2
+

∞
∑

n=1

λ2n

n2

)

and the desired inequality (4) follows. For the function

gλ(z) = z

(1 − z)(1 − λz)
,

we find that γn(gλ) = (1+ λn)/(2n) for n ≥ 1 and therefore, we have the equality in
(4). Note that g1(z) is the Koebe function z/(1 − z)2.

From the relation (5), we cannot conclude that

|γn( f )| ≤ |γn(gλ)| = 1 + λn

2n
for f ∈ U(λ).

Indeed for the function fλ defined by

fλ(z) = z

(1 − z)(1 − λz)(1 + (λ/(1 + λ))z)
(6)

we find that

z

fλ(z)
= 1 + λ − (1 + λ)2

1 + λ
z + λ2

1 + λ
z3
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Fig. 1 The image of fλ(z) = z

(1 − z)(1 − λz)(1 + (λ/(1 + λ))z)
under D for certain values of λ

and
(

z

fλ(z)

)2

f ′
λ(z) − 1 = − 2λ2

1 + λ
z3 = −

(

1 − (1 + 2λ)(1 − λ)

1 + λ

)

z3

which clearly shows that fλ ∈ U(λ). The images of D under fλ(z) for certain values
of λ are shown in Fig. 1a–d. Moreover, for this function, we have

log

(
fλ(z)

z

)

= − log(1 − z) − log(1 − λz) − log

(

1 + λ

1 + λ
z

)

= 2
∞
∑

n=1

γn( fλ)z
n,
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494 M. Obradović et al.

where

γn( fλ) = 1

2

(
1 + λn

n
+ (−1)n

λn

(1 + λ)n

)

.

This contradicts the above inequality at least for even integer values of n ≥ 2. More-
over, with these γn( fλ) for n ≥ 1, we obtain

∞
∑

n=1

|γn( fλ)|2 = 1

4

∞
∑

n=1

{

(1 + λn)2

n2
+ 2

(−1)n

n

((
λ2

1 + λ

)n

+
(

λ

1 + λ

)n)

+
(

λ

1 + λ

)2n
}

and by a computation, it follows easily that

∞
∑

n=1

|γn( fλ)|2 = 1

4

(
π2

6
+ 2Li 2(λ) + Li 2(λ

2)

)

−1

2
log

[(

1 + λ2

1 + λ

) (

1 + λ

1 + λ

)]

+ λ2

4(1 + 2λ)

<
1

4

(
π2

6
+ 2Li 2(λ) + Li 2(λ

2)

)

for 0 < λ ≤ 1,

and we complete the proof. 	

Corollary 1 The logarithmic coefficients of f ∈ U satisfy the inequality

∞
∑

n=1

|γn|2 ≤
∞
∑

n=1

1

n2
= π2

6
. (7)

We have equality in the last inequality for the Koebe function k(z) = z(1 − eiθ z)−2.
Further there exists a function f ∈ U such that |γn| > 1/n for some n.

Remark 1 From the analytic characterization of starlike functions, it is easy to see that
for f ∈ S�,

z f ′(z)
f (z)

− 1 = z

(

log

(
f (z)

z

))′
= 2

∞
∑

n=1

nγnz
n ≺ 2z

1 − z

and thus, by Rogosinski’s result, we obtain that |γn| ≤ 1/n for n ≥ 1. In fact for
starlike functions of order α, α ∈ [0, 1), the corresponding logarithmic coefficients
satisfy the inequality |γn| ≤ (1 − α)/n for n ≥ 1. Moreover, one can quickly obtain
that
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∞
∑

n=1

|γn|2 ≤ (1 − α)2
π2

6

if f ∈ S�(α), α ∈ [0, 1) (See also the proof of Theorem 2 and Remark 3). As
remarked in the proof of Theorem 1, from the relation (7), we cannot conclude the
same fact, namely, |γn| ≤ 1/n for n ≥ 1, for the class U although the Koebe function
k(z) = z/(1 − z)2 belongs to U ∩ S�. For example, if we set λ = 1 in (6), then we
have

z

f1(z)
= (1 − z)2

(

1 + z

2

)

= 1 − 3

2
z + z3

2
,

where f1 ∈ U and for this function, we obtain

∞
∑

n=1

|γn( f1)|2 =
∞
∑

n=1

(
1

n
+ (−1)n

1

2n+1

)2

= π2

6
+ 1

12

− log
3

2
<

π2

6
.

On the other hand, it is a simple exercise to verify that f1 /∈ S�. The graph of this
function is shown in Fig. 1d.

Let G(α) denote the class of locally univalent normalized analytic functions f in
the unit disk |z| < 1 satisfying the condition

Re

(

1 + z f ′′(z)
f ′(z)

)

< 1 + α

2
for |z| < 1,

and for some 0 < α ≤ 1. Set G(1) =: G. It is known (see [13, Equation (16)]) that
G ⊂ S� and thus, functions inG(α) are starlike. This class has been studied extensively
in the recent past, see for instance [9] and the references therein. We now consider the
estimate of the type (2) for the subclass G(α).

Theorem 2 Let 0 < α ≤ 1 and G(α) be defined as above. Then the logarithmic
coefficients γn of f ∈ G(α) satisfy the inequalities

∞
∑

n=1

n2|γn|2 ≤ α

4(α + 2)
(8)

and ∞
∑

n=1

|γn|2 ≤ α2

4
Li 2

(
1

(1 + α)2

)

. (9)

Also we have
|γn| ≤ α

2(α + 1)n
for n ≥ 1. (10)
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496 M. Obradović et al.

Proof If f ∈ G(α), then we have (see eg. [8, Theorem 1] and [13])

z f ′(z)
f (z)

− 1 ≺ (1 + α)(1 − z)

1 + α − z
− 1 = −α

(
z/(1 + α)

1 − (z/(1 + α))

)

, z ∈ D, (11)

which, in terms of the logarithmic coefficients γn of f defined by (1), is equivalent to

∞
∑

n=1

(−2nγn)z
n ≺ α

∞
∑

n=1

zn

(1 + α)n
. (12)

Again, by Rogosinski’s result, we obtain that

∞
∑

n=1

4n2|γn|2 ≤ α2
∞
∑

n=1

1

(1 + α)2n
= α

α + 2

which is (8).
Now, since the sequence An = 1

(1+α)n
is convex decreasing, we obtain from (12)

and [15, Theorem VII, p.64] that

| − 2nγn| ≤ A1 = 1

1 + α
,

which implies the desired inequality (10). As an alternate approach to prove this
inequality, we may rewrite (11) as

∞
∑

n=1

(2nγn)z
n = z

(

log

(
f (z)

z

))′
≺ φ(z) = −α

(
z/(1 + α)

1 − (z/(1 + α))

)

and, since φ(z) is convex inDwith φ′(0) = −α/(1+α), it follows from Rogosinski’s
result (see also [4, Theorem 6.4(i), p. 195]) that |2nγn| ≤ α/(1 + α). Again, this
proves the inequality (10).

Finally,weprove the inequality (9). From the formula (12) and the result ofRogosin-
ski (see also [12, Theorem 2.2] and [4, Theorem 6.2]), it follows that for k ∈ N the
inequalities

k
∑

n=1

n2 |γn|2 ≤ α2

4

k
∑

n=1

1

(1 + α)2n

are valid. Clearly, this implies the inequality (8) as well. On the other hand, consider
these inequalities for k = 1, . . . , N , and multiply the k-th inequality by the factor
1
k2

− 1
(k+1)2

, if k = 1, . . . , N − 1 and by 1
N2 for k = N . Then the summation of the

multiplied inequalities yields

123



Logarithmic coefficients and a coefficient for… 497

N
∑

k=1

|γk |2 ≤ α2

4

N
∑

k=1

1

k2(1 + α)2k

≤ α2

4

∞
∑

k=1

1

k2(1 + α)2k

= α2

4
Li 2

(
1

(1 + α)2

)

for N = 1, 2, . . . ,

which proves the desired assertion (9) if we allow N → ∞. 	


Corollary 2 The logarithmic coefficients γn of f ∈ G := G(1) satisfy the inequalities

∞
∑

n=1

n2|γn|2 ≤ 1

12
and

∞
∑

n=1

|γn|2 ≤ 1

4
Li 2

(
1

4

)

.

The results are the best possible as the function f0(z) = z − 1
2 z

2 shows. Also we have
|γn| ≤ 1/(4n) for n ≥ 1.

Remark 2 For the function f0(z) = z − 1
2 z

2, we have that γn( f0) = − 1
n2n+1 for

n = 1, 2, . . . and thus, it is reasonable to expect that the inequality |γn| ≤ 1
n2n+1 is

valid for the logarithmic coefficients γn of each f ∈ G. But that is not the case as the

function fn defined by f ′
n(z) = (1 − zn)

1
n shows. Indeed for this function we have

1 + z f ′′
n (z)

f ′
n(z)

= 1 − 2zn

1 − zn

showing that fn ∈ G. Moreover,

log
fn(z)

z
= − 1

n(n + 1)
zn + · · · ,

which implies that |γn( fn)| = 1
2n(n+1) for n = 1, 2, . . ., and observe that 1

2n(n+1) >
1

n2n+1 for n = 2, 3, . . .. Thus, we conjecture that the logarithmic coefficients γn of

each f ∈ G satisfy the inequality |γn| ≤ 1
2n(n+1) for n = 1, 2, . . .. Clearly, Corollary

2 shows that the conjecture is true for n = 1.

Remark 3 Let f ∈ C(α), where 0 ≤ α < 1. Then we have [18]

z f ′(z)
f (z)

− 1 ≺ Gα(z) − 1 =
∞
∑

n=1

δnz
n, (13)
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where δn is real for each n,

Gα(z) =

⎧

⎪⎨

⎪⎩

(2α − 1)z

(1 − z)[(1 − z)1−2α − 1] if α 
= 1/2,

−z

(1 − z) log(1 − z)
if α = 1/2,

and

β(α) = Gα(−1) = inf|z|<1
Gα(z) =

⎧

⎪⎨

⎪⎩

1 − 2α

2[21−2α − 1] if 0 ≤ α 
= 1/2 < 1,

1

2 log 2
if α = 1/2

so that f ∈ S�(β(α)). Also, we have [16]

f (z)

z
≺ Kα(z)

z
=

⎧

⎪⎨

⎪⎩

(1 − z)2α−1 − 1

1 − 2α
if 0 ≤ α 
= 1/2 < 1,

− log(1 − z)

z
if α = 1/2,

and Kα(z)/z is univalent and convex (not normalized in the usual sense) in D.
Now, the subordination relation (13), in terms of the logarithmic coefficients γn of

f defined by (1), is equivalent to

2
∞
∑

n=1

nγnz
n ≺ Gα(z) − 1 =

∞
∑

n=1

δnz
n, z ∈ D,

and thus,
k

∑

n=1

n2 |γn|2 ≤ 1

4

k
∑

n=1

δ2n for each k ∈ N. (14)

Since f is starlike of order β(α), it follows that

zK ′
α(z)

Kα(z)
− 1 = Gα(z) − 1 ≺ 2(1 − β(α))

z

1 − z

and therefore, |δn| ≤ 2(1 − β(α)) for each n ≥ 1. Again, the relation (14) by the
previous approach gives

N
∑

k=1

|γk |2 ≤ 1

4

N
∑

k=1

δ2k

k2
≤ (1 − β(α))2

N
∑

k=1

1

k2

for N = 1, 2, . . . , and hence, we have

∞
∑

n=1

|γn|2 ≤ 1

4

∞
∑

n=1

δ2n

n2
≤ (1 − β(α))2

∞
∑

n=1

1

n2
= (1 − β(α))2

π2

6
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and equality holds in the first inequality for Kα(z). In particular, if f is convex then
β(0) = 1/2 and hence, the last inequality reduces to

∞
∑

n=1

|γn|2 ≤ π2

24

which is sharp as the convex function z/(1 − z) shows.

3 Proof of Conjecture 1 for n = 2, 3, 4

Theorem 3 Let f ∈ U(λ) for 0 < λ ≤ 1 and let f (z) = z+a2z2 +a3z3 +· · · . Then

|an| ≤ 1 − λn

1 − λ
for 0 < λ < 1 and n = 2, 3, 4, (15)

and |an| ≤ n for λ = 1 and n ≥ 2. The results are the best possible.

Proof The case λ = 1 is well-known because U = U(1) ⊂ S and hence, by the de
Branges theorem, we have |an| ≤ n for f ∈ U and n ≥ 2. Here is an alternate proof
without using the de Branges theorem. From the subordination result (3) with λ = 1,
one has

f (z)

z
≺ 1

(1 − z)2
=

∞
∑

n=1

nzn−1

and thus, by Rogosinski’s theorem [4, Theorem 6.4(ii), p. 195], it follows that |an| ≤ n
for n ≥ 2.

So, we may consider f ∈ U(λ) with 0 < λ < 1. The result for n = 2, namely,
|a2| ≤ 1 + λ is proved in [10,17] and thus, it suffices to prove (15) for n = 3, 4
although our proof below is elegant and simple for the case n = 2 as well. To do this,
we begin to recall from (3) that

f (z)

z
≺ 1

(1 − z)(1 − λz)
= 1 +

∞
∑

n=1

1 − λn+1

1 − λ
zn

and thus

f (z)

z
= 1

(1 − zω(z))(1 − λzω(z))
,

where ω is analytic in D and |ω(z)| ≤ 1 for z ∈ D. In terms of series formulation, we
have

∞
∑

n=1

an+1z
n =

∞
∑

n=1

1 − λn+1

1 − λ
ωn(z)zn .
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We now set ω(z) = c1 + c2z + · · · and rewrite the last relation as

∞
∑

n=1

(1 − λ)an+1z
n =

∞
∑

n=1

(1 − λn+1)(c1 + c2z + · · · )nzn . (16)

By comparing the coefficients of zn for n = 1, 2, 3 on both sides of (16), we obtain

⎧

⎨

⎩

(1 − λ)a2 = (1 − λ2)c1
(1 − λ)a3 = (1 − λ2)c2 + (1 − λ3)c21
(1 − λ)a4 = (1 − λ2)

(

c3 + μc1c2 + νc31
)

,

(17)

where

μ = 2
1 − λ3

1 − λ2
and ν = 1 − λ4

1 − λ2
.

It is well-known that |c1| ≤ 1 and |c2| ≤ 1− |c1|2. From the first relation in (17) and
the fact that |c1| ≤ 1, we obtain

(1 − λ)|a2| = (1 − λ2)|c1| ≤ 1 − λ2,

which gives a new proof for the inequality |a2| ≤ 1 + λ.
Next we present a proof of (15) for n = 3. Using the second relation in (17),

|c1| ≤ 1 and the inequality |c2| ≤ 1 − |c1|2, we get

(1 − λ)|a3| ≤ (1 − λ2)|c2| + (1 − λ3)|c1|2
≤ (1 − λ2)(1 − |c1|2) + (1 − λ3)|c1|2
= 1 − λ2 + (λ2 − λ3)|c1|2
≤ 1 − λ3,

which implies |a3| ≤ 1 + λ + λ2.
Finally, we present a proof of (15) for n = 4. To do this, we recall the sharp

upper bounds for the functionals
∣
∣c3 + μc1c2 + νc31

∣
∣ when μ and ν are real. In [14],

Prokhorov and Szynal proved among other results that

∣
∣
∣c3 + μc1c2 + νc31

∣
∣
∣ ≤ |ν|

if 2 ≤ |μ| ≤ 4 and ν ≥ (1/12)(μ2 + 8). From the third relation in (17), this condition
is fulfilled and thus, we find that

(1 − λ)|a4| = (1 − λ2)

∣
∣
∣c3 + μc1c2 + νc31

∣
∣
∣ ≤ (1 − λ2)

(
1 − λ4

1 − λ2

)

= 1 − λ4

which proves the desired inequality |a4| ≤ 1 + λ + λ2 + λ3. 	
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Zaved. Matematika 1958(4), 3–7 (1958)

2. Aksentév, L.A., Avhadiev, F.G.: A certain class of univalent functions (Russian). Izv. Vysš. Učebn.
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