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Abstract Let α be a partial action of a group G on a ring S which has an enveloping
action. Suppose that (S, α) is a partial Galois extension. We study partial Galois
extensions inside (S, α). In particular, we derive some results on partial orbits and
partial stabilizers and apply them to associate to each subgroup K of G certain partial
Galois extensions inside (S, α) with partial actions of α restricted to K .

Keywords Partial action of a group · Partial Galois extension · Partial orbit ·
Partial stabilizer
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1 Introduction

A partial action of a group, a generalization of a group action, has been studied and
applied in various areas ofmathematics since it firstly appeared in the theoryof operator
algebras as a powerful tool (see [8–10,14,16]). The formal definition of this concept
was firstly given by Exel [9], and later Abadie in his PhD thesis (see also [1]) and
independently Kellendonk and Lawson [11] showed that every partial action of a
group on a set possesses an enveloping action.
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The definition of partial action of a group in a purely algebraic context was for-
mulated in [6]. We give this definition in the next section and use it throughout the
paper. Briefly speaking, a partial action α of a group G on a set S is a collection
of subsets {Sg | g ∈ G} together with bijections αg : Sg−1 → Sg satisfying certain
conditions. In the case where S is an algebra, Sg are required to be ideals of S and αg

are isomorphisms of (not necessarily unital) algebras; furthermore, the definition of
an enveloping action needs a few modifications (see [3] for more details and discus-
sion). It was shown in [6] that a partial group action on a unital algebra S possesses
an enveloping action if and only if every ideal Sg is unital. Throughout this paper,
whenever S is a ring, we assume that it is unital with 1 �= 0 and each ideal Sg is
generated by a central idempotent 1g of S.

Dokuchaev et al. [7] introduced the notion of a partial Galois extension, and gen-
eralized the results on Galois theory of commutative rings by Chase, Harrison and
Rosenberg [4] in the context of partial group actions, assuming the existence of
an enveloping action. We have studied the structure of a partial Galois extension
in [12,13], and in this paper we will continue the investigation.

Suppose now that (S, α) is a partial Galois extension. The main goal of this paper is
to study partial Galois extensions inside (S, α), especially those generated by central
idempotents of S. In Sect. 4, we in particular show that for any subgroup K of G,
there exists a nonzero central idempotent e of S such that Se with the partial action
of α restricted to K , denoted αK , is a partial Galois extension. More specifically, the
existence of e is constructed via taking the Boolean sum of all element inMK , the set
of minimal elements of the Boolean ring generated by {1k | k ∈ K }. It turns out that
the subsetMK is αK -invariant; hence α induces a partial action of K onMK . In Sect.
6, we show, among other things, how to construct partial Galois extensions in (S, α)

via partial orbits in (MK , αK ). Results derived in Sect. 6 require some properties of
partial orbits and partial stabilizers, which will be presented in Sect. 5.

For each central idempotent e of S, let N (e) = {g ∈ G | e1g = e} and G(e) =
{g ∈ G | e1g �= 0}. The discussion in Sects. 4 and 6 is closely related to these two
subsets of G. We will present some properties of N (·) and G(·) in Sect. 3 so that they
can easily be applied whenever needed. In the next section, we will recall the notions
of a partial group action and a partial Galois extension and two examples in details
which will be used very often later. Throughout this paper, G is assumed to be a finite
group unless mentioned otherwise.

2 Preliminaries

We firstly recall the definition of a partial action of a group on a set. A partial action α

of a group G on a set S is a collection of subsets {Sg | g ∈ G} together with bijections
αg : Sg−1 → Sg satisfying the following conditions:

(P1) S1 = S and α1 is the identity map of S;
(P2) αg(Sg−1 ∩ Sh) = Sg ∩ Sgh for all g, h ∈ G;
(P3) αg ◦ αh(x) = αgh(x) for all x ∈ Sh−1 ∩ S(gh)−1 and g, h ∈ G.

Notice that αg−1 = α−1
g for each g ∈ G, and in particular, if Sg = S for every g ∈ G,

then α is a usual global action of G on S. In the case where S is a ring, Sg are required
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to be ideals of S and αg are isomorphisms of (non-necessarily unital) algebras. As
mentioned in the introduction, throughout the rest of the paper, whenever S is a ring,
we assume that S is unital with 1 �= 0 and Sg = S1g for each g ∈ G, where 1g is a
central idempotent of S. We remark that the following identity holds

αg(1h1g−1) = 1gh1g for all g, h ∈ G.

As in [13], we use (B, •) to denote the Boolean semigroup generated by {1g | g ∈
G} under the multiplication of S.

Next, we recall the definition of a partial Galois extension. Let (S, α) be a ring with
a partial action of a group G. As defined in [7], the subring of the invariant elements
of S under α is

Sα = {x ∈ S | αg(x1g−1) = x1g for all g ∈ G}.

If there exist elements xi and yi in S, i = 1, 2, . . . ,m for some positive integer m,
such that

m∑

i=1

xiαg(yi1g−1) = δ1,g1S for each g ∈ G,

then (S, α) is called a partial Galois extension of Sα (we often simply say (S, α) is
a partial Galois extension), and the set V = {xi , yi | i = 1, 2, . . . ,m} is called an
α-partial Galois system for S. This is obviously a generalization of Galois extension
since under this definition, if Sg = S for every g ∈ G, then Sα is the usual invariant
subring SG of S under the global action of G and V is a G-Galois system for S such
that S is a Galois extension of SG with Galois group G.

Examples of partial Galois extensions can be found in [7] and [15]. The authors in
[12] also presented an easyway of constructing partial Galois extensions, which shows
that any direct sum of a finite number of Galois extensions is a partial Galois extension.
Example 6.1 in [7] and Example 4.2 in [15] will be used very often throughout this
paper, so for readers’ convenience, we provide details of these two examples below.

Example 2.1 (see [7, Example 6.1]) Let R be a commutative ring and S = Re1 ⊕
Re2 ⊕ Re3, where {e1, e2, e3} is a set of nonzero orthogonal idempotents whose sum
is one. Let G be a cyclic group of order 4 generated by σ . The partial action of G
on S is defined as follows: taking S1 = S, Sσ = Re1 ⊕ Re2, Sσ 2 = Re1 ⊕ Re3 and
Sσ 3 = Re2 ⊕ Re3, and defining α1 = idS ,

ασ : Sσ 3 → Sσ by ασ (e2) = e1 and ασ (e3) = e2,
ασ 2 : Sσ 2 → Sσ 2 by ασ 2(e1) = e3 and ασ 2(e3) = e1,
ασ 3 : Sσ → Sσ 3 by ασ 3(e1) = e2 and ασ 3(e2) = e3.

It is easy to check that S is an α-partial Galois extension of R. The induced tree for the
nonzero elements of the Boolean semigroup (B, •) associated to the partial Galois
extension (S, α) is given in [12, Example 1(1)] as follows:
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11

e1,2 = 111σ e1,3 = 111σ 2 e2,3 = 111σ 3

e1 = 111σ1σ 2 e2 = 111σ1σ 3 e3 = 111σ 21σ 3

Example 2.2 (see [15, Example 4.2]) Let A be a ring and S = �6
i=1Ai , where Ai is

A if i = 1, 3, 6 and the zero ring otherwise. Then S = Ae1 ⊕ Ae3 ⊕ Ae6, where each
ei is the six-tuple whose j th-coordinate is 1A if j = i and 0A otherwise. Let G be a
cyclic group of order 6 generated by σ . The partial action α of G on S is defined in
the following way:

11 = 1S = e1 + e3 + e6, 1σ = 1σ 4 = e1, 1σ 2 = e3, 1σ 3 = e3 + e6, 1σ 5 = e6,

α1 = idS, ασ : Sσ 5 → Sσ , ae6 �→ ae1,
ασ 2 : Sσ 4 → Sσ 2 , ae1 �→ ae3, ασ 3 : Sσ 3 → Sσ 3 , ae3 + be6 �→ be3 + ae6,
ασ 4 : Sσ 2 → Sσ 4 , ae3 �→ ae1, ασ 5 : Sσ 1 → Sσ 5 , ae1 �→ ae6.

It is clear that S is an α-partial Galois extension of Sα = A(e1 + e3 + e6) ∼= A with
α-partial Galois system {x1 = y1 = e1, x2 = y2 = e3, x3 = y3 = e6}. The induced
tree for the nonzero elements of the Boolean semigroup (B, •) associated to (S, α) is
given in [12, Example 1(3)] as follows:

f1

f2 f3

f4 f5

where f1 = 11, f2 = 111σ = 111σ 4 = 111σ1σ 4 , f3 = 111σ 3 , f4 = 111σ 2 =
111σ 21σ 3 and f5 = 111σ 5 = 111σ 31σ 5 (Here we provide all possible expressions for
each nonzero element of (B, •)).

3 Properties of N(·) and G(·)
Throughout this section, let (S, α) be a ringwith a partial action of a groupG. LetI (S)

denote the set of all central idempotents in S. The Boolean sum onI (S), denoted ∨,
is defined by e ∨ e′ = e + e′ − ee′, and the Boolean multiplication onI (S), denoted
∧, is just the multiplication of S reduced toI (S). We say e, e′ ∈ I (S) are orthogonal
if e ∧ e′ = 0. Let  denote the canonical partial order on I (S) defined as follows:
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e  e′ if and only if e ∧ e′ = e. Clearly, minimal elements of I (S)× = I (S)\{0}
are mutually orthogonal.

For any e ∈ I (S), define G(e) = {g ∈ G | e1g �= 0} and N (e) = {g ∈ G | e1g =
e}. We shall firstly present some properties of N (·) and G(·), some of which will be
used in the next section. At the end, we shall apply them to show the main result of
this section: Let B denote the Boolean subring of I (S) generated by {1g | g ∈ G}.
Then there do not exist two distinct minimal elements e, e′ ofB× = B\{0} such that
G(e),G(e′) and G(e∨ e′) are all subgroups of G. We begin with the reaction of G(·)
and N (·) under the operations of ∨ and ∧ on I (S).

Lemma 3.1 For any e, e′ ∈ I (S), G(e ∧ e′) ⊆ G(e) ∩ G(e′) ⊆ G(e) ∪ G(e′) =
G(e ∨ e′).

Proof Suppose g ∈ G(e ∧ e′); that is, ee′1g �= 0. Then in particular e1g �= 0 �= e′1g
and so g ∈ G(e) ∩ G(e′). For any g ∈ G(e ∨ e′), we have (e ∨ e′)1g �= 0; that is,
(e + e′ − ee′)1g �= 0, which, if g /∈ G(e), becomes e′1g �= 0; that is, g ∈ G(e′).
Conversely, let g ∈ G(e). Since e(e∨ e′) = e, it follows that g ∈ G(e∨ e′). Similarly,
G(e′) ⊆ G(e ∨ e′). We conclude that G(e ∨ e′) = G(e) ∪ G(e′). ��
Example 3.2 In Example 2.1, we see that e1,2 = e1 ∨ e2. Clearly, G(e1) = {1, σ, σ 2},
G(e2) = {1, σ, σ 3} and G(e1,2) = G, and so G(e1 ∨ e2) = G(e1) ∪ G(e2). On the
other hand, it could be the case where G(e) ∩ G(e′) � G(e ∧ e′). Consider Example
2.1 again. We have σ ∈ G(e1,3) ∩ G(e2,3), but σ /∈ G(e1,3 ∧ e2,3) = G(e3).

Lemma 3.3 For any e, e′ ∈ I (S), N (e ∨ e′) = N (e) ∩ N (e′) ⊆ N (e) ∪ N (e′) ⊆
N (e ∧ e′).

Proof For any g ∈ N (e) ∩ N (e′), e1g = e and e′1g = e′. Hence (e + e′ − ee′)1g =
e + e′ − ee′; that is, g ∈ N (e ∨ e′). Conversely, take any g ∈ N (e ∨ e′). Since
e(e ∨ e′) = e, e1g = e(e ∨ e′)1g = e(e ∨ e′) = e. Similarly, we can get e′1g = e′.
Hence g ∈ N (e) ∩ N (e′). We have shown that N (e ∨ e′) = N (e) ∩ N (e′). Now,
if g ∈ N (e), then (e ∧ e′)1g = e1ge′ = e ∧ e′, and similarly, if g ∈ N (e′), then
g ∈ N (e ∧ e′). Hence N (e) ∪ N (e′) ⊆ N (e ∧ e′). ��
Example 3.4 It is possible that N (e ∧ e′) is not equal to N (e) ∪ N (e′). Consider
Example 2.2. We have N ( f2) = {1, σ, σ 4}, N ( f3) = {1, σ 3}, but N ( f2 ∧ f3) =
N (0) = G �= N ( f2) ∪ N ( f3). Also, if taking e = f2 ∨ f4 and e′ = f3, then
e ∧ e′ = f4, N (e) = {1} and N (e′) = {1, σ 3}; hence N (e) ∪ N (e′) �= N (e ∧ e′) =
N ( f4) = {1, σ 2, σ 3}.

With the former one of the preceding example in mind, one might wonder if it is
true that N (e ∧ e′) ⊆ N (e) ∪ N (e′) whenever e, e′ ∈ (B, •) such that e ∧ e′ �= 0.
This is, however, too naive from the following example.

Example 3.5 Let R be a commutative ring and S = ⊕5
i=1Rei , where {ei | 1 ≤ i ≤ 5}

is a set of nonzero orthogonal idempotents whose sum is one. Let G be a cyclic group
of order 4 generated by σ . We define a partial action of G on S as follows: taking
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S1 = S, Sσ = ⊕i∈{1,2,3}Rei , Sσ 2 = ⊕i∈{1,2,4}Rei and Sσ 3 = ⊕i∈{1,2,5}Rei , and
defining α1 = idS ,

ασ : Sσ 3 → Sσ , ae1 + be2 + ce5 �→ be1 + ae2 + ce3
ασ 2 : Sσ 2 → Sσ 2 , ae1 + be2 + ce4 �→ ae1 + be2 + ce4
ασ 3 : Sσ → Sσ 3 , ae1 + be2 + ce3 �→ be1 + ae2 + ce5.

One should check that conditions (P1)–(P3) listed in the definition of partial group
action are satisfied.

The induced tree for the associated Boolean semigroup (B, •) is given below:

11

e1,2,3 = 111σ e1,2,4 = 111σ 2 e1,2,5 = 111σ 3

e1,2 = 111σ1σ 21σ 3

Here e1,2,4 ∧ e1,2,5 = e1,2 �= 0, and N (e1,2,4 ∧ e1,2,5) = G � N (e1,2,4) ∪
N (e1,2,5) = {1, σ 2, σ 3}.
Proposition 3.6 If e1, e2, . . . , ek are elements ofI (S), thenG(∨k

i=1ei ) = ∪k
i=1G(ei )

and N (∨k
i=1ei ) = ∩k

i=1N (ei ).

Proof The statement holds by Lemmas 3.1, 3.3 and induction. ��
The following result follows easily from a well-known result in group theory.

Proposition 3.7 For any e, e′ ∈ I (S), if G(e),G(e′) and G(e∨e′) are all subgroups
of G, then either G(e) ⊆ G(e′) or G(e′) ⊆ G(e).

Proof By Proposition 3.6, G(e ∨ e′) = G(e) ∪ G(e′). Thus by hypothesis, G(e)
and G(e′) are subgroups of G such that their union is also a subgroup, so they are
comparable. ��
Corollary 3.8 If e1, e2, . . . , ek are elements ofI (S) such that each G(ei ∨e j ), where
i, j ∈ {1, 2, . . . , k}, is a subgroup of G, then G(e1),G(e2), . . . ,G(ek) form a chain
of groups under the inclusion of sets.

Proof Notice firstly that for each i = 1, 2, . . . , k, G(ei ) = G(ei ∨ei ) is a subgroup of
G. Now assume to the contrary that these subgroups G(e1),G(e2), . . . ,G(ek) do not
form a chain. Then there exist some i, j ∈ {1, 2, . . . , k} such that G(ei ) and G(e j ) are
not comparable. But by the assumption, G(ei ),G(e j ) and G(ei ∨ e j ) are all groups,
so either G(ei ) ⊆ G(e j ) or G(e j ) ⊆ G(ei ) by Proposition 3.7, a contradiction. ��

We next show that G(·) respects the canonical partial order onI (S) and so does
N (·) but in the reversing way.

123



Partial group actions and partial Galois extensions 293

Lemma 3.9 For any e, e′ ∈ I (S), if e  e′, then G(e) ⊆ G(e′) and N (e′) ⊆ N (e).

Proof Suppose e, e′ are elements of I (S) such that e  e′. For any g ∈ G(e),
ee′1g = e1g �= 0, so e′1g �= 0. If g ∈ N (e′), then e1g = ee′1g = ee′ = e; hence
g ∈ N (e). ��

The converse of the preceding lemma for N (·) is true if e, e′ ∈ (B, •)× =
(B, •)\{0}. Recall that for any e ∈ (B, •)×, as observed in [13, Lemma 1],
e = �g∈N (e)1g , and furthermore as observed in [13, Lemma 9], e is minimal if
and only if G(e) = N (e).

Lemma 3.10 If e, e′ ∈ (B, •)× such that N (e′) ⊆ N (e), then e  e′.

Proof Suppose that e, e′ ∈ (B, •)×. Then as mentioned above, e = �g∈N (e)1g and
e′ = �g∈N (e′)1g . Thus if N (e′) ⊆ N (e), then e ∧ e′ = e; that is, e  e′. ��
Remark 3.11 The corresponding statement does not hold for G(·); that is, even when
e, e′ ∈ (B, •)× such that G(e) ⊆ G(e′), it is not necessarily true that e  e′. In
Example 2.1, G(e1,2) = G(e1,3) = G, but e1,2 � e1,3 � e1,2. The corresponding
statement also does not hold if (B, •)× is replaced by B×. In Example 2.2, N ( f2 ∨
f4) = {1} ⊆ N ( f3) but f3 � f2 ∨ f4.

To show the main result of this section, we need two more observations.

Proposition 3.12 The minimal elements of B× are exactly the same as those of
(B, •)×.

Proof Let f be a minimal element of (B, •)×. To show that f is also minimal inB×,
assume that e is an element of B× such that e  f but e �= f . By definition of B,
e = ∨l

i=1ei for some ei ∈ (B, •). Since f is minimal in (B, •)×, f ∧ ei is either 0
or f for each i = 1, 2, . . . , l. Now from e  f , we then have e = (∨l

i=1ei ) ∧ f =
∨l
i=1(ei ∧ f ) equals f or 0, a contradiction. This shows that f is minimal in B×.

Conversely, let f be a minimal element ofB×. We claim that actually f ∈ (B, •)×.
This follows easily from the fact that for any e, e′ ∈ B, e, e′  e ∨ e′. We then
conclude that f is a minimal element of (B, •)×. ��

An immediate application of the preceding proposition is the following generaliza-
tion of [13, Lemma 9].

Proposition 3.13 For any e ∈ B×, e is minimal in B× if and only if G(e) = N (e).

Proof Since e is nonzero, clearly N (e) ⊆ G(e). If e is minimal inB×, then for each
g ∈ G, e1g equals either 0 or e; thus G(e) ⊆ N (e). Suppose now that e ∈ B× such
that G(e) = N (e). We claim that e actually belongs to (B, •)×. Let e = ∨l

i=1ei ,
where each ei ∈ (B, •)×. Then by Proposition 3.6,

∪l
i=1N (ei ) ⊆ ∪l

i=1G(ei ) = G(∨l
i=1ei ) = G(e) = N (e) = N (∨l

i=1ei ) = ∩l
i=1N (ei ),

which forces that for any i, j ∈ {1, 2, . . . , l}, N (ei ) = N (e j ) and so ei = e j by
Lemma 3.10. Thus e = e1 ∈ (B, •)×. Therefore, e is minimal in (B, •)× by [13,
Lemma 9], and hence e is minimal in B× by Proposition 3.12. ��
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One can check easily that similarly for any e ∈ I (S)×, if e is minimal in
I (S)×, then G(e) = N (e); the converse, however, is false. In Example 3.5,
N (e1,2) = G(e1,2) = G, but e1,2 is not minimal in I (S)×.

We are now ready to show the main result of this section.

Theorem 3.14 There do not exist two distinct minimal elements e, e′ ofB× such that
G(e), G(e′) and G(e ∨ e′) are all subgroups of G.

Proof Suppose e and e′ are two distinctminimal elements ofB× such thatG(e),G(e′)
and G(e ∨ e′) are all subgroups of G. Then in particular by Proposition 3.7, G(e) ⊆
G(e′) orG(e′) ⊆ G(e). Since e, e′ areminimal elements ofB×, they are alsominimal
in (B, •)× by Proposition 3.12, and G(e) = N (e) and G(e′) = N (e′) by Proposition
3.13. But then by Lemma 3.10, we conclude that e′  e or e  e′, either of which
implies that e = e′, a contradiction. ��
Example 3.15 In [13, Example 19], e1 and e2 are the only two minimal elements of
B×. We see that G(e1) = H × {1} and G(e2) = {1} × K are both subgroups of G,
but G(e1 ∨ e2) = G(11) = H × {1} ∪ {1} × K is not a subgroup of G.

4 Partial Galois extensions in (S, α)

Throughout this section, let (S, α) be a ring with a partial action of a groupG and K be
a subgroup of G. We will sometimes assume in addition that (S, α) is a partial Galois
extension. Suppose that A is a nonzero ring contained in S with identity denoted 1A.
Recall in [13] we say that α induces a partial action of K on A if 1A1k ∈ A for each
k ∈ K and {A1k | k ∈ K } forms the collection of associated ideals of A for the partial
action; that is, for each k ∈ K , αk restricted to A1k−1 is an isomorphism of rings onto
A1k . We shall discuss when (A, αK ) forms a partial Galois extension with a special
attention to the case where A is an ideal of S generated by a central idempotent. At the
end of this section, we will in particular present a way of associating to every subgroup
K of G a partial Galois extension (Se, αK ), where e ∈ I (S)×. We recall that for any
subset H of G, SαH = {x ∈ S | αh(x1h−1) = x1h for all h ∈ H}.
Lemma 4.1 If α induces a partial action of K on A, then 1A ∈ SαK .

Proof By definition, αk , for each k ∈ K , restricted to A1k−1 is an isomorphism of
rings onto A1k . In particular, αk(1A1k−1) = 1A1k for all k ∈ K . Thus 1A ∈ SαK . ��
Theorem 4.2 If α induces a partial action of K on A, then α also induces a partial
action of K on the maximum ring extension of A in S, namely 1AS1A. Furthermore,
if (A, αK ) is a partial Galois extension, then so is (1AS1A, αK ).

Proof Clearly, 1AS1A is the maximum ring extension of A in S. Since α induces a
partial action of K on A, 1A1k ∈ A ⊆ 1AS1A for each k ∈ K and 1A ∈ SαK byLemma
4.1; hence for each k ∈ K , αk(1AS1A1k−1) = αk(1A1k−1)αk(S1k−1)αk(1A1k−1) =
1AS1A1k . Thus α induces a partial action of K on 1AS1A. Furthermore, it is clear that
every αK -partial Galois system for A is also an αK -partial Galois system for 1AS1A.

��
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Applying Theorem4.2, the set of all partial Galois extensions in (S, α) can basically
be determined as follows in four steps. Step 1. For each subgroup K ofG, determine the
set IK of nonzero idempotents e such that e ∈ SαK . Step 2. Determine the subset JK =
{e ∈ IK | (eSe, αK ) is a partial Galois extension}. Step 3. For each e ∈ JK , determine
the set S e

K = {A is a subring of eSe | (A, αK ) is a partial Galois extension}. Then
SK := ∪e∈JKS

e
K is the set of all partial Galois extensions in (S, α) with a partial

action of K . Step 4. The union ofSK for all subgroups K is then the set of all partial
Galois extensions contained in (S, α).

We next study the case where A is an ideal of S generated by an element ofI (S).
The converse of Lemma 4.1 holds here.

Lemma 4.3 For any e ∈ I (S), e ∈ SαK if and only if α induces a partial action of
K on Se.

Proof Obviously, e1k ∈ Se for each k ∈ K . Now, if e ∈ SαK , then for each k ∈ K ,
αk(Se1k−1) = αk(S1k−1)αk(e1k−1) = Se1k . Hence α induces a partial action of K on
Se. Thus we are done by Lemma 4.1 ��
Theorem 4.4 Let K be a subgroup of G and e an element of I (S)×. Suppose that
(S, α) is a partial Galois extension. Then (Se, αK ) is a partial Galois extension in
(S, α) if and only if e ∈ SαK . Furthermore, Se is a Galois extension in (S, α) with
Galois group K if and only if e ∈ SαK and K ⊆ N (e).

Proof By Lemma 4.3, it suffices to show that under the assumption that (S, α) is a
partial Galois extension, if e ∈ SαK , then Se with the induced partial action αK forms
a partial Galois extension. Indeed, if {xi , yi }li=1 is an α-partial Galois system for S,
then {xi e, yi e}li=1 is an αK -partial Galois system for Se: for each k ∈ K ,

l∑

i=1

xi eαk(yi e1k−1) = e
l∑

i=1

xiαk(yi1k−1)αk(e1k−1)

= e1k

l∑

i=1

xiαk(yi1k−1) = e1kδ1,k1S = δ1,ke.

Finally, the partial Galois extension (Se, αK ) is Galois if and only if e1k = e for all
k ∈ K , or equivalently, K ⊆ N (e). ��

Let CK (DK , resp.) denote the set of elements e in I (S) such that (Se, αK ) is a
partial Galois extension (Se is a Galois extension with Galois group K , resp.). We
now show that both CK andDK are closed under the Boolean sum ∨ and the Boolean
multiplication ∧ on I (S).

Proposition 4.5 Suppose that (S, α) is a partial Galois extension. If e and e′ are
elements of CK (DK , resp.), then e∨e′and e∧e′ are also elements of CK (DK , resp.).

Proof By Theorem 4.4, we need only show that e ∨ e′, e ∧ e′ ∈ SαK if e, e′ ∈ SαK ,
and K ⊆ N (e ∨ e′) ∩ N (e ∧ e′) if K ⊆ N (e) ∩ N (e′). The latter one is obvious
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since N (e ∨ e′) ∩ N (e ∧ e′) = N (e) ∩ N (e′) by Lemma 3.3. Now for each k ∈ K , if
αk(e1k−1) = e1k and αk(e′1k−1) = e′1k , then we have αk((e∨e′)1k−1) = αk(e1k−1)∨
αk(e′1k−1) = e1k∨e′1k = (e∨e′)1k , andαk((e∧e′)1k−1) = αk(e1k−1)∧αk(e′1k−1) =
e1k ∧ e′1k = (e ∧ e′)1k . ��

Notice that the latter part of Theorem 4.4 generalizes [13, Theorem 2], where the
ideal Se under consideration is generated by an element in the Boolean semigroup
(B, •)×. It was further proved in [13, Proposition 5] that N (e) is a subgroup of G
if and only if e ∈ SαN (e) . We do not know that whether this result is true if e is any
element in B× or even in I (S)×. It turns out that the argument used to prove the
if-direction of [13, Proposition 5] can be applied here to prove the following result,
and so we skip the proof.

Proposition 4.6 If e is an element of I (S)× such that e ∈ SαN (e) , then N (e) is a
subgroup of G.

Remark 4.7 We point out that it is not necessarily true that e ∈ SαN (e) whenever e is
an element of I (S)\B such that N (e) is a subgroup of G. In Example 3.5, we see
that e2 ∈ I (S)\B with N (e2) = G, but ασ (e21σ 3) = e1 �= e21σ . It remains open
whether e ∈ SαN (e) if e is any element in B\(B, •) such that N (e) is a subgroup of
G.

Corollary 4.8 Suppose that (S, α) is a partial Galois extension. If e is an element of
I (S)× such that e ∈ SαN (e) , then Se is a Galois extension in (S, α) with Galois group
N (e). Furthermore, if e is minimal in I (S)× or inB×, then (Se)N (e) = Sαe.

Proof The first result follows immediately from Proposition 4.6 and Theorem 4.4.
Since e ∈ SαN (e) , it is clear that Sαe ⊆ (Se)N (e). Suppose in addition that e is minimal
in I (S)× or in B×. Then N (e) = G(e) by Proposition 3.13 and the statement right
after its proof. Now if x ∈ (Se)N (e), then for each g ∈ N (e), αg(x1g−1) = x1g; as for
any g /∈ N (e), we have αg(x1g−1) = αg(xe1g−1) = αg(0) = xe1g = x1g . Therefore,
x = xe ∈ Sαe. ��
Example 4.9 Let S be a Galois extension of SG with Galois group G. Let H be a
subgroup of G. We shall define a partial action α of G on S such that S is an α-partial
Galois extension of SH . For g ∈ G, let

1g =
{
1S if g ∈ H

0 otherwise

and define αg : Sg−1 → Sg by x1g−1 �→ g(x)1g . Obviously, each αg is a ring iso-
morphism. Actually, α is a partial action of G on S. Clearly, Sα = SH . Now, one can
check easily that every Galois system for S is also an α-partial Galois system for S.
Therefore, S is an α-partial Galois extension of SH .

For this partial Galois extension (S, α), 1S = 11 = �g∈H1g is the only nonzero
element in B, which is of course invariant under αN (11), where N (11) = H is a
subgroup of G as promised by Proposition 4.6. Furthermore, by Corollary 4.8, we
obtain that S = S11 is a Galois extension of Sα11 = SH with Galois group H . This
conclusion should not be surprising according to classical Galois theory.
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Example 4.10 Here we present another example to interpret Proposition 4.6 and
Corollary 4.8. This example is constructed in a way similar to Example 2.1. Let
R be a commutative ring and S = ⊕5

i=1Rei , where {ei | 1 ≤ i ≤ 5} is a set
of nonzero orthogonal idempotents whose sum is one. Let G be a cyclic group
of order 6 generated by σ . We define a partial action of G on S as follows: tak-
ing S1 = S, Sσ = ⊕i∈{1,2,3,4}Rei , Sσ 2 = ⊕i∈{1,2,3,5}Rei , Sσ 3 = ⊕i∈{1,2,4,5}Rei ,
Sσ 4 = ⊕i∈{1,3,4,5}Rei and Sσ 5 = ⊕i∈{2,3,4,5}Rei , and defining α1 = idS ,

ασ : Sσ 5 → Sσ by e2 �→ e1, e3 �→ e2, e4 �→ e3 and e5 �→ e4
ασ 2 : Sσ 4 → Sσ 2 by e1 �→ e5, e3 �→ e1, e4 �→ e2 and e5 �→ e3,
ασ 3 : Sσ 3 → Sσ 3 by e1 �→ e4, e2 �→ e5, e4 �→ e1 and e5 �→ e2,
ασ 4 : Sσ 2 → Sσ 4 by ασ 4 = α−1

σ 2 ,

ασ 5 : Sσ → Sσ 5 by ασ 5 = α−1
σ .

One can check easily that S is an α-partial Galois extension of R with α-partial
Galois system {xi = yi = ei | 1 ≤ i ≤ 5}. Consider e1,3 := 111σ1σ 21σ 4 ,
e1,5 := 111σ 21σ 31σ 4 and e3,5 := 111σ 21σ 41σ 5 , and take e = e1,3 ∨ e1,5. Then
N (e) = {1, σ 2, σ 4} is a subgroup of G and e ∈ SαN (e) : ασ 2(e1σ 4) = ασ 2(e1,31σ 4) ∨
ασ 2(e1,51σ 4) = e1,5 ∨ e3,5 = e1,3 ∨ e1,5 = e1σ 2 . By Corollary 4.8, Se is a Galois
extension in (S, α) with Galois group N (e).

We next show that if (S, α) is a partial Galois extension, then for any subgroup K of
G, there exists an element e inI (S)× such that (Se, αK ) is a partial Galois extension
in (S, α).

Let BK be the Boolean ring generated by {1k | k ∈ K }. Clearly, BK ⊆ B.
Let M and MK denote the set of all minimal elements in B× and B×

K = BK \{0},
respectively. It is not necessary thatMK ⊆ M . In Example 2.2, if letting K = {1, σ 3},
then MK = { f3} � M .

Lemma 4.11 For each k ∈ K, αk(BK 1k−1) ⊆ BK . In particular, αk(BK 1k−1) =
BK 1k for each k ∈ K.

Proof By definition ofBK , every element ofBK is a Boolean sum of some Boolean
multiplications of elements of the form 1h , where h ∈ K . Thus it suffices to show that
for each pair of k, h ∈ K , αk(1h1k−1) ∈ BK , since αk((e ∧ e′)1k−1) = αk(e1k−1) ∧
αk(e′1k−1) and αk((e ∨ e′)1k−1) = αk(e1k−1) ∨ αk(e′1k−1) for any e, e′ ∈ BK . But
αk(1h1k−1) = 1kh1k and K is a subgroup. Hence we are done. ��
Proposition 4.12 If f is an element of MK , then so is αk( f 1k−1) for each k ∈ K
such that f 1k−1 �= 0.

Proof Let f ∈ MK and k ∈ K such that f 1k−1 �= 0; equivalently, f 1k−1 = f .
Then f ′ := αk( f 1k−1) is nonzero and belongs to BK by Lemma 4.11. Assume e
is an element of B×

K smaller than but not equal to f ′; that is, e f ′ = e �= f ′. In
particular, e1k = e f ′1k = e f ′ = e. Let e′ = αk−1(e1k). Then e′ is nonzero and
belongs to BK by Lemma 4.11 again. Now, e′ �= αk−1( f ′1k) = f 1k−1 = f and
e′ = αk−1(e f ′1k) = αk−1(e1k)αk−1( f ′1k) = e′ f , showing that e′ ∈ B×

K is smaller
than but not equal to f , a contradiction to f ∈ MK . Thus we conclude that f ′ ∈ MK .

��
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Corollary 4.13 αk(MK 1k−1\{0}) = MK 1k\{0} for each k ∈ K.

Example 4.14 In Example 2.2, if letting K = {1, σ 2, σ 4}, thenMK = { f2, f4}. Here
f41σ 2 �= 0 and ασ 4( f41σ 2) = f2 ∈ MK .

Notice that for each f ∈ MK and k ∈ K , f 1k is either f or 0. LetMK = { fi | i =
1, 2, . . . ,m}. For each k ∈ K , consider the following two subsets of {1, 2, . . . ,m}:
I+
k = {i | fi1k = fi }={i | fi1k �=0} and I−

k = {i | fi1k−1 = fi }={i | fi1k−1 �= 0}.
Lemma 4.15 For each k ∈ K, |I+

k | = |I−
k |.

Proof By Corollary 4.13, αk(MK 1k−1\{0}) = MK 1k\{0} for each k ∈ K . Hence the
number of nonzero elements inMK 1k is equal to that of nonzero elements inMK 1k−1 .

��
Theorem 4.16 Let fK = ∨m

i=1 fi , the Boolean sum of all elements in MK . Then
fK ∈ SαK .

Proof Let k ∈ K . We have that fK 1k = ∨m
i=1 fi1k = ∨i∈I+

k
fi , the Boolean sum of

all elements f inMK such that f 1k = f , and that αk( fK 1k−1) = ∨m
i=1αk( fi1k−1) =

∨i∈I−
k
αk( fi1k−1), which by Proposition 4.12 is a Boolean sum of |I−

k | distinct ele-
ments f in MK such that f 1k = f . Therefore it follows from Lemma 4.15 that
αk( fK 1k−1) = fK 1k . ��
Corollary 4.17 Let fK = ∨m

i=1 fi . Suppose that (S, α) is a partial Galois extension.
Then (S fK , αK ) is a partial Galois extension. Furthermore, S fK is a Galois extension
in (S, α) with Galois group K if and only if K ⊆ N ( fK ).

Proof This follows immediately from the preceding theorem and Theorem 4.4. ��
Example 4.18 Under the notations in Example 4.14, (S( f2 ∨ f4), αK ) is a partial
Galois extension. Indeed, f2 ∨ f4 ∈ SαK : ασ 2(( f2 ∨ f4)1σ 4) = ασ 2( f21σ 4) = f4 =
( f2 ∨ f4)1σ 2 . However, (S( f2 ∨ f4), αK ) is not a Galois extension since K is not
contained in N ( f2 ∨ f4) = N ( f2) ∩ N ( f4) = {1}.
Example 4.19 In Example 4.10, if letting K = {1, σ 2, σ 4}, then MK = {e1,3,5 :=
111σ 21σ 4}. By Corollary 4.17, (Se1,3,5, αK ) is a partial Galois extension and actually
is a Galois extension since K = N (e1,3,5). Notice that e1,3,5 equals the element e
given in Example 4.10. Therefore the result here coincides with the conclusion of
Example 4.10.

LetM = {e1, e2, . . . , en}. In the remaining of this section, assume that the Boolean
sum of all elements in M is 1S . Under this assumption, every element of B× is a
Boolean sum of elements inM , which we call its Boolean components. We have seen
earlier that the inclusionMK ⊆ M does not hold in general. We close this section by
showing that this must be true if K = G(e) for some e ∈ B×.

Proposition 4.20 If K = G(e) for some e ∈ B×, then each Boolean component of e
belongs to MK ; in fact, MK consists of the Boolean components of e. In particular,
MK ⊆ M .
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Proof Write e = ∨i∈I ei , where I ⊆ {1, 2, . . . , n}. Then G(e) = ∪i∈I G(ei ) by
Proposition 3.6. Thus K = ∪i∈I N (ei ) by Proposition 3.13, where ei = �g∈N (ei )1g
for each i ∈ I by Proposition 3.12 and the canonical form of elements in (B, •)× (see
[13, Lemma 1]). Note that this implies that MK = {ei | i ∈ I }. Hence MK ⊆ M . ��

We present an example below to show that it is possible that MK ⊆ M but
K �= G(e) for any e ∈ B×.

Example 4.21 In Example 2.2, we see that 1S = f2 ∨ f4 ∨ f5, the Boolean sum
of all elements in M . As seen in Example 4.14, if letting K = {1, σ 2, σ 4}, then
MK = { f2, f4} ⊆ M . As B× = { fi | 1 ≤ i ≤ 5} ∪ { f2 ∨ f4, f2 ∨ f5}, one can
check that K �= G(e) for any e ∈ B×.

5 Partial orbits and partial stabilizers

Throughout this section, let (S, α) be simply a set with a partial action of a group
G (not necessarily finite). The concept of partial stabilizer was firstly introduced
implicitly in [5]. Later in [2], the concept of partial orbit was also defined and the
relationship of partial stabilizers and partial orbits with global notions arising from
the associated enveloping action was studied. It was proved that the partial stabilizer
coincides with the associated global stabilizer, and each partial orbit is the intersection
of S with the associated global orbit. In this section we will derive some results on
partial stabilizers and partial orbits, some of which will be applied in the next section
to construct partial Galois extensions inside a fixed partial Galois extension.Wewill in
particular generalize the orbit-stabilizer theorem and Burnside’s lemma in the context
of partial actions of groups.

We begin with showing that, as in the theory of group action, the definition of partial
group action gives rise to an equivalence relation, and then defining partial orbits as
equivalence classes. Define a relation on S by x ∼ y if and only if there exists some
g ∈ G such that x ∈ Sg−1 and y = αg(x). This is in fact an equivalence relation.

Lemma 5.1 The relation ∼ on S is an equivalence relation.

Proof Obviously, for any x ∈ S, x ∼ x by simply taking g = 1. If x ∼ y, say
y = αg(x) for some g ∈ G such that x ∈ Sg−1 , then y ∈ Sg and x = αg−1(y); hence
y ∼ x . Suppose that x ∼ y and y ∼ z, say y = αg(x) and z = αh(y) for some
g, h ∈ G such that x ∈ Sg−1 and y ∈ Sh−1 . Noticing that z ∈ Sh ∩ Shg by condition
(P2) in the definition of partial group action, we then see from condition (P3) that
α(hg)−1(z) = αg−1 ◦ αh−1(z) = αg−1(y) = x . Hence z ∼ x and so x ∼ z. ��

The equivalence class containing x , denoted by Ox , is

Ox = {αg(x) | g ∈ G such that x ∈ Sg−1},

and is called the α-partial orbit of x . The set S is partitioned into α-partial orbits. Let
S/α denote the set of all α-partial orbits of S. The partial action α of G on S is said to
be transitive if |S/α| = 1; that is, there is only one α-partial orbit. This is equivalent
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to saying that for each pair of elements x, y ∈ S, there exists some g ∈ G such that
x ∈ Sg−1 and y = αg(x).

As in [2,5], the α-partial stabilizer of x ∈ S, denoted by Gx , is defined to be

Gx = {g ∈ G | x ∈ Sg−1 and αg(x) = x}.

This set has been shown to be a subgroup of G ([5, Proposition 2.5], [2, Corollary
10]). The proof in [5] used the definition of partial group action given by Exel [9]
and the authors in [2] presented a proof via globalization, showing that the partial
stabilizer coincides with the associated global stabilizer. We record a proof here using
the definition of partial group action presented in Sect. 2, as given in [6], without
passing through its enveloping action.

Proposition 5.2 The α-partial stabilizer Gx , for each x ∈ S, is a subgroup of G.

Proof Clearly, 1 ∈ Gx . Let g, h ∈ Gx . Then x ∈ Sg−1 ∩ Sh−1 and αg(x) = x =
αh(x). Hence x ∈ Sg−1 ∩ Sg ∩ Sh−1 ∩ Sh and αh−1(x) = x . In particular, h−1 ∈ Gx .
Furthermore, x belongs to S(gh)−1 by condition (P2). Now by condition (P3), we then
have αgh(x) = αg(αh(x)) = x , so gh ∈ Gx . ��

The following result is a generalization of the latter statement of [5, Proposition
2.5].

Proposition 5.3 If y ∈ Ox , then Gy and Gx are conjugate. More specifically, if y =
αg(x) for some g ∈ G such that x ∈ Sg−1 , then Gy = gGx g−1.

Proof Suppose y = αg(x) for some g ∈ G such that x ∈ Sg−1 . Let h ∈ Gx . Then
x ∈ Sh−1 and αh(x) = x ; hence x ∈ Sh and αh−1(x) = x . In particular, x ∈ Sh−1 ∩
Sg−1 ∩ S(gh)−1 and y ∈ Sg ∩ Sgh−1g−1 . Hence αghg−1(y) = αgh ◦αg−1(y) = αgh(x) =
αg ◦ αh(x) = αg(x) = y, so ghg−1 ∈ Gy . We have shown that gGx g−1 ⊆ Gy . Since
x = αg−1(y), a similar argument shows that g−1Gyg ⊆ Gx . Therefore, Gy = gGx g−1.

��
As a generalization of the orbit-stabilizer theorem in the theory of group action, the

following result could be called the partial orbit-partial stabilizer theorem.

Theorem 5.4 For each x ∈ S, there is a one-to-one correspondence between the
elements of Ox and the left cosets gGx in G with x ∈ Sg−1 .

Proof Define a mapping from Ox to the set {gGx | g ∈ G such that x ∈ Sg−1} by
sending αg(x) to gGx for each g ∈ G such that x ∈ Sg−1 . Suppose g, h ∈ G such that
x ∈ Sg−1 ∩ Sh−1 and αg(x) = αh(x), which we denote by y. Then y ∈ Sg ∩ Sh and
x = αg−1(y) ∈ Sg−1 ∩ Sg−1h ; hence x = αh−1(y) = αh−1(αg(x)) = αh−1g(x). Hence
h−1g ∈ Gx , which means gGx = hGx . This shows that the mapping is well-defined.
Suppose now that h−1g ∈ Gx , where g, h ∈ G such that x ∈ Sg−1 ∩ Sh−1 . Then
x ∈ Sg−1h and αh−1g(x) = x . Thus αg(x) = αh(αh−1g(x)) = αh(x). Therefore, the
mapping is one-to-one. Obviously, it is surjective. ��
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Corollary 5.5 Let x ∈ S and suppose {g1, g2, . . . , gl} be a system of representa-
tives for the left cosets gGx in G with x ∈ Sg−1 . Then Ox = {αg1(x), . . . , αgl (x)}.
Furthermore, if h ∈ G such that x ∈ S(hgi )−1 for each 1 ≤ i ≤ l, then
Ox = {αhg1(x), . . . , αhgl (x)}
Proof The first result follows immediately from the one-to-one correspondence in
Theorem 5.4. Since {g1, g2, . . . , gl} is a system of representatives for the left cosets
gGx in G with x ∈ Sg−1 , so is {hg1, hg2, . . . , hgl} for any h ∈ G with x ∈ S(hgi )−1

for each 1 ≤ i ≤ l. Thus by Theorem 5.4 again, Ox = {αhg1(x), . . . , αhgl (x)}. ��
We will next derive a generalization of Burnside’s lemma in the theory of group

action. To do so, for each x ∈ S, let Gx = {g ∈ G | x ∈ Sg−1}. Then Ox = {αg(x) |
g ∈ Gx } and Gx = {g ∈ Gx | αg(x) = x}. Notice that Gx might not be a subgroup of
G. We show that elements in Gx and elements in G\Gx do not give rise to the same
left cosets of the subgroup Gx .

Proposition 5.6 For any g, h ∈ G, if gGx = hGx , then either g, h ∈ Gx or g, h ∈
G\Gx .

Proof Suppose gGx = hGx . Then h−1g ∈ Gx ; equivalently, x ∈ Sg−1h and
αh−1g(x) = x . If g ∈ Gx ; that is, x ∈ Sg−1 , then by (P3), x = αh−1 ◦ αg(x),
belonging to Sh−1 , and hence h ∈ Gx . Since g−1h ∈ Gx , a similar argument shows
that if h ∈ Gx , then g ∈ Gx . Therefore, we are done. ��
Corollary 5.7 Suppose G is a finite group. Then for each x ∈ S, |Gx | divides |Gx |
and |Ox | = |Gx |/|Gx |.
Proof By Proposition 5.6, we see that the left cosets of Gx partition G in a way such
thatGx = ∪g∈Gx gGx andG\Gx = ∪g∈G\Gx gGx . Thus ifG is finite, then |Gx | divides
|Gx |. Furthermore, by Theorem 5.4, we then get |Ox | = |Gx |/|Gx |. ��

The following result shows that if y, z ∈ S belong to the same orbit Ox , then there
is a one-to-one correspondence between Gy and Gz . When G is finite, we denote this
common number of elements by |GOx |.
Lemma 5.8 For any x ∈ S, if y = αg(x) for some g ∈ Gx , then Gy = Gxg−1.

Proof Suppose y = αg(x) for some g ∈ G such that x ∈ Sg−1 . If h ∈ Gx ; equivalently,
x ∈ Sh−1 , then y ∈ Sgh−1 ; hence hg−1 ∈ Gy . Hence Gxg−1 ⊆ Gy . Since x =
αg−1(y), where g−1 ∈ Gy , a similar argument shows that Gyg ⊆ Gx . Therefore,
Gy = Gxg−1. ��

We are now ready to prove the generalization of Burnside’s lemma in the context
of partial group action. For each g ∈ G, let Sg = {x ∈ Sg−1 | αg(x) = x}.

Theorem 5.9 Suppose G is a finite group. Then
∑

g∈G |Sg| = ∑
O∈S/α |GO |.
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Proof The sum

∑
g∈G |Sg| = ∑

g∈G |{x ∈ Sg−1 | αg(x) = x}|
= |{(g, x) ∈ G × S | x ∈ Sg−1 and αg(x) = x}|
= |{(g, x) ∈ G × S | g ∈ Gx }|,

when expressed as a sum over the elements of S, is
∑

x∈S |Gx |, which by Corollary
5.7, equals

∑
x∈S |Gx |/|Ox |. Now notice that S is partitioned into partial orbits by the

partial action α of G, so the sum over S may be broken up into separate sums over
S/α, grouping the elements of each partial orbit together:

∑

O∈S/α

∑

x∈O
|Gx |/|Ox |.

Furthermore, Lemma 5.8 shows that |Gy | = |Gz | whenever y, z belong to the same
orbit O , and this common number of elements is denoted by |GO |. Therefore, we
conclude that

∑

g∈G
|Sg| =

∑

O∈S/α

⎛

⎝|GO |
∑

x∈O
1/|O|

⎞

⎠ =
∑

O∈S/α

|GO |.

��
To give an example, where the set under the partial action is finite, to interpret the

preceding theorem, we introduce the concept of invariant subset. Let R be a subset
of S and K a subgroup of G. We say R is an αK -invariant subset of S if αk(R ∩
Sk−1) = R ∩ Sk for each k ∈ K . In the case where S is a ring, BK and MK are
both αK -invariant by Lemma 4.11 and Corollary 4.13 since BK ∩ Sk = BK 1k and
MK ∩ Sk = MK 1k\{0} for each k ∈ K . Note that if R is an αK -invariant subset of
S, then α induces a partial action of K on R with {R ∩ Sk | k ∈ K } as the collection
of associated subsets.

Example 5.10 Notice that in Example 2.1, B = (B, •) with 8 elements, which, as
pointed above, is αG-invariant. Let α also denote the induced partial action of G on
B. One can check easily that for (B, α) there are five partial orbits, namely,

O0 = {0},O1 = {11},O2 = {e1,2, e2,3 = ασ 3(e1,2)},O3 = {e1,3},
O4 = {e1, e2 = ασ 3(e1), e3 = ασ 2(e1)}

Also,

G0 = G,G11 = {1},Ge1,2 = {1, σ 3},Ge1,3 = {1, σ 2},Ge2,3 = {1, σ },
Ge1 = {1, σ 2, σ 3},Ge2 = {1, σ, σ 3},Ge3 = {1, σ, σ 2}.

Lemma 5.8 indeed holds here, and |GO0 | = 4, |GO1 | = 1, |GO2 | = 2, |GO3 | = 2
and |GO4 | = 3, so

∑
O∈B/α |GO | = 12. On the other hand, B1 = B, Bσ = {0},
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Bσ 2 = {0, e1,3} and Bσ 3 = {0}. Hence ∑
g∈G |Bg| = 12 = ∑

O∈B/α |GO |, as
expected.

Wenowclose this section by showing that eachα-partial orbit of S is anαG-invariant
subset as expected.

Proposition 5.11 The α-partial orbit Ox , for each x ∈ S, is an αG-invariant subset
of S.

Proof It suffices to show that αg(Ox ∩Sg−1) ⊆ Ox ∩Sg for each g ∈ G. Let g ∈ G and
suppose y ∈ Ox ∩Sg−1 . Then y = αh(x) for some h ∈ G such that x ∈ Sh−1 ∩Sh−1g−1 .
Hence αg(y) = αg ◦ αh(x) = αgh(x) belongs to Ox ∩ Sg . ��

Clearly, the induced partial action of G on any α-partial orbit of S is transitive.

6 Special invariant subsets

Throughout this section, let (S, α) be a ring with a partial action of a group G and K
be a subgroup of G. The definition of αK -invariant subset of S is given in the end of
the last section; as mentioned there, for any αK -invariant subset R, α induces a partial
action of K on R with {R∩ Sk | k ∈ K } as the collection of associated subsets. Recall
that in Sect. 4 and in [13], we say that α induces a partial action of K on the unital ring
A contained in S if 1A1k ∈ A for each k ∈ K and {A1k | k ∈ K } forms the collection
of associated ideals of A. We remark that such A is an αK -invariant subset of S since
A1k = A ∩ S1k whenever 1A1k ∈ A.

In this section, we will study certain αK -invariant subsets of S, including BK

and MK , and show how to constructing more partial Galois extensions inside (S, α)

via these special invariant subsets. We begin with showing that I (S) and its subset
consisting of minimal elements ofI (S)×, denoted byMI (S), are also αK -invariant
subsets of S.

Proposition 6.1 The sets I (S) and MI (S) are both αK -invariant subsets of S.

Proof It suffices to show that for each k ∈ K , αk(R ∩ Sk−1) ⊆ R ∩ Sk whenever
R is I (S) or MI (S). Let k ∈ K and suppose x ∈ I (S) ∩ Sk−1 . It is clear that
αk(x) is a central idempotent of S contained in Sk . Thus I (S) is an αK -invariant
subset of S. Assume furthermore that x is minimal in I (S)×. Let y be any element
in I (S)× such that αk(x)y �= 0. Since y1k ∈ I (S) ∩ Sk , y1k = αk(u) for some
u ∈ I (S) ∩ Sk−1 . Hence αk(x)y = αk(x)y1k = αk(xu), where xu �= 0 and thus
xu = x since x ∈ MI (S). Hence αk(x)  y. This shows that αk(x) is contained in
MI (S) ∩ Sk . Therefore, MI (S) is also an αK -invariant subset of S. ��

We next focus on these four αK -invariant subsets of S:BK ,MK ,I (S),MI (S)

with the induced partial action of K . For any subset R of S, R ∩ S1k ⊆ R1k for each
k ∈ K . Notice that the equality holds whenever R isBK orI (S). On the other hand,
it is obvious that R∩ S1k = R1k\{0} for each k ∈ K whenever R isMK orMI (S).
As shown below, the preceding equality holds too whenever R is any αK -partial orbit
of MK or of MI (S).
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Lemma 6.2 Let R beMK orMI (S). Let x ∈ R andOx denote the αK -partial orbit
of x in R. ThenOx∩S1k = Ox1k\{0} for each k ∈ K; in particular,αk(Ox1k−1\{0}) =
Ox1k\{0}.
Proof For any k ∈ K , clearly Ox ∩ S1k ⊆ Ox1k\{0}. Let y ∈ Ox such that y1k �= 0.
Then y = αh(x) for some h ∈ K such that x ∈ Sh−1 . Hence y1k = αh(x)1k =
αh(x1h−1k), where x1h−1k �= 0, with h−1k ∈ K , and so equals x since x is minimal
in B×

K (I (S)× resp.). Hence y1k = αh(x) = y ∈ Ox ∩ S1k , as desired. The last
statement follows from the previous result and the fact that each partial orbit under
the partial action of K is αK -invariant (see Proposition 5.11). ��

We remark that the preceding lemma is not true if R is replaced by BK . Consider
BK with K = G in Example 2.1. We have seen in Example 5.10 that O3 = {e1,3} is
a partial orbit, but e1,31σ 3 = e3 /∈ O3.

With the preceding lemma, we now can apply the idea of the proof of Theorem
4.16 to prove the following stronger result than Theorem 4.16.

Theorem 6.3 Let R be MK or MI (S). For each x ∈ R, the Boolean sum of all
elements in the αK -partial orbit Ox of x in R belongs to SαK .

Proof The key of the proof is that for each x ∈ R and k ∈ K , x1k is either x
or 0. Let Ox = {x1, x2, . . . , xm} and x̃ = ∨m

i=1xi . For each k ∈ K , consider the
following two subsets of {1, 2, . . . ,m}: I+

k = {i | xi1k = xi } = {i | xi1k �= 0} and
I−
k = {i | xi1k−1 = xi } = {i | xi1k−1 �= 0}. Since αk(Ox1k−1\{0}) = Ox1k\{0}
by Lemma 6.2, it follows that the number of nonzero elements in Ox1k is equal to
that of nonzero elements in Ox1k−1 ; equivalently, |I+

k | = |I−
k |. Observe that x̃1k =

∨m
i=1xi1k = ∨i∈I+

k
xi is the Boolean sum of all elements y inOx such that y1k = y. On

the other hand, αk(x̃1k−1) = ∨m
i=1αk(xi1k−1) = ∨i∈I−

k
αk(xi ), which by Proposition

5.11 or Lemma 6.2 is a Boolean sum of |I−
k | distinct elements y in Ox such that

y1k = y. We therefore conclude from |I+
k | = |I−

k | that αk(x̃1k−1) = x̃1k . Hence
x̃ ∈ SαK . ��
Corollary 6.4 Let R be MK or MI (S). Let x ∈ R and x̃ denote the Boolean sum
of all elements in the αK -partial orbit Ox of x in R. Suppose that (S, α) is a partial
Galois extension. Then (Sx̃, αK ) is a partial Galois extension. Furthermore, Sx̃ is a
Galois extension in (S, α) with Galois group K if and only if K ⊆ N (x̃).

Proof This follows immediately from the preceding theorem and Theorem 4.4. ��
Example 6.5 In Example 4.10, take e2 ∈ MI (S) and K = {1, σ 2, σ 4}. The αK -
partial orbit of e2 inMI (S) consists of e2, e4. Observe that N (ẽ2) = N (e2 ∨ e4) =
G\{σ 2, σ 4} does not contain K . Hence by the preceding Corollary, (S(e2 ∨ e4), αK )

is a partial Galois extension, but not a Galois extension.

Remark 6.6 We point out that Theorem 6.3 does not hold if R is replaced by BK .
Consider BK with K = G in Example 2.2. Let x = f2 ∨ f4, which belongs to Sk−1

only when k = 1 and so the αK -partial orbit of x in Bx consists of x only. However
x /∈ SαK since x1σ 5 = 0 while ασ 5(x1σ ) = ασ 5( f2) = f5.
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In the following let R be I (S) or BK . For x ∈ R× = R\{0}, let NK (x) =
N (x) ∩ K . If NK (x) is a subgroup of K , then α induces a partial action of NK (x)
on R. We show that in this case the Boolean sum of all elements in the αNK (x)-partial
orbit of x in R gives rise to a Galois extension in (S, α) with Galois group NK (x).

Theorem 6.7 Let R be I (S) or BK and x ∈ R× such that NK (x) is a subgroup of
K . Let x̃ denote the Boolean sum of all elements in the αNK (x)-partial orbit of x in R.
Suppose that (S, α) is a partial Galois extension. Then Sx̃ is a Galois extension with
Galois group NK (x).

Proof Suppose that the αNK (x)-partial orbit of x in R consists of αk1(x), αk2(x), . . . ,
αkl (x), where ki ∈ NK (x) such that x ∈ R ∩ Sk−1

i
for each 1 ≤ i ≤ l. Let x̃ =

∨l
i=1αki (x). By Theorem 4.4, it suffices to show that x̃ ∈ SαNK (x) and NK (x) ⊆

N (x̃). Let h ∈ NK (x). Then for each 1 ≤ i ≤ l, k−1
i h ∈ NK (x) and so αki (x) =

αki (x1k−1
i h) = αki (x)1h . Hence x̃1h = ∨l

i=1αki (x)1h = ∨l
i=1αki (x) = x̃ ; that is, h ∈

N (x̃). We have shown that NK (x) ⊆ N (x̃). Now similarly, we have (hki )−1 ∈ NK (x)
and so x ∈ R∩S(hki )−1 for each 1 ≤ i ≤ l. Thus byCorollary 5.5,αhk1(x), . . . , αhkl (x)
also constitute the αNK (x)-partial orbit of x in R. Therefore, αh(x̃1h−1) = αh(x̃) =
αh(∨l

i=1αki (x)) = ∨l
i=1αhki (x) = x̃ = x̃1h , where we have applied the assumption

that NK (x) is a subgroup and the previous result that NK (x) ⊆ N (x̃). We conclude
that x̃ ∈ SαNK (x) . ��
Corollary 6.8 Suppose that (S, α) is a partial Galois extension. If e is a nonzero
element of (BK , •), the Boolean semigroup generated by {1k | k ∈ K }, such that
NK (e) is a subgroup of K , then Se is a Galois extension with Galois group NK (e).

Proof Note that e = ∏
k∈NK (e) 1k . Since NK (e) is a subgroup of K , it follows that for

each h ∈ NK (e), e1h−1 = e and αh(e) = ∏
k∈NK (e) αh(1k1h−1) = ∏

k∈NK (e) 1hk1h =∏
k∈NK (e) 1k = e. This means the αNK (e)-partial orbit of e in BK consists of e only.

Therefore, by the preceding theorem, Se is a Galois extension with Galois group
NK (e). ��
Example 6.9 In Example 4.10, let K = {1, σ 2, σ 4}. For the central idempotent e1
of S, NK (e1) = K and the αNK (e1)-partial orbit of e1 in I (S) consist of e1, e3, e5.
Hence by Theorem 6.7, Sẽ1 = S(e1 ∨ e3 ∨ e5) is a Galois extension with Galois
group K . This coincides with the conclusion of Example 4.10. On the other hand, e1
is minimal in I (S)× and the αK -partial orbit of e1 in MI (S) is {e1, e3, e5} with
N (ẽ1) = N (e1 ∨ e3 ∨ e5) = K . Hence the result also follows by Corollary 6.4.

Example 6.10 In Example 2.2, let K = {1, σ 3}. Then f3 ∈ (BK , •) such that
NK ( f3) = K . Hence by Corollary 6.8, S f3 is a Galois extension with Galois group
K . Notice that in this caseMK = { f3} and N ( f3) = K , so Corollary 6.4 also assures
this result.

We close this section with the following observation.

Proposition 6.11 Let R be one of the four αK -invariant subsets of S:BK ,MK ,I (S)

or MI (S). If x, y ∈ R belong to the same αK -partial orbit in R, then Sx ∼= Sy.
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Proof Since x and y belong to the same αK -partial orbit in R, there exists some
k ∈ K such that x ∈ Sk−1 and y = αk(x) ∈ Sk . Let φ : Sx → Sy be defined
by φ(sx) = αk(s1k−1)y for each s ∈ S. Then φ(sx) = αk(sx1k−1) for all s ∈ S.
It follows that φ is a ring isomorphism. We explain more why φ is surjective. For
s′y ∈ Sy, by the surjectivity of αk , there exists some s ∈ S such that s′1k = αk(s1k−1),
so s′y = s′1k y1k = αk(s1k−1)αk(x1k−1) = αk(sx1k−1) = φ(sx). ��
Acknowledgements The first author was partially supported by the Ministry of Science and Technology
of Taiwan under Grant MOST 104-2115-M-005-003.
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