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Abstract Let o be a partial action of a group G on aring S which has an enveloping
action. Suppose that (S, «) is a partial Galois extension. We study partial Galois
extensions inside (S, ). In particular, we derive some results on partial orbits and
partial stabilizers and apply them to associate to each subgroup K of G certain partial
Galois extensions inside (S, o) with partial actions of « restricted to K.
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1 Introduction

A partial action of a group, a generalization of a group action, has been studied and
applied in various areas of mathematics since it firstly appeared in the theory of operator
algebras as a powerful tool (see [8—10, 14,16]). The formal definition of this concept
was firstly given by Exel [9], and later Abadie in his PhD thesis (see also [1]) and
independently Kellendonk and Lawson [11] showed that every partial action of a
group on a set possesses an enveloping action.
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The definition of partial action of a group in a purely algebraic context was for-
mulated in [6]. We give this definition in the next section and use it throughout the
paper. Briefly speaking, a partial action « of a group G on a set S is a collection
of subsets {S, | ¢ € G} together with bijections ag: S,-1 — S, satisfying certain
conditions. In the case where S is an algebra, S, are required to be ideals of S and o
are isomorphisms of (not necessarily unital) algebras; furthermore, the definition of
an enveloping action needs a few modifications (see [3] for more details and discus-
sion). It was shown in [6] that a partial group action on a unital algebra S possesses
an enveloping action if and only if every ideal S, is unital. Throughout this paper,
whenever S is a ring, we assume that it is unital with 1 # 0 and each ideal S, is
generated by a central idempotent 1, of S.

Dokuchaev et al. [7] introduced the notion of a partial Galois extension, and gen-
eralized the results on Galois theory of commutative rings by Chase, Harrison and
Rosenberg [4] in the context of partial group actions, assuming the existence of
an enveloping action. We have studied the structure of a partial Galois extension
in [12,13], and in this paper we will continue the investigation.

Suppose now that (S, «) is a partial Galois extension. The main goal of this paper is
to study partial Galois extensions inside (S, o), especially those generated by central
idempotents of S. In Sect. 4, we in particular show that for any subgroup K of G,
there exists a nonzero central idempotent e of S such that Se with the partial action
of « restricted to K, denoted ok, is a partial Galois extension. More specifically, the
existence of e is constructed via taking the Boolean sum of all element in .#, the set
of minimal elements of the Boolean ring generated by {1; | k € K}. It turns out that
the subset .Z is o g -invariant; hence « induces a partial action of K on .#x . In Sect.
6, we show, among other things, how to construct partial Galois extensions in (S, «)
via partial orbits in (.#k, «g). Results derived in Sect. 6 require some properties of
partial orbits and partial stabilizers, which will be presented in Sect. 5.

For each central idempotent e of S, let N(e) = {g € G | el; = e} and G(e) =
{g € G | elg # 0}. The discussion in Sects. 4 and 6 is closely related to these two
subsets of G. We will present some properties of N(-) and G (-) in Sect. 3 so that they
can easily be applied whenever needed. In the next section, we will recall the notions
of a partial group action and a partial Galois extension and two examples in details
which will be used very often later. Throughout this paper, G is assumed to be a finite
group unless mentioned otherwise.

2 Preliminaries

We firstly recall the definition of a partial action of a group on a set. A partial action «
of a group G on a set § is a collection of subsets {S,; | g € G} together with bijections
g Sg-1 = S, satisfying the following conditions:

(P1) S1 = S and «; is the identity map of S;

P2) ozg(ngl NSp) =S¢ N Sy forall g, h € G;

(P3) agoap(x) = agp(x) forallx € S,-1 N S(gh)—l and g, h € G.

Notice that a,-1 = agl for each g € G, and in particular, if S, = S for every g € G,
then « is a usual global action of G on §. In the case where S is aring, S, are required
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to be ideals of S and o, are isomorphisms of (non-necessarily unital) algebras. As
mentioned in the introduction, throughout the rest of the paper, whenever S is a ring,
we assume that S is unital with 1 # 0 and S, = S1, for each g € G, where 1; is a
central idempotent of S. We remark that the following identity holds

og(Iply-1) = lgpl, forallg, h € G.

Asin [13], we use (4, o) to denote the Boolean semigroup generated by {1, | g €
G} under the multiplication of S.

Next, we recall the definition of a partial Galois extension. Let (S, «) be a ring with
a partial action of a group G. As defined in [7], the subring of the invariant elements
of S under « is

8% ={x e S|ag(xly1) =xl, forallg e G}.

If there exist elements x; and y; in S, = 1,2, ..., m for some positive integer m,
such that

m
ZX,’Olg(yl'lg—l) = 1,015 foreach g € G,
i=1

then (S, «) is called a partial Galois extension of S* (we often simply say (S, «) is
a partial Galois extension), and the set V. = {x;,y; | i = 1,2,...,m} is called an
a-partial Galois system for S. This is obviously a generalization of Galois extension
since under this definition, if S, = S for every g € G, then S is the usual invariant
subring S¢ of S under the global action of G and V is a G-Galois system for S such
that S is a Galois extension of S¢ with Galois group G.

Examples of partial Galois extensions can be found in [7] and [15]. The authors in
[12] also presented an easy way of constructing partial Galois extensions, which shows
that any direct sum of a finite number of Galois extensions is a partial Galois extension.
Example 6.1 in [7] and Example 4.2 in [15] will be used very often throughout this
paper, so for readers’ convenience, we provide details of these two examples below.

Example 2.1 (see [7, Example 6.1]) Let R be a commutative ring and S = Re; &
Rer @ Res, where {eq, e, e3} is a set of nonzero orthogonal idempotents whose sum
is one. Let G be a cyclic group of order 4 generated by o. The partial action of G
on S is defined as follows: taking S = S, Sy = Re; @ Rea, S,2 = Re; @ Res and
S;3 = Rez @ Res, and defining o1 = ids,

Qg: 853 —> 8o byas(e2) = e and ag(e3) = e2,
Qy2: Sy2 — Sy2 by ag2(er) = e3 and a,2(e3) = ey,
a3t Se = S;3 byoga(er) =exand ays(er) = e3.

It is easy to check that S is an @-partial Galois extension of R. The induced tree for the

nonzero elements of the Boolean semigroup (%, e) associated to the partial Galois
extension (S, «) is given in [12, Example 1(1)] as follows:
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1

e

€12 = 1110 61,3 = 11102 €23 = 11103
e1 = 1115142 ey = 1115143 e3 = 111,213

Example 2.2 (see [15, Example 4.2]) Let A be aring and S = H?ZlAi, where A; is
Aifi = 1,3, 6 and the zero ring otherwise. Then § = Ae; & Ae3z @ Aeg, where each
e; is the six-tuple whose jth-coordinate is 14 if j = i and 04 otherwise. Let G be a
cyclic group of order 6 generated by . The partial action « of G on § is defined in
the following way:

li=ls=e1+e3s+tes, lo=1a=ce1, l,o0=e3, 1,3 =e34+¢6, 1,5 = e,

o] = idg, dg :S,5 = So,aeq > aey,
021 Sg4 = Sg2,ae1 = aes, oy 1 Sy3 — Sy3,aes + beg = bes + aeg,
o4 Sg2 = Sga,ae3 > aey, ags 1 Sy — Sys, aey — aeg.

It is clear that S is an a-partial Galois extension of S = A(e] +e3 +¢¢) = A with
a-partial Galois system {x; = y; = e1,x2 = y» = e3,x3 = y3 = e4}. The induced
tree for the nonzero elements of the Boolean semigroup (4, e) associated to (S, «) is
given in [12, Example 1(3)] as follows:

/\
/\

where f1 = 11, fz = 1110 = 11154 = 1115104, f3 = 11103, f4 = 111{,2 =
111,213 and f5 = 1115 = 111,315 (Here we provide all possible expressions for
each nonzero element of (4, )).

3 Properties of N(-) and G(-)

Throughout this section, let (S, «) be aring with a partial action of a group G. Let .7 (S)
denote the set of all central idempotents in S. The Boolean sum on .# (S), denoted V,
is defined by e V ¢’ = e + ¢’ — ee’, and the Boolean multiplication on .# (S), denoted
A, 18 just the multiplication of S reduced to .# (S). We say e, ¢’ € .#(S) are orthogonal
if e A ¢’ = 0. Let < denote the canonical partial order on . (S) defined as follows:
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e < ¢ if and only if e A ¢/ = e. Clearly, minimal elements of .#(5)* = .#(5)\{0}
are mutually orthogonal.

Forany e € .7(S), define G(e) ={ge G | ely, #0}and N(e) = {g € G | elg =
e}. We shall firstly present some properties of N(-) and G(-), some of which will be
used in the next section. At the end, we shall apply them to show the main result of
this section: Let % denote the Boolean subring of .#(S) generated by {1, | g € G}.
Then there do not exist two distinct minimal elements e, ¢’ of 8% = 2\{0} such that
G(e), G(¢') and G(e Vv ¢') are all subgroups of G. We begin with the reaction of G (-)
and N (-) under the operations of v and A on Z(S).

Lemma 3.1 Foranye,e' € 7(S), Glene') C Gle)NG() C Gle) UG(e) =
G(eveé).

Proof Suppose g € G(e A ¢€'); thatis, ee’l, # 0. Then in particular el, # 0 # €'l,
and so g € G(e) N G(¢'). Forany g € G(e v ¢’), we have (e Vv €')1, # 0; that is,
(e + ¢ —ee)ly # 0, which, if g ¢ G(e), becomes e'l, # 0; that is, g € G(¢').
Conversely, let g € G(e). Since e(e v ') = e, it follows that g € G(e Vv ¢'). Similarly,
G(e') € G(e Vv e'). We conclude that G(e vV e') = G(e) U G(€). O

Example 3.2 In Example 2.1, we see thate] » = e1 V e;. Clearly, G(e1) = {1, o, 0'2},
G(er) = {1, 0, 03} and G(e12) = G, and so G(e1 V e3) = G(e1) U G(e2). On the
other hand, it could be the case where G(e) N G(¢') 7,@ G(e A €'). Consider Example
2.1 again. We have o € G(e13) N G(ez3),buto ¢ G(e13 Aex3) = G(es).

Lemma 3.3 Foranye,e € Z(S), Neve') =N NN() S NEUN(E) C
N(e né).

Proof Forany g € N(e) N N(¢'),elg =eande’ly = ¢'. Hence (¢ + ¢ — ee')1, =
e+ e —eé;thatis, g € N(eV ¢). Conversely, take any g € N(e Vv ¢'). Since
e(eve)=e, elg =eleVve)l, =eleVe)=e. Similarly, we can get ¢'l, = ¢'.
Hence g € N(e) N N(¢’). We have shown that N(e v ¢’) = N(e) N N(e'). Now,
if g € N(e), then (e A €)1, = elge’ = e A€/, and similarly, if g € N(e), then
g€ N(ene). Hence N(e) UN(e') C N(e A€). O

Example 3.4 Tt is possible that N(e A ¢€’) is not equal to N(e) U N(e’). Consider
Example 2.2. We have N(f2) = {1,0,0%}, N(f3) = {1,063}, but N(fo» A f3) =
N©) = G # N(f) UN(f3). Also, if taking e = f> v fa and ¢’ = f3, then
ene = fi, N(e) = {1} and N(¢') = {1,0°}; hence N(e) UN(¢') # N(e A €') =
N(fs) ={1,0% 07}

With the former one of the preceding example in mind, one might wonder if it is
true that N(e A e') € N(e) U N(¢') whenever e, ¢’ € (4, o) such that e A e’ #£ 0.
This is, however, too naive from the following example.

Example 3.5 Let R be a commutative ring and S = ealeRe,-, where {¢; | 1 <i <5}

is a set of nonzero orthogonal idempotents whose sum is one. Let G be a cyclic group
of order 4 generated by o. We define a partial action of G on § as follows: taking
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S1 =8, 8 = @ic1,2,31Rei, Sz = Biep12,4)Re; and ;3 = Dic(1,2,5;Re;, and
defining o1 = idy,

Qo: Sz3 = Sy, aey + bey + ces — bey +aey 4 ce3
ag2: Sy2 = S,2, ael + bey 4 ces — aey + bex + cey
ay3: Se = Sy3, aey + bey + ce3 — bey + aey + ces.

One should check that conditions (P1)—(P3) listed in the definition of partial group
action are satisfied.
The induced tree for the associated Boolean semigroup (4, e) is given below:

/ 11 \
e123=11ls e124 = 11152 e125 = 11143

T~ |

e12 = 1115152143

Here €124 Aeips = e1p # 0, and N(ejp4 Aerns) = G € N(ejos) U
N(eips) = {1,02%, 03}

Proposition 3.6 Ife|, e, ..., ey are elements of I (S), then G(V¥_ e;) = U*_ G (e;)
and N(V¥_ e) = NF_ N (e).

Proof The statement holds by Lemmas 3.1, 3.3 and induction. O
The following result follows easily from a well-known result in group theory.

Proposition 3.7 Foranye, e’ € Z(S), if G(e), G(e') and G(eV €') are all subgroups
of G, then either G(e) € G(e') or G(e') € G(e).

Proof By Proposition 3.6, G(e v ¢') = G(e) U G(¢’). Thus by hypothesis, G(e)
and G(¢’) are subgroups of G such that their union is also a subgroup, so they are
comparable. O

Corollary 3.8 Ife, ea, ..., e are elements of 7 (S) such that each G (e; Vej), where
i,je{l,2,...,k}, is a subgroup of G, then G(e1), G(e2), ..., G(er) form a chain
of groups under the inclusion of sets.

Proof Notice firstly that foreachi = 1,2, ..., k, G(e;) = G(e; Ve;) is a subgroup of
G. Now assume to the contrary that these subgroups G (e1), G(e2), ..., G(ex) do not
form a chain. Then there exist some i, j € {1,2, ..., k} such that G(¢;) and G(e;) are
not comparable. But by the assumption, G(¢;), G(e;) and G(e; V ;) are all groups,
so either G(e;) € G(ej) or G(e;) € G(e;) by Proposition 3.7, a contradiction. O

We next show that G (-) respects the canonical partial order < on .#(S) and so does
N (-) but in the reversing way.
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Lemma 3.9 Foranye,e € 7(S), ife < ¢, then G(e) C G(¢') and N(¢') C N(e).

Proof Suppose e, ¢ are elements of .#(S) such that e < ¢'. For any g € G(e),
ee'ly = ely #0,50€'l, #0.1f g € N(¢'), then elg = ee’'ly = ee’ = e; hence
g € N(e). O

The converse of the preceding lemma for N(-) is true if e,e¢’ € (£, )" =
(A, ¢)\{0}. Recall that for any ¢ € (%, e)*, as observed in [13, Lemma 1],
e = Ilgen(e)lg, and furthermore as observed in [13, Lemma 9], e is minimal if
and only if G(e) = N (e).

Lemma 3.10 Ife, e’ € (%, o)™ such that N(e') C N(e), thene < ¢'.

Proof Suppose that e, ¢’ € (4, ¢)*. Then as mentioned above, ¢ = Mgen(elg and
¢ =Tlgen(enl,. Thusif N(e') € N(e), thene A e’ = e; thatis, e < €. O

Remark 3.11 The corresponding statement does not hold for G (-); that is, even when
e, e € (A, e)* such that G(e) C G(¢'), it is not necessarily true that e < ¢'. In
Example 2.1, G(e12) = G(e13) = G, butej £ e13 £ e1,2. The corresponding
statement also does not hold if (%, e)* is replaced by %*. In Example 2.2, N(f, V
fH={1} S N(f)but f3 £ oV fu.

To show the main result of this section, we need two more observations.

Proposition 3.12 The minimal elements of 9B are exactly the same as those of

(A, e)*.

Proof Let f be a minimal element of (4, e)*. To show that f is also minimal in %%,
assume that e is an element of Z> such that e < f but e # f. By definition of £,
e = szlei for some ¢; € (A, o). Since f is minimal in (A, @)*, f A ¢; is either 0
or f foreachi = 1,2,...,1. Now from e < f, we then have ¢ = (vleei) ANf=
szl(ei A f) equals f or 0, a contradiction. This shows that f is minimal in Z*.
Conversely, let f be a minimal element of 8. We claim that actually f € (£, o)*.
This follows easily from the fact that for any e, ¢’ € £, e,e¢’ < e Vv ¢'. We then
conclude that f is a minimal element of (%, e)*. O

An immediate application of the preceding proposition is the following generaliza-
tion of [13, Lemma 9].
Proposition 3.13 For any e € B>, e is minimal in B> if and only if G(e) = N (e).

Proof Since e is nonzero, clearly N (e) C G(e). If e is minimal in %>, then for each
g € G, elg equals either 0 or ¢; thus G(e) € N(e). Suppose now that e € Z* such
that G(e) = N(e). We claim that e actually belongs to (£, e)*. Let ¢ = vleei,
where each ¢; € (%, o). Then by Proposition 3.6,

Ul_|N(ei) S U_ G(ei) = G(Vi_ie)) = G(e) = N(e) = N(Vi_e;) = Ni_ | N(ep).
which forces that for any i, j € {1,2,...,1}, N(¢;) = N(ej) and so ¢; = ¢ by

Lemma 3.10. Thus e = e¢; € (4, o)*. Therefore, ¢ is minimal in (£, ¢)* by [13,
Lemma 9], and hence e is minimal in %> by Proposition 3.12. O
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One can check easily that similarly for any e € Z(S)*, if ¢ is minimal in
F(8)*, then G(e¢) = N(e); the converse, however, is false. In Example 3.5,
N(e12) = G(e12) = G, but eq 2 is not minimal in .# (S5)*.

We are now ready to show the main result of this section.

Theorem 3.14 There do not exist two distinct minimal elements e, ¢’ of > such that
G(e), G(e") and G(e Vv €') are all subgroups of G.

Proof Suppose e and ¢’ are two distinct minimal elements of %> such that G (¢), G (¢’)
and G (e Vv ¢) are all subgroups of G. Then in particular by Proposition 3.7, G(¢) €
G(e)or G(¢) € G(e). Since e, ¢’ are minimal elements of %>, they are also minimal
in (4, )™ by Proposition 3.12, and G(e) = N (e) and G(¢’) = N(¢’) by Proposition
3.13. But then by Lemma 3.10, we conclude that ¢’ < e or e < ¢/, either of which
implies that e = ¢/, a contradiction. O

Example 3.15 In [13, Example 19], e; and e; are the only two minimal elements of
B*. We see that G(e;) = H x {1} and G(ep) = {1} x K are both subgroups of G,
but G(e; Vez) = G(11) = H x {1} U {1} x K is not a subgroup of G.

4 Partial Galois extensions in (S, o)

Throughout this section, let (S, o) be aring with a partial action of a group G and K be
a subgroup of G. We will sometimes assume in addition that (S, «) is a partial Galois
extension. Suppose that A is a nonzero ring contained in S with identity denoted 1 4.
Recall in [13] we say that « induces a partial action of K on A if 141; € A for each
k € K and {A1; | k € K} forms the collection of associated ideals of A for the partial
action; that is, for each k € K, oy restricted to Al;-1 is an isomorphism of rings onto
Aly. We shall discuss when (A, ag) forms a partial Galois extension with a special
attention to the case where A is an ideal of S generated by a central idempotent. At the
end of this section, we will in particular present a way of associating to every subgroup
K of G apartial Galois extension (Se, ag ), where e € .#(S)*. We recall that for any
subset H of G, S" = {x € § | ap(x1,-1) =x1, forallh € H}.

Lemma 4.1 If « induces a partial action of K on A, then 14 € S*K.

Proof By definition, oy, for each k € K, restricted to Al;-1 is an isomorphism of
rings onto Aly. In particular, ox (141;-1) = 141 forallk € K. Thus 14 € S*¢. O

Theorem 4.2 If o induces a partial action of K on A, then « also induces a partial
action of K on the maximum ring extension of A in S, namely 1451 4. Furthermore,
if (A, ag) is a partial Galois extension, then so is (14514, ag).

Proof Clearly, 14514 is the maximum ring extension of A in S. Since « induces a
partial actionof K on A, 1413 € A € 14514 foreachk € K and 14 € S“¥ by Lemma
4.1; hence for each k € K, ap(14S1413-1) = ox(1alp-1)ax (S1-1)ar(1ali-1) =
1481 41k. Thus o induces a partial action of K on 1451 4. Furthermore, it is clear that
every o g -partial Galois system for A is also an o g -partial Galois system for 1451 4.

O
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Applying Theorem 4.2, the set of all partial Galois extensions in (S, «) can basically
be determined as follows in four steps. Step 1. For each subgroup K of G, determine the
set Ik of nonzero idempotents e such thate € S*X. Step 2. Determine the subset Jx =
{e € Ik | (eSe, ag) is a partial Galois extension}. Step 3. Foreach e € Jg, determine
the set ¢ = {Ais asubring of eSe | (A, ag) is a partial Galois extension}. Then
Tk 1= Upeyp g is the set of all partial Galois extensions in (S, o) with a partial
action of K. Step 4. The union of .k for all subgroups K is then the set of all partial
Galois extensions contained in (S, «).

We next study the case where A is an ideal of S generated by an element of .7 (S).
The converse of Lemma 4.1 holds here.

Lemma 4.3 Forany e € Z(S), e € S*! if and only if « induces a partial action of
K on Se.

Proof Obviously, ely € Se for each k € K. Now, if e € S*K, then for each k € K,
ap(Sely—1) = ap(S1y-1)ag(ely-1) = Sely. Hence o induces a partial action of K on
Se. Thus we are done by Lemma 4.1 O

Theorem 4.4 Let K be a subgroup of G and e an element of 7 (S)*. Suppose that
(S, @) is a partial Galois extension. Then (Se, ak) is a partial Galois extension in
(S, ) if and only if e € S“K. Furthermore, Se is a Galois extension in (S, o) with
Galois group K if and only ife € S*X and K < N (e).

Proof By Lemma 4.3, it suffices to show that under the assumption that (S, «) is a
partial Galois extension, if e € S*K, then Se with the induced partial action o g forms
a partial Galois extension. Indeed, if {x;, yi}€=1 is an a-partial Galois system for S,
then {x;e, yie}ﬁzl is an a g -partial Galois system for Se: for each k € K,

! l
ZX,’EO{k(yjelk—l) = EZX,’O[k(yjlk—l)O[k(elk—l)
i=1 i=1
I
=elg inoék(yilk—l) = elid1kls = 81 ke.

i=1

Finally, the partial Galois extension (Se, ag) is Galois if and only if el; = e for all
k € K, or equivalently, K C N(e). O

Let €k (Zk, resp.) denote the set of elements e in .# (S) such that (Se, ag) is a
partial Galois extension (Se is a Galois extension with Galois group K, resp.). We
now show that both ©x and Pk are closed under the Boolean sum Vv and the Boolean
multiplication A on # (S).

Proposition 4.5 Suppose that (S, «) is a partial Galois extension. If e and e’ are
elements of € (P, resp.), then e\ e'and e A e’ are also elements of €k (D, resp.).

Proof By Theorem 4.4, we need only show thate v ¢’,e A e’ € S ife, ¢ € SUK,
and K € N(eve)NN(eAne)if K € N(e) N N(e'). The latter one is obvious
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since N(e vVe')NN(e Ae') = N(e) N N(e') by Lemma 3.3. Now for each k € K, if
ar(eli-1) = el and oy (e'1;-1) = €'1x, then we have o (e Ve') 1,-1) = a(el-1) vV
ar(e'l-1) = elpve'ly = (eve)lg, andag((ene)1-1) = ag(ely—1) Aag(e'l-1) =
el ne'ly = (e ne)ly. O

Notice that the latter part of Theorem 4.4 generalizes [13, Theorem 2], where the
ideal Se under consideration is generated by an element in the Boolean semigroup
(A, e)*. It was further proved in [13, Proposition 5] that N (e) is a subgroup of G
if and only if e € S*¥©@. We do not know that whether this result is true if e is any
element in A or even in .#(S)*. It turns out that the argument used to prove the
if-direction of [13, Proposition 5] can be applied here to prove the following result,
and so we skip the proof.

Proposition 4.6 If ¢ is an element of 7 (S)* such that e € S*N©, then N(e) is a
subgroup of G.

Remark 4.7 We point out that it is not necessarily true that e € S“N© whenever e is
an element of .# (S)\Z such that N (e) is a subgroup of G. In Example 3.5, we see
that e; € J(S)\Z with N(ez) = G, but as(e2l,3) = e1 # ezl,. It remains open
whether e € S*V®© if e is any element in %\ (4, e) such that N (e) is a subgroup of
G.

Corollary 4.8 Suppose that (S, @) is a partial Galois extension. If e is an element of
F(8)* such that e € S*N©, then Se is a Galois extension in (S, o) with Galois group
N (e). Furthermore, if e is minimal in .7 (S)* or in 2%, then (Se)N© = §%.

Proof The first result follows immediately from Proposition 4.6 and Theorem 4.4.
Since e € SN, itis clear that S%e C (Se)V(©. Suppose in addition that e is minimal
in Z(8)* orin %*. Then N(e) = G(e) by Proposition 3.13 and the statement right
after its proof. Now if x € (Se)N(®, then foreach g € N (e), ag(xly-1) =xlg;as for
any g ¢ N(e), wehaveag(x1,-1) = ag(xel,—1) = ag(0) = xelg = x1,. Therefore,
x = xe € S¥%. O

Example 4.9 Let S be a Galois extension of S¢ with Galois group G. Let H be a
subgroup of G. We shall define a partial action & of G on § such that § is an ¢-partial
Galois extension of . For g € G, let

1 — ls ingH
£ 7 1o  otherwise

and define ag: S,-1 — Sg by .Xlg—l — g(x)1g. Obviously, each a; is a ring iso-

g
morphism. Actually, « is a partial action of G on S. Clearly, S* = S*. Now, one can
check easily that every Galois system for § is also an «-partial Galois system for S.
Therefore, S is an a-partial Galois extension of S H

For this partial Galois extension (S, @), 1s = 11 = Ilgey 1, is the only nonzero
element in %, which is of course invariant under o (1,), where N(11) = H is a
subgroup of G as promised by Proposition 4.6. Furthermore, by Corollary 4.8, we
obtain that § = S1; is a Galois extension of $*1; = S¥ with Galois group H. This
conclusion should not be surprising according to classical Galois theory.
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Example 4.10 Here we present another example to interpret Proposition 4.6 and
Corollary 4.8. This example is constructed in a way similar to Example 2.1. Let
R be a commutative ring and § = @?leei, where {¢; | 1 < i < 5} is a set
of nonzero orthogonal idempotents whose sum is one. Let G be a cyclic group
of order 6 generated by o. We define a partial action of G on S as follows: tak-
ing S1 = 8, So = @iep1,23,4Rei, Sy2 = ®ic(1,2,3,5Rei, Sy3 = Dief1,2,4,5Re;,
Sy4 = ®ic(1,3,4,5)Re; and S5 = Djep2 3,45 Re;, and defining o = idy,

Qo: Sy5 = So by exr—>e1,e31> e2,e41— e3andes — ey
a2t Sga — S;2 by e) = es, e3> e1,eq4 — er and e5 — e3,
a3t 8,3 = S;3 by el = eq, e3> e5,e4 — €1 and es — €3,
y4t Sg2 = Sga by oge = a;;,
ay5: Se = Sy5 by oys =c(;l.

One can check easily that S is an «-partial Galois extension of R with «-partial
Galois system {x; = y; = ¢ | 1 < i < 5}. Consider e¢13 = 1115152144,
ers = 11102103104 and €35 = 11102154105, and take e = e1,3 VvV ers. Then
N(e) = (1,02, 6% isa subgroup of G and e € S*N@: a 2(el 4) = agz2(e131,4) V
as(e1s5l,4) = e15Vess =e13Vers = el,2. By Corollary 4.8, Se is a Galois
extension in (S, o) with Galois group N (e).

We next show that if (S, «) is a partial Galois extension, then for any subgroup K of
G, there exists an element e in .# (S)* such that (Se, ag) is a partial Galois extension
in (S, @).

Let Ak be the Boolean ring generated by {1 | k € K}. Clearly, Zx < %.
Let .# and .4 denote the set of all minimal elements in % and By = B \{0},
respectively. It is not necessary that .#x C .#.In Example 2.2, if letting K = {1, 3},
then #x ={f3} ¢ .

Lemma 4.11 For each k € K, ax(Pk1;-1) S PBk. In particular, ay(Bx1;-1) =
By 1y foreachk € K.

Proof By definition of Bk, every element of Pk is a Boolean sum of some Boolean
multiplications of elements of the form 1, where 4 € K. Thus it suffices to show that
for each pair of k, h € K, ax (151;-1) € Pk, since ag((e A e)1-1) = ag(el-1) A
ar(e'1-1) and o ((e vV €)1;-1) = ag(ely-1) V ax(e'l,-1) for any e, ¢’ € Bk. But
ax(1p1;-1) = 1x 1 and K is a subgroup. Hence we are done. O

Proposition 4.12 If f is an element of M, then so is ay(f1,-1) for each k € K
such that f1;,-1 # Q.

Proof Let f € Mk and k € K such that f1,-1 # 0; equivalently, f1,-1 = f.
Then f' := oy (f1;-1) is nonzero and belongs to #x by Lemma 4.11. Assume e
is an element of #y smaller than but not equal to f'; that is, ef’ = e¢ # f’. In
particular, ely = ef’ly = ef’ = e. Let ¢ = a4-1(ely). Then ¢’ is nonzero and
belongs to Zk by Lemma 4.11 again. Now, ¢ # o—1(f'1x) = flz-1 = f and
¢ = ap-1(ef' 1) = ap-1(elp)oy-1(f'1x) = € f, showing that e’ € Hy is smaller
than but not equal to f, a contradictionto f € .#k . Thus we conclude that f' € .#k.

O
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Corollary 4.13 oy (A 1;,-1\{0}) = Ak 1 \{0} for each k € K.

Example 4.14 Tn Example 2.2, if letting K = {1, 02, 0}, then .#x = { f>, f4}. Here
falge #0and o a(faly2) = fo € Mk.

Notice that foreach f € .#k andk € K, f1jiseither forQ.Let Zx = {fi |i =
1,2,...,m}. For each k € K, consider the following two subsets of {1,2, ..., m}:

LF=1{i| filk = fiy=li | filk#0yand I ={i | filir = fi}={i | fil,1 #0).
Lemma 4.15 Foreachk € K, |I['| = |I]|.

Proof By Corollary 4.13, oy (#x 1;,-1\{0}) = 4k 1, \{0} for each k € K. Hence the
number of nonzero elements in .#x 1 is equal to that of nonzero elements in .#Zk 1 ;1.
O

Theorem 4.16 Let fx = V., fi, the Boolean sum of all elements in .#k. Then
fx € SUK.

Proof Letk € K. We have that fx 1 = VL, filx = \/l.d]:rfi, the Boolean sum of
all elements f in .#k such that f1; = f, and that o (fk 1;-1) = VI ax (fil-1) =
Vielk_ ai (fily-1), which by Proposition 4.12 is a Boolean sum of |/,"| distinct ele-
ments f in .#k such that f1; = f. Therefore it follows from Lemma 4.15 that
ar(fx 1) = fx k. O

Corollary 4.17 Let fx = V', fi. Suppose that (S, ) is a partial Galois extension.
Then (Sfk, ak) is a partial Galois extension. Furthermore, Sfx is a Galois extension
in (S, o) with Galois group K if and only if K C N (fk).

Proof This follows immediately from the preceding theorem and Theorem 4.4. O

Example 4.18 Under the notations in Example 4.14, (S(f2 VvV fa), ag) is a partial
Galois extension. Indeed, > V f4 € S a2((f2 V fa)lga) = az2(falye) = fa =
(f2 Vv fa)l,2. However, (S(f2 V f4), ak) is not a Galois extension since K is not
contained in N(f> Vv fa) = N(f2) N N(fa) = {1}.

Example 4.19 In Example 4.10, if letting K = {1, o2, 04}, then Ak = {e135 =
111,21,4}. By Corollary 4.17, (Se1 3,5, k) is a partial Galois extension and actually
is a Galois extension since K = N(ej 3,5). Notice that e 3 5 equals the element e
given in Example 4.10. Therefore the result here coincides with the conclusion of
Example 4.10.

Let # = {ey, e2, ..., ey}. Inthe remaining of this section, assume that the Boolean
sum of all elements in .# is 1g. Under this assumption, every element of %> is a
Boolean sum of elements in .#, which we call its Boolean components. We have seen
earlier that the inclusion .#Zx C .# does not hold in general. We close this section by
showing that this must be true if K = G(e) for some e € Z*.

Proposition 4.20 If K = G(e) for some e € B>, then each Boolean component of e
belongs to M ; in fact, Mk consists of the Boolean components of e. In particular,

Mg C M.
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Proof Write e = Vjere;, where I C {1,2,...,n}. Then G(e) = U;c;G(e;) by
Proposition 3.6. Thus K = U;c; N(e;) by Proposition 3.13, where ¢; = Igen(e)lg
foreachi € I by Proposition 3.12 and the canonical form of elements in (%, e)* (see
[13, Lemma 1]). Note that this implies that .#x = {e; | i € I}. Hence .#x C .#. 0O

We present an example below to show that it is possible that .#Zx < .# but
K # G(e) for any e € B*.

Example 4.21 In Example 2.2, we see that 1s = f> vV fi4 VvV f5, the Boolean sum
of all elements in .#. As seen in Example 4.14, if letting K = {I, o2, 04}, then
Mg ={f2, fa} S M AS B ={f; | 1 =i <5}U{faV fa, oV f5}, one can
check that K # G (e) for any e € £*.

5 Partial orbits and partial stabilizers

Throughout this section, let (S, @) be simply a set with a partial action of a group
G (not necessarily finite). The concept of partial stabilizer was firstly introduced
implicitly in [5]. Later in [2], the concept of partial orbit was also defined and the
relationship of partial stabilizers and partial orbits with global notions arising from
the associated enveloping action was studied. It was proved that the partial stabilizer
coincides with the associated global stabilizer, and each partial orbit is the intersection
of S with the associated global orbit. In this section we will derive some results on
partial stabilizers and partial orbits, some of which will be applied in the next section
to construct partial Galois extensions inside a fixed partial Galois extension. We will in
particular generalize the orbit-stabilizer theorem and Burnside’s lemma in the context
of partial actions of groups.

We begin with showing that, as in the theory of group action, the definition of partial
group action gives rise to an equivalence relation, and then defining partial orbits as
equivalence classes. Define a relation on S by x ~ y if and only if there exists some
g € G suchthatx € S,—1 and y = o, (x). This is in fact an equivalence relation.

Lemma 5.1 The relation ~ on S is an equivalence relation.

Proof Obviously, for any x € S, x ~ x by simply taking g = 1. If x ~ y, say
¥y = ag(x) for some g € G such that x € Sg-1,then y € S and x = og-1(y); hence
¥y ~ x. Suppose that x ~ y and y ~ z,say y = ag(x) and z = a;(y) for some
g, h € Gsuchthatx € S,—1 and y € §)-1. Noticing that z € S, N Spe by condition
(P2) in the definition of partial group action, we then see from condition (P3) that
X (jyg)=1 (z) = a1 0 -1(2) = ag-1(y) = x. Hence z ~ x and so x ~ z. O

The equivalence class containing x, denoted by O, is
Oy ={ag(x) | g € Gsuchthatx € S,-1},
and is called the «-partial orbit of x. The set § is partitioned into «-partial orbits. Let

S /a denote the set of all a-partial orbits of S. The partial action o of G on S is said to
be transitive if |S/a| = 1; that is, there is only one «-partial orbit. This is equivalent
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to saying that for each pair of elements x, y € §, there exists some g € G such that
X € Sg-1and y = o (x).
As in [2,5], the a-partial stabilizer of x € S, denoted by %,, is defined to be

Y ={g€G|xeS;1 and ag(x)=x}

This set has been shown to be a subgroup of G ([5, Proposition 2.5], [2, Corollary
10]). The proof in [5] used the definition of partial group action given by Exel [9]
and the authors in [2] presented a proof via globalization, showing that the partial
stabilizer coincides with the associated global stabilizer. We record a proof here using
the definition of partial group action presented in Sect. 2, as given in [6], without
passing through its enveloping action.

Proposition 5.2 The a-partial stabilizer 4, for each x € S, is a subgroup of G.

Proof Clearly, 1 € ¥. Let g,h € ¥%,. Then x € ngl N Sy-1 and ag(x) = x =
ap(x). Hence x € Sp-1 N Sg N Sy-1 N Sy and @1 (x) = x. In particular, hlew,.
Furthermore, x belongs to S(g -1 by condition (P2). Now by condition (P3), we then
have g, (x) = og (0 (x)) = x, 50 gh € Y. O

The following result is a generalization of the latter statement of [5, Proposition
2.5].

Proposition 5.3 If y € 0, then 9, and 9, are conjugate. More specifically, if y =
1

g (x) for some g € G such that x € Sy-1, then Y =g%g .
Proof Suppose y = ag(x) for some ¢ € G such that x € S,-1. Let h € %,. Then
x € Sy—1 and ap(x) = x; hence x € Sj, and oy,—1(x) = x. In particular, x € S;,-1 N
Se-1NSgpy-1and y € Sg N Syp-14-1. Hence oty —1(y) = otgn o ag-1(y) = agn(x) =
Qg oap(x) =ag(x) =y,s0 ghg ! e ¢,. We have shown that g%.g ! c ¢,. Since
x = a,-1(y), a similar argument shows that g_lgyg C ¥, . Therefore, ¥4, = 8% ¢~

O

As a generalization of the orbit-stabilizer theorem in the theory of group action, the
following result could be called the partial orbit-partial stabilizer theorem.

Theorem 5.4 For each x € S, there is a one-to-one correspondence between the
elements of O and the left cosets g9, in G with x € Sg-1.

Proof Define a mapping from &, to the set {g%, | ¢ € G suchthatx € Sg-1} by
sending ag (x) to g%, for each g € G such that x € Sy-1. Suppose g, i € G such that
X € ngl N S;-1 and ag (x) = o (x), which we denote by y. Then y € S N Sy, and
x = (Xg—l(y) € ngl N nglh; hence x = -1 (y) = -1 (g (x)) = ahflg(x). Hence
h~'g € 4., which means g%, = h%,. This shows that the mapping is well-defined.
Suppose now that h~!g € %,, where g, h € G such that x € Sg-1 N Sp-1. Then
x € Sg-1j, and og—1,(x) = x. Thus ag(x) = ap(ay-14(x)) = ap(x). Therefore, the
mapping is one-to-one. Obviously, it is surjective. O
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Corollary 5.5 Let x € S and suppose {g1, g2, ..., 81} be a system of representa-
tives for the left cosets g4, in G with x € Sg_u. Then O = {ag (x),...,ag(x)}
Furthermore, if h € G such that x € S(hgi)—l for each 1 < i < |, then
ﬁx = {ahg1 x), ..., ahgl(x)}

Proof The first result follows immediately from the one-to-one correspondence in
Theorem 5.4. Since {g1, g2, ..., &} 18 a system of representatives for the left cosets
g%, in G with x € Sg—l, sois {hgy, hgs, ..., hg} forany h € G with x € S(hgi)—l
for each 1 < i <[. Thus by Theorem 5.4 again, Oy = {opg, (X), ..., opg (x)}. O

We will next derive a generalization of Burnside’s lemma in the theory of group
action. To do so, foreach x € S,let G¥ ={g e G | x € Sg-1}. Then Oy = {og(x) |
g€ G'}and ¥, = {g € G* | ay(x) = x}. Notice that G* might not be a subgroup of
G. We show that elements in G* and elements in G\G* do not give rise to the same
left cosets of the subgroup %.

Proposition 5.6 For any g, h € G, if g¢9 = h%,, then either g,h € G* or g,h €
G\G".

Proof Suppose g%, = h%.. Then h™'g € % equivalently, x € Sg-1; and
ap-1,(x) = x. If g € G*; that is, x € Sg-1, then by (P3), x = a-1 0 ag(x),
belonging to S;,-1, and hence 7 € G*. Since ¢ 'h € 4,, a similar argument shows
that if » € G*, then g € G*. Therefore, we are done. O

Corollary 5.7 Suppose G is a finite group. Then for each x € S, |%y| divides |G*|
and |Ox| = |G*|/|9;|.

Proof By Proposition 5.6, we see that the left cosets of ¢, partition G in a way such
that G = Ugegr g%, and G\G" = U,cg\Gr 8% Thusif G is finite, then |, | divides
|G*|. Furthermore, by Theorem 5.4, we then get |0y | = |G*|/|%x|. O

The following result shows that if y, z € S belong to the same orbit O, then there
is a one-to-one correspondence between G and G*. When G is finite, we denote this
common number of elements by |G‘5X l.

x ,—1

Lemma 5.8 Forany x € S, if y = ag(x) for some g € G*, then G” = G*g

Proof Suppose y = ag(x) forsome g € G suchthatx € S,-1.1fh € G*;equivalently,
X € Sp-1, then y € S,;-15 hence hg~™' € GY. Hence G*g~! € GY. Since x =
o,-1(y), where g~ ! € G”, a similar argument shows that G’¢ C G*. Therefore,

GY=G*g™ . o

We are now ready to prove the generalization of Burnside’s lemma in the context
of partial group action. For each g € G, let $8 = {x € S -1 | og(x) = x}.

Theorem 5.9 Suppose G is a finite group. Then y_ . |S%] = 3 pes/a IGY|.
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Proof The sum

deG |S8] = deG l{x € Sg*1 | og(x) = x}
H(g,x) € G x S|xeS,1 and az(x) = x}|
= I{(gv-x) € G X S | g egxﬂv

when expressed as a sum over the elements of S, is Y ¢ [%|, which by Corollary
5.7,equals ) .. ¢|G*|/|O|. Now notice that S is partitioned into partial orbits by the
partial action « of G, so the sum over S may be broken up into separate sums over
S /a, grouping the elements of each partial orbit together:

> D IGH/16k.

OeSjaxel

Furthermore, Lemma 5.8 shows that |G| = |G*| whenever y, z belong to the same
orbit &, and this common number of elements is denoted by |Gﬁ|. Therefore, we
conclude that

Yo=Y (167> 1101 = > 167

geG 0eS/a xeld 0€eS/a
m}

To give an example, where the set under the partial action is finite, to interpret the
preceding theorem, we introduce the concept of invariant subset. Let R be a subset
of S and K a subgroup of G. We say R is an ak-invariant subset of S if ax (R N
Si-1) = R N Sk for each k € K. In the case where § is a ring, Bk and .# are
both ag-invariant by Lemma 4.11 and Corollary 4.13 since B N Sy = Pk 1 and
My N Sy = Mk 1;\{0} for each k € K. Note that if R is an ag-invariant subset of
S, then « induces a partial action of K on R with {R N S; | k € K} as the collection
of associated subsets.

Example 5.10 Notice that in Example 2.1, 8 = (£, ) with 8 elements, which, as
pointed above, is og-invariant. Let « also denote the induced partial action of G on
A. One can check easily that for (%, «) there are five partial orbits, namely,

0o =10}, 01 = {11}, Or ={e12,e23 = ay3(e12)}, O3 = {e13},

Oy = {e1,e2 = ay3(e1), e3 = a2 (er)}
Also,

G' = G,G" ={1},G? = (1,07}, G2 = {1,0%}, G = {1, 0},
G ={1,0%,0°),G* ={l1,0,0%),G% = {1,0,0%}.

Lemma 5.8 indeed holds here, and |G?°| = 4, |G?'| = 1, |G?2| = 2, |G%3| =2
and |G%| = 3,50 Y pe/q IG?| = 12. On the other hand, ' = 2, #° = {0},
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#7" = {0,e13) and B° = {0}. Hence Y., 1 %% = 12 = Y gep) |G, as
expected.

We now close this section by showing that each «-partial orbit of S is an g -invariant
subset as expected.

Proposition 5.11 The «-partial orbit Oy, for each x € S, is an ag-invariant subset
of S.

Proof Tt suffices to show thatag(ﬁxﬂSg_l) C OxNSyforeachg € G.Letg € G and
suppose y € ﬁxﬂSg_l.Theny = oy, (x) forsome h € G suchthatx € S;,-1NSy-1,-1.
Hence ag(y) = org 0 0, (x) = g (x) belongs to O, N Sg. O

Clearly, the induced partial action of G on any a-partial orbit of S is transitive.

6 Special invariant subsets

Throughout this section, let (S, o) be a ring with a partial action of a group G and K
be a subgroup of G. The definition of ok -invariant subset of § is given in the end of
the last section; as mentioned there, for any a g -invariant subset R, « induces a partial
action of K on R with {RN Sy | k € K} as the collection of associated subsets. Recall
that in Sect. 4 and in [13], we say that « induces a partial action of K on the unital ring
A contained in Sif 141, € Aforeachk € K and {Aly | k € K} forms the collection
of associated ideals of A. We remark that such A is an a g -invariant subset of S since
Alp = AN S1; whenever 141, € A.

In this section, we will study certain o -invariant subsets of S, including Hg
and .Z, and show how to constructing more partial Galois extensions inside (S, &)
via these special invariant subsets. We begin with showing that .#(S) and its subset
consisting of minimal elements of .# (), denoted by .Z .7 (S), are also « g -invariant
subsets of S.

Proposition 6.1 The sets 7 (S) and .# .7 (S) are both o -invariant subsets of S.

Proof 1t suffices to show that for each k € K, ax(R N S;-1) € R N Sx whenever
Ris J(S) or # .7 (S). Let k € K and suppose x € .Z(S) N S-1. It is clear that
ag(x) is a central idempotent of S contained in Si. Thus .#(S) is an ag-invariant
subset of S. Assume furthermore that x is minimal in . (S)*. Let y be any element
in Z(S)* such that ax(x)y # 0. Since yl; € £ (S) N Sk, vl = ox(u) for some
u € J(S) N Sp-1. Hence ax(x)y = ax(x)yly = ax(xu), where xu # 0 and thus
xu = x since x € 4 7 (S). Hence oy (x) < y. This shows that a (x) is contained in
M I (S) N Sy. Therefore, .# .7 (S) is also an ak -invariant subset of S. O

We next focus on these four a g -invariant subsets of S: B, Ak, S (S), M I (S)
with the induced partial action of K. For any subset R of S, R N S1; € R1; for each
k € K. Notice that the equality holds whenever R is Zk or .# (S). On the other hand,
itis obvious that RN S1; = R1;\{0} for each k € K whenever R is 4k or .# .7 (S).
As shown below, the preceding equality holds too whenever R is any o g -partial orbit

of My orof M .7(S).
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Lemma 6.2 Let R be Mk or # 7 (S). Let x € R and O\ denote the ag -partial orbit
ofxinR.Then O,NS1y = O 1, \{0} foreachk € K inparticular, o (O, 1;-1\{0}) =
Ox1;\{0}.

Proof Forany k € K, clearly 0, N S1; € O, 1;\{0}. Let y € O, such that yl; # 0.
Then y = oy (x) for some 2 € K such that x € S;,-i. Hence yly = ap(x)1x =
ap(x1,-1,), where x1;,-1; # 0, with h~'k € K, and so equals x since x is minimal
in B (F(S)* resp.). Hence ylx = ap(x) = y € Oy N Sk, as desired. The last
statement follows from the previous result and the fact that each partial orbit under
the partial action of K is ag-invariant (see Proposition 5.11). O

We remark that the preceding lemma is not true if R is replaced by % . Consider
Pk with K = G in Example 2.1. We have seen in Example 5.10 that 03 = {e1 3} is
a partial orbit, but e; 31,3 = e3 ¢ O3.

With the preceding lemma, we now can apply the idea of the proof of Theorem
4.16 to prove the following stronger result than Theorem 4.16.

Theorem 6.3 Let R be .#x or .# . (S). For each x € R, the Boolean sum of all
elements in the ag-partial orbit Oy of x in R belongs to S°K.

Proof The key of the proof is that for each x € R and k € K, xIj is either x
or 0. Let 0, = {x1,x2,...,x,} and X = v;"zlxi. For each k € K, consider the
following two subsets of {1,2,...,m}: I} = {i | xily = x;} = {i | x;1; # 0} and
I = {i | xilg-1r = x;} = {i | xilp—1 # 0}. Since ax (O 1;-1\{0}) = O 1;\{0}
by Lemma 6.2, it follows that the number of nonzero elements in &y 1 is equal to
that of nonzero elements in 0, 1;-1; equivalently, |Ik+ | = |1, |. Observe that X1 =
VIl Xl = \/ielk+x,- is the Boolean sum of all elements y in &, such that yl; = y.On
the other hand, oy (X1;-1) = VI o (x;13-1) = viel;ak(xi), which by Proposition
5.11 or Lemma 6.2 is a Boolean sum of |/,"| distinct elements y in & such that
vl = y. We therefore conclude from |1k+| = |I | that ay(X1;-1) = ¥1;. Hence
X € S¥K, O

Corollary 6.4 Let R be #x or # % (S). Let x € R and X denote the Boolean sum
of all elements in the ag-partial orbit O\ of x in R. Suppose that (S, @) is a partial
Galois extension. Then (SX, ag) is a partial Galois extension. Furthermore, SX is a
Galois extension in (S, ) with Galois group K if and only if K C N(X).

Proof This follows immediately from the preceding theorem and Theorem 4.4. O

Example 6.5 ITn Example 4.10, take e; € .#.7(S) and K = {1, 02, 0*}. The ak-
partial orbit of e; in .#Z .7 (S) consists of e;, e4. Observe that N(e3) = N(ex V eq) =
G\{oz, 04} does not contain K. Hence by the preceding Corollary, (S(ez V es), ak)
is a partial Galois extension, but not a Galois extension.

Remark 6.6 We point out that Theorem 6.3 does not hold if R is replaced by Hx.
Consider #g with K = G in Example 2.2. Let x = f» Vv f4, which belongs to S,
only when k = 1 and so the ok -partial orbit of x in %, consists of x only. However
x ¢ S*K since x1,5 = 0 while o 5(x15) = ays(f2) = fs.
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In the following let R be .#(S) or Bk. For x € R* = R\{0}, let Nx(x) =
N(x) N K. If Nx(x) is a subgroup of K, then « induces a partial action of Nk (x)
on R. We show that in this case the Boolean sum of all elements in the oy, ()-partial
orbit of x in R gives rise to a Galois extension in (S, «) with Galois group Nk (x).

Theorem 6.7 Let R be .7 (S) or Bk and x € R* such that Nk (x) is a subgroup of
K. Let x denote the Boolean sum of all elements in the oy, (v)-partial orbit of x in R.
Suppose that (S, ) is a partial Galois extension. Then SX is a Galois extension with
Galois group Nk (x).

Proof Suppose that the o (r)-partial orbit of x in R consists of oy, (x), o, (x), ...,
ok, (x), where k; € Nk(x) such that x € RN S, -1 foreach 1 < i < /[. Letx =

Vf’:]“ki (x). By Theorem 4.4, it suffices to show that ¥ € S*V¢® and Nk (x) C
N(x). Let h € Ng(x). Then foreach 1 <i <, kl._lh € Nk (x) and so oy, (x) =
ak; (x1,-1,) = g, () 1. Hence £1; = Vi_ g, (x) 1y = Vi, (x) = & thatiis, h €

N (¥). We have shown that N (x) € N (). Now similarly, we have (hk;)~! € Ng (x)
andsox € RDS(hk[)_l foreach 1 <i < [.Thusby Corollary 5.5, ctp, (x), . . ., oty (x)
also constitute the oy ()-partial orbit of x in R. Therefore, a; (x1,-1) = ap(x) =
o (\/leak, x)) = \/Llahki (x) = X = x1j, where we have applied the assumption
that Ng (x) is a subgroup and the previous result that Ng (x) € N (x). We conclude
that X € S*Vk® O

Corollary 6.8 Suppose that (S, «) is a partial Galois extension. If e is a nonzero
element of (Px, e), the Boolean semigroup generated by {1 | k € K}, such that
Nk (e) is a subgroup of K, then Se is a Galois extension with Galois group Nk (e).

Proof Note thate = [[;cy, () 1k- Since N (e) is a subgroup of K, it follows that for
eachh € Nk (e),el,-1 = eand ay(e) = HkENK(e) ap(1gly,-1) = HkENK(e) 1pily =
[Txeny ) 1k = e. This means the oy, ()-partial orbit of e in Zk consists of e only.
Therefore, by the preceding theorem, Se is a Galois extension with Galois group
Nk (e). O

Example 6.9 In Example 4.10, let K = {I, o2, 04}. For the central idempotent e
of S, Nx(e1) = K and the oy (¢;)-partial orbit of 1 in .#(S) consist of eq, e3, es.
Hence by Theorem 6.7, S¢; = S(e; V e3 V es) is a Galois extension with Galois
group K. This coincides with the conclusion of Example 4.10. On the other hand, e
is minimal in #(S)> and the ak-partial orbit of e; in .Z .7 (S) is {e], e3, e5} with
N(e1) = N(e; V e3 V es) = K. Hence the result also follows by Corollary 6.4.

Example 6.10 In Example 2.2, let K = {I, o3). Then f3 € (Pk,e) such that
Nk (f3) = K. Hence by Corollary 6.8, Sf3 is a Galois extension with Galois group
K . Notice that in this case .#Zx = {f3} and N(f3) = K, so Corollary 6.4 also assures
this result.

We close this section with the following observation.
Proposition 6.11 Let R be one of the four a g -invariant subsets of S: By, My, I (S)
or M I(S). If x, y € R belong to the same ak -partial orbit in R, then Sx = Sy.
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Proof Since x and y belong to the same ok -partial orbit in R, there exists some
k € K such that x € Sp-1 and y = ax(x) € Sk. Let ¢: Sx — Sy be defined
by ¢(sx) = ay(sly-1)y for each s € S. Then ¢(sx) = ax(sxl;-1) foralls € §.
It follows that ¢ is a ring isomorphism. We explain more why ¢ is surjective. For
sy € Sy, by the surjectivity of o, there exists some s € S such thats’l; = ag(s1;-1),
so08'y =5 Ipylp = ap(slp-1)ox (x1-1) = ag(sx1p-1) = P (sx). O

Acknowledgements The first author was partially supported by the Ministry of Science and Technology
of Taiwan under Grant MOST 104-2115-M-005-003.

References

Abadie, A.: Enveloping actions and Takai duality for partial actions. J. Funct. Anal. 197, 14-67 (2003)
. Avila, J., Hernandez-Gozalez, L., Ortiz-Jara, A.: On partial orbits and stabilizers. Int. Electron. J. Pure
Appl. Math. 8(3), 101-106 (2014)
3. Batista, E.: Partial actions: what they are and why we care. arXiv:1604.06393 (2016)
4. Chase, S.U., Harrison, D.K., Rosenberg, A.: Galois theory and Galois cohomology of commutative
rings. Mem. Am. Math. Soc. 52, 1-19 (1968)
5. Choi, K., Lim, Y.: Transitive partial actions of groups. Period. Math. Hung. 56(2), 169-181 (2008)
6. Dokuchaev, M., Exel, R.: Associativity of crossed products by partial actions, enveloping actions and
partial representations. Trans. Am. Math. Soc. 357(5), 1931-1952 (2005)
7. Dokuchaev, M., Ferrero, M., Paques, A.: Partial actions and Galois theory. J. Pure Appl. Algebra 208,
77-87 (2007)
8. Exel, R.: Twisted partial actions: a classification of regular C*-algebraic bundles. Proc. Lond. Math.
Soc. 74(3), 417443 (1997)
9. Exel, R.: Partial actions of groups and actions of semigroups. Proc. Am. Math. Soc. 126(12), 3481-3494
(1998)
10. Exel,R.,Laca, M., Quigg, J.: Partial dynamical system and C*-algebras generated by partial isometries.
J. Oper. Theory 47, 169-186 (2002)
11. Kellendonk, J., Lawson, M. V.: Partial actions of groups. Int. J. Algebra Comput. 14(1), 87-114 (2004)
12. Kuo,J.-M., Szeto, G.: The structure of a partial Galois extension. Monatsh. Math. 175, 565-576 (2014).
doi:10.1007/s00605-013-0591-1
13. Kuo, J.-M., Szeto, G.: The structure of a partial Galois extension II. J. Algebra Appl. 15(4), 1650061
(2016). doi:10.1142/S0219498816500614
14. McClanahan, K.: K-theory for partial crossed products by discrete groups. J. Funct. Anal. 130(1),
77-117 (1995)
15. Paques, A., Rodrigues, V., Santana, A.: Galois correspondences for partial Galois Azumaya extensions.
J. Algebra Appl. 10(5), 835-847 (2011)
16. Quigg, J.C., Raeburn, I.: Characterizations of crossed products by partial actions. J. Oper. Theory 37,
311-340 (1997)

o —

@ Springer


http://arxiv.org/abs/1604.06393
http://dx.doi.org/10.1007/s00605-013-0591-1
http://dx.doi.org/10.1142/S0219498816500614

	Partial group actions and partial Galois extensions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Properties of N(cdot) and G(cdot)
	4 Partial Galois extensions in (S,α)
	5 Partial orbits and partial stabilizers
	6 Special invariant subsets
	Acknowledgements
	References




