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Abstract We discuss a partial normalisation of a finite graph of finite groups
(�(−), X) which leaves invariant the fundamental group. In conjunction with an
easy graph-theoretic result, this provides a flexible and rather useful tool in the
study of finitely generated virtually free groups. Applications discussed here include:
(1) an important inequality for the number of edges in a Stallings decomposition
� ∼= π1(�(−), X) of a finitely generated virtually free group, (2) the proof of equiv-
alence of a number of conditions for such a group to be ‘large’, as well as (3) the
classification up to isomorphism of virtually free groups of (free) rank 2. We also
discuss some number-theoretic consequences of the last result.
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270 C. Krattenthaler, T. W. Müller

1 Introduction

Thepurpose of this paper is to introduce, anddemonstrate the usefulness of, a technique
for partially normalising the presentation of a finitely generated virtually free group as
the fundamental group of a finite graph of finite groups. Roughly speaking, ourmethod
avoids trivial amalgamations along a maximal tree of the connected graph underlying
such a representation. This result, Lemma 1, in conjunction with an almost trivial
graph-theoretic result (Lemma 2), provides us with a flexible and rather powerful
tool in the study of such groups. We demonstrate the usefulness of our approach by
describingvarious applications: (1) a short and elegant argument establishing the (well-
known) classification of virtually infinite-cyclic groups due originally to Stallings and
Wall, (2) the classification of virtually free groups of free rank 2 together with some
number-theoretic consequences,1 and (3) the equivalence of a number of conditions
on a finitely generated virtually free group � expressing, in one way or other, the fact
that � is large; cf. Propositions 4, 7, and 11. In Sect. 5, we also show that, (4) for a
normalised decomposition (�(−), X) of a finitely generated virtually free group �,
the number of geometric edges of the graph X is bounded above by the free rank of
�; cf. Lemma 3. This important observation plays a role in the proof of Proposition 7
below, as well as in establishing certain finiteness results for the class of finitely
generated virtually free groups with specified information concerning the number of
free subgroups of finite index. For another, recent application of the normalisation
provided by Lemma 1 see [9].

2 Some preliminaries on finitely generated virtually free groups

Our notation and terminology here follows Serre’s book [19]; in particular, the cat-
egory of graphs used is described in [19, §2]. This category deviates slightly from
the usual notions in graph theory. Specifically, a graph X consists of two sets:
E(X), the set of (directed) edges, and V (X), the set of vertices. The set E(X) is
endowed with a fixed-point-free involution − : E(X) → E(X) (reversal of ori-
entation), and there are two functions o, t : E(X) → V (X) assigning to an edge
e ∈ E(X) its origin o(e) and terminus t (e), such that t (ē) = o(e). The reader should
note that, according to the above definition, graphs may have loops (that is, edges
e with o(e) = t (e)) and multiple edges (that is, several edges with the same ori-
gin and the same terminus). An orientation O(X) consists of a choice of exactly
one edge in each pair {e, ē} (this is indeed always a pair—even for loops—since,
by definition, the involution − is fixed-point-free). Such a pair is called a geometric
edge.

Let � be a finitely generated virtually free group with Stallings decomposition
(�(−), X); that is, (�(−), X) is a finite graph of finite groups with fundamental
group π1(�(−), X) ∼= �. If F is a free subgroup of finite index in � then, following
an idea of C.T.C. Wall, one defines the (rational) Euler characteristic χ(�) of � as

1 See Sect. 2 for the definition of the free rank.
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Normalising graphs of groups 271

χ(�) = − rk(F) − 1

(� : F)
. (2.1)

(This is well-defined in view of Schreier’s index formula in [16].) In terms of the
above decomposition of �, we have

χ(�) =
∑

v∈V (X)

1

|�(v)| −
∑

e∈O(X)

1

|�(e)| . (2.2)

Equation (2.2) reflects the fact that, in our situation, the Euler characteristic in the
sense of Wall coincides with the equivariant Euler characteristic χT (�) of � relative
to the tree T canonically associated with � in the sense of Bass–Serre theory; cf. [1,
Chap. IX, Prop. 7.3] or [18, Prop. 14]. We remark that a finitely generated virtually
free group� is largest among finitely generated groups in the sense of Pride’s preorder
[15] (i.e., � has a subgroup of finite index, which can be mapped onto the free group
of rank 2) if, and only if, χ(�) < 0; see Proposition 11 in Sect. 8.

Denote by m� the least common multiple of the orders of the finite subgroups in
�, so that, again in terms of the above Stallings decomposition of �,

m� = lcm
{|�(v)| : v ∈ V (X)

}
.

(This formula essentially follows from the well-known fact that a finite group has
a fixed point when acting on a tree.) The type τ(�) of a finitely generated virtually
free group � ∼= π1(�(−), X) is defined as the tuple

τ(�) = (
m�; ζ1(�), . . . , ζκ (�), . . . , ζm� (�)

)
,

where the ζκ(�)’s are integers indexed by the divisors of m� , given by

ζκ(�) = ∣∣{e ∈ O(X) : |�(e)| ∣∣ κ}∣∣ − ∣∣{v ∈ V (X) : |�(v)| ∣∣ κ}∣∣.

It can be shown that the type τ(�) is in fact an invariant of the group�, i.e., indepen-
dent of the particular decomposition of� in terms of a graph of groups (�(−), X), and
that two finitely generated virtually free groups �1 and �2 contain the same number
of free subgroups of index n for each positive integer n if, and only if, τ(�1) = τ(�2);
cf. [13, Theorem 2]. We have ζκ(�) ≥ 0 for κ < m� and ζm� (�) ≥ −1 with equality
occurring in the latter inequality if, and only if, � is the fundamental group of a tree
of groups; cf. [12, Prop. 1] or [13, Lemma 2]. We observe that, as a consequence of
(2.2), the Euler characteristic of � can be expressed in terms of the type τ(�) via

χ(�) = −m−1
�

∑

κ|m�

ϕ(m�/κ) ζκ(�), (2.3)

where ϕ is Euler’s totient function. It follows in particular that, if two finitely generated
virtually free groups have the same number of free subgroups of index n for every n,
then their Euler characteristics must coincide.
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272 C. Krattenthaler, T. W. Müller

Define a torsion-free �-action on a set 	 to be a �-action on 	 which is free when
restricted to finite subgroups, and let

gλ(�) := number of torsion-free �-actions on a set with λm� elements

(λm�)! , λ ≥ 0;
(2.4)

in particular, g0(�) = 1. The sequences
(
fλ(�)

)
λ≥1 and

(
gλ(�)

)
λ≥0 are related via

the Hall-type convolution formula2

λ−1∑

μ=0

gμ(�) fλ−μ(�) = m�λgλ(�), λ ≥ 1. (2.5)

Introducing the generating functions

F�(z) :=
∑

λ≥0

fλ+1(�)zλ and G�(z) :=
∑

λ≥0

gλ(�)zλ,

Equation (2.5) is seen to be equivalent to the relation

F�(z) = m�

d

dz

(
logG�(z)

)
. (2.6)

Moreover, a careful analysis of the universal mapping property associated with the
presentation � ∼= π1(�(−), X) leads to the explicit formula

gλ(�) =
∏

e∈O(X)(λm�/|�(e)|)! |�(e)|λm�/|�(e)|
∏

v∈V (X)(λm�/|�(v)|)! |�(v)|λm�/|�(v)| , λ ≥ 0, (2.7)

for gλ(�), where O(X) is any orientation of X ; cf. [13, Prop. 3].
Define the free rank μ(�) of a finitely generated virtually free group � to be the

rank of a free subgroup of index m� in � (existence of such a subgroup follows, for
instance, from Lemmas 8 and 10 in [19]; it need not be unique, though). We note that,
in view of (2.1), the quantity μ(�) is connected with the Euler characteristic of � via

μ(�) + m�χ(�) = 1, (2.8)

which shows in particular that μ(�) is well-defined. From Formula (2.7) it may be
deduced that the sequence gλ(�) is of hypergeometric type and that its generating
function G�(z) satisfies a homogeneous linear differential equation

θ0(�)G�(z) + (θ1(�)z − m�)G ′
�(z) +

μ(�)∑

μ=2

θμ(�)zμG(μ)
� (z) = 0 (2.9)

2 See [13, Cor. 1], or [4, Prop. 1] for a more general result.
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Normalising graphs of groups 273

of order μ(�) with integral coefficients θμ(�) given by

θμ(�) = 1

μ!
μ∑

j=0

(−1)μ− j
(

μ

j

)
m�( j + 1)

∏

κ|m�

∏

1≤k≤m�

(m�,k)=κ

( jm� + k)ζκ (�),

0 ≤ μ ≤ μ(�); (2.10)

cf. [13, Prop. 5].

3 Normalising a finite graph of groups

It will be important to be able to represent a finitely generated virtually free group
� by a graph of groups avoiding trivial amalgamations along a maximal tree. This is
achieved via the following.

Lemma 1 (Normalisation) Let (�(−), X) be a (connected) graph of groups with
fundamental group �, and suppose that X has only finitely many vertices. Then there
exists a graph of groups (�(−),Y ) with |V (Y )| < ∞ and a spanning tree T in Y,

such that π1(�(−),Y ) ∼= �, and such that3

�(e)e 	= �(t (e)) and �(e)ē 	= �(o(e)), for e ∈ E(T ). (3.1)

Moreover, if (�(−), X) satisfies the finiteness condition

(F1) X is a finite graph,

or

(F2) �(v) is finite for every vertex v ∈ V (X),

then we may choose (�(−),Y ) so as to enjoy the same property.

Proof Choose a spanning tree S in X , and call an edge e ∈ E(S) trivial, if at least one
of the associated embeddings e : �(e) → �(t (e)) and ē : �(e) → �(o(e)) is an iso-
morphism. If S contains a trivial edge e1—to fix ideas, say �(e1)e1 = �(t (e1))—then
we contract the edge e1 into the vertex o(e1) and re-define incidence and embeddings
where necessary, to obtain a new graph of groups (�′(−), X ′) with spanning tree S′
in X ′. More precisely, this means that we let

E(X ′) = E(X)\{e1, ē1},
E(S′) = E(S)\{e1, ē1},
V (X ′) = V (S′) = V (X)\{t (e1)},

set

t ′(e) := o(e1), for e ∈ E(X ′) with t (e) = t (e1),

3 The notation used in Eq. (3.1) follows Serre; see Déf. 8 in [19, Sec. 4.4].
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274 C. Krattenthaler, T. W. Müller

and define new embeddings via

�(e)
e−→ �(t (e1))

e−1
1−→ �(e1)

ē1−→ �(o(e1)) = �(t ′(e)),
for e ∈ E(X ′) with t (e) = t (e1), (3.2)

leaving incidence and embeddings unchangedwherever possible. Clearly, S′, the result
of contracting the geometric edge {e1, ē1} and deleting the vertex t (e1), is still a span-
ning tree for X ′ and, if (�(−), X) has property (F1) or (F2), then so does (�′(−), X ′)
by construction.

It remains to see that the fundamental group of the new graph of groups (�′(−), X ′)
is isomorphic to �. The fundamental group

π1(�(−), X, S)

of the graph of groups (�(−), X) at the spanning tree S is generated by the groups
�(v) for v ∈ V (X) plus extra generators γe for e ∈ O(X) − E(S), where O(X) is
any orientation of X , subject to the relations

ae = aē, for e ∈ O(S) and a ∈ �(e), (3.3)

γea
eγ −1

e = aē, for e ∈ O(X) − E(S) and a ∈ �(e), (3.4)

where O(S) is the orientation of the tree S induced by O(X), with a correspond-
ing presentation for π1(�

′(−), X ′, S′); see §5.1 in [19, Chap. I]. The relations (3.3)
corresponding to the geometric edge {e1, ē1} identify �(t (e1)) isomorphically with a
subgroup of �(o(e1)); we can thus delete the generators γ ∈ �(t (e1)) against those
relations by Tietze moves. This yields a presentation for π1(�(−), X, S) with the
same set of generators as π1(�

′(−), X ′, S′). Moreover, those relations (3.3)–(3.4)
coming from edges e with t (e) = t (e1) have to be re-expressed in terms of elements
of �(o(e1)), which leads exactly to the corresponding relations of π1(�

′(−), X ′, S′)
obtained by extending the embedding e : �(e) → �(t (e1)) in the natural way as given
in (3.2). Hence, π1(�(−), X, S) ∼= π1(�

′(−), X ′, S′). Since V (X) is finite, the tree S
is finite; thus, proceeding in the manner described, we obtain, after finitely many steps,
a graph of groups (�(−),Y ) with fundamental group � and a spanning tree T in Y
without trivial edges, such that (�(−),Y ) enjoys the finiteness properties (F1), (F2)
whenever (�(−), X) does. 
�

4 A graph-theoretic lemma

The following auxiliary result, which is of an entirely graph-theoretic nature, will be
used frequently in the rest of the paper.

Lemma 2 Let T be a tree, and let v0 ∈ V (T ) be any vertex. Then there exists one,
and only one, orientation O(T ) of T, such that the assignment e �→ t (e) defines a
bijection ψv0 : O(T ) → V (T )\{v0}. This orientation is obtained by orienting each
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Normalising graphs of groups 275

geometric edge so as to point away from the root v0; that is, travelling along an edge
of O(X), the distance from v0 in the path metric always increases.

Lemma2 is easy to show, even in this generality.Moreover, for our present purposes,
the trees considered will all be finite, in which case the assertion of Lemma 2 may
be proved by a straightforward induction on |V (T )|, which we sketch briefly: by our
condition on the map ψv0 , all (geometric) edges incident with v0 will have to be
oriented away from the root v0. Delete v0 together with edges incident to v0. The
result is a disjoint union of finitely many subtrees, in which we choose the (previous)
neighbours of v0 as new roots. An application of the induction hypothesis to these
rooted subtrees now finishes the proof.

In what follows, the orientation of a tree T with respect to a base point v0 described
in Lemma 2 will be denoted by Ov0(T ).

5 An inequality for the number of edges of a graph of groups

An important consequence of normalisation is the following.

Lemma 3 Let (�(−), X, T )be afinite graphof finite groupswithmaximal tree T ≤ X
and fundamental groupπ1(�(−), X) ∼= �. If (�(−), X, T ) satisfies the normalisation
condition (3.1), then the number of edges |E(X)| of the graph X is bounded above in
terms of the free rank of � via

|E(X)| ≤ 2μ(�). (5.1)

Proof We distinguish two cases.

(a) |V (X)| = 1. Then m� = |�(v)|, where V (X) = {v}, and the Euler characteristic
of � becomes

χ(�) = 1

|�(v)| −
∑

e∈O(X)

1

|�(e)|

= m−1
�

(
1 −

∑

e∈O(X)

(
�(v) : �(e)e

))

≤ −m−1
�

(|O(X)| − 1
)
,

where O(X) is an arbitrary orientation of X . It follows that

μ(�) = 1 − m�χ(�) ≥ |O(X)|,

whence our claim in this case.
(b) |V (X)| ≥ 2. Then E(T ) 	= ∅, and we may choose some edge e1 ∈ E(T ).

Consider the tree T as rooted with root v1 = o(e1) and associated orientation
Ov1(T ) in the sense of Lemma 2. Extending Ov1(T ) to an orientation O(X) of
X , we write
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276 C. Krattenthaler, T. W. Müller

χ(�) =
( 1

|�(o(e1))| + 1

|�(t (e1))| − 1

|�(e1)|
)

+
∑

e∈Ov1 (T )\{e1}

( 1

|�(t (e))| − 1

|�(e)|
)

−
∑

e∈O(X)\Ov1 (T )

1

|�(e)| .

Since the edge e1 is not trivial, we have 2|�(e1)| ≤ |�(o(e1))| as well as
2|�(e1)| ≤ |�(t (e1))|, thus

1

|�(o(e1))| + 1

|�(t (e1))| ≤ 1

|�(e1)| .

For the same reason, for e ∈ Ov1(T )\{e1}, we have
1

|�(t (e))| − 1

|�(e)| = 1 − (�(t (e)) : �(e)e)

|�(t (e))| ≤ − 1

|�(t (e))| ≤ − 1

m�

.

Putting together these observations, we find that

χ(�) ≤ −m−1
�

(|Ov1(T )| − 1
) − m−1

� |O(X)\Ov1(T )| = −m−1
�

(|O(X)| − 1
)
,

from which our claim follows as before. 
�

6 Classifying virtually infinite-cyclic groups

Virtually infinite-cyclic groups play a certain role in topology as they are precisely the
finitely generated groups with two ends. Their structure is well-known; cf. [21, 5.1]
or [22, Lemma 4.1]. In this section, we shall give a short proof of the corresponding
result (Proposition 4) based on the tools developed in Sects. 3 and 4. As a consequence
of this classification result, we find that the function fλ(�) is constant for μ(�) = 1;
cf. Corollary 6.

Proposition 4 A virtually infinite-cyclic group � falls into one of the following two
classes:

(i) � has a finite normal subgroup with infinite-cyclic quotient.
(ii) � is a free product � = G1 ∗

A
G2 of two finite groups G1 and G2, with an

amalgamated subgroup A of index 2 in both factors.

Proof Let (�(−), X) be a finite graph of finite groups with fundamental group � and
spanning tree T , chosen according to Lemma 1. The reader should observe that the
assumption that � is virtually infinite-cyclic in combination with (2.8) implies that
χ(�) = 0.

If |V (X)| = 1, V (X) = {v} say, then the above observation together with
Formula (2.2) shows that X has exactly one geometric edge {e, ē}, and that the asso-
ciated embeddings e, ē : �(e) → �(v) are isomorphisms. Hence, �(v) � � and
�/�(v) ∼= C∞, which gives the desired result in Case (i).
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Normalising graphs of groups 277

If |V (X)| > 1, we choose an edge e1 ∈ E(T ), introduce the orientation Ov0(T )

with respect to the base point v0 = o(e1), extend it to an orientation O(X) of X , and
let v1 = t (e1). We then split the Euler characteristic of � as follows:

0 = χ(�) =
∑

v∈V (X)

v 	=v0,v1

1

|�(v)| −
∑

e∈Ov0 (T )

e 	=e1

1

|�(e)| +
(

1

|�(v0)| + 1

|�(v1)| − 1

|�(e1)|
)

−
∑

e∈O(X)\Ov0 (T )

1

|�(e)| . (6.1)

By the normalisation condition (3.1) on (�(−), X, T ), we have

2|�(e1)| ≤ γ := min
{|�(v0)|, �(v1)|

}
,

so
1

|�(v0)| + 1

|�(v1)| − 1

|�(e1)| ≤ 2

γ
− 1

|�(e1)| ≤ 0. (6.2)

Clearly, equality in (6.2) occurs if, and only if, �(e1) is of index 2 in both �(v0)

and �(v1). Similarly, by the normalisation condition (3.1) and Lemma 2, we have

∑

v∈V (X)

v 	=v0,v1

1

|�(v)| −
∑

e∈Ov0 (T )

e 	=e1

1

|�(e)| =
∑

e∈Ov0 (T )

e 	=e1

(
1

|�(t (e))| − 1

|�(e)|
)

≤ 0,

with equality if, and only if, Ov0(T ) = {e1}. Also, trivially, the last sum on the right-
hand side of (6.1) is non-negative, and vanishes if, and only if,O(X) = Ov0(T ). Given
this discussion, we conclude from (6.1) that� = �(v0) ∗

�(e1)
�(v1), the amalgam being

formed with respect to the embeddings e1 : �(e1) → �(v1) and ē1 : �(e1) → �(v0),
and that (�(v0) : �(e1)ē1) = 2 = (�(v1) : �(e1)e1), whence the result in Case (ii). 
�
Remark 5 1. In Case (i) of Proposition 4, we have ζκ = 0 for all κ | m� whereas,

in Case (ii), ζm� = −1. Hence, groups occurring in Case (i) are not isomorphic to
groups belonging to Case (ii).

2. In Part (ii) of Proposition 4, A is a finite normal subgroup of � with quotient
C2 ∗ C2, the infinite dihedral group.

Corollary 6 If � is virtually infinite-cyclic, then the function fλ(�) is constant. More
precisely, we have fλ(�) = m� for λ ≥ 1 in Case (i) of Proposition 4, while in
Case (ii) we have fλ(�) = |A| = m�/2.

Proof If� is as described in Case (i) of Proposition 4, then (2.7) shows that gλ(�) = 1
for λ ≥ 0, leading to fλ(�) = m� for all λ ≥ 1 by (2.5) and an immediate induction
on λ.
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278 C. Krattenthaler, T. W. Müller

For � as in Case (ii), Eq. (2.7) yields

gλ(�) = 2−2λ
(
2λ

λ

)
, λ ≥ 0.

By the binomial theorem applied to the generating function G�(z) of the gλ(�)’s, we
obtain G�(z) = (1 − z)−1/2, which transforms into the relation

F�(z) = |m�|
2(1 − z)

= |A|
1 − z

via (2.6). The desired result follows from this last equation by comparing coefficients.

�

7 The case where μ(�) = 2

7.1 The classification result

Proposition 7 A virtually free group� of rankμ(�) = 2 falls into one of the following
five classes:

(i) � is anHNN-extension� = G ∗
A,φ

with finite base groupG, associated subgroups

A and B = φ(A), associated isomorphism φ : A → B, and (G : A) = 2.
(ii) � contains a finite normal subgroup G with quotient �/G ∼= F2 free of rank 2.
(iii) � is a free product � = G1 ∗

S
G2 of two finite groups Gi with an amalgamated

subgroup S, whose indices (Gi : S) satisfy one of the conditions
• (iii)1 {(G1 : S), (G2 : S)} = {2, 3},
• (iii)2 (G1 : S) = 3 = (G2 : S),

• (iii)3 {(G1 : S), (G2 : S)} = {2, 4}.
(iv) � is a free product� = G1∗

S
�2,where G1 is finite,�2 is a virtually infinite-cyclic

group of type (i) (see Proposition 4), and (G1 : S) = 2 = (G2 : S), where G2
is the base group of the HNN-extension �2.

(v) � is of the form� = (G1 ∗
S1
G2)∗

S2
G3with finite factors G1,G2,G3 and subgroups

S1, S2 satisfying |G1| = |G2| = |G3| = 2|S1| = 2|S2|.
Proof Let � be a virtually free group of free rank μ(�) = 2, let (�(−), X) be a
Stallings decomposition of �, and let T be a spanning tree in X satisfying the nor-
malisation condition (3.1) of Lemma 1. By Lemma 3, X has at most two geometric
edges, while, by Eq. (2.8), we have χ(�) = − 1

m�
. There are five possibilities for the

isomorphism type of the graph X underlying the decomposition of �, and the proof
of the proposition (as well as its statement) breaks into cases accordingly.

(i) X consists of a single loop e with o(e) = t (e) = v. Setting G := �(v) and
S := �(e), we have m� = |G| and

χ(�) = 1

|G| − 1

|S| = 1 − (G : Se)
m�

= − 1

m�

,
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Normalising graphs of groups 279

implying (G : Se) = 2. Thus, setting A := Se, B := Sē, and with the iso-
morphism φ : A → B given by xe �→ xē (in keeping with the notation of [11,
Chap. IV.2]), the definition of π1(�(−), X) yields that

� ∼= 〈
G, t

∣∣ tat−1 = φ(a), a ∈ A
〉
,

whence the result in that case.
(ii) X consists of a single vertex v, supporting two loops ei , i = 1, 2. Set G := �(v)

and Si := �(ei ). Then m� = |G|, and

χ(�) = 1

|G| − 1

|S1| − 1

|S2| = 1 − (G : Se11 ) − (G : Se22 )

m�

= − 1

m�

,

implying

(G : Se11 ) = 1 = (G : Se22 ).

Hence, the maps ei : Si → G are isomorphisms, and we obtain the presentation

� ∼= 〈
G, s1, s2

∣∣ s1ae11 s−1
1 = aē11 (a1 ∈ S1), s2a

e2
2 s−1

2 = aē22 (a2 ∈ S2)
〉
.

It follows that the finite group G is normal in � with quotient a free group of
rank two, as claimed.

(iii) X = T is a segment e with vertices v1, v2, say t (e) = v2. Set Gi := �(vi ), i =
1, 2, and S := �(e). Then � = G1 ∗

S
G2, with the canonical embeddings given

by ē : S → G1 and e : S → G2. Moreover, let a1 := (G1 : Sē) and a2 :=
(G2 : Se). By symmetry, we may suppose that a1 ≤ a2, we have a1 ≥ 2 by our
assumption that (�(−), X, T ) is normalised, and the requirement that μ(�) = 2
boils down to the (equivalent) equation

a1a2 − a1 − a2 = gcd(a1, a2). (7.1)

Since gcd(a1, a2) ≤ a1, Eq. (7.1) implies that

a1 ≤ a2 ≤ 2a1
a1 − 1

, (7.2)

which in turn leads to a21 ≤ 3a1. Given our present constraints, the last inequality
is satisfied only for a1 = 2 and a1 = 3. If a1 = 2, then we find from (7.2) that
2 ≤ a2 ≤ 4, while, for a1 = 3, we get a2 = 3. Thus, the only possibilities are

(a1, a2) = (2, 2), (2, 3), (2, 4), (3, 3),

and, inserting these into (7.1), the possible solution a1 = 2 = a2 is eliminated,
while the remaining three pairs all solve (7.1), whence the result in that case.
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(iv) X consists of a segment e1 with vertices v1 and v2, say t (e1) = v2, with a loop
e2 attached at v2. For i = 1, 2, set Gi := �(vi ), and let Si := �(ei ). Then
� = G1 ∗

S1
�2, where �2 is the fundamental group of the loop e2 with bounding

vertex v2, and the canonical embeddings are given by the maps ē1 : S1 → G1

and ẽ1 : S1
e1→ G2 → �2. Let a1 := (G1 : Sē11 ), a2 := (G2 : Se11 ), and

a′
2 := (G2 : Se22 ). Then

m� = lcm
(|G1|, |G2|

) = |S1| · lcm(a1, a2) = |S2| · lcm(a1, a2)a
′
2/a2,

and the condition that μ(�) = 2 translates into the equation

a1a2 + a1a
′
2 − a1 − a2 = gcd(a1, a2). (7.3)

Moreover, we have a1, a2 ≥ 2 by our assumption that (�(−), X, T ) is nor-
malised, where T is the unique spanning tree of X . Suppose first that a1 ≤ a2.
Then (7.3) gives

2 ≤ a1 ≤ a2 ≤ (2 − a′
2)a1

a1 − 1
≤ a1

a1 − 1
≤ 2.

This forces a1 = a2 = 2, and from (7.3) we deduce that a′
2 = 1. Now suppose

that a1 ≥ a2. Then (7.3) yields

2 ≤ a2 ≤ a1 ≤ 2a2
a2 + a′

2 − 1
≤ 2,

which again leads to the solution a1 = a2 = 2 and a′
2 = 1. Assertion (iv) now

follows.
(v) X = T is a path (v1, e1, v2, e2, v3) of length 2. For i = 1, 2, 3, set Gi := �(vi ),

and let S j := �(e j ) for j = 1, 2. Then � = (
G1 ∗

S1
G2

) ∗
S2
G3. Since μ(�) = 2,

we have m�

|S1| + m�

|S2| − m�

|G1| − m�

|G2| − m�

|G3| = 1. (7.4)

As (�(−), X, T ) is normalised, we have

m�

|G1| ≤ m�

2|S1| and
m�

|G2| ≤ m�

2|S2| ,

so that (7.4) gives

m�

2|S1| + m�

2|S2| − m�

|G3| ≤ 1.

Again by normalisation,

m�

|G3| ≤ m�

2|S2| ,
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thus

1 ≤ max

{ |G1|
2|S1| ,

|G2|
2|S1|

}
≤ m�

2|S1| ≤ 1,

implying

m� = |G1| = |G2| = 2|S1|.

Using this information in (7.4), we now find that

m�

(
1

|S2| − 1

|G3|
)

= 1,

implying first m� = 2|S2| by normalisation, and then |G3| = m� . 
�
Remark 8 By considering the type and the number of conjugacy classes of maxi-
mal finite subgroups, one shows again that any two groups from different classes in
Proposition 7 are not isomorphic.

7.2 Some consequences of Proposition 7

Using the structural classification afforded by Proposition 7 in conjunction with (2.6),
(2.9), and (2.10), we obtain, for each of the five cases in Proposition 7, a recurrence
relation for the corresponding function fλ(�). The result is as follows:

(a) In Cases (i) and (iv),

fλ+1(�) = 2λ + 3

2
m� fλ(�) +

λ−1∑

μ=1

fμ(�) fλ−μ(�), λ ≥ 1. (7.5)

(b) In Case (ii),

fλ+1(�) = (λ + 2)m� fλ(�) +
λ−1∑

μ=1

fμ(�) fλ−μ(�), λ ≥ 1. (7.6)

(c) In Cases (iii) and (v),

fλ+1(�) = (λ + 1)m� fλ(�) +
λ−1∑

μ=1

fμ(�) fλ−μ(�), λ ≥ 1, (7.7)

with corresponding initial conditions

(a) f1(�) = m2
�/2,

(b) f1(�) = m2
� ,
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(c) f1(�) =
{

(m� − |S|)|S|, Case (iii),

(m�/2)2, Case (v).

We record two applications of Equations (7.5)–(7.7) (and their initial conditions).

Corollary 9 For a virtually free group � with μ(�) = 2 and � � C2 ∗ C2 ∗ C2, we
have

fλ+1(�) − fλ(�) ≥ m�(λ + 1)! (7.8)

for all λ ≥ 1. For � ∼= C2 ∗ C2 ∗ C2, the estimate (7.8) holds for all λ ≥ 2.

Proof This follows from the above recurrence relations plus initial conditions by an
immediate induction on λ. 
�
Corollary 10 Let � be virtually free of rank μ(�) = 2. In the cases (iii)1, (iii)3, and
(v), we have, with |S| ≡ 1 (mod 2) respectively |S1| ≡ 1 (mod 2),

fλ(�) ≡ 1 (mod 2) if, and only if, λ = 2m − 1 for some integer m ≥ 1.

In all other cases, the function fλ(�) is constant modulo 2.

Proof We focus on Case (iii)1 with |S| ≡ 1 (mod 2); the proof in Cases (iii)3 and (v)
is completely analogous, while the fact that fλ(�) is constant modulo 2 in all other
cases is immediate.

We denote by � the set of integers of the form λ = 2m − 1, m = 1, 2, . . ., and
prove the equivalence

fλ(�) ≡ 1 (mod 2) if, and only if, λ ∈ �, (7.9)

for λ ≥ 1 by induction on λ. The assumption that |S| ≡ 1 (mod 2) implies that

f1(�) = 5|S|2 ≡ 1 (mod 2),

so that (7.9) is true for λ = 1. Suppose that (7.9) is true for all λ ≤ L with some
L ≥ 1, and consider λ = L + 1. From (7.7) and the fact that m� = 6|S| ≡ 0 (mod 2),
we infer that, for λ ≥ 1,

fλ+1(�) ≡
{
fλ/2(�) (mod 2), 2 | λ,

0 (mod 2), 2 � λ.

If L+1 ∈ �, i.e., L+1 = 2m−1 for somem ≥ 2, then L = 2(2m−1−1) ≡ 0 (mod 2)
and L/2 ∈ �, thus fL+1(�) ≡ 1 (mod 2) by the induction hypothesis. Suppose, on
the other hand, that L + 1 /∈ �. If L ≡ 1 mod 2), then fL+1(�) ≡ 0 mod 2). Thus we
are left with the case where L + 1 /∈ � and L ≡ 0 mod 2). But then L/2 /∈ �, and
the induction hypothesis gives

fL+1(�) ≡ fL/2(�) ≡ 0 (mod 2),

completing the proof. 
�
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Corollary 10 serves well to illustrate the main result of [8]:

(1) In Case (i) of Proposition 7, we have 2 | m� and

μ2(�) =
{
1, |A| ≡ 1 (mod 2),

2, |A| ≡ 0 (mod 2).

In particular, we obtain that μ2(�) > 0, so Case (III)2 of [8, Theorem 1] applies,
asserting that fλ(�) is ultimately periodic modulo 2 in this case. Indeed, by
Corollary 10, fλ(�) is constant modulo 2.

(2) In Case (ii) of Proposition 7, we either have 2 � m� , or 2 | m� andμ2(�) = 2 > 0,
so fλ(�) is ultimately periodic modulo 2 in this case according to Case (III)1
respectively (III)2 of [8, Theorem 1]. Indeed, fλ(�) is again constant modulo 2
by Corollary 10.

(3) In Case (iii)1 of Proposition 7, we have 2 | m� and

μ2(�) =
{
0, |S| ≡ 1 (mod 2),

2, |S| ≡ 0 (mod 2),

so fλ(�) is ultimately periodic modulo 2 according to [8, Theorem 1] if, and
only if, |S| ≡ 0 (mod 2), which coincides with the corresponding assertion of
Corollary 10.

(4) In Case (iii)2 of Proposition 7, we either have |S| ≡ 1 (mod 2), and so 2 � m� =
3|S|, or |S| ≡ 0 (mod 2), in which case 2 | m� and μ2(�) = 2 > 0. Hence,
ultimate periodicity of the function fλ(�)modulo 2 follows again fromCase (III)1
respectively Case (III)2 of [8, Theorem 1], while Corollary 10 asserts that fλ(�)

is constant modulo 2 in that case.
(5) In Case (iii)3 of Proposition 7, we have 2 | m� = 4|S| and

μ2(�) =
{
0, |S| ≡ 1 (mod 2),

2, |S| ≡ 0 (mod 2).

Hence, according to [8, Theorem 1], the function fλ(�) is ultimately periodic
modulo 2 if, and only if, |S| ≡ 0 (mod 2), which is in accordance with the
corresponding assertion of Corollary 10.

(6) In Case (iv) of Proposition 7, we have 2 | m� = 2|S| and

μ2(�) =
{
1, |S| ≡ 1 (mod 2),

2, |S| ≡ 0 (mod 2).

In particular, we obtain that μ2(�) > 0, so that ultimate periodicity of fλ(�)

follows from Case (III)2 of [8, Theorem 1], while Corollary 10 asserts that fλ(�)

is constant modulo 2 in that case.
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(7) Finally, in Case (v) of Proposition 7, we have 2 | m� = 2|S1| and

μ2(�) =
{
0, |S1| ≡ 1 (mod 2),

2, |S1| ≡ 0 (mod 2).

Hence, according to [8, Theorem 1], the function fλ(�) is ultimately periodic modulo
2 if, and only if, |S1| ≡ 0 (mod 2), in accordance with the corresponding assertion of
Corollary 10.

8 Some criteria for a virtually free group to be ‘large’

Our final result collects together a number of equivalent conditions on a finitely gen-
erated virtually free group � which all say, in one way or another, that � is ‘large’ in
some particular sense. Perhaps the most obvious condition in this direction is given by
Pride’s concept of being ‘as large as a free group of rank 2’. The concept of ‘largeness’
for groups, first introduced by Pride in [15], and further developed in [5], depends on
a certain preorder � on the class of groups, defined in [5] as follows: let G and H be
groups. Then we write H � G, if there exist

(a) a subgroup G0 of finite index in G;
(b) a subgroup H0 of finite index in H , and a finite normal subgroup N 0 of H0;
(c) a homomorphism from G0 onto H0/N 0.

Wewrite H ∼ G if H � G andG � H , andwe denote by [G] the equivalence class of
the group G under ∼. By abuse of notation, we also denote by � the preorder induced
on the class of equivalence classes of groups. The finitely generated groups which are
‘largest’ in Pride’s sense are the ones having a subgroup of finite index which can be
mapped homomorphically onto the free group F2 of rank 2.

Another, more topological, way of saying that a finitely generated virtually free
group is ‘large’, is that it has infinitely many ends. Here, the number e(�) of ends of
a group � is defined as

e(�) =
{
dim H0(�,HomZ(Z�, Z2)/Z2�), if � is infinite,

0, if � is finite.

The reader is referred to [2] or [3, Sec. 2] for an introduction to the theory of ends
of a group from an algebraic point of view; for a discussion from a more topological
viewpoint, see, for instance, [6], [7], or [20].

Proposition 11 Let � be a finitely generated virtually free group, and let (�(−), X)

be a finite graph of finite groups with fundamental group �, chosen so as to satisfy the
normalisation condition (3.1) of Lemma 1. Then the following assertions on � are
equivalent:

(i) χ(�) < 0.
(ii) μ(�) ≥ 2.
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(iii) � has infinitely many ends.
(iv) The function fλ(�) is strictly increasing.
(v) � ∼ F2 in the sense of Pride’s preorder � on groups, where F2 denotes the free

group of rank 2.
(vi) � has fast subgroup growth in the sense that the inequality snj (�) ≥ c · n! holds

for some fixed positive integer j, some constant c > 0, and all n ≥ 1. Here
sm(�) denotes the number of subgroups of index m in �.

(vii) If X has only one vertex v, then either X has more than one geometric edge,
or E(X) = {e1, ē1} and (�(v) : �(e1)e1) ≥ 2; if |V (X)| ≥ 2, then X is not a
tree, or X is a tree with more than one geometric edge, or E(X) = {e1, ē1} and
χ(�0) < 0, where �0 := �o(e1) ∗

�(e1)
�t (e1).

Proof (i) ⇔ (ii). This is immediate from Formula (2.8) plus the fact that μ(�) is
integral.
(ii) ⇔ (iii). This follows from [3, Prop. 2.1] (i.e., the fact that the number of ends
is invariant when passing to a subgroup of finite index) and Examples 1 and 2 in
[3] computing the number of ends of a free product, respectively of C∞.
(ii) ⇔ (iv). This follows from [13, Theorem 4] in conjunction with Corollary 6.
(ii) ⇒ (v). If μ(�) ≥ 2, then � contains a free group F of rank at least 2, with
(� : F) = m� < ∞; in particular, F2 � �. Since [F2] is largest with respect to
the preorder� among all equivalence classes of finitely generated groups, we also
have � � F2, so � ∼ F2, as claimed.
(v) ⇒ (vi). Suppose that � ∼ F2. Then there exists a subgroup � ≤ � of index
(� : �) = j < ∞ and a surjective homomorphism ϕ : � → F2. From this plus
Newman’s asymptotic estimate [14, Theorem 2]

sn(Fr ) ∼ n(n!)r−1 as n → ∞, r ≥ 2,

it follows that

s jn(�) ≥ sn(�) ≥ sn(F2) ≥ c · n · n! ≥ c · n!

for n ≥ 1 and some constant c > 0, whence (vi).
(vi) ⇒ (ii). If μ(�) ≤ 1, then either � is finite, so sn(�) = 0 for sufficiently large
n, or � is virtually infinite-cyclic, implying

sn(�) ≤ nα, n ≥ 1,

for some constant α, by [10, Cor. 1.4.3]; see also [17]. In both cases, Condition (vi)
does not hold.
(ii) ⇔ (vii). This follows by splitting the Euler characteristic χ(�) as in the proof
of Proposition 4, making use of Lemmas 1 and 2. 
�
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