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Abstract For x ∈ [0, 1], the run-length function rn(x) is defined as the length of
the longest run of 1’s amongst the first n dyadic digits in the dyadic expansion of x .
Let H denote the set of monotonically increasing functions ϕ : N → (0,+∞) with
limn→∞ ϕ(n) = +∞. For any ϕ ∈ H , we prove that the set

Eϕ
max =

{
x ∈ [0, 1] : lim inf

n→∞
rn(x)

ϕ(n)
= 0, lim sup

n→∞
rn(x)

ϕ(n)
= +∞

}

either has Hausdorff dimension one and is residual in [0, 1] or is empty. The result
solves a conjecture posed in Li and Wu (J Math Anal Appl 436:355–365, 2016)
affirmatively.
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1 Introduction

The aim of the present paper is to solve a problem on exceptional sets in Erdős–Rényi
limit theoremwhichwas posed in [20]. Let us recall the background and some notation
in [20]. The run-length function rn(x), which was introduced to measure the length
of consecutive terms of “heads” in n Bernoulli trials, is defined as follows. It is well
known that every x ∈ [0, 1] admits a dyadic expansion:

x =
∞∑
k=1

xk
2k

,

where xk ∈ {0, 1} for any k ≥ 1. Write

�∞ = {0, 1}N = {(x1, x2, x3, . . .) : xi ∈ {0, 1}, i = 1, 2, . . .}.

The infinite sequence (x1, x2, x3, . . .) ∈ �∞ is called the digit sequence of x . Let
π : �∞ → [0, 1] be the code map, that is, π((x1, x2, x3, . . .)) = x . For each n ≥ 1
and x ∈ [0, 1], the run-length function rn(x) is defined as the length of the longest run
of 1’s in (x1, x2, . . . , xn), that is,

rn(x) = max{� : xi+1 = · · · = xi+� = 1 for some 0 ≤ i ≤ n − �}.

The run-length function has been extensively studied in probability theory and used in
reliability theory, biology, quality control. Erdős and Rényi [9] (see also [28]) proved
the following asymptotic behavior of rn : for Lebesgue almost all x ∈ [0, 1],

lim
n→∞

rn(x)

log2 n
= 1. (1)

Roughly speaking, the rate of growth of rn(x) is log2 n for almost all x ∈ [0, 1].
Recently, some special sets consisting of points whose run-length function obey other
asymptotic behavior instead of log2 n was considered by Zou [29]. Chen and Wen [8]
studied some level sets on the frequency involved in dyadic expansion and run-length
function. For more details about the run-length function, we refer the reader to the
book [28].

The limit in (1) may not exist. Therefore, it is natural to study the exceptional set
in the above Erdős–Rényi limit theorem. Let

E =
{
x ∈ [0, 1] : lim inf

n→∞
rn(x)

log2 n
< lim sup

n→∞
rn(x)

log2 n

}
.

It follows from the Erdős–Rényi limit theorem that the set E is negligible from the
measure-theoretical point of view. On the other hand, we also often employ some
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On exceptional sets in Erdős–Rényi limit theorem revisited 867

fractal dimensions to characterize the size of a set. Hausdorff dimension perhaps is
the most popular one. Ma et al. [21] proved that the set of points that violate the above
Erdős and Rényi law has full Hausdorff dimension, that is, has Hausdorff dimension 1.
It is worth pointing out that E is smaller than the set considered in [21] because we
consider the asymptotic behavior of rn(x)with respect to the fixed speed log2 n. There
is a natural question: what is the Hausdorff dimension of the set E? In fact, questions
related to the exceptional sets from dynamics and fractals have recently attracted
huge interest in the literature. Generally speaking, exceptional sets are big from the
dimensional point of view, and they have the same fractal dimensions as the underlying
phase spaces, see [1–3,11,12,14,15,19,23,25–27] and references therein.

Define

Emax =
{
x ∈ [0, 1] : lim inf

n→∞
rn(x)

log2 n
= 0, lim sup

n→∞
rn(x)

log2 n
= +∞

}
.

That is, Emax is the set consisting of those “worst” divergence points. Clearly, Emax ⊂
E .

Intuitively, we feel that the set Emax shall be “small”. However, the authors showed
in [20] that dimH Emax = 1. Here and in the sequel, dimH E denotes the Hausdorff
dimension of the set E . For more details about Hausdorff dimension and the theory
of fractal dimensions, we refer the reader to the famous book [10].

Moreover, it is also natural to study the asymptotic behavior of run-length function
with respect to other speeds instead of log2 n. In fact, In [20] the authors proved
that the exceptional sets with respect to a more general class of speeds still have full
dimensions. To state the result, we need to introduce some notation. Let H denote the
set of monotonically increasing function ϕ : N → (0,+∞) with limn→+∞ f (n) =
+∞. For ϕ ∈ H , define

Eϕ
max =

{
x ∈ [0, 1] : lim inf

n→∞
rn(x)

ϕ(n)
= 0, lim sup

n→∞
rn(x)

ϕ(n)
= +∞

}
. (2)

Consider the following subset of H :

A =
{
ϕ ∈ H : there exists 0 < α ≤ 1 such that lim sup

n→∞
n

ϕ(n1+α)
= +∞

}
.

In [20], the authors obtained the following result.

Theorem 1 [20] Let ϕ ∈ A and Eϕ
max be defined as in (2). Then

dimH Eϕ
max = 1.

It is easy to check that log2 n ∈ A and nβ ∈ A, where 0 < β < 1. Unfortunately,
many other speeds are not in the set A. In [20], the authors conjectured that for ϕ ∈ H ,
the Hausdorff dimension of Eϕ

max is either one or zero. In this paper, we solve this
conjecture affirmatively. More precisely, we have the following result.
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868 J. Li, M. Wu

Theorem 2 Let ϕ ∈ H and Eϕ
max be defined as in (2).

(1) If lim supn→∞ n
ϕ(n)

= +∞ then dimH Eϕ
max = 1;

(2) If lim supn→∞ n
ϕ(n)

< +∞ then dimH Eϕ
max = 0.

Remark 1 In fact, under the condition lim supn→∞ n
ϕ(n)

< +∞ the set Eϕ
max = ∅

since rn(x) ≤ n for any n ≥ 1 and x ∈ [0, 1].
Wewould like to emphasize that themethod in [20] cannot be applied to the generalized
functions ϕ ∈ H . To prove Theorem 2, we will use another method which is inspired
by the idea in [12].

Clearly, if ϕ ∈ A then ϕ satisfies the condition in the first part of Theorem 2.
Therefore, Theorem 2 generalizes Theorem 1.

We can also discuss the size of Eϕ
max from the topological point of view, which

is another way to describe the size of a set. Recall that in a metric space X , a set R
is called residual if its complement is of the first category, that is, if its complement
is a countable union of nowhere dense sets. Moreover, in a complete metric space a
set is residual if it contains a dense Gδ set (i.e. a countable intersection of open sets),
see [24]. Recent results show that certain exceptional sets can also be large from the
topological point of view, see, for example, [4–6,13,16–19,22] and references therein.
In [20] the authors also showed that the set Eϕ

max is residual if ϕ ∈ A. The following
result is a generalization of it.

Theorem 3 Let ϕ ∈ H with lim supn→∞ n
ϕ(n)

= +∞ and Eϕ
max be defined as in (2).

Then the set Eϕ
max is residual in [0, 1].

Noting Remark 1, Theorem 3 tells us that for any ϕ ∈ H the set Eϕ
max is either residual

or empty.

2 Proofs

This section is devoted to the proofs of Theorems 2 and 3. First we need to introduce
some notation. For n ∈ N, let

�n = {(ω1, . . . , ωn) : xi ∈ {0, 1}, i = 1, . . . , n}

and

�∗ =
⋃
n∈N

�n .

For eachω = (ω1, . . . , ωn) ∈ �n , let |ω| = n denote the length of thewordω.Forω =
(ω1 . . . ωn) ∈ �n and a positive integerm withm ≤ n, or forω = (ω1, ω2, . . .) ∈ �∞
and a positive integer m, let ω|m = (ω1 . . . ωm) denote the truncation of ω to the mth
place. For two words ω = (ω1, ω2, . . . , ωn) ∈ �n and τ = (τ1, τ2, . . . , τm) ∈ �m ,
we denote their concatenation by ωτ = (ω1, . . . , ωn, τ1, . . . , τm), which is a word of
length n + m. Similarly, the notation am means a · · · a︸ ︷︷ ︸

m times

, where a = 0 or 1.
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On exceptional sets in Erdős–Rényi limit theorem revisited 869

It is well known that the space�∞ is compact if it is equipped with the usual metric
defined by

d(x, y) = 2−min{k:xk+1 
=yk+1}, x, y ∈ �∞.

Finally, in this paper the notation [x] denotes the integer part of x .
Before giving the proof of Theorem 2, we would like to show our strategy. For

sufficient large integer p, we take a subset Ep ⊂ �∞ with Hausdorff dimension p−2
p .

Then, we construct a subset of Eϕ
max such that every point of the subset is obtained by

inserting somewords to some point from Ep at suitable places. Finally, it follows from
the fact that p is large enough and the relationship between Ep and the constructed
subset of Eϕ

max that E
ϕ
max has Hausdorff dimension 1.

Proof of Theorem 2 Noting Remark 1, we only need to prove the first part. Let ϕ ∈ H
and lim supn→∞ n

ϕ(n)
= +∞. It is sufficient to show that dimH Eϕ

max ≥ 1− γ for any
γ > 0.

Fix 0 < γ < 1. Choose p ∈ N such that p−2
p > 1 − γ. Let

Ep = {x ∈ �∞ : xkp+1 = xkp+p = 0 for any k ≥ 1}.

Since the set Ep can be viewed as set defined by digit restrictions, its Hausdorff
dimension is equal to the lower density of the set S = ∪∞

k=1{kp + 2, . . . , kp + p −
1} ∪ {1, 2, . . . , p}, see Example 3.3 in [7]. More precisely,

dimH Ep = lim inf
n→∞

#(S ∩ {1, . . . , n})
n

= p − 2

p
,

where #(A) denotes the number of elements in A.

By means of Ep we will construct a set E∗
p such that π(E∗

p) ⊂ Eϕ
max and define a

one-to-one map f from Ep onto E∗
p. Moreover, the map f −1 is nearly Lipschitz on

f (Ep), namely, for any ε > 0, there exists some N0 such that d( f (x), f (y)) < 2−n

implies that d(x, y) < 2−n(1−ε) for any n > N0. This implies that dimH E∗
p =

dimH f (Ep) ≥ dimH Ep (see Proposition 2.3 of [10]) . Therefore,

dimH Eϕ
max ≥ dimH π(E∗

p) = dimH f (Ep) ≥ dimH Ep = p − 2

p
> 1 − γ,

as desired. Here the first equality follows from that facts that π : �∞ → [0, 1] is a
bi-Lipschitz map except a countable set (the set of binary endpoints) and the Hausdorff
dimension of a countable set is zero.

Next we will construct the desired set E∗
p. Let n0 = inf{n : logϕ(n) ≥ p}. Since

lim supn→∞ n
ϕ(n)

= +∞, there exists a subsequence {nk}k≥1 such that

lim
k→∞

nk
ϕ(nk)

= +∞ (3)
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and

n2k+1 − [logϕ(n2k+1)] > n2k + 2; n2k+2 −
[
1

2
n2k+2

]
> n2k+1 + 2 (4)

for k ≥ 0.
For each x = {xi }i≥1 ∈ Ep, we will construct a sequence {x (n)}n≥0 of points in

�∞ by induction. Let x (0) = x . Suppose we have defined x ( j) = x ( j)
1 x ( j)

2 · · · x ( j)
n · · ·

for 0 ≤ j ≤ 2k. We define x (2k+1) and x (2k+2) as follows. Let

x (2k+1) = x (2k)
1 · · · x (2k)

n2k+1−1−[logϕ(n2k+1)]01
[logϕ(n2k+1)]0x (2k)

n2k+1−[logϕ(n2k+1)] · · · .

Namely, x (2k+1) is obtained by inserting word 01[logϕ(n2k+1)]0 in x (2k) at the place
n2k+1 − [logϕ(n2k+1)]. Then, let

x (2k+2) = x (2k+1)
1 · · · x (2k+1)

n2k+2−1−[ 12 n2k+2]01
[ 12 n2k+2]0x (2k+1)

n2k+2−[ 12 n2k+2] · · · .

Similarly, x (2k+2) is obtained by inserting word 01[ 12 n2k+2]0 in x (2k+1) at the place
n2k+2 − [ 12n2k+2].

By (4), we have n2k+2 − 1− [ 12n2k+2] > n2k+1 + 1. Therefore, it is not difficult to
check that

x (2k+2)|n2k+2−1−[ 12 n2k+2] = x (2k+1)|n2k+2−1−[ 12 n2k+2].

In other words, for k ≥ 1 we have

d(x (2k+1), x (2k+2)) ≤
(
1

2

)(n2k+2−1−[ 12 n2k+2])
.

Similarly, we can check that for k ≥ 1

d(x (2k), x (2k+1)) ≤
(
1

2

)(n2k+1−1−[logϕ(n2k+1)])
.

The above two inequalities imply that the limit of {x (n)}n≥0 exists. Let x∗ =
limn→∞ x (n).

We claim that π(x∗) ∈ Eϕ
max. In fact, it follows from the construction of x∗ that

rn2k−1(π(x∗)) = [logϕ(n2k−1)] and rn2k (π(x∗)) = [ 12n2k] for k ≥ 1. Therefore, by
(3) and (4) we have

lim inf
n→∞

rn(π(x∗))
ϕ(n)

≤ lim
k→∞

rn2k−1(π(x∗))
ϕ(n2k−1)

= lim
k→∞

[logϕ(n2k−1)]
ϕ(n2k−1)

= 0
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and

lim sup
n→∞

rn(π(x∗))
ϕ(n)

≥ lim
k→∞

rn2k (π(x∗))
ϕ(n2k)

= lim
k→∞

[ 12n2k]
ϕ(n2k)

= +∞.

Define map f : Ep → �∞ by f (x) = x∗ and let

E∗
p = f (Ep).

Clearly, f is injective. We now show that the map f −1 is nearly Lipschitz on E∗
p.

For any n ≥ n0, there exists some k ≥ 1 such that n2k−1 ≤ n < n2k or n2k ≤ n <

n2k+1. We only discuss the case n2k−1 ≤ n < n2k because the other case can be
treated similarly. Suppose d( f (x), f (y)) = d(x∗, y∗) < 2−n , then x∗

1 x
∗
2 · · · x∗

n =
y∗
1 y

∗
2 · · · y∗

n . Since x = f −1(x∗), y = f −1(y∗) is obtained by removing the inserted
words we have x1x2 · · · xn′ = y1y2 · · · yn′ , where

n′ = n −
(

(2 + [logϕ(n1)]) +
(
2 +

[
1

2
n2

])
. . . + (2 + [logϕ(n2k−1)])

)
.

By (4) and the fact that limn→∞ ϕ(n) = +∞, we have

lim
k→∞

(
2 + [logϕ(n1)]) + (2 + [ 12n2]) . . . + (2 + [logϕ(n2k−1)]

)
n2k−1

= 0.

Therefore, for any ε > 0 there exists an integer N1 > n0 such that n′ > n− εn2k−1 ≥
(1 − ε)n for any n > N1 Therefore, d(x, y) < 2−n(1−ε). Similarly, in the other case
there exists some integer N2 > n0 such that d(x, y) < 2−n(1−ε) for any n > N2.
Finally, let N0 = max{N1, N2}. The proof of Theorem 2 is completed. ��
Proof of Theorem 3 To prove Theorem 3, it is sufficient to construct a denseGδ subset
F ⊂ [0, 1] such that F ⊂ Eϕ

max.

We first introduce a notation. For ω = (ω1, . . . , ωm) ∈ �∗ or ω =
(ω1, . . . , ωm . . .) ∈ �∞ and n ∈ N with n ≤ m, let rn(ω) denote the length of
the longest run of 1’s in ω|n = (ω1, ω2, . . . , ωn), that is,

rn(ω) = max{� : ωi+1 = · · · = ωi+� = 1 for some 0 ≤ i ≤ n − �}.

Since lim supn→∞ n
ϕ(n)

= +∞ and limn→∞ ϕ(n) = +∞, there exists a strictly
monotonically increasing subsequence {mk}k≥1 ⊂ N such that

lim
k→∞

mk

ϕ(mk)
= +∞. (5)

Before presenting the construction, we introduce a notation. For each ω ∈ �∗,
define the cylinder set

I (ω) = {ρ ∈ �∞ : ρ|n = ω}.
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Let �0 = �∗. For each ω ∈ �0, choose positive integer n1 = n1(ω) ∈ {mk}k≥1
such that n1 − [logϕ(n1)] − |ω| > 0 and [logϕ(n1)] ≥ |ω|. These conditions can
always be satisfied by choosing n1 large enough.

Define

�1 =
⋃

ω∈�0

I
(
ω0n1−[logϕ(n1)]−|ω|1[logϕ(n1)]

)
.

For any τ ∈ �1, there exists some ω ∈ �0 with |ω| = n1(ω) such that τ =
ω0n1−[logϕ(n1)]−|ω|1[logϕ(n1)]. It is easy to check that |τ | = n1(ω) and rn1(τ ) =
[logϕ(n1(ω))] since n1 − [logϕ(n1)] − |ω| > 0 and [logϕ(n1)] ≥ |ω|.

Then, for τ ∈ �1, choose a positive integer n2 = n2(τ ) ∈ {mk}k≥1 such that
n2 > 2n1. Define

�2 =
⋃

τ∈�1

I
(
τ0n2−[ 12 n2]−n11[ 12 n2]

)
.

Analogously, for any ξ ∈ �2 there exists some word τ ∈ �1 with |τ | = n1 such that

ξ = τ0n2−[ 12 n2]−n11[ 12 n2] and |ξ | = n2(τ ). It follows from n2 > 2n1 that n2−[ 12n2]−
n1 > 0 and therefore rn2(ξ) = [ 12n2].

Suppose we have chosen the positive integers n1, n2, . . . , n2m−1, n2m, and have
defined the sets�1,�2, . . . , �2m−1,�2m,we next show how to define the sets�2m+1
and �2m+2. For η ∈ �2m with |η| = n2m , choose integer n2m+1 = n2m+1(η) ∈
{mk}k≥1 such that n2m+1 − [logϕ(n2m+1)] − n2m > 0 and [logϕ(n2m+1)] ≥ |η|.
Again, these conditions can always be satisfied by choosing n2m+1 large enough.

Define

�2m+1 =
⋃

η∈�2m

I
(
η0n2m+1−[logϕ(n2m+1)]−n2m1[logϕ(n2m+1)]

)
.

For any μ ∈ �2m+1, there exists some word η ∈ �2m with |η| = n2m such that
μ = η0n2m+1−[logϕ(n2m+1)]−n2m1[logϕ(n2m+1)]. It is easy to check that |μ| = n2m+1.
Moreover, rn2m+1(μ) = [logϕ(n2m+1)] since n2m+1 −[logϕ(n2m+1)]− n2m > 0 and
[log n2m+1] ≥ |η|.

Then, for σ ∈ �2m+1 with |σ | = n2m+1, choose a integer n2m+2 = n2m+2(σ ) ∈
{mk}k≥1 such that n2m+2 > 2n2m+1, and define

�2m+2 =
⋃

σ∈�2m+1

I
(
σ0n2m+2−[ 12 n2m+2]−n2m+11[ 12 n2m+2]

)
.

Analogously, for any ν ∈ �2m+2, we have |ν| = n2m+2 and rn2m+2(ν) = [ 12n2m+2]
since n2m+2 > 2n2m+1.
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Next, define

� =
∞⋂
k=0

�k .

Then, we claim that � is residual in �∞. In fact, � is a Gδ set in �∞ since it is not
difficult to check that each cylinder set �k is open. Moreover, by construction, each
set �k is dense, and so it follows from Baire’s theorem that � is also dense in �∞.

Write �
ϕ
max = π−1(Eϕ

max). we will show that

� ⊂ �ϕ
max. (6)

For ω ∈ �, it follows from the construction of the set � that

rn2m−1(ω) = [logϕ(n2m−1)], rn2m (ω) =
[
1

2
n2m

]
, m ≥ 1.

Therefore, by (5) we have

lim inf
n→∞

rn(ω)

ϕ(n)
≤ lim

m→∞
rn2m−1(ω)

ϕ(n2m−1)
= lim

m→∞
[logϕ(n2m−1)]

ϕ(n2m−1)
= 0

and

lim sup
n→∞

rn(ω)

ϕ(n)
≥ lim

m→∞
rn2m (ω)

ϕ(n2m)
= lim

m→∞
[ 12n2m]
ϕ(n2m)

= +∞,

which imply � ⊂ �
ϕ
max.

Finally, we use the set � to define the desired set F .
Let

B =
{
x ∈ [0, 1] : x = k

2n
, k, n ∈ N

}
,

and write

�̃ = �∞\π−1(B), Ẽ = [0, 1]\B.

The map π : �̃ → Ẽ is bijective. Note that π−1(B) is a Fσ set, the set �̃ is a Gδ

set. Moreover, it is easy to check that �̃ is dense in �∞.

Now, let

F = π(� ∩ �̃).

Following the argument in [20], we can check that F is the desired set. ��
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20. Li, J.J., Wu, M.: On exceptional sets in Erdős–Rényi limit theorem. J. Math. Anal. Appl. 436, 355–365

(2016)
21. Ma, J.H., Wen, S.Y., Wen, Z.Y.: Egoroff’s theorem and maximal run length. Monatsh. Math. 151,

287–292 (2007)
22. Olsen, L.: Extremely non-normal numbers. Math. Proc. Camb. Philos. Soc. 137, 43–53 (2004)
23. Olsen, L., Winter, S.: Normal and non-normal points of self-similar sets and divergence points of

self-similar measures. J. Lond. Math. Soc. 67, 103–122 (2003)
24. Oxtoby, J.C.: Measre and Category. Springer, New York (1996)
25. Peng, L.: Dimension of sets of sequences defined in terms of recurrence of their prefixes. C. R. Acad.

Sci. Paris Ser. I (343), 129–133 (2006)
26. Pesin, Y., Pitskel, B.: Topological pressure and variational principle for non-compact sets. Funct. Anal.

Appl. 18, 307–318 (1984)
27. Pratsiovytyi, M., Torbin, G.: Superfractality of the set of numbers having no frequency of n-adic digits,

and fractal probability distributions. Ukrain. Math. J. 47, 971–975 (1995)

123
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