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Abstract Let (xi )
+∞
i=1 be the digits sequence in the unique terminating dyadic expan-

sion of x ∈ [0, 1). The run-length function ln(x) is defined by

ln(x) := max
{
j : xi+1 = xi+2 = · · · = xi+ j = 1 for some 0 ≤ i ≤ n − j

}
.

Erdös and Rényi proved that

lim
n→+∞

ln(x)

log2 n
= 1, a.e. x ∈ [0, 1).

In this note, we show that for each pair of numbers α, β ∈ [0,+∞] with α ≤ β, the
following exceptional set

Eα,β =
{
x ∈ [0, 1) : lim inf

n→+∞
ln(x)

log2 n
= α, lim sup

n→+∞
ln(x)

log2 n
= β

}

has Hausdorff dimension one.
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1 Introduction

For any x ∈ [0, 1), it can be uniquely expanded into its terminating dyadic expansion:

x = x1
2

+ x2
22

+ x3
23

+ · · · ,

where xn ∈ {0, 1} is called the digit of x . The run-length function ln(x) is the longest
run of 1’s in the first n digits of the dyadic expansion of x . A classic result due to
Erdös and Rényi [5] asserts that

lim
n→+∞

ln(x)

log2 n
= 1

for Lebesgue almost all x ∈ [0, 1). Ma, Wen and Wen [13] proved that the set of all
points in [0, 1) forwhich the aboveErdös-Rényi’s theoremdoes not hold hasHausdorff
dimension one. For an increasing integer sequence (δn)n≥1, Zou [16] considered the
set of points whose run-length function behaves asymptotically as δn , that is

E ({δn}) =
{
x ∈ [0, 1) : lim

n→+∞
ln(x)

δn
= 1

}
.

He showed that the set E ({δn}) has Hausdorff dimension one under the condition
limn→+∞ δn+δn

δn
= 1. A similar result holds in an infinite symbolic system: continued

fraction dynamical system, see [15].

Remark 1 Applying Zou’s result to δn = [
α log2 n

]
with α ∈ (0,+∞), δn =[

log2 log2 n
]
and δn = [√n] respectively, we get for any α ∈ [0,+∞],

dimH

{
x ∈ [0, 1) : lim

n→+∞
ln(x)

log2 n
= α

}
= 1,

in view of the inclusions
{

x ∈ [0, 1) : lim
n→+∞

ln(x)[
log2 log2 n

] = 1

}

⊂
{
x ∈ [0, 1) : lim

n→+∞
ln(x)

log2 n
= 0

}

and
{
x ∈ [0, 1) : lim

n→+∞
ln(x)

[√n] = 1

}
⊂

{
x ∈ [0, 1) : lim

n→+∞
ln(x)

log2 n
= +∞

}
,

where [·] denotes the integer part function and dimH denotes the Hausdorff dimension.
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Recently, Li and Wu [11,12] studied the extreme situation for general asymptotic
behaviour of run-length function. More precisely, they proved that the set

{
x ∈ [0, 1) : lim inf

n→+∞
ln(x)

ϕ(n)
= 0, lim sup

n→+∞
ln(x)

ϕ(n)
= +∞

}

has Hausdorff dimension 0 or 1 according as lim supn→+∞ n
ϕ(n)

< +∞ or

lim supn→+∞ n
ϕ(n)

= +∞, whereϕ : N → R
+ is amonotonically positive increasing

function with limn→+∞ ϕ(n) = +∞.

Remark 2 If we take ϕ(n) = log2 n, it follows that

dimH

{
x ∈ [0, 1) : lim inf

n→+∞
ln(x)

log2 n
= 0, lim sup

n→+∞
ln(x)

log2 n
= +∞

}
= 1

In this note, we would like to consider a subtle question: what is the Hausdorff dimen-
sion of the set

Eα,β =
{
x ∈ [0, 1) : lim inf

n→+∞
ln(x)

log2 n
= α, lim sup

n→+∞
ln(x)

log2 n
= β

}

with 0 ≤ α ≤ β ≤ +∞. We show

Theorem 1.1

dimH Eα,β = 1.

The first analogous investigation on the fractal sets of this type goes back to Besi-
covitch [3], where he considered the Hausdorff dimension of the level sets determined
by the frequency of digits in dyadic system. Eggleston [4] generalised Besicovitch’s
result to basem ≥ 2. Their results were recovered and generalized byBarreira, Saussol
and Schmeling [2] using a multidimensional version of multifractal analysis. Similar
questions had also been extensively studied for the recurrent sets in various dynami-
cal system, see [1,7–10,14] and reference therein. For more details about Hausdorff
dimension, we refer to the book of Falconer [6].

2 Proof of the main result

In this section, we will prove the main result of this note. The proof of Theorem 1.1
rests on the following proposition applied successfully in [11] and [13].

Proposition 2.1 [13] Given a set of positive integers J = { j1 < j2 < j3 < · · · } and
an infinite sequence {ai }i≥1 of 0’s and 1’s, let

E (J , {ai }) =
{

x ∈ [0, 1) : x =
+∞∑

i=1

xi
2i

, xi = ai ,∀i ∈ J
}

.
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If the density of J is zero, that is,

lim
n→+∞

#{i ≤ n : i ∈ J }
n

= 0,

then dimH E (J , {ai }) = 1, where # denotes the number of elements in a set.

Proof of Theorem 1.1. By Remarks 1 and 2, we need only to prove the theorem for
the cases 0 < α < β < +∞, 0 = α < β < +∞ and 0 < α < β = +∞. The
whole proof is divided into two parts: a detailed proof for the case 0 < α < β < +∞
and sketches of proof for the remaining cases. We now first restrict ourselves to the
case 0 < α < β < +∞. Our strategy is to construct a subset of real numbers for
which the maximal lengths of blocks of digits 1 among the dyadic expansions reach
at suitable scattered positions, which guarantee that the points are in Eα,β and also the
subset with full Hausdorff dimension. Choose two subsequences {mk}k≥1 and {nk}k≥1
satisfying, for each k ≥ 1,

n1 =
[
2

β
α

]
, nk+1 =

[
n

β
α

k

]
, mk = nk + [

β log2 nk
]
.

Clearly, {nk}k≥1 increases super-exponentially, and there exists K ≥ 1 such that
for any k ≥ K , we have nk < mk < nk+1. For k ≥ K , let tk be the largest integer
such that mk + tk(mk − nk) < nk+1. Take

D := D ({mk}, {nk}) = {1, 2, . . . , nK − 1, and nk, nk + 1, . . . ,mk − 1,mk,

mk + (mk − nk), . . . ,mk + tk(mk − nk), for k ≥ K }.

Define an infinite sequence {ai }i≥1 as follows. For 1 ≤ i < nK , set

ai = 0.

For k ≥ K , set

ank = 0, ank+1 = · · · = amk−1 = 1, amk = 0

and

amk+(mk−nk) = amk+2(mk−nk ) = · · · = amk+tk (mk−nk ) = 0.

We consider the set E of real numbers x ∈ [0, 1) whose dyadic expansion x =∑+∞
i=1

xi
2i

satisfies xi = ai for all i ∈ D, that is

E := E (D, {ai }) =
{

x ∈ [0, 1) : x =
+∞∑

i=1

xi
2i

, xi = ai ,∀i ∈ D
}

.
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Now we prove E ⊂ Eα,β . Fix x ∈ E , for any n ≥ nK+1, let k be the integer such
that nk ≤ n < nk+1. From the construction of the set E , we see that

ln(x)

=
⎧
⎨

⎩

mk−1 − nk−1 − 1 = [
β log2 nk−1

] − 1, if nk ≤ n ≤ nk + mk−1 − nk−1 − 1,
n − nk, if nk + mk−1 − nk−1 ≤ n ≤ mk − 1,
mk − nk − 1 = [

β log2 nk
] − 1, if mk ≤ n < nk+1.

Thus

lim infn→+∞ ln(x)
log2 n

= lim infk→+∞ min
{

lnk+mk−1−nk−1−1(x)
log2 (nk+mk−1−nk−1−1) ,

lnk+1−1(x)
log2 (nk+1−1)

}

= lim infk→+∞ min
{

[β log2 nk−1]−1
log2 (nk+[β log2 nk−1]−1) ,

[β log2 nk]−1
log2 (nk+1−1)

}

= α,

and

lim supn→+∞
ln(x)
log2 n

= lim supk→+∞ max
{

lnk (x)
log2 nk

,
lmk−1(x)

log2 (mk−1)

}

= lim supk→+∞ max
{
[β log2 nk−1]−1

log2 nk
,

[β log2 nk]−1
log2 (nk+[β log2 nk]−1)

}

= β.

Hence x ∈ Eα,β .
In the following, we show that the density of D ⊂ N is zero. Clearly, for any

n ≥ nK+1, there exists k ≥ K + 1 such that nk ≤ n < nk+1,

• if nk ≤ n ≤ mk , then

# {i ≤ n, i ∈ D} = nK +
k−1∑

j=K

[
(m j − n j + 1) + t j

] + n − nk;

• if mk + t (mk − nk) ≤ n < mk + (t + 1)(mk − nk) for some 0 ≤ t ≤ tk − 1, then

# {i ≤ n, i ∈ D} = nK +
k−1∑

j=K

[
(m j − n j + 1) + t j

] + mk − nk + t;

• if mk + tk(mk − nk) ≤ n < nk+1, then

# {i ≤ n, i ∈ D} = nK +
k−1∑

j=K

[
(m j − n j + 1) + t j

] + mk − nk + tk .

It follows that

lim sup
n→+∞

1

n
# {i ≤ n, i ∈ D}
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≤ lim sup
k→+∞

max
0≤t≤tk

{
nK + ∑k−1

j=K

[
(m j − n j + 1) + t j

] + mk − nk + t

mk + t (mk − nk)

}

≤ lim sup
k→+∞

{
nK + ∑k−1

j=K

[
(m j − n j + 1) + t j

] + mk − nk

mk
+ 1

mk − nk

}

= 0.

Therefore, by Proposition 2.1, we have dimH E = 1.
Since the proof for the remaining cases is similar to the proof of the case 0 <

α < β < +∞. We will only give the constructions for the proper sequences {mk}k≥1
and {nk}k≥1. One can verify the corresponding D ({mk}, {nk}) is of density zero and
E (D, {ai }) with full Hausdorff dimension is a subset of Eα,β for different cases.

Case 1: α = 0 and β < +∞, take nk = 22
2k

and mk = nk + [
β log2 nk

]
for k ≥ 1.

Case 2: α > 0 and β = +∞, take n1 = 2, nk+1 = nkk and mk = nk + [
αk log2 nk

]

for k ≥ 1.
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