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Abstract Let (x,-);"zof be the digits sequence in the unique terminating dyadic expan-
sion of x € [0, 1). The run-length function [, (x) is defined by

Li(x) :=max {j: xip1 =xijo =+ =x;4j = I forsome 0 <i <n— j}.
Erdos and Rényi proved that

. ()
lim
n—+oo log, n

=1l,ae.x €[0,1).

In this note, we show that for each pair of numbers «, 8 € [0, 400] with & < B, the
following exceptional set

.. ln(x) . ln(x)
Eqp=1x¢€ [0, 1): liminf = «, limsup =8
n—>+00 loan n——+00 10g2n

has Hausdorff dimension one.
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1 Introduction

For any x € [0, 1), it can be uniquely expanded into its terminating dyadic expansion:

X1 X2 X3
X = > +22+23+-~-,
where x,, € {0, 1} is called the digit of x. The run-length function /,, (x) is the longest
run of I’s in the first n digits of the dyadic expansion of x. A classic result due to
Erdos and Rényi [5] asserts that

. L (x)
lim =1
n—+oo log, n

for Lebesgue almost all x € [0, 1). Ma, Wen and Wen [13] proved that the set of all
pointsin [0, 1) for which the above Erdds-Rényi’s theorem does not hold has Hausdorff
dimension one. For an increasing integer sequence (8,),>1, Zou [16] considered the
set of points whose run-length function behaves asymptotically as §,,, that is

l
E({8:}) = [x €[0,1): lim () _ 1] .
n—+oo §,
He showed that the set E ({5, }) has Hausdorff dimension one under the condition

lim,— 450 6”6;5" = 1. A similar result holds in an infinite symbolic system: continued
n
fraction dynamical system, see [15].

Remark 1 Applying Zou’s result to 8, = [alogyn] with & € (0,+00), §, =
[log2 log, n] and 8, = [/n] respectively, we get for any o € [0, +oc],

dimg e efo.n: tim 2% _ol o
n—+o0 log, n

in view of the inclusions

l l
re0): fim —m® [xe[O, e lim &) :o]
n—+o0 [log2 log, I’l] n—+oo log, n
and
. . [ (x) _ . . Ln (%) _
[x e[0,1): nEToo L] = l] C [x e[0,1): ngl}goo ogy 7 = +oo] ,

where [-] denotes the integer part function and dimyg denotes the Hausdorff dimension.
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Recently, Li and Wu [11,12] studied the extreme situation for general asymptotic
behaviour of run-length function. More precisely, they proved that the set

o (x) . [n(x)
x € [0, 1): liminf =0, lim sup = +00
n—+00 ¢(n) n—+oo P(n
has Hausdorff dimension O or 1 according as limsup,_, gﬁ < 400 or
limsup,,_, 4 # = 400, where ¢ : N — R is amonotonically positive increasing
function with lim,,_, y 5 @(n) = +o00.

Remark 2 1If we take ¢(n) = log, n, it follows that

I I
dimy Lx €10, 1)+ timinf 20— 0. im sup 2™
n—+oco log, n n—s4oo 108y 1

In this note, we would like to consider a subtle question: what is the Hausdorff dimen-
sion of the set

I I
Eup = [x c10.1): timinf 2 _ 4 fimsup 2% — ﬂ]

n—+oo log, n n—4oo 10gy 1
with 0 < o < B < +00. We show

Theorem 1.1
dimyg Eq g = 1.

The first analogous investigation on the fractal sets of this type goes back to Besi-
covitch [3], where he considered the Hausdorff dimension of the level sets determined
by the frequency of digits in dyadic system. Eggleston [4] generalised Besicovitch’s
resultto base m > 2. Their results were recovered and generalized by Barreira, Saussol
and Schmeling [2] using a multidimensional version of multifractal analysis. Similar
questions had also been extensively studied for the recurrent sets in various dynami-
cal system, see [1,7-10, 14] and reference therein. For more details about Hausdorff
dimension, we refer to the book of Falconer [6].

2 Proof of the main result

In this section, we will prove the main result of this note. The proof of Theorem 1.1
rests on the following proposition applied successfully in [11] and [13].

Proposition 2.1 [13] Given a set of positive integers J = {j1 < jo < jz < ---}and
an infinite sequence {a;};>; of 0’s and 1’s, let

“+00 )
E(J. {a;}) = ‘xe [0, 1):x=2%, X =a;. Vi ej].

i=1
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If the density of J is zero, that is,

. #i<n:ieJ}
lim ———mm— =

n——+00 n

07

then dimyg E (7, {a;}) = 1, where # denotes the number of elements in a set.

Proof of Theorem 1.1. By Remarks 1 and 2, we need only to prove the theorem for
thecases 0 <@ < B < 400,00 = < B < +o0oand 0 < ¢ < B = 4o00. The
whole proof is divided into two parts: a detailed proof for the case 0 < o < 8 < 400
and sketches of proof for the remaining cases. We now first restrict ourselves to the
case 0 < a < B < 4o00. Our strategy is to construct a subset of real numbers for
which the maximal lengths of blocks of digits 1 among the dyadic expansions reach
at suitable scattered positions, which guarantee that the points are in E g and also the
subset with full Hausdorff dimension. Choose two subsequences {m }r>1 and {ni }x>1
satisfying, for each k > 1,

B B
nyp = [%], Ng41 = [ﬂf} my = ng + [Blogy ni].

Clearly, {ny}r>1 increases super-exponentially, and there exists K > 1 such that
for any k > K, we have ny < my < ng41. For k > K, let #; be the largest integer
such that my + tx(my — ng) < ng41. Take

D :=D{mi}, {ne})) =1{1,2,...,ng — Land ng, ni + 1, ..., mp — 1, my,
my + (myg —ng), ..., mg + ty(mg —ny), fork > K}.

Define an infinite sequence {; };> as follows. For 1 <i < ng, set
a; = 0.
For k > K, set
an, =0, a1 = =am-1=1, ap, =0
and
At me—ng) = 4 2m—ng) = *** = Ayt mg—ng) = 0-

We consider the set E of real numbers x € [0, 1) whose dyadic expansion x =

Zfzof % satisfies x; = a; for all i € D, that is

+00
E:=E®D,{a)) = [xE[O, 1):x=Z%, X =a;, Vi e:D}.
i=1
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Now we prove E C Eq4 g. Fix x € E, for any n > nk 1, let k be the integer such
that ny < n < ng41. From the construction of the set E, we see that

In(x)
mi—1 —ng—1 — 1 =[Blogyni—1]—1, if mg <n <ng+mg_y —ng—y — 1,
=1 n—ng, if ng+mp_y —ngy <n<m—1,
mk—nk—lz[ﬂlogznk]—l, if mp<n<ngqr.
Thus
s (X)) i . lizk+mk71711k7171(x) l’lk+171(x)
lim inf, 100 logyn ™ lim inf—, 1.00 min {10g2 (ng+mi—1—ng—1—1)" logy (1 =1
T . [Blogy ng—1]—1 [Blog, ni]—1
= lim inf— 10 min {10g2 (i +[Bloga ne—1 =1 og (ricy 1 —1)
= C(,
and
| W _y; Iy ) )
limsup,_, , Tog, 1 = lim supy,_, , o, max {logz e Tog, p=T)
o [Blogy ng—1]-1 [Blog, ni]—1
= lim supy_, ; o, max { log, 1y > log, (nk+[Blogy ni]—1)

Hence x € Eq g.
In the following, we show that the density of D C N is zero. Clearly, for any
n > ng+1, there exists k > K + 1 such that ny <n < ng41,

e if ny <n < my, then

Ead

-1
#{i <n,ieD}=ng+ [(mj—nj—l—l)—i—tj]—i—n—nk;
J

I
>

o ifmy+t(my —ng) <n <myp+({+1)mg —ng) forsome 0 <t <t — 1, then
k—1
#{i<n,ieD})=ng+ [(mj—nj+1)+tj]+mk—nk+t;
K

J=
o ifmy +t(mp —ng) <n< nk+1, then

k—1
#{i <n, ieD}:nK+Z[(mj—nj+1)+tj]+mk—nk+tk.
j=K

It follows that

1
limsup —#{i <n, i € D}

n—+oo 1
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nK+Z];;5<[(mj—nj+l)+tj]+mk—nk+t

< lim sup max

k=00 0=<I=tk my +t(my — ng)
k—1
ng 4+ _xlmj—n;+1)+t;|+mp —ng 1
< lim sup ijK [ J J ]] +
k— 400 mi mp — ng
=0.

Therefore, by Proposition 2.1, we have dimyg £ = 1.

Since the proof for the remaining cases is similar to the proof of the case 0 <
a < B < 4oo. We will only give the constructions for the proper sequences {m}r>1
and {ny}x>1. One can verify the corresponding D ({my}, {nt}) is of density zero and
E (D, {a;}) with full Hausdorff dimension is a subset of E, g for different cases.

k
Case I: « = 0 and B < 400, take ny = 222 and my = ny + [,3 log, nk] fork > 1.
Case 2: o > 0 and B = +00, take ny = 2, ngq1 = nf and my = ny + [k log, n
fork > 1.
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