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Abstract In this article, the two-dimensional magneto-hydrodynamic (MHD) equa-
tions are consideredwith onlymagnetic diffusion. Here themagnetic diffusion is given
by D a Fourier multiplier whose symbol m is given by m(ξ) = |ξ |2 log(e + |ξ |2)β .
We prove that there exists an unique global solution in Hs(R2) with s > 2 for these
equations when β > 1. This result improves the previous works which require that
m(ξ) = |ξ |2β with β > 1 and brings us closer to the resolution of the well-known
global regularity problemon the 2DMHDequationswith standard Laplacianmagnetic
diffusion, namely m(ξ) = |ξ |2.
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1 Introduction

Magneto-hydrodynamics equations (MHD) describes the evolution of an electrically
conducting fluid. Examples of such fluids include plasmas, liquid metals, and salt
water or electrolytes. The field of MHD was initiated by Alfvén [1], for which he
received the Nobel Prize in Physics in 1970. The fundamental concept behind MHD
is that magnetic fields can induce currents in a moving conductive fluid, which in
turn creates forces on the fluid and also changes the magnetic field itself. Due to
their prominent roles in modeling many phenomena in astrophysics, geophysics and
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plasma physics, the MHD equations have been studied extensively mathematically.
More recent work on the MHD equations develops regularity criteria in terms of
the velocity field and deals with the MHD equations with dissipation and magnetic
diffusion given by general Fourier multiplier operators such as the fractional Laplacian
operators (see [6,8,13,20–25]), well known also under the name of GeneralizedMHD
(GMHD) equations. These equations are given by,

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + (u · ∇)u + ∇ p + ν(−�)αu = (b · ∇)b
∂t b + (u · ∇)b − (b · ∇)u + η(−�)βb = 0
∇ · u = 0, ∇ · b = 0
u(x, 0) = u0, b(x, 0) = b0,

(1)

where α ≥ 0, β ≥ 0, ν ≥ 0 and η ≥ 0.
Among all the regularity criteria, one of particular interest is the Beale–Kato–

Majda’s criterion well known for Euler equations, extended in [5] to the ideal
MHD equations, under the assumption on both velocity field and magnetic field:
∫ T
0 (‖ω(t)‖L∞ + ‖ j (t)‖L∞) dt < ∞, where the vorticity ω = ∇ × u and the density
j = ∇ × b. And so, the Beale–Kato–Majda’s criterion ensures that the solution (u, b)
of the ideal MHD equations is smooth up to time T .

Meanwhile the two-dimensional (2D) Euler equation is globally well-posed for
smooth initial data, however for the 2D inviscid MHD equations (ν = 0 and η = 0
in 1), the global wellposedness of classical solution is still a big open problem. So
the 2D GMHD equations has attracted much interest of many mathematicians and has
motivated a large number of research papers concerning various generalizations and
improvements.

For instance for ν = 0, to obtain the global regularity result:
Tran et al. [20] showed that β > 2 suffices. Later Jiu and Zhao [13] and Yamazaki

[24] independently improved the previous result with β > 3
2 . Then, Jiu and Zhao [14]

and Cao et al. [6] independently showed in fact that β > 1 suffices. On the other hand,
for β = 1 and ν > 0, to obtain the global regularity result: Tran et al. [20] showed that
α ≥ 1

2 suffices. Then, Yamazaki [25] obtained a better result with α > 1
3 . Later, Ye

and Xu [26] showed that α ≥ 1
4 suffices. Then, Fan et al. [10] improved the previous

result with the condition 0 < α ≤ 1
2 .

Thus, despite these recent developments, the global regularity issue of 2D GMHD
system in the case ν = 0 and β = 1 remains a challenging open problem up to date.
The main reason for the unavailability of a proof of global regularity for the system of
Eq. 1 in the casewhere ν = 0 and β = 1 is due to the quadratic coupling between u and
b which invalidates the vorticity conservation. Indeed, the structure of the vorticity is
instantaneously altered due to the effects of the magnetic fields. This fact is the source
of the main difficulty connected to the global existence of classical solutions, where no
strong global a priori estimates are known till now. This difficulty is revealed through
the equations of the ideal 2D MHD governing the vorticity ω = ∂1u2 − ∂2u1 and the
current density j = ∂1b2 − ∂2b1 ,

{
∂tω + u · ∇ω = b · ∇ j
∂t j + u · ∇ j = b · ∇ω + T (∇u,∇b),

(2)
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where,

T (∇u,∇b) = 2∂1b1(∂2u1 + ∂1u2) + 2∂2u2(∂2b1 + ∂1b2).

We observe that the magnetic field contributes in the last nonlinear part of the
second equation with the quadratic term T (∇u,∇b).

Then, in this paper, we consider the initial-value problem for the 2D incompress-
ible magneto-hydrodynamics equations with Fourier multiplier operators magnetic
diffusion, ⎧

⎪⎪⎨

⎪⎪⎩

∂t u + (u · ∇)u = −∇ p + (b · ∇)b
∂t b + (u · ∇)b + Db = (b · ∇)u
∇ · u = 0, ∇ · b = 0
u(x, 0) = u0, b(x, 0) = b0,

(3)

whereD is a Fourier multiplier whose symbolm : R
2 �→ R

+ is non-negative; the case
m(ξ) = |ξ |2 reduces to the MHD equations with Laplacian magnetic diffusion corre-
sponding to ν = 0 and β = 1 in (1), which models many significant phenomena such
as the magnetic reconnection in astrophysics and geomagnetic dynamo in geophysics
(see [18]) , while the case m = 0 is the ideal MHD system. The problem of global
well-posedness of the two-dimensional MHD equations with partial dissipation and
magnetic diffusion has generated considerable interest recently [3,7,12,17,27], and
remains highly challenging. Thus, the problem of uniqueness and global regularity of
2DMHD system (3) for the casem(ξ) = |ξ |2 remains widely open, but recently there
has been some progress made. Indeed, this problem have been solved independently
in [6,14] for the case m(ξ) = |ξ |2β with β > 1. In this paper, we improve their result
by obtaining uniqueness and global regularity for the case,

m(ξ) ≡ |ξ |2 log(e + |ξ |2)β, with β > 1. (4)

Thus
D = (−�) log(e − �)β. (5)

More precisely, we prove the following theorem,

Theorem 1.1 Assume that (u0, b0) ∈ Hs(R2) with s > 2, ∇ · u0 = 0, ∇ · b0 = 0.
Then (3) with D given by (5) has a unique global solution (u, b) satisfying, for any
T > 0,

(u, b) ∈ C([0, T ]; Hs(R2)), ∇ j ∈ L1([0, T ]; L∞(R2)),

where j = ∇ × b.

To this end, we take advantage of the approach used in [10] based on the properties
of heat equation by using singular integral representations of Eq. (3). Our approach is
similar to the one used in [14] but different from the one involved in [6] which is based
on energy estimates and for which it seemed not possible to extend it to our borderline
case. Further, our proof differs from the one given in [14]. Indeed, the proof given in
[14] exploits the fact that initially for the bordeline case β = 1 where thenD = −�,
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one can get uniformbound for ‖∇2b‖Lq ([0,T ];L p(R2)) and ‖ω‖L∞([0,T ];L p(R2)) for some
p, q ∈ [2,∞[byusing some estimates for linear Stokes system (see [11]) and transport
equations. Then by considering the operatorD = (−�)β with β > 1, the authors were
able to get better than the estimate on ‖∇2b‖L2([0,T ];L p(R2)) by obtaining an estimate
on ‖∇2+δb‖L2([0,T ];L p(R2)) for some δ > 0. Hence, by using Sobolev embeddings,
the authors obtained an uniform bound on ‖∇ j‖L2([0,T ];L∞(R2)) and then they got an
uniform bound for ‖ω‖L2([0,T ];L∞(R2)) deriving from estimates for transport equations
(see for instance Lemma 4.1 in [15]).

However in our case where D = (−�) log(e − �)β with β > 1, it was no longer
possible to proceed as previously, we then overcome this difficulty by establishing
and using a series of estimates on the semigroup generated by −D, that is e−tD. This
latter is used to get the solutions of Eq. (6).

Further, to get the proof of Theorem 1.1, it sufficed to show that for any T > 0,
∫ T
0 ‖(ω, j)(τ )‖L∞ dτ remains bounded. Indeed, this result follows from a Beale–
Kato–Madja’s (BKM) criterion (well-known for Euler and Navier–Stokes equations,
see [2])which states that: any solution (u, b) ∈ C([0, T [, Hs(R2)) of theMHDsystem
(5) continues to belong up to the time T to C([0, T ], Hs(R2)) under the assumption
that

∫ T
0 ‖(ω, j)(τ )‖L∞ dτ < ∞, where ω, j are respectively the vorticity of u, b.

One can also notice that this BKM’s criterion applies also to the ideal MHD system.
Further, in Sect. 5, we have extended the BKM’s criterion obtained in [5] for any
integer s ≥ 3 to all s > 2. This improvement is obtained by using the logarithmic
Sobolev inequality proved in [15,16] which requires only that s > 2 instead to use
the one proved in [2] as it is the case in [5] and which requires that s ≥ 3.

Then, we have proceeded in three steps for the proof of Theorem 1.1.

• Step 1 : Using a H1-bound on (u, b) proved in [17,20] and using the singular
integral representation of b obtained from the second equation of (3), we get
b ∈ L∞(R2 × [0, T ]) in Lemma 5.1.

• Step 2 : Then, after introducing the vorticity of b, j = ∇ ×b, we write the singular
integral representation of j to obtain a bound for

∫ T
0 ‖ j (τ )‖L∞dτ in Lemma 5.2,

thanks to the previous result.
• Step 3 : After, writing the equation satisfied by the vorticity of u, ω = ∇ × u,
we deduce that ‖ω(t)‖L∞ ≤ ‖ω0‖L∞ + ‖b‖L∞(R2×[0,T ])

∫ t
0 ‖∇ j‖L∞ . Then after

writing the singular integral representation of ∇ j and using the previous results,
we obtain a bound for

∫ T
0 ‖∇ j‖L∞ in Lemma 5.3. As a consequence, we infer a

bound on ‖ω‖L∞(R2×[0,T ]). Then, gathering all the results, we obtain that for any

T > 0,
∫ T
0 ‖(ω, j)(τ )‖L∞ dτ remains bounded.

To obtain these results, we have used a series of Lemmata given in Sect. 3, which
gives estimates in someSobolev spaces of the kernel K involved in the singular integral
representation. The paper is organized as follows. In Sect. 2, we give some notations
and introduce the functional spaces. In Sect. 3, we give some estimates on the kernel
K . In Sect. 4, we establish the local well-posedness of the Cauchy problem of the
partially viscous magneto-hydrodynamic system (3) and give a characterization of
the maximal time existence of strong solutions. In Sect.5, we prove Theorem 1.1 by
showing that for any T > 0,

∫ T
0 ‖(ω, j)(τ )‖L∞ dτ remains bounded.
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2 Some notations

We denote A � B, the estimate A ≤ C B where C > 0 is a constant.
We denote by BC the class of bounded and continuous functions and by BCm the

class of bounded and m times continuously derivable functions.
For any f ∈ L p(R2), with 1 ≤ p ≤ ∞, we denote by ‖ f ‖p and ‖ f ‖L p , the

L p-norm of f .
Given an absolutely integrable function f ∈ L1(R2), we define the Fourier trans-

form f̂ : R
2 �−→ C by the formula,

f̂ (ξ) =
∫

R2
e−2π i x ·ξ f (x) dx,

and extend it to tempered distributions. We will use also the notation F( f ) for the
Fourier transform of f . We define also the inverse Fourier transform f̌ : R

2 �−→ C

by the formula,

f̌ (x) =
∫

R2
e2π i x ·ξ f (ξ) dξ.

For s ∈ R, we define the Sobolev norm ‖ f ‖Hs (R2) of a tempered distribution
f : R

2 �−→ R by,

‖ f ‖Hs (R2) =
(∫

R2
(1 + |ξ |2)s | f̂ (ξ)|2 dξ

) 1
2

,

and then we denote by Hs(R2) the space of tempered distributions with finite Hs(R2)

norm, which matches when s is a non negative integer with the classical Sobolev space
Hk(R2), k ∈ N. The Sobolev space Hs(R2) can be written as Hs(R2) = J−s L2(R2)

where J = (1 − �)
1
2 . For s > −1, we also define the homogeneous Sobolev norm,

‖ f ‖Ḣ s (R2) =
(∫

R2
|ξ |2s | f̂ (ξ)|2 dξ

) 1
2

,

and then we denote by Ḣ s(R2) the space of tempered distributions with finite Ḣ s(R2)

norm.We use the Fourier transform to define the fractional Laplacian operator (−�)α ,
−1 < α ≤ 1. We define it as follows,

̂(−�)α f (ξ) = |ξ |2α f̂ (ξ).

We denote by P the projector onto divergence free vector fields given by P =
Id − ∇�−1div.
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3 Some estimates

In this section, for a given t > 0, we consider the inverse Fourier transform of e−tm(ξ),
where m is given by (4), namely K (x, t) = F−1(e−tm(ξ))(x). The kernel K allows to
write the singular integral representation of the solution of equations of type,

{
∂tv + Dv = f,
v(0) = v0,

(6)

namely, we have v(t) = K (t) 
 v0 + ∫ t
0 K (t − s) 
 f (s) ds. For the proofs given in

Sect. 5, it was crucial to get estimates of K (t) in Ḣ s and also inWm,1 form ∈ {0, 1, 2}.
All theses estimates derive from the following Proposition,

Proposition 3.1 For any n ∈ N, s > n − 1, there exists a real C > 0 depending only
on s, n such that for all t > 0,

Js,n(t) :=
∫

R2
|ξ |2s log(e + |ξ |2)nβe−2t |ξ |2 log(e+|ξ |2)β

≤ C

ts+1 log

(

e + 1
t log(e+ 1

t )
β

)β(s−n+1)
.

Proof We have for any R > 0,

Js,n(t) =
∫

|ξ |2≤R
|ξ |2s log(e + |ξ |2)nβe−2t |ξ |2 log(e+|ξ |2)βdξ

+
∫

|ξ |2>R
|ξ |2s log(e + |ξ |2)nβe−2t |ξ |2 log(e+|ξ |2)βdξ. (7)

For the first term at the right hand side of Eq. (7), we have,

|ξ |2s log(e + |ξ |2)nβe−2t |ξ |2 log(e+|ξ |2)β

= |ξ |2(s−n)(|ξ |2 log(e + |ξ |2)β)ne−2t |ξ |2 log(e+|ξ |2)β

≤ |ξ |2(s−n) sup
r≥0

rne−2tr

≤ Cn
|ξ |2(s−n)

tn
, (8)

where Cn = 1 if n = 0 else Cn = nne−n

2n . Then, we deduce,

∫

|ξ |2≤R
|ξ |2s log(e + |ξ |2)nβe−2t |ξ |2 log(e+|ξ |2)βdξ ≤ Cn

tn

∫

|ξ |≤√
R

|ξ |2(s−n)dξ

= πCn

s − n + 1

Rs−n+1

tn
. (9)
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For the second term at the right hand side of Eq. (7), we set A = t log(e+ R)β and
we observe for all |ξ |2 > R,

|ξ |2s log(e+|ξ |2)nβe−2t |ξ |2 log(e+|ξ |2)β ≤ |ξ |2s log(e+|ξ |2)nβe−t |ξ |2 log(e+|ξ |2)β e−|ξ |2A

≤ 2nCn
|ξ |2(s−n)

tn
e−|ξ |2A, (10)

where for the last inequality, we have used (8) by replacing t by t
2 . Then, we obtain,

∫

|ξ |2>R
|ξ |2s log(e + |ξ |2)nβe−2t |ξ |2 log(e+|ξ |2)βdξ ≤ 2nCn

tn

∫

R2
|ξ |2(s−n)e−A|ξ |2dξ

= 2nCn

tn
C̃s,n

As−n+1

= 2nCn

ts+1

C̃s,n

log(e + R)β(s−n+1)
,

(11)

where C̃s,n = ∫

R2 |y|2(s−n)e−|y|2dy.

Using (9) and (11), we deduce that there exists a real Cs,n > 0 depending only on
s, n such that,

Js,n(t) ≤ Cs,n

(
Rs−n+1

tn
+ 1

t s+1 log(e + R)β(s−n+1)

)

. (12)

We set,

R = 1

t log(e + 1
t )

β
. (13)

Then, from (12), we deduce,

Js,n(t) ≤ Cs,n

ts+1

⎛

⎜
⎜
⎜
⎝

1

log(e + 1
t )

β(s−n+1)
+ 1

log

(

e + 1
t log(e+ 1

t )
β

)β(s−n+1)

⎞

⎟
⎟
⎟
⎠

≤ 2Cs,n

ts+1 log

(

e + 1
t log(e+ 1

t )
β

)β(s−n+1)
,

which concludes the proof. �

As a consequence of Proposition 3.1, we obtain the following Lemma,
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Lemma 3.1 For all s ≥ 0, there exists a real C > 0 depending only on s such that
for all t > 0,

‖K (t)‖Ḣ s ≤ C

t
s+1
2 log

(

e + 1
t log(e+ 1

t )
β

) β(s+1)
2

.

Proof We observe,

‖K (t)‖2
Ḣ s =

∫

R2
|ξ |2s |K̂ (ξ, t)|2dξ

=
∫

R2
|ξ |2se−2t |ξ |2 log(e+|ξ |2)βdξ

= Js,0(t),

and thanks to Proposition 3.1, we conclude the proof. �

From Lemma 3.1, we get the following Lemma.

Lemma 3.2 There exists a constant C > 0 such that for all t > 0,

‖K (t)‖L∞ ≤ C

t log

(

e + 1
t log(e+ 1

t )
β

)β
.

Proof Thanks to Gagliardo–Nirenberg inequality, we have,

‖K (t)‖L∞ � ‖K (t)‖
1
2
L2‖K (t)‖

1
2

Ḣ2 ,

and thanks to Lemma 3.1 used with s = 0 and s = 2, we conclude the proof. �

Now, we give the main Lemma of this Section. The main difficulty to establish

Lemma 3.3, comes from the fact we do not have inR
2 a Gagliardo–Nirenberg inequal-

ity of type ‖∇2 f ‖L1 � ‖∇ j f ‖a
L2‖ f ‖1−a

L2 , j > 2.

Lemma 3.3 Let m ∈ {0, 1, 2}. There exists a real C > 0 depending only on β such
that for all t > 0,

‖∇mK (t)‖L1 ≤ C

t
m
2 log

(

e + 1
t log(e+ 1

t )
β

) βm
2

.

Proof Since for any radial function f inR
2,wehave f̌ (x) = f̂ (x), thenweget f (x) =

ĥ(x), where h = f̂ . Since K̂ (·, t) is a radial function, then we infer that K (·, t) is also
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a radial function, therefore we have, K (x, t) = Ĝ(x, t), where G(ξ, t) = K̂ (ξ, t) and
then,

‖∇mK (t)‖L1 = ‖∇mĜ(t)‖L1 , (14)

For all f ∈ H2(R2), we get the following interpolation inequality,

‖ f̂ ‖L1 � ‖ f ‖
1
2
L2‖ f ‖

1
2

Ḣ2 .

We denote by ξ2 the matrix ξ ⊗ ξ . Then, for any t > 0, we get,

‖∇mĜ(t)‖L1 = ‖F(ξmG(ξ, t))‖L1

≤ ‖ ξm G(ξ, t)‖
1
2
L2‖ ξm G(ξ, t)‖

1
2

Ḣ2

= ‖ |ξ |m K̂ (ξ, t)‖
1
2
L2‖ ∇2

ξ (ξm K̂ (ξ, t))‖
1
2
L2

= ‖K‖
1
2

Ḣm‖ ∇2
ξ (ξm K̂ (ξ, t))‖

1
2
L2 . (15)

Since m ∈ {0, 1, 2}, we observe that there exists a constant C > 0 such that for all
ξ ∈ R

2, ξ �= 0,

|∇2
ξ (ξm K̂ (ξ, t))|≤C(δm,2|K̂ (ξ, t))|+|ξ |m−1|∇ξ K̂ (ξ, t)|+|ξ |m |∇2

ξ K̂ (ξ, t)|), (16)

where δm,2 = 0 if m �= 2 and δm,2 = 1 if m = 2.
Since

K̂ (ξ, t) = e−t |ξ |2 log(e+|ξ |2)β , (17)

then after elementary computations, we deduce that there exists a realCβ > 0 depend-
ing only on β such that for all ξ ∈ R

2,

|∇ξ K̂ (ξ, t)| ≤ Cβ t |ξ | log(e + |ξ |2)β |K̂ (ξ, t)|
|∇2

ξ K̂ (ξ, t)| ≤ Cβ(t log(e + |ξ |2)β + |ξ |2t2 log(e + |ξ |2)2β)|K̂ (ξ, t)|. (18)

Then, thanks to (18) and (17), from (16), we deduce that there exists a real C̃β > 0
depending only on β such that for all ξ ∈ R

2,

|∇2
ξ (ξm K̂ (ξ, t))| ≤ C̃β(δm,2 + t |ξ |m log(e + |ξ |2)β + t2|ξ |m+2

× log(e + |ξ |2)2β)e−t |ξ |2 log(e+|ξ |2)β . (19)

Then, using Js,n defined in Proposition 3.1, we deduce,

‖ ∇2
ξ (ξm K̂ (ξ, t))‖2L2 ≤ 3C̃2

β(δm,2 J0,0(t) + t2 Jm,2(t) + t4 Jm+2,4(t)). (20)
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Thanks to Proposition 3.1, we deduce that there exists a real Cβ > 0 depending
only on β such that for any m ∈ {0, 1, 2},

‖ ∇2
ξ (ξm K̂ (ξ, t))‖2L2 ≤ Cβ

tm−1 log

(

e + 1
t log(e+ 1

t )
β

)β(m−1)
. (21)

Thanks to (21) and Lemma 3.1 used with s = m, from (15) we deduce that there
exists a real Qβ > 0 depending only on β such that,

‖∇mĜ(t)‖L1 ≤ Qβ

t
m
2 log

(

e + 1
t log(e+ 1

t )
β

) βm
2

.

Then, thanks to (14), we conclude the proof. �


4 Local well-posedness of the Cauchy problem of our MHD system

This section is devoted to the proof of our Proposition 4.3 where we establish the local
well-posedness of theCauchy problemof the partially viscousmagneto-hydrodynamic
system (3)with a characterization of themaximal time existence of strong solutions. To
obtain these results,we begin by showing throughProposition 4.2 that the Hs−normof
(u, b) is controlled by the integral in time of themaximummagnitude of the vorticity of
(u, b). Such a proposition has been proved in [5,17] for any integer s ≥ 3, but here we
extend this result to all s > 2. This improvement is obtained by using the logarithmic
Sobolev inequality proved in [15,16] which requires only that s > 2 instead of using
the one proved in [2] as it is the case in [5] and which requires that s ≥ 3. To obtain
Proposition 4.2, we need to use the following Proposition,

Proposition 4.1 Let (u0, b0) satisfying the conditions stated in Theorem 1.1. If
(u, b) ∈ C([0, T ]; Hs) is the corresponding solution of (3) with D given by (5),
then for any t ∈ [0, T ] and for all 0 ≤ r ≤ s,

‖(u, b)(t)‖Hr ≤ ‖(u0, b0)‖Hr eC
∫ t
0 ‖∇(u,b)(τ )‖L∞dτ , (22)

where C > 0 is a constant.

Proof Applying Jr with J = (I − �)
1
2 to the velocity field equation and magnetic

field equation, and taking the L2 inner product of the resulting equations with Jru
and Jrb respectively, one has,
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1

2

d

dt
(‖Jru‖22 + ‖Jrb‖22) + ‖D 1

2 Jrb‖22 = −
∫

R2
Jru

[
Jr ((u · ∇)u) − (u · ∇)Jru

]

−
∫

R2
Jrb

[
Jr ((u · ∇)b) − (u · ∇)Jrb

]

+
∫

R2
Jru

[
Jr ((b · ∇)b) − (b · ∇)Jrb

]

+
∫

R2
Jrb

[
Jr ((b · ∇)u) − (b · ∇)Jru

]
,

where we have used the divergence free condition ∇ · u = ∇ · b = 0. Using the
commutator estimates (1.1) in [15], we infer that there exists a constant C > 0 such
that for all t ∈ [0, T ],

1

2

d

dt
(‖Jru(t)‖22 + ‖Jrb(t)‖22) � (‖∇u(t)‖L∞

+‖∇b(t)‖L∞)(‖Jru(t)‖22 + ‖Jrb(t)‖22),

which means that

d

dt
‖(u, b)(t)‖Hr � (‖∇u(t)‖L∞ + ‖∇b(t)‖L∞)‖(u, b)(t)‖Hr . (23)

Thus, thanks to Gronwall inequality, we infer (22), which concludes the proof. �

Notice from (23) that for r > 2 thanks to the Sobolev embedding Hr (R2) ↪→

BC1(R2), we have,
d

dt
‖(u, b)(t)‖Hr � ‖(u, b)(t)‖2Hr . (24)

This estimate will be useful in establishing local existence of strong solutions.
Then, owing to Proposition 4.1, in Proposition 4.2 we give a BKM-type blow

up criterion. For the proof of this latter, we use the following logarithmic Sobolev
inequality which is proved in [16] (see inequality (4.20)) and is an improved version
of that in [2]:

‖∇ f ‖L∞(R2) � 1+‖∇× f ‖L∞(R2)(1+log+ ‖ f ‖Ws,p(R2)) with p>1 and s>
2

p
,

(25)

where ∇ × f = −∂2 f1 + ∂1 f2 is the vorticity of f and log+ x = max(0, log x) for
any x > 0.

Proposition 4.2 Let (u0, b0) satisfying the conditions stated in Theorem 1.1. If
(u, b) ∈ C([0, T [; Hs) is the corresponding solution of (3) with u /∈ C([0, T ]; Hs)

andD given by (5), then
∫ T
0 ‖(ω, j)(t)‖L∞dt = ∞, whereω = ∇×u = −∂2u1+∂1u2

be the vorticity and j = ∇ × b = −∂2b1 + ∂1b2 (This gives a precise meaning to the
statement that ‖(u, b)‖Hs does not blow up unless ‖(ω, j)‖L∞ , does).
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Proof Thanks to Proposition 4.1, there exists a constant C > 0 such that for all
t ∈ [0, T [

‖(u, b)(t)‖Hs ≤ ‖(u0, b0)‖Hs eC
∫ t
0 ‖∇(u,b)(τ )‖L∞dτ . (26)

Thanks to (25) used with p = 2, from (26) we deduce that there exists a constant
C1 > 1 such that for all t ∈ [0, T [

‖(u, b)(t)‖Hs ≤ C1‖(u0, b0)‖Hs eC1
∫ t
0 ‖(ω, j)(τ )‖L∞ (1+log+ ‖(u,b)(τ )‖Hs )dτ . (27)

Therefore by applying the function log+ to (27), we deduce that for all t ∈ [0, T [,
log+ ‖(u, b)(t)‖Hs ≤ log+(C1‖(u0, b0)‖Hs ) + C1

×
∫ t

0
‖(ω, j)(τ )‖L∞(1 + log+ ‖(u, b)(τ )‖Hs )dτ, (28)

which yields to

1 + log+ ‖(u, b)(t)‖Hs ≤ 1 + log+(C1‖(u0, b0)‖Hs )

+C1

∫ t

0
‖(ω, j)(τ )‖L∞(1 + log+ ‖(u, b)(τ )‖Hs )dτ.

(29)

Then from (29), thanks to Gronwall Lemma, we deduce that for all t ∈ [0, T [,

1 + log+ ‖(u, b)(t)‖Hs ≤ (1 + log+(C1‖(u0, b0)‖Hs ))eC1
∫ t
0 ‖(ω, j)(τ )‖L∞dτ . (30)

Then plugging (30) into (27) yields to that for all t ∈ [0, T [,

‖(u, b)(t)‖Hs ≤ C1‖(u0, b0)‖Hs e(1+log+(C1‖(u0,b0)‖Hs ))
∫ t
0 C1‖(ω, j)(τ )‖L∞ eC1

∫ τ
0 ‖(ω, j)(s)‖L∞ dsdτ

= C1‖(u0, b0)‖Hs exp
(
(1 + log+(C1‖(u0, b0)‖Hs ))(eC1

∫ t
0 ‖(ω, j)(τ )‖L∞ dτ − 1)

)

≤ C1‖(u0, b0)‖Hs exp
(
(1 + log+(C1‖(u0, b0)‖Hs ))eC1

∫ t
0 ‖(ω, j)(τ )‖L∞ dτ

)
.

Then, from this last inequality, we conclude the proof. �

Before to turn of the proof of Proposition 4.3, we provide two simple bounds. The

first one is a L2-energy estimate given in Lemma 4.1 and the second one is a H1-
energy estimate given in Lemma 4.2. Multiplying the first two equations of (3) by u
and b, respectively, integrating and adding the resulting equations together, Lemma
4.1 follows.

Lemma 4.1 Let (u0, b0) satisfying the conditions stated in Theorem 1.1. If (u, b) ∈
C([0, T ]; Hs) is the corresponding solution of (3) and D given by (5), then, for any
t ∈ [0, T ],

‖u(t)‖22 + ‖b(t)‖22 + 2
∫ t

0
‖D 1

2 b(τ )‖22dτ = ‖u0‖22 + ‖b0‖22.

123



Global regularity for logarithmically critical 2D MHD equations… 257

Letω = ∇ ×u = −∂2u1+∂1u2 be the vorticity and j = ∇ ×b = −∂2b1+∂1b2 be
the current density. Applying∇× the first two equations of (3) we obtain the governing
equations. {

∂tω + (u · ∇)ω = (b · ∇) j
∂t j + (u · ∇) j = (b · ∇)ω + T (∇u,∇b) − D j.

(31)

where,

T (∇u,∇b) = 2∂1b1(∂2u1 + ∂1u2) + 2∂2u2(∂2b1 + ∂1b2).

Then, we get a H1-bound on (u, b) obtained as in [17,20], namely we have Lemma
4.2.

Lemma 4.2 Let (u0, b0) satisfying the conditions stated in Theorem 1.1. If (u, b) ∈
C([0, T ]; Hs) is the corresponding solution of (3) and D given by (5), then, there
exists a constant C > 0 such that for any t ∈ [0, T ],

‖ω(t)‖22 + ‖ j (t)‖22 +
∫ t

0
‖D 1

2 j (τ )‖22dτ ≤ (‖ω0‖22 + ‖ j0‖22)eC(‖u0‖22+‖b0‖22).

Proof Taking the L2 inner product of the Eq. (31) with ω and j respectively and
adding the resulting equations together, one has for all t ∈ [0, T ]

1

2

d

dt
(‖ω‖22 + ‖ j‖22) + ‖D 1

2 j‖22 =
∫

R2
T (∇u,∇b) j, (32)

where we have used the following consequences of ∇ · u = 0 and ∇ · b = 0:

∫

R2
u · ∇ω ω =

∫

R2
u · ∇

(
ω2

2

)

= −
∫

R2
(∇ · u)

ω2

2
= 0,

and similarly
∫

R2 u · ∇ j j = 0 and we get also

∫

R2
b · ∇ j ω +

∫

R2
b · ∇ω j =

∫

R2
b · ∇( jω) = −

∫

R2
(∇ · b) jω = 0.

Then, usingCauchy–Schwarz inequality andHölder inequality, from32,we obtain,

1

2

d

dt
(‖ω‖22 + ‖ j‖22) + ‖D 1

2 j‖22 � ‖∇u‖2‖ j ∇b‖2
≤ ‖∇u‖2‖ j‖4‖∇b‖4. (33)

Thanks to Calderon–Zygmund theory (see Theorem 3.1.1 in [4]), we get,

‖∇u‖2 � ‖ω‖2 and ‖∇b‖4 � ‖ j‖4.
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From (33), we deduce,

1

2

d

dt
(‖ω‖22 + ‖ j‖22) + ‖D 1

2 j‖22 � ‖ω‖2‖ j‖24. (34)

Next, application to the Gagliardo–Nirenberg inequality,

‖ j‖4 � ‖ j‖
1
2
2 ‖∇ j‖

1
2
2

yields from (34), that there exists a constant C > 0 such that

1

2

d

dt
(‖ω‖22 + ‖ j‖22) + ‖D 1

2 j‖22 ≤ C‖ω‖2‖ j‖2‖∇ j‖2. (35)

By using Plancherel identity, we observe that ‖D 1
2 j‖2 ≥ ‖∇ j‖2. Then thanks to

Young inequality, from (35) we infer

1

2

d

dt
(‖ω‖22 + ‖ j‖22) + 1

2
‖D 1

2 j‖22 ≤ C2

2
‖ω‖22‖ j‖22, (36)

which yields to

d

dt
(‖ω‖22 + ‖ j‖22) ≤ C2(‖ω‖22 + ‖ j‖22)‖ j‖22. (37)

Then from (37), thanks to Gronwall Lemma, we deduce that for all t ∈ [0, T ]

‖ω(t)‖22 + ‖ j (t)‖22 ≤ (‖ω0‖22 + ‖ j0‖22)eC
2
∫ t
0 ‖ j (τ )‖22 dτ . (38)

By using (38) to bound ‖ω‖22 at the right hand side of inequality (36), we get that
for all t ∈ [0, T ],

d

dt
(‖ω(t)‖22 + ‖ j (t)‖22) + ‖D 1

2 j (t)‖22
≤ (‖ω0‖22 + ‖ j0‖22)C2‖ j (t)‖22eC

2
∫ t
0 ‖ j (τ )‖22 dτ . (39)

Integrating inequality (39) over [0, t], we infer that for all t ∈ [0, T ],

‖ω(t)‖22 + ‖ j (t)‖22 +
∫ t

0
‖D 1

2 j (τ )‖22 dτ ≤ (‖ω0‖22 + ‖ j0‖22) eC
2
∫ t
0 ‖ j (τ )‖22 dτ .

(40)

Since ‖ j (τ )‖2 ≤ 2‖∇b(τ )‖2 ≤ 2‖D 1
2 b(τ )‖2 and thanks to Lemma 4.1, from (40)

we obtain that for all t ∈ [0, T ]

‖ω(t)‖22 + ‖ j (t)‖22 +
∫ t

0
‖D 1

2 j (τ )‖22 dτ ≤ (‖ω0‖22 + ‖ j0‖22)e
C2
2 (‖u0‖22+‖b0‖22),
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which concludes the proof. �

Now, we can give the proof of Proposition 4.3.

Proposition 4.3 Assume that (u0, b0) ∈ Hs(R2) with s > 2, ∇ · u0 = 0, ∇ · b0 = 0.
Then there exists a maximal time of existence T ∗ > 0 such that there exists a unique
solution (u, b) ∈ C([0, T ∗[; Hs(R2)) of the system of Eq. (3) with D given by (5).
Moreover if T ∗ < ∞, then

∫ T ∗

0
‖(ω, j)(τ )‖L∞ dτ = ∞, (41)

where ω = ∇ × u = −∂2u1 + ∂1u2 is the vorticity and j = ∇ × b = −∂2b1 + ∂1b2.

Proof The first part of the proof concerning only the local existence of solutions in
C([0, T ]; Hs(R2)) for some T > 0 follows from the arguments used at pp. 20 of
[19], by implementing a Galerkin method using as a basis of H := PL2(R2) the
eigenfunctions of the operator D, using the a-priori estimates obtained in Lemmata
4.1, 4.2 and the a-priori inequality obtained in (24). Uniqueness is then obtained by
using the same arguments as in Proposition 4.1. Then we deduce that there exists a
maximal time of existence T ∗ > 0 such that there exists a unique solution (u, b) ∈
C([0, T ∗[; Hs(R2)) of the system of Eq. (3) withD given by 5. Thanks to Proposition
4.2, we deduce that if T ∗ < ∞, then

∫ T ∗

0
‖(ω, j)(τ )‖L∞ dτ = ∞,

which completes the proof. �


5 Global regularity

In this section, we prove our Theorem 1.1. To get our Theorem, we need to prove a
series of Lemmata 5.1, 5.2 and 5.3. We begin from the following Lemma obtained
from Lemmata 4.1 and 4.2.

Lemma 5.1 Let (u0, b0) satisfying the conditions stated in Theorem 1.1. If (u, b) ∈
C([0, T [; Hs) is the unique corresponding solution of (3) and D given by (5), then,
there exists a real C > 0 depending continuously only on β, ‖b0‖L∞ , ‖u0‖2, ‖b0‖2,
‖ω0‖2, ‖ j0‖2, T such that,

‖b(t)‖L∞(R2×[0,T ]) ≤ C.

Proof We write the second Eq. (3) under its integral form, thanks to the kernel K
given in Sect. 3, we have for all t ∈ [0, T [,

b(t) = K (t) 
 b0 +
∫ t

0
K (t − τ) 
 ((b(τ ) · ∇)u(τ ) − (u(τ ) · ∇)b(τ )) dτ. (42)
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Since ∇ · b(τ ) = ∇ · u(τ ) = 0, we have (b(τ ) · ∇)u(τ ) = ∇ · (b(τ ) ⊗ u(τ )) and
(u(τ ) · ∇)b(τ ) = ∇ · (u(τ ) ⊗ b(τ )), then taking the L∞−norm in Eq. 42 and using
Young inequality, we deduce for all t ∈ [0, T [,

‖b(t)‖L∞ ≤ ‖K (t) 
 b0‖L∞ +
∫ t

0
‖∇K (t − τ)‖L2‖u(τ )b(τ )‖2 dτ

≤ ‖K (t)‖L1‖b0‖L∞ +
∫ t

0
‖∇K (t − τ)‖L2‖u(τ )‖4‖b(τ )‖4 dτ. (43)

Thanks to Lemma 3.3, there exists a real C0 > 0 depending only on β such
that ‖K (t)‖L1 ≤ C0. Thanks to Gagliardo–Nirenberg inequality, we have, ‖u(τ )‖4 �
‖u(τ )‖

1
2
2 ‖∇u(τ )‖

1
2
2 and thanks toTheorem3.1.1 in [4],wehave‖∇u(τ )‖2 � ‖ω(τ)‖2,

hence we get ‖u(τ )‖4 � ‖u(τ )‖
1
2
2 ‖ω(τ)‖

1
2
2 , similarly ‖b(τ )‖4 � ‖b(τ )‖

1
2
2 ‖ j (τ )‖

1
2
2 .

Then, thanks to Lemmata 4.1 and 4.2, we deduce that there exists a real C > 0
depending only on ‖u0‖2, ‖b0‖2, ‖ω0‖2, ‖ j0‖2 such that for all t ∈ [0, T [,

‖b(t)‖L∞ ≤ C0‖b0‖L∞ + C
∫ t

0
‖∇K (t − τ)‖L2 dτ

= C0‖b0‖L∞ + C
∫ t

0
‖∇K (σ )‖L2 dσ. (44)

Thanks to Lemma 3.1 used with s = 1 and since β > 1, we deduce for any t ≥ 0,∫ t
0 ‖∇K (σ )‖L2 dσ < +∞, combined with 44, we conclude the proof. �


Lemma 5.2 Let (u0, b0) satisfying the conditions stated in Theorem 1.1. If (u, b) ∈
C([0, T [; Hs) is the unique corresponding solutionof (3)andDgivenby (5), then there
exists a real C > 0 depending continuously only on β, ‖u0‖2, ‖b0‖2, ‖ω0‖2, ‖ j0‖2,
‖b0‖L∞ , T such that,

∫ T

0
‖ j (τ )‖L∞dτ ≤ C.

Proof We write the second Eq. (31) under its integral form, thanks to the kernel K
given in Sect. 3, we have for all t ∈ [0, T [,

j (t) = K (t) 
 j0 +
∫ t

0
K (t − σ) 
 ((b(σ ) · ∇)ω(σ ) − (u(σ ) · ∇) j (σ )

+T (∇u(σ ),∇b(σ ))) dσ. (45)

Since ∇ · b(σ ) = ∇ · u(σ ) = 0, we have (b(σ ) · ∇)ω(σ ) = ∇ · (b(σ ) ⊗ ω(σ))

and (u(σ ) · ∇) j (σ ) = ∇ · (u(σ ) ⊗ j (σ )), then taking the L∞-norm in Eq. (45) and
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using Young inequality, we deduce,

‖ j (t)‖L∞ ≤ ‖K (t)‖2‖ j0‖2 +
∫ t

0
‖∇K (t − σ)‖L2(‖b(σ ) ⊗ ω(σ)‖2

+‖u(σ ) ⊗ j (σ )‖2) dσ +
∫ t

0
‖K (t − σ)‖L∞‖T (∇u(σ ),∇b(σ ))‖1 dσ.

(46)

We observe,
‖b(σ ) ⊗ ω(σ)‖2 ≤ ‖b(σ )‖L∞‖ω(σ)‖2. (47)

Thanks to Cauchy–Schwarz inequality, Gagliardo–Nirenberg inequality andYoung
inequality, we get,

‖u(σ ) ⊗ j (σ )‖2 ≤ ‖u(σ )‖4‖ j (σ )‖4
� ‖u(σ )‖

1
2
2 ‖∇u(σ )‖

1
2
2 ‖ j (σ )‖

1
2
2 ‖∇ j (σ )‖

1
2
2

� ‖∇u(σ )‖2‖ j (σ )‖2 + ‖u(σ )‖2‖∇ j (σ )‖2
� ‖ω(σ)‖2‖ j (σ )‖2 + ‖u(σ )‖2‖∇ j (σ )‖2, (48)

where we have used the fact that ‖∇u(σ )‖2 � ‖ω(σ)‖2, thanks to Theorem 3.1.1 in
[4]. Thanks to Cauchy–Schwarz inequality, we have,

‖T (∇u(σ ),∇b(σ ))‖1 � ‖∇u(σ )‖2‖∇b(σ )‖2
� ‖ω(σ)‖2‖ j (σ )‖2, (49)

where we have used Theorem 3.1.1 in [4]. Thanks to Lemmata 4.1, 4.2 and 5.1 used
in the inequalities (47), (48) and (49), from (46), we deduce that there exists a real
C > 0 depending only on β, ‖u0‖2, ‖b0‖2, ‖ω0‖2, ‖ j0‖2, ‖b0‖L∞ such that,

‖ j (t)‖L∞ ≤ C

(

‖K (t)‖2 +
∫ t

0
‖∇K (t − σ)‖L2 dσ +

∫ t

0
‖K (t − σ)‖L∞ dσ

+
∫ t

0
‖∇K (t − σ)‖L2‖∇ j (σ )‖2 dσ

)

. (50)

Thanks to Lemma 3.1 used with s = 0, we deduce that for any t ∈ [0, T [,
‖K (t)‖2 � 1√

t
. Thanks again to Lemma 3.1 used with s = 1, Lemma 3.2 and since

β > 1, we observe that for any t ≥ 0, g(t) := ∫ t
0 ‖∇K (σ )‖L2 dσ < +∞ and

h(t) := ∫ t
0 ‖K (σ )‖L∞ dσ < +∞. Notice that g and h are continuous non-decreasing

function. We re-write Inequality (50) as follows, for any τ ∈]0, T [,

‖ j (τ )‖L∞ � C

(
1√
τ

+ g(τ ) + h(τ ) +
∫ τ

0
‖∇K (τ − σ)‖L2‖∇ j (σ )‖2 dσ

)

.

(51)

123



262 L. Agélas

We integrate Inequality 51 over τ ∈]0, t], to obtain for all t ∈ [0, T [,
∫ t

0
‖ j (τ )‖L∞dτ

� C

(

2
√
t + t (g(t) + h(t)) +

∫ t

0

∫ τ

0
‖∇K (τ − σ)‖L2‖∇ j (σ )‖2 dσ dτ

)

.

(52)

By inverting the integrals, we deduce,

∫ t

0

∫ τ

0
‖∇K (τ − σ)‖L2‖∇ j (σ )‖2 dσ dτ

=
∫ t

0
‖∇ j (σ )‖2

(∫ t

σ

‖∇K (τ − σ)‖L2 dτ

)

dσ

=
∫ t

0
‖∇ j (σ )‖2 g(t − σ) dσ.

Since g is a non-decreasing function, we deduce,

∫ t

0

∫ τ

0
‖∇K (τ − σ)‖L2‖∇ j (σ )‖2 dσ dτ ≤ g(t)

∫ t

0
‖∇ j (σ )‖2 dσ

≤ g(t)
√
t

(∫ t

0
‖∇ j (σ )‖22 dσ

) 1
2

, (53)

where we have used Cauchy–Schwarz inequality. Thanks to Lemma 4.2, we deduce
that there exists a constant C̃ > 0 such that,

2
∫ t

0
‖∇ j (σ )‖22 dσ ≤ (‖ω0‖22 + ‖ j0‖22)eC̃(‖u0‖22+‖b0‖22). (54)

Thanks to (53), (54), from (52), we deduce that there exists a continuous non-
decreasing function f on R+ depending only on β, ‖u0‖2, ‖b0‖2, ‖ω0‖2, ‖ j0‖2,
‖b0‖L∞ such that for all t ∈ [0, T [, ∫ t

0 ‖ j (τ )‖L∞dτ ≤ f (t) and thus we infer that
∫ T
0 ‖ j (τ )‖L∞ ≤ f (T ) < ∞, which concludes the proof. �


Lemma 5.3 Let (u0, b0) satisfying the conditions stated in Theorem 1.1. If (u, b) ∈
C([0, T [; Hs) is the unique corresponding solution of (3) and D given by (5), then
there exists a realC0 > 0depending continuously only onβ, ‖ω0‖L∞ , ‖b0‖L∞ , ‖u0‖2,
‖b0‖2, ‖ω0‖2, ‖ j0‖2, T such that,

∫ T

0
‖∇ j (τ )‖L∞dτ ≤ C0. (55)
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Moreover, we have that there exists a real C1 > 0 depending continuously only on
β, ‖ω0‖L∞ , ‖b0‖L∞ , ‖u0‖2, ‖b0‖2, ‖ω0‖2, ‖ j0‖2, T such that,

‖ω‖L∞(R2×[0,T ]) ≤ C1. (56)

Proof We write the second Eq. (31) under its integral form, thanks to the kernel K
given in Sect. 3, for all σ ∈ [0, T [,

j (σ ) = K (σ )
 j0+
∫ σ

0
K (σ −τ)
((b(τ )·∇)ω(τ)−(u(τ )·∇) j (τ )+T (∇u(τ ), ∇b(τ ))) dτ. (57)

Since ∇ · b(τ ) = ∇ · u(τ ) = 0, we have (b(τ ) · ∇)ω(τ) = ∇ · (b(τ ) ⊗ ω(τ))

and (u(τ ) · ∇) j (τ ) = ∇ · (u(τ ) ⊗ j (τ )), then taking the operator ∇, the L∞-norm in
Eq. (57) and using Young inequality, we deduce that for all σ ∈]0, T [,

‖∇ j (σ )‖L∞ ≤ ‖∇K (σ )‖2‖ j0‖2 +
∫ σ

0
‖∇2K (σ − τ)‖L1

×(‖b(τ ) ⊗ ω(τ)‖L∞ + ‖u(τ ) ⊗ j (τ )‖L∞) dτ

+
∫ σ

0
‖∇K (σ − τ)‖L2‖T (∇u(τ ),∇b(τ ))‖2 dτ. (58)

Thanks to Lemma 3.3 used with m = 2, Lemma 3.1 used with s = 1 and since
β > 1, we observe that for all t ≥ 0, r(t) := ∫ t

0 ‖∇2K (σ )‖L1 dσ < +∞ and
g(t) := ∫ t

0 ‖∇K (σ )‖L2 dσ < +∞.

We integrate Inequality (58) over σ ∈ [0, t] with t ∈]0, T [ and after inverting the
integrals, we obtain,

∫ t

0
‖∇ j (σ )‖L∞ dσ ≤ g(t)‖ j0‖2 +

∫ t

0
r(t − τ)

×(‖b(τ ) ⊗ ω(τ)‖L∞ + ‖u(τ ) ⊗ j (τ )‖L∞) dτ

+
∫ t

0
g(t − τ)‖T (∇u(τ ),∇b(τ ))‖2 dτ. (59)

Then, we deduce,

∫ t

0
‖∇ j (σ )‖L∞ dσ ≤ g(t)‖ j0‖2 + r(t)

∫ t

0
(‖b(τ ) ⊗ ω(τ)‖L∞

+‖u(τ ) ⊗ j (τ )‖L∞) dτ

+g(t)
∫ t

0
‖T (∇u(τ ),∇b(τ ))‖2 dτ. (60)
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By following step by step the proof of Lemma 4 given in [9] but keeping the term
‖u‖L2(R2) which appears after using the Cauchy–Schwarz inequality, we obtain,

‖u(τ )‖L∞ � ‖u(τ )‖
1
2
2 ‖ω(τ)‖

1
2
L∞

≤ (‖u0‖22 + ‖b0‖22)
1
4 ‖ω(τ)‖

1
2
L∞

≤ (‖u0‖22 + ‖b0‖22)
1
2 + ‖ω(τ)‖L∞ , (61)

where we have used Lemma 4.1 and Young inequality.
Thanks to Cauchy–Schwarz inequality, Theorem 3.1.1 in [4], Interpolation inequal-

ity and Young inequality, we get,

‖T (∇u(τ ),∇b(τ ))‖2 � ‖∇u(τ )‖4‖∇b(τ )‖4
� ‖ω(τ)‖4‖ j (τ )‖4
≤ ‖ω(τ)‖

1
2
2 ‖ω(τ)‖

1
2
L∞‖ j (τ )‖

1
2
2 ‖ j (τ )‖

1
2
L∞

≤ ‖ω(τ)‖L∞‖ j (τ )‖L∞ + ‖ω(τ)‖2‖ j (τ )‖2. (62)

Thanks to Lemma 4.2, we deduce that there exists a real C2 > 0 depending only
on ‖u0‖2, ‖b0‖2, ‖ω0‖2, ‖ j0‖2 such that,

‖T (∇u(τ ),∇b(τ ))‖2 � ‖ω(τ)‖L∞‖ j (τ )‖L∞ + C2. (63)

Therefore, thanks to (61) and (63), from (60), we deduce,

∫ t

0
‖∇ j (σ )‖L∞ dσ � g(t)‖ j0‖2 + r(t)(‖u0‖22 + ‖b0‖22)

1
2

×
∫ t

0
‖ j (τ )‖L∞ dτ + g(t)t C2

+r(t)
∫ t

0
‖b(τ )‖L∞‖ω(τ)‖L∞ dτ

+(g(t) + r(t))
∫ t

0
‖ j (τ )‖L∞‖ω(τ)‖L∞ dτ. (64)

Let us estimate ‖ω(τ)‖L∞ . Let 2 ≤ p < ∞. Multiplying the first equation in (31)
by ω|ω|p−2, integrating in space and applying Hölder’s inequality, we have for any
t ∈ [0, T [,
1

p

d

dt
‖ω(t)‖p

p =
∫

b(t) · ∇ j (t) ω(t)|ω(t)|p−2 ≤ ‖b(t)‖L∞‖ω(t)‖p−1
p ‖∇ j (t)‖p,

which yields to,
d

dt
‖ω(t)‖p ≤ ‖b(t)‖L∞‖∇ j (t)‖p. (65)
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Then, from (65) we deduce,

‖ω(t)‖p ≤ ‖ω0‖p +
∫ t

0
‖b(τ )‖L∞‖∇ j (τ )‖p dτ. (66)

Letting p → ∞ in (66), we infer that for all τ ∈ [0, T [,

‖ω(τ)‖L∞ ≤ ‖ω0‖L∞ +
∫ τ

0
‖b(σ )‖L∞‖∇ j (σ )‖L∞ dσ. (67)

Plugging inequality (67) into (64), thanks to Lemmas 5.1 and 5.2, we deduce that
there exists real A > 0, B > 0 and C > 0 depending only on β, ‖ω0‖L∞ , ‖b0‖L∞ ,

‖u0‖2, ‖b0‖2, ‖ω0‖2, ‖ j0‖2, T such that for all t ∈ [0, T [,
∫ t

0
‖∇ j (σ )‖L∞ dσ ≤ A +

∫ t

0
(B + C‖ j (τ )‖L∞)

(∫ τ

0
‖∇ j (σ )‖L∞ dσ

)

dτ.

(68)

Thanks to Gronwall inequality, we deduce that for all t ∈ [0, T [,
∫ t

0
‖∇ j (σ )‖L∞ dσ ≤ A exp

(∫ t

0
(B + C‖ j (τ )‖L∞) dτ

)

. (69)

Thanks again to Lemma 5.2 combined with (69), we deduce (55) the first part of
the statement. From (67), using Lemma 5.1 and owing to inequality (55), we obtain
(56), which completes the proof. �


Now, we finish with the proof of our Theorem. Assume that (u0, b0) ∈ Hs(R2)

with s > 2, ∇ · u0 = 0, ∇ · b0. Thanks to Proposition 4.3, we get that there exists
T ∗ > 0 the maximal time of existence such that the MHD system of Eq. (3) with D
given by Eq. (5) has a unique local solution (u, b) satisfying,

(u, b) ∈ C([0, T ∗[; Hs(R2)).

Moreover, if T ∗ < ∞, then (u, b) /∈ C([0, T ∗]; Hs(R2)). Let us assume that
T ∗ < ∞, then thanks to Proposition 4.2, we deduce that T ∗ is such that,

∫ T ∗

0
‖(ω, j)(t)‖L∞ dt = ∞. (70)

However, using Lemmata 5.2 and 5.3, we obtain a contradiction with (70), therefore
we get T ∗ = ∞, which concludes the proof of Theorem 1.1.
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