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Abstract The number of spanning trees in a class of directed circulant graphs with
generators depending linearly on the number of vertices Sn, and in the nth and (n — 1)th
power graphs of the Bn-cycle are evaluated as a product of [8/2] — 1 terms.
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1 Introduction

In this paper we study the number of spanning trees in a class of directed and undirected
circulant graphs. Let I < y; < --- < yy < [n/2] be positive integers. A circulant

directed graph, or circulant digraph, on n vertices generated by y1, ..., yg is the
directed graph on n vertices labelled 0, 1, . .., n—1 such that for each vertex v € Z/n’Z
there is an oriented edge connecting v to v+ y,, mod n forallm € {1, ..., d}. We will

denote such graphs by Z’) y¥d Similarly, a circulant graph on n vertices generated
by yi,...ya, denoted by C)" "7, is the undirected graph on n vertices labelled
0,1,...,n — 1 such that each vertex v € Z/nZ is connected to v — y,,, mod n and
to v + Ym mod n, for all m € {1,...,d}. Circulant graphs and digraphs are used
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as models in network theory. In this context, they are called multi-loop networks, or
double-loop networks when they are 2-generated, see for example [7,8]. The number
of spanning tree measures the reliability of a network.

The evaluation of the number of spanning trees in circulant graphs and digraphs
has been widely studied, were both exact and asymptotic results have been obtained
as the number of vertices grows, see [2,6,11-13] and references therein. In [3,5],
the authors showed that the number of spanning trees in such graphs satisfy linear
recurrence relations. Yong, Zhang and Golin developed a technique in [13] to evaluate
the number of spanning trees in a particular class of double-loop networks E)Zhyn—kp .
In the first section of this work, we derive a closed formula for these graphs, and more
generally for d-generated circulant digraphs with generators depending linearly on
the number of vertices, that is Z‘)Z;KI"JFP""V"*'”” where p, y1, ..., ya_1, B, n are
positive integers. This partially answers an open question posed in [2] by simplifying
the formula given in [2, Corollary 1].

In the second section we calculate the number of spanning trees in the nth and
(n — 1)th power graphs of the Sn-cycle which are circulant graphs generated by the n,
respectively n — 1, first consecutive integers, denoted by C%n and Cg;l respectively,
where 8 € N>». As a consequence, the asymptotic behaviour of it is derived. Cycle
power graphs appear, for example, in graph colouring problems, see [9,10].

The results obtained here are derived from the matrix tree theorem (see [1,4]) which
provides a closed formula of a product of Bn — 1 terms for a graph on fn vertices.
Our formulas are products of [8/2] — 1 terms and are therefore interesting when 7 is
large. In both cases, the symmetry of the graphs is reflected in the formulas which are
expressed in terms of eigenvalues of subgraphs of the original graph. This fact was
already observed in [12].

2 Spanning trees in directed circulant graphs

Let G be adirected graph and V (G) its vertex set. A spanning arborescence converging
tov € V(G) isan oriented subgraph of G such that the out-degree of all vertices except
v equals one, and the out-degree of v is zero. We define the combinatorial Laplacian of
adirected graph G as an operator acting on the space of functions defined on V (G), by

Agf) = D (f@) = f() )
yix—=>y

where the sum is over all vertices y such that there is an oriented edge from x to y.
Equivalently, the combinatorial Laplacian can be defined asa matrixby A; = D™ — A,
where D™ is the out-degree matrix and A is the adjacency matrix such that (A);; is the
number of directed edges fromi to j. Let T~ (G, v) denote the number of arborescences
converging to v. The Tutte matrix tree theorem (see [1]) states that for all v € V(G),

7 (G, v) = det Ag.,

where det A | is the vth cofactor of the Laplacian A ; obtained by deleting the row
and column of A corresponding to the vertex v. For a regular directed graph G, we
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define the number of spanning trees in G, t(G), by the sum over all vertices v € V(G)
of the number of arborescences converging to v, that is

7(G) = Z (G, v).

veV(G)

Notice that we could have defined the number of spanning trees by the sum over all
vertices v € V(G) of the number of spanning arborescences diverging from v. By
symmetry, all cofactors of the Laplacian of a directed circulant graph are equal and
are equal to the product of the non-zero eigenvalues of the Laplacian divided by the
number of vertices. Therefore we have that

V(G)
7(G) = H Ak
k=1
where A,k =1, ..., |V(G)|, denote the non-zero eigenvalues of the Laplacian of G.

The non-zero eigenvalues of the Laplacian of the directed circulant graph Z‘)Zl
are given by (see [4, Proposition 3.5])

d
kk:d—ZeZ”imG/”, k=1,...,n—1.

m=1

This can also be derived by noticing that the eigenvectors are given by the characters
Xk (x) = e2mikx/n 1 —0.1,...,n— 1, and then applying the Laplacian (1) on it.

In this section, we establish a formula for the number of spanning trees in directed
circulant graphs E')Fn generated by I' = {p, yin + p, ..., Ya—1n + p} and in the

particular case of two generators C Z;ly"” . Figure 1 illustrates a 2- and a 3-generated

Fig. 1 Examples of directed graphs
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directed circulant graph. We denote by puy = d —1— Zi;ll eATmk/B = 1,..., B—
1, the non-zero eigenvalues of the Laplacian on the directed circulant graph E‘) g' Vil

and by np = 2(d — 1) — 22 ~ cos(2nymk/,3) k=1,...,8 — 1, the non-zero
eigenvalues of the Laplacian on the circulant graph C' s Yd-1 et A be a statement
and §4 be defined by

5. — 1 if Ais satisfied
A= 10 otherwise ’

Theorem 1 Letl < y; < --- < yg—1 < B and p, n be positive integers. For all even
n € Ny such that (p, n) = 1, the number of spanning trees in the directed circulant

N
graph an, where I' = {p,yin+ p, ..., va—1n + p}, is given by

“(Ch,) = naf"~ 1(1—6,3even - (1+Z< 1>Vm>>

[B/21-1 d—1
27 pk D 1 Sinmymk/p)
X H ( —2‘1——‘ cos(ﬂ+nArctg( d— )2 ))

k=1

+]r- 2

[k |21
d

and for odd n € N3,

I(Cﬁn)—ndﬂ" ! 1—aﬂeven( i) (1+Z( 1)ym)

1B/21-1 S~
< I] (I—ZSgn(d—nk/Z)‘l——‘ (—
k=1 'B
>4 sinQ@ayk/B) i
+nArctg( d— /2 —i—‘l—— )

where [x] is the smallest integer greater or equal to x, |.| denotes the modulus and
we set sgn(0) = 1. The number of spanning trees in C Fn is zero if either (p,n) =1
and B, p, Ym,m =1,...,d — 1 are all even or (p,n) # 1.

Proof From the Tutte matrix tree theorem, the number of spanning trees in C gn is
given by

Bn—1 d—1
— . .
(C En) — H (d _ pmipk/(Bn) _ z 827Tl()/mﬂ+P)/</(/3n))_
k=1 m=1
By splitting the product over k = 1,..., Bn — 1 into two products, when k is a
multiple of 8, thatis k = [ with/ =1, ..., n — 1, and over non-multiples of g, that

is,k=k'+0I'Bwithk’ =1,...,8—1and!’ =0,1,...,n — 1, we have
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B—1n—1 d—1

r(cﬁn) — H(d deZJszl/n) H H( (1 + z eZTriymk/B)e2ﬂipk/(/3n)62nip1//n) . (2)
k=11 m=1

We have that

n—1

n—1
H(d _ deznipl/n) — dn—l H(l _ leripl/n) — ndn—l(s(p’n)=1.
=1

This equality comes from the fact that ]_[;';11 (1 — €27iPl/my is the number of spanning

trees of the directed graph E‘)ﬁ , which is isomorphic to the directed cycle on n vertices
if (p,n) = 1, and is not connected if (p, n) # 1. Therefore the product is equal to
nd(p.n=1. Hence, if (p, n) # 1, we have

Pz
7(Cg,) =0.
Let p be relatively prime to n. Using that the complex numbers e27i/7 | =
0,1,...,n — 1, are the n non-trivial roots of unity, we have for all x,
n—1
[T —emimy =x —1. 3)

since (p, n) = 1. Equivalently we have,
n—1
H(l _xezﬂil[)/n) — 1 _xn_

Using this identity in (2) enables to evaluate the product over /', hence

n
r(?ﬂn = ndP"~ 1H 1——(1+Ze2m%ﬂ"/ﬂ) FTIPKIB Y (4)
m=1

For odd 8 we write the productover k, k = 1, ..., 8 — 1, as a product from 1 to (8 —
1)/2, and for even  we writeitas a product from 1to f/2—1and add the k = /2 fac-
tor whichis givenby 1 —(—1)? (1+ Z ( 1)Ym)" /d". Writing the above expression
in terms of
e =d— 1= 327 2rivnkiB yields

t(CE,) = ndP"~! l—sﬂeven (1+Z( 1)?*71)

[B/21-1
% H (1 (- ’uk/d)neZTIipk/ﬂ)(l — - Mz/d)ne—Zﬂipk/ﬂ)
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=nd? 1 o even (1 + Z( l)ym)

[8/21-1
x TT (1201 = w/di" cos@rpk/B + neu) +11 = ue/al)

)

where ¢ is the phase of the complex number I — x/d such that 1 — ui/d =
[1 — pug/d|e® and u; denotes the complex conjugate of ;. We have

o\ 172

d—1
1
1= pe/dl = = | (@ = ne/2)" + (Z sin(znymk/m)

m=1

and

d—m/2 . >4l sin@rymk/B)
——, singy = .
d — 1] ld — 1l

cos ¢y =

Therefore for k such that d — ny /2 # 0, the phase is given by

d—1
br = Arctg(Z =1 sm(2nymk/,8)) +em (6)

— /2

where € = 0 if sgn(d — nx/2) = 1 and € € {—1, 1} if sgn(d — nx/2) = —1. For k
such that d — n;/2 = 0, we take the limit as d — 1 /2 — 0 in (6), with € = 0. The
theorem follows by putting Eq. (6) into Eq. (5).

. . =2
When 8, pand y,,, m = 1, ...,d — 1, are all even, the directed circulant graph C gn
is not connected and therefore the number of spanning trees is zero, this is reflected
in the formula. m|

In the following corollary we state the particular case of 2-generated directed circulant
graphs.

Corollary 1 Let 1 < y < B and p, n be positive integers. For odd  and all n € N3
such that (p,n) = 1, the number of spanning trees in the directed circulant graph

Cp RERENT given by

%
'L'( C P»VI‘H-P)

Bn
B-1)/2
| (1 — 2cos2r(p + yn/2)k/B) cos" (wyk/B) + cos2”(nyk/ﬁ))
k=1
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and for even B, if y or p is odd, then

T(CHTPy
B/2—1
= n2fr= 1y ee T (1 — 2¢c0s2r(p + yn/2)k/B) cos" (yk/B) + cos*" (nyk/,B)).
k=1

. . _>p,yn+p . . . _
The number of spanning trees in C Bn is zero if either (p,n) = 1 and B, p and
y are all even or (p,n) # 1.

Proof From Eq. (4) it follows

p—1
r@,’é;f"*”) — b1 H (1 _ p2mi(ptyn/2k/B cos"(nyk/ﬁ)).
k=1

For odd 8, we have

B=1)/2
r(gg;lywp) — poBn—1 H (1 _ p2mi(p+yn/Dk/B cos"(ﬂyk/ﬁ))
k=1
><(1 _ o= 2mi(pyn/Dk/B cos"(ﬂyk/ﬁ))
B=1/2
=n2f1 ] (1 —2cosm(p + yn/2)k/B) cos” (wyk/B) + cos (nyk/ﬂ)).
k=1

For even g, the factor k = 8/2 is added:

- 0 if p and y are even
1 — Pt/ cos(ry/2) = {1 if y is odd
2 otherwise

= .
For even B, p and y, the graph C % ;1’/"+p is not connected and therefore the number

of spanning trees is zero. If p or y is odd, we have

B/2—1
t(z.)l[;;lyn-Fp) — n2f3”7]+‘sl/ even H (1 _ leri(p+yn/2)k/ﬁ cos”(n’yk/ﬁ))
k=1

X (1 — 2P Fyn/DK/B o (nyk/ﬂ))
B/2-1
= n2fr 4oy ean T (1 — 2cosQu(p + yn/2)k/B) cos™ Ty k/B) + cos? (n’yk/ﬁ)).
k=1
O

Example 1 Consider the case when p = f = 3 and y = 2. It follows from Theorem 1
—>
that t(C g’nz”H) = 0if n is a multiple of 3, otherwise,
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2(C 323 = 21 (1 = 2cos(2n/3) cos” (2/3) + cos? (27 /3))

=n(2¥""" — 2% cos(wn/3) +2"7")

as stated in [13, Example 4. (iii)]. As another example, consider the case when p = 2,
—
y = 5and B = 6. From Theorem 1, for even n, t( C éf"”) = 0, and for odd n,

t(C 252y — 06n=1(1 _ 2 cos(2(2 + 5n/2)/6) cos” (57 /6) + cos> (57/6)
( 6n
x (1 —2cos(4m (2 +5n/2)/6) cos”" (107 /6) + 0052”(1071/6))
- 2(23" + 22732 cos(n /6) — 22730 D2 sin(7n /6) + 67)

x (27" = 227132 cos(n/3) + 2" 130D 2 sin(rn/3) 4 2").

3 Spanning trees in cycle power graphs

The kth power graph of the n-cycle, denoted by C’,;, is the graph with the same vertex
set as the n-cycle where two vertices are connected if their distance on the n-cycle is at
most k. It is thus the circulant graph on n vertices generated by the first k consecutive
integers. In this section, we derive a formula for the number of spanning trees in the
nth and (n — 1)th power graph of the n-cycle, where 8 € N». As a consequence we
derive the asymptotic behaviour of it as n goes to infinity. The combinatorial Laplacian
of an undirected graph G with vertex set V(G) defined as an operator acting on the
space of functions on V(G) is

Agfx) =D (f(X) = f()

yx

where the sum is over all vertices adjacent to x. The matrix tree theorem [4] states that
the number of spanning trees in G, t(G), is given by

W(G)‘_lkk

G) = k=1
"= Vo

where Ar, k = 1,...,|V(G)| — 1, are the non-zero eigenvalues of Ag. The eigen-

vectors of the Laplacian on the circulant graph C én" are given by the characters

xr(x) = e2mikx/(Bm) B —0,1,..., Bn — 1. Therefore the non-zero eigenvalues are
given by

Me=2n—2)" cosQmkm/(Bn)). k=1.....pn—1.

m=1

n

Similarly, the non-zero eigenvalues on C fl}n are given by

n—1
Me=2(n—1)=2> cosQmkm/(Bn)), k=1,....pn— 1.

m=1
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7N
\__/

(a)

Fig. 2 8th and 7th power graphs of the 24cycle

Figure 2 below illustrates two power graphs of the 24-cycle.

Theorem 2 Let § > 2 be an integer and puy = 2 —2cosnk/B), k=1,...,8—1,
be the non-zero eigenvalues of the Laplacian on the 3-cycle. The number of spanning
trees in the nth power graph of the pn-cycle C%, for B > 3, is given by

2B+1)
2p)?

PRI (i + Dk , n+ 1
X H sin“{ ———— — n Arcsin
Pl B VAn?/p +2n + 1

where [x] denotes the smallest integer greater or equal to x. For B = 2, it is given by

(C%,) =

1\*"
nfn—2 (1 + —) (1—Q@2n+1)" Ay
2n

T(C3 ) = 2n)>" (1 + 1/n)".

The number of spanning trees in the (n — 1)th power graph of the fn-cycle Cg;l,for
B = 3, is given by

2B(n+1) 1\
s 1= =) 1D @ - D7Fy
(28) 2n

[B/21—1
X H sin® T[(n—_l)k — n Arcsin n—1 .
k=1 B VA /e — @2n — 1)

For B = 2, it is given by

(Cy, ") =

(Cy 7 = )21 - 1/n)".
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Remark 1 We emphasise that in the cycle power graphs CZ;] and C’én there are
B copies of n-cliques as subgraphs of the original graph. This fact appears in the
formula by the factor n?"~2 = (n"~2)Pn>#=D since the number of spanning trees in
the complete graph on n vertices is n” 2.

Proof We prove the theorem only for the first type of graphs C’%, . The proof of the

second type C g;l is very similar to the first one. The matrix tree theorem states that

pn—1 n
() = ﬂL H (2n 2> cos(27tkm/(,3n))).

m=1

Lagrange’s trigonometric identity expresses the sum of cosines appearing in the above
formula in terms of a quotient of sines:

z _sin((n +1/2)27k/(Bn))
2% cos(2km/(Bn)) = G Gn)
Hence,
1 Bn—1
©(Ch,) = B sm(nk/(,sn)))*1 ((2n + 1) sin(rk/(Bn)) — sin(rk/(Bn) + an/ﬁ)).
k=1

Using that there are Bn spanning trees in the fBn-cycle, that is 1 Hﬁ " l(2 -
2cos(2mk/(Bn))) = Bn, it follows that

Bn—1 ﬂ
[] sinGrk/(Bn) = ZET ©)

k=1

For the second factor, as in the proof of Theorem 1, we split the product over k =
1,..., pn — 1 into two products, first when k is a multiple of g, that is k = /8 with
[ =1,...,n— 1, and second when k is not a multiple of 8, that is, k = k' +I'B
withk'=1,...,8—1and!’=0,1,...,n — 1. The product over the multiples of 8

reduces to
n—1

H 2nsin(wl/n) = n".

=1

We have

Bn—1,n B—1n—1
T(C% )= z(ﬁ 7 IT11 ((2n+1)sm(nk/(ﬁn)+7rl/n) sm(zrk/(ﬁn)—i—nl/n—i—an/ﬂ))

k=1 1=0
)
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The difference of sines in the above product can be written as

@2n + Vsin(wk/(Bn) + wl/n) — sin(zwk/(Bn) + wl/n + 27k/B)
= |zx|sin(wr (n + 1)k/(Bn) + 6 + 7l/n) ©)

where
2k = 2ncos(wk/B) —i(2n + 2) sin(k/B) =: |zx|e'%.

Let wy = w(n + D)k/(Bn) + 6k, we have

n—1 n—1
. _ i(wp+ml/n) _ —i(wp+ml/n)
Z_HO sin(wy + 7l/n) = G g(e e )

-1
1 i . n . .
— e knem(n—l)/2 (e2ta)k _ e—2ml/n)
2 g
_ sin(wgn)

- (10)

where in the last equality we used Eq. (3). Putting Egs. (8), (9) and (10) together yields

n 2Bn—lpn B8z n
T(Ch ) = > H “_sin(w(n + Dk/B + nby).
Bm? A

Notice that for even g, the phase of zg/ is 6g/2 = —m/2, so that sin(zw(n + 1)/2 +
nbgp) =1.For B =2,z; = —2(n + 1)i, hence

T(Ch ) = 2" 2(1 + 1/n)".

For 8 > 3, we have

on+Bp—2yn /31:[1 Fﬂﬁ*l
o) = | [T1!"
(Bn) k=1 k=1

sin(m(n + Dk/B + nb) sin(wr(n + 1)(B — k) /B +nbs_).

For 1 <k < [B/2] — 1, the phase of zj is 6, = — Arcsin((2n + 2) sin(zwk/B)/|zk|).
The phase of zg_ satisfies

cosbOg_ = —cosb, sinfg_j =sinby
so that, 6g_ = m — 6. The modulus of z; is given by

2l = (@n 4+ 1?4+ 1= 2@2n + 1) cos@rk/B))'* = @4n® + @n + D)2
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where pur = 2 — 2cosQnk/B), k = 1,..., 8 — 1, are the non-zero eigenvalues
of the Laplacian on the B-cycle. We have sin(rk/B) = ,u,y 2/2. Hence for 1 <

k < [B/2] — 1, the phase is given by 6y = — Arcsin((n + 1)/+/4n?/ux + 2n + 1).

Therefore
n+B=2pn i 6211 w(n+ )k
= 2 (i) T (8
(Bn) Pl Pl B

. n+1
— n Arcsin . (1
Van2 g +2n + 1

The product of the modulus of z; is given by

B/2
H' MH(Z +141/@n+ 1) = 2cos@uk/p)"/?

k=0
B/2
= @D (2cosh (8 Argcosh(n + 1/2+ 1/¢4n +2)) ~2)
n
2n + 1P
= %(1 —@n+ 17 (2

where the second equality comes from the identity (see [12, section 2])

-1
H (2cosh@ —2cos(2mk/n)) = 2cosh(B6) —
k=0
Putting equality (12) into (11) gives the theorem. O

Remark 2 'We point out that the proof above could not be easily applied to other powers
of the Bn-cycle, like Cg;p , where p > 2 or p < —1, because in this case z; defined
in Eq. (9) would also depend on [ and the phase 6, of z; cannot be easily determined.
As a consequence, the product over / cannot be evaluated in the same way as it is done
in the proof. It would be interesting to find a derivation in this class of more general
circulant graphs.

From Theorem 2, we derive the asymptotic behaviour of the number of spanning
trees in the nth, respectively (n — 1)th, power graph of the fn-cycle as n — oo.

Corollary 2 Let B € N>y. The asymptotic numbers of spanning trees in the nth and
(n — D)th power graphs of the pn-cycle C', and CZ;I as n — oo are respectively
given by

1 [8/21-1
2B(n+1) fn2

“(Ch) = " k];[l sin? (nk/ﬂ - sin(2nk/,3)/2) % + o(1))
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and

w(Cy, ) =

2B(n+1) [8/21-1
2B nhn—2 H sin? (nk/,B - sin(2nk/ﬂ)/2) e P + o(1)).

k=1

Proof By observing that forall k € {1, ..., [B/2] — 1} and for large n,

1 1
Arcsin nt — 7k/B + — sin(2wk/B) + O(n~2)
Van2 e +2n + 1 2n
and
. n—1 I . _
Arcsin =nk/B — —sin(2rk/B) + O(n™ ")
Van2 /e — 2n —1) 2n
where ux = 2 — 2cos(2wk/B), the corollary is a direct consequence of
Theorem 2. O

Acknowledgements The author thanks Anders Karlsson for reading the manuscript and useful discussions.
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