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Abstract The number of spanning trees in a class of directed circulant graphs with
generators depending linearly on the number of verticesβn, and in the nth and (n−1)th
power graphs of the βn-cycle are evaluated as a product of �β/2� − 1 terms.
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1 Introduction

In this paperwe study the number of spanning trees in a class of directed and undirected
circulant graphs. Let 1 � γ1 � · · · � γd � �n/2� be positive integers. A circulant
directed graph, or circulant digraph, on n vertices generated by γ1, . . . , γd is the
directed graph on n vertices labelled 0, 1, . . . , n−1 such that for each vertex v ∈ Z/nZ
there is an oriented edge connecting v to v+γm mod n for allm ∈ {1, . . . , d}. We will
denote such graphs by

−→
C γ1,...,γd

n . Similarly, a circulant graph on n vertices generated
by γ1, . . . γd , denoted by Cγ1,...,γd

n , is the undirected graph on n vertices labelled
0, 1, . . . , n − 1 such that each vertex v ∈ Z/nZ is connected to v − γm mod n and
to v + γm mod n, for all m ∈ {1, . . . , d}. Circulant graphs and digraphs are used
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52 J. Louis

as models in network theory. In this context, they are called multi-loop networks, or
double-loop networks when they are 2-generated, see for example [7,8]. The number
of spanning tree measures the reliability of a network.

The evaluation of the number of spanning trees in circulant graphs and digraphs
has been widely studied, were both exact and asymptotic results have been obtained
as the number of vertices grows, see [2,6,11–13] and references therein. In [3,5],
the authors showed that the number of spanning trees in such graphs satisfy linear
recurrence relations. Yong, Zhang and Golin developed a technique in [13] to evaluate
the number of spanning trees in a particular class of double-loop networks

−→
C p,γ n+p

βn .
In the first section of this work, we derive a closed formula for these graphs, and more
generally for d-generated circulant digraphs with generators depending linearly on
the number of vertices, that is

−→
C p,γ1n+p...,γd−1n+p

βn where p, γ1, . . . , γd−1, β, n are
positive integers. This partially answers an open question posed in [2] by simplifying
the formula given in [2, Corollary 1].

In the second section we calculate the number of spanning trees in the nth and
(n−1)th power graphs of the βn-cycle which are circulant graphs generated by the n,
respectively n − 1, first consecutive integers, denoted by Cn

βn and Cn−1
βn respectively,

where β ∈ N�2. As a consequence, the asymptotic behaviour of it is derived. Cycle
power graphs appear, for example, in graph colouring problems, see [9,10].

The results obtained here are derived from thematrix tree theorem (see [1,4]) which
provides a closed formula of a product of βn − 1 terms for a graph on βn vertices.
Our formulas are products of �β/2� − 1 terms and are therefore interesting when n is
large. In both cases, the symmetry of the graphs is reflected in the formulas which are
expressed in terms of eigenvalues of subgraphs of the original graph. This fact was
already observed in [12].

2 Spanning trees in directed circulant graphs

LetG be a directed graph and V (G) its vertex set. A spanning arborescence converging
to v ∈ V (G) is an oriented subgraph ofG such that the out-degree of all vertices except
v equals one, and the out-degree of v is zero.We define the combinatorial Laplacian of
a directed graphG as an operator acting on the space of functions defined on V (G), by

�−
G f (x) =

∑

y: x→y

( f (x) − f (y)) (1)

where the sum is over all vertices y such that there is an oriented edge from x to y.
Equivalently, the combinatorial Laplacian can be defined as amatrix by�−

G = D−−A,
where D− is the out-degree matrix and A is the adjacency matrix such that (A)i j is the
number of directed edges from i to j . Let τ−(G, v) denote the number of arborescences
converging to v. The Tutte matrix tree theorem (see [1]) states that for all v ∈ V (G),

τ−(G, v) = det�−
G,v

where det�−
G,v is the vth cofactor of the Laplacian �−

G obtained by deleting the row

and column of �−
G corresponding to the vertex v. For a regular directed graph G, we
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Spanning trees in directed circulant graphs and cycle... 53

define the number of spanning trees inG, τ(G), by the sum over all vertices v ∈ V (G)

of the number of arborescences converging to v, that is

τ(G) =
∑

v∈V (G)

τ−(G, v).

Notice that we could have defined the number of spanning trees by the sum over all
vertices v ∈ V (G) of the number of spanning arborescences diverging from v. By
symmetry, all cofactors of the Laplacian of a directed circulant graph are equal and
are equal to the product of the non-zero eigenvalues of the Laplacian divided by the
number of vertices. Therefore we have that

τ(G) =
|V (G)|∏

k=1

λk

where λk , k = 1, . . . , |V (G)|, denote the non-zero eigenvalues of the Laplacian of G.
The non-zero eigenvalues of the Laplacian of the directed circulant graph

−→
C γ1,...,γd

n
are given by (see [4, Proposition 3.5])

λk = d −
d∑

m=1

e2π iγmk/n, k = 1, . . . , n − 1.

This can also be derived by noticing that the eigenvectors are given by the characters
χk(x) = e2π ikx/n , k = 0, 1, . . . , n − 1, and then applying the Laplacian (1) on it.

In this section, we establish a formula for the number of spanning trees in directed
circulant graphs

−→
C 	

βn generated by 	 = {p, γ1n + p, . . . , γd−1n + p} and in the

particular case of two generators
−→
C p,γ n+p

βn . Figure 1 illustrates a 2- and a 3-generated

(a) (b)
Fig. 1 Examples of directed graphs
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54 J. Louis

directed circulant graph.We denote byμk = d−1−∑d−1
m=1 e

2π iγmk/β , k = 1, . . . , β−
1, the non-zero eigenvalues of the Laplacian on the directed circulant graph

−→
C γ1,...,γd−1

β

and by ηk = 2(d − 1) − 2
∑d−1

m=1 cos(2πγmk/β), k = 1, . . . , β − 1, the non-zero
eigenvalues of the Laplacian on the circulant graph Cγ1,...,γd−1

β . Let A be a statement
and δA be defined by

δA =
{
1 if A is satisfied
0 otherwise

.

Theorem 1 Let1 � γ1 � · · · � γd−1 � β and p, n be positive integers. For all even
n ∈ N�2 such that (p, n) = 1, the number of spanning trees in the directed circulant

graph
−→
C 	

βn, where 	 = {p, γ1n + p, . . . , γd−1n + p}, is given by

τ(
−→
C 	

βn) = ndβn−1

⎛

⎝1 − δβ even
(−1)p

dn

⎛

⎝1 +
d−1∑

m=1

(−1)γm

⎞

⎠
n⎞

⎠

×
�β/2�−1∏

k=1

(
1 − 2

∣∣∣1 − μk

d

∣∣∣
n
cos

(
2πpk

β
+ nArctg

(∑d−1
m=1 sin(2πγmk/β)

d − ηk/2

))

+
∣∣∣1 − μk

d

∣∣∣
2n

)

and for odd n ∈ N�1,

τ(
−→
C 	

βn) = ndβn−1

⎛

⎝1 − δβ even
(−1)p

dn

(
1 +

d−1∑

m=1

(−1)γm

)n⎞

⎠

×
�β/2�−1∏

k=1

(
1 − 2sgn(d − ηk/2)

∣∣∣1 − μk

d

∣∣∣
n
cos

(
2πpk

β

+ nArctg

(∑d−1
m=1 sin(2πγmk/β)

d − ηk/2

))
+

∣∣∣1 − μk

d

∣∣∣
2n

)

where �x� is the smallest integer greater or equal to x, |.| denotes the modulus and
we set sgn(0) = 1. The number of spanning trees in

−→
C 	

βn is zero if either (p, n) = 1
and β, p, γm, m = 1, . . . , d − 1 are all even or (p, n) �= 1.

Proof From the Tutte matrix tree theorem, the number of spanning trees in
−→
C 	

βn is
given by

τ(
−→
C 	

βn) =
βn−1∏

k=1

(
d − e2π i pk/(βn) −

d−1∑

m=1

e2π i(γmn+p)k/(βn)

)
.

By splitting the product over k = 1, . . . , βn − 1 into two products, when k is a
multiple of β, that is k = lβ with l = 1, . . . , n − 1, and over non-multiples of β, that
is, k = k′ + l ′β with k′ = 1, . . . , β − 1 and l ′ = 0, 1, . . . , n − 1, we have
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Spanning trees in directed circulant graphs and cycle... 55

τ(
−→
C 	

βn) =
n−1∏

l=1

(d−de2π i pl/n)
β−1∏

k=1

n−1∏

l ′=0

(
d −

(
1 +

d−1∑

m=1

e2π iγmk/β
)
e2π i pk/(βn)e2π i pl

′/n
)

. (2)

We have that

n−1∏

l=1

(d − de2π i pl/n) = dn−1
n−1∏

l=1

(1 − e2π i pl/n) = ndn−1δ(p,n)=1.

This equality comes from the fact that
∏n−1

l=1 (1− e2π i pl/n) is the number of spanning

trees of the directed graph
−→
C p

n , which is isomorphic to the directed cycle on n vertices
if (p, n) = 1, and is not connected if (p, n) �= 1. Therefore the product is equal to
nδ(p,n)=1. Hence, if (p, n) �= 1, we have

τ(
−→
C 	

βn) = 0.

Let p be relatively prime to n. Using that the complex numbers e2π il/n , l =
0, 1, . . . , n − 1, are the n non-trivial roots of unity, we have for all x ,

n−1∏

l=0

(x − e2π ilp/n) = xn − 1. (3)

since (p, n) = 1. Equivalently we have,

n−1∏

l=0

(1 − xe2π ilp/n) = 1 − xn .

Using this identity in (2) enables to evaluate the product over l ′, hence

τ(
−→
C 	

βn) = ndβn−1
β−1∏

k=1

⎛

⎝1 − 1

dn

(
1 +

d−1∑

m=1

e2π iγmk/β
)n

e2π i pk/β

⎞

⎠ . (4)

For odd β we write the product over k, k = 1, . . . , β − 1, as a product from 1 to (β −
1)/2, and for even β wewrite it as a product from 1 to β/2−1 and add the k = β/2 fac-
tor which is given by 1−(−1)p(1+∑d−1

m=1(−1)γm )n/dn .Writing the above expression
in terms of
μk = d − 1 − ∑d−1

m=1 e
2π iγmk/β yields

τ(
−→
C 	

βn) = ndβn−1

⎛

⎝1 − δβ even
(−1)p

dn

(
1 +

d−1∑

m=1

(−1)γm

)n⎞

⎠

×
�β/2�−1∏

k=1

(
1 − (1 − μk/d)ne2π i pk/β

)(
1 − (1 − μ∗

k/d)ne−2π i pk/β
)
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56 J. Louis

= ndβn−1

⎛

⎝1 − δβ even
(−1)p

dn

(
1 +

d−1∑

m=1

(−1)γm

)n⎞

⎠

×
�β/2�−1∏

k=1

(
1 − 2|1 − μk/d|n cos(2πpk/β + nφk) + |1 − μk/d|2n

)

(5)

where φk is the phase of the complex number 1 − μk/d such that 1 − μk/d =
|1 − μk/d|eiφk and μ∗

k denotes the complex conjugate of μk . We have

|1 − μk/d| = 1

d

⎛

⎝(d − ηk/2)
2 +

(
d−1∑

m=1

sin(2πγmk/β)

)2⎞

⎠
1/2

and

cosφk = d − ηk/2

|d − μk | , sin φk =
∑d−1

m=1 sin(2πγmk/β)

|d − μk | .

Therefore for k such that d − ηk/2 �= 0, the phase is given by

φk = Arctg

(∑d−1
m=1 sin(2πγmk/β)

d − ηk/2

)
+ επ (6)

where ε = 0 if sgn(d − ηk/2) = 1 and ε ∈ {−1, 1} if sgn(d − ηk/2) = −1. For k
such that d − ηk/2 = 0, we take the limit as d − ηk/2 → 0 in (6), with ε = 0. The
theorem follows by putting Eq. (6) into Eq. (5).
When β, p and γm , m = 1, . . . , d − 1, are all even, the directed circulant graph

−→
C 	

βn
is not connected and therefore the number of spanning trees is zero, this is reflected
in the formula. ��

In the following corollary we state the particular case of 2-generated directed circulant
graphs.

Corollary 1 Let 1 � γ � β and p, n be positive integers. For odd β and all n ∈ N�1
such that (p, n) = 1, the number of spanning trees in the directed circulant graph−→
C p,γ n+p

βn is given by

τ(
−→
C p,γ n+p

βn )

= n2βn−1
(β−1)/2∏

k=1

(
1 − 2 cos(2π(p + γ n/2)k/β) cosn(πγ k/β) + cos2n(πγ k/β)

)
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and for even β, if γ or p is odd, then

τ(
−→
C p,γ n+p

βn )

= n2βn−1+δγ even

β/2−1∏

k=1

(
1 − 2 cos(2π(p + γ n/2)k/β) cosn(πγ k/β) + cos2n(πγ k/β)

)
.

The number of spanning trees in
−→
C p,γ n+p

βn is zero if either (p, n) = 1 and β, p and
γ are all even or (p, n) �= 1.

Proof From Eq. (4) it follows

τ(
−→
C p,γ n+p

βn ) = n2βn−1
β−1∏

k=1

(
1 − e2π i(p+γ n/2)k/β cosn(πγ k/β)

)
.

For odd β, we have

τ(
−→
C p,γ n+p

βn ) = n2βn−1
(β−1)/2∏

k=1

(
1 − e2π i(p+γ n/2)k/β cosn(πγ k/β)

)

×
(
1 − e−2π i(p+γ n/2)k/β cosn(πγ k/β)

)

= n2βn−1
(β−1)/2∏

k=1

(
1 − 2 cos(2π(p + γ n/2)k/β) cosn(πγ k/β) + cos2n(πγ k/β)

)
.

For even β, the factor k = β/2 is added:

1 − eπ i(p+γ n/2) cosn(πγ /2) =
⎧
⎨

⎩

0 if p and γ are even
1 if γ is odd
2 otherwise

.

For even β, p and γ , the graph
−→
C p,γ n+p

βn is not connected and therefore the number
of spanning trees is zero. If p or γ is odd, we have

τ(
−→
C p,γ n+p

βn ) = n2βn−1+δγ even

β/2−1∏

k=1

(
1 − e2π i(p+γ n/2)k/β cosn(πγ k/β)

)

×
(
1 − e−2π i(p+γ n/2)k/β cosn(πγ k/β)

)

= n2βn−1+δγ even

β/2−1∏

k=1

(
1 − 2 cos(2π(p + γ n/2)k/β) cosn(πγ k/β) + cos2n(πγ k/β)

)
.

��
Example 1 Consider the case when p = β = 3 and γ = 2. It follows from Theorem 1
that τ(

−→
C 3,2n+3

3n ) = 0 if n is a multiple of 3, otherwise,
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58 J. Louis

τ(
−→
C 3,2n+3

3n ) = n23n−1(1 − 2 cos(2πn/3) cosn(2π/3) + cos2n(2π/3)
)

= n
(
23n−1 − 22n cos(πn/3) + 2n−1)

as stated in [13, Example 4. (iii)]. As another example, consider the case when p = 2,
γ = 5 and β = 6. From Theorem 1, for even n, τ(

−→
C 2,5n+2

6n ) = 0, and for odd n,

τ(
−→
C 2,5n+2

6n ) = n26n−1(1 − 2 cos(2π(2 + 5n/2)/6) cosn(5π/6) + cos2n(5π/6)
)

×(
1 − 2 cos(4π(2 + 5n/2)/6) cosn(10π/6) + cos2n(10π/6)

)

= n

2

(
23n + 22n3n/2 cos(πn/6) − 22n3(n+1)/2 sin(πn/6) + 6n

)

×(
23n − 22n−13n/2 cos(πn/3) + 2n−13(n+1)/2 sin(πn/3) + 2n

)
.

3 Spanning trees in cycle power graphs

The kth power graph of the n-cycle, denoted by Ck
n , is the graph with the same vertex

set as the n-cycle where two vertices are connected if their distance on the n-cycle is at
most k. It is thus the circulant graph on n vertices generated by the first k consecutive
integers. In this section, we derive a formula for the number of spanning trees in the
nth and (n−1)th power graph of the βn-cycle, where β ∈ N�2. As a consequence we
derive the asymptotic behaviour of it as n goes to infinity. The combinatorial Laplacian
of an undirected graph G with vertex set V (G) defined as an operator acting on the
space of functions on V (G) is

�G f (x) =
∑

y∼x

( f (x) − f (y))

where the sum is over all vertices adjacent to x . The matrix tree theorem [4] states that
the number of spanning trees in G, τ(G), is given by

τ(G) =
∏|V (G)|−1

k=1 λk

|V (G)|
where λk , k = 1, . . . , |V (G)| − 1, are the non-zero eigenvalues of �G . The eigen-
vectors of the Laplacian on the circulant graph C1,...,n

βn are given by the characters

χk(x) = e2π ikx/(βn), k = 0, 1, . . . , βn − 1. Therefore the non-zero eigenvalues are
given by

λk = 2n − 2
n∑

m=1

cos(2πkm/(βn)), k = 1, . . . , βn − 1.

Similarly, the non-zero eigenvalues on C1,...,n−1
βn are given by

λk = 2(n − 1) − 2
n−1∑

m=1

cos(2πkm/(βn)), k = 1, . . . , βn − 1.
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(a) (b)

Fig. 2 8th and 7th power graphs of the 24cycle

Figure 2 below illustrates two power graphs of the 24-cycle.

Theorem 2 Let β � 2 be an integer and μk = 2− 2 cos(2πk/β), k = 1, . . . , β − 1,
be the non-zero eigenvalues of the Laplacian on the β-cycle. The number of spanning
trees in the nth power graph of the βn-cycle Cn

βn for β � 3, is given by

τ(Cn
βn) = 2β(n+1)

(2β)2
nβn−2

(
1 + 1

2n

)βn

(1 − (2n + 1)−β)n

×
�β/2�−1∏

k=1

sin2
(

π(n + 1)k

β
− nArcsin

(
n + 1√

4n2/μk + 2n + 1

))

where �x� denotes the smallest integer greater or equal to x. For β = 2, it is given by

τ(Cn
2n) = (2n)2n−2(1 + 1/n)n .

The number of spanning trees in the (n − 1)th power graph of the βn-cycle Cn−1
βn , for

β � 3, is given by

τ(Cn−1
βn ) = 2β(n+1)

(2β)2
nβn−2

(
1 − 1

2n

)βn

|(−1)β − (2n − 1)−β |n

×
�β/2�−1∏

k=1

sin2
(

π(n − 1)k

β
− nArcsin

(
n − 1√

4n2/μk − (2n − 1)

))
.

For β = 2, it is given by

τ(Cn−1
2n ) = (2n)2n−2(1 − 1/n)n .
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Remark 1 We emphasise that in the cycle power graphs Cn−1
βn and Cn

βn there are
β copies of n-cliques as subgraphs of the original graph. This fact appears in the
formula by the factor nβn−2 = (nn−2)βn2(β−1) since the number of spanning trees in
the complete graph on n vertices is nn−2.

Proof We prove the theorem only for the first type of graphs Cn
βn . The proof of the

second type Cn−1
βn is very similar to the first one. The matrix tree theorem states that

τ(Cn
βn) = 1

βn

βn−1∏

k=1

(
2n − 2

n∑

m=1

cos(2πkm/(βn))
)
.

Lagrange’s trigonometric identity expresses the sum of cosines appearing in the above
formula in terms of a quotient of sines:

2
n∑

m=1

cos(2πkm/(βn)) = sin((n + 1/2)2πk/(βn))

sin(πk/(βn))
− 1.

Hence,

τ(Cn
βn) = 1

βn

βn−1∏

k=1

(
sin(πk/(βn))

)−1
(
(2n + 1) sin(πk/(βn)) − sin(πk/(βn) + 2πk/β)

)
.

Using that there are βn spanning trees in the βn-cycle, that is 1
βn

∏βn−1
k=1 (2 −

2 cos(2πk/(βn))) = βn, it follows that

βn−1∏

k=1

sin(πk/(βn)) = βn

2βn−1 . (7)

For the second factor, as in the proof of Theorem 1, we split the product over k =
1, . . . , βn − 1 into two products, first when k is a multiple of β, that is k = lβ with
l = 1, . . . , n − 1, and second when k is not a multiple of β, that is, k = k′ + l ′β
with k′ = 1, . . . , β − 1 and l ′ = 0, 1, . . . , n − 1. The product over the multiples of β

reduces to
n−1∏

l=1

2n sin(πl/n) = nn .

We have

τ(Cn
βn)=

2βn−1nn

(βn)2

β−1∏

k=1

n−1∏

l=0

(
(2n+1) sin(πk/(βn)+πl/n)−sin(πk/(βn)+πl/n+2πk/β)

)
.

(8)
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The difference of sines in the above product can be written as

(2n + 1) sin(πk/(βn) + πl/n) − sin(πk/(βn) + πl/n + 2πk/β)

= |zk | sin(π(n + 1)k/(βn) + θk + πl/n) (9)

where

zk = 2n cos(πk/β) − i(2n + 2) sin(πk/β) =: |zk |eiθk .

Let ωk = π(n + 1)k/(βn) + θk , we have

n−1∏

l=0

sin(ωk + πl/n) = 1

(2i)n

n−1∏

l=0

(ei(ωk+πl/n) − e−i(ωk+πl/n))

= 1

(2i)n
e−iωkneπ i(n−1)/2

n−1∏

l=0

(e2iωk − e−2π il/n)

= sin(ωkn)

2n−1 (10)

where in the last equality we used Eq. (3). Putting Eqs. (8), (9) and (10) together yields

τ(Cn
βn) = 2βn−1nn

(βn)2

β−1∏

k=1

|zk |n
2n−1 sin(π(n + 1)k/β + nθk).

Notice that for even β, the phase of zβ/2 is θβ/2 = −π/2, so that sin(π(n + 1)/2 +
nθβ/2) = 1. For β = 2, z1 = −2(n + 1)i , hence

τ(Cn
2n) = (2n)2n−2(1 + 1/n)n .

For β � 3, we have

τ(Cn
βn) = 2n+β−2nn

(βn)2

⎛

⎝
β−1∏

k=1

|zk |n
⎞

⎠
�β/2�−1∏

k=1

sin(π(n + 1)k/β + nθk) sin(π(n + 1)(β − k)/β + nθβ−k).

For 1 � k � �β/2� − 1, the phase of zk is θk = −Arcsin((2n + 2) sin(πk/β)/|zk |).
The phase of zβ−k satisfies

cos θβ−k = − cos θk, sin θβ−k = sin θk

so that, θβ−k = π − θk . The modulus of zk is given by

|zk | = (
(2n + 1)2 + 1 − 2(2n + 1) cos(2πk/β)

)1/2 = (4n2 + (2n + 1)μk)
1/2

123
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where μk = 2 − 2 cos(2πk/β), k = 1, . . . , β − 1, are the non-zero eigenvalues
of the Laplacian on the β-cycle. We have sin(πk/β) = μ

1/2
k /2. Hence for 1 �

k � �β/2� − 1, the phase is given by θk = −Arcsin((n + 1)/
√
4n2/μk + 2n + 1).

Therefore

τ(Cn
βn) = 2n+β−2nn

(βn)2

( β−1∏

k=1

|zk |n
) �β/2�−1∏

k=1

sin2
(

π(n + 1)k

β

− nArcsin

(
n + 1√

4n2/μk + 2n + 1

))
. (11)

The product of the modulus of zk is given by

β−1∏

k=1

|zk | = (2n + 1)β/2

2n

β−1∏

k=0

(2n + 1 + 1/(2n + 1) − 2 cos(2πk/β))1/2

= (2n + 1)β/2

2n

(
2 cosh

(
β Argcosh(n + 1/2 + 1/(4n + 2))

) − 2
)1/2

= (2n + 1)β

2n
(1 − (2n + 1)−β) (12)

where the second equality comes from the identity (see [12, section 2])

β−1∏

k=0

(2 cosh θ − 2 cos(2πk/n)) = 2 cosh(βθ) − 2.

Putting equality (12) into (11) gives the theorem. ��
Remark 2 Wepoint out that the proof above could not be easily applied to other powers
of the βn-cycle, like Cn−p

βn , where p � 2 or p � −1, because in this case zk defined
in Eq. (9) would also depend on l and the phase θk of zk cannot be easily determined.
As a consequence, the product over l cannot be evaluated in the same way as it is done
in the proof. It would be interesting to find a derivation in this class of more general
circulant graphs.

From Theorem 2, we derive the asymptotic behaviour of the number of spanning
trees in the nth, respectively (n − 1)th, power graph of the βn-cycle as n → ∞.

Corollary 2 Let β ∈ N�2. The asymptotic numbers of spanning trees in the nth and
(n − 1)th power graphs of the βn-cycle Cn

βn and Cn−1
βn as n → ∞ are respectively

given by

τ(Cn
βn) = 2β(n+1)

(2β)2
nβn−2

�β/2�−1∏

k=1

sin2
(
πk/β − sin(2πk/β)/2

)
(eβ/2 + o(1))
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and

τ(Cn−1
βn ) = 2β(n+1)

(2β)2
nβn−2

�β/2�−1∏

k=1

sin2
(
πk/β − sin(2πk/β)/2

)
(e−β/2 + o(1)).

Proof By observing that for all k ∈ {1, . . . , �β/2� − 1} and for large n,

Arcsin

(
n + 1√

4n2/μk + 2n + 1

)
= πk/β + 1

2n
sin(2πk/β) + O(n−2)

and

Arcsin

(
n − 1√

4n2/μk − (2n − 1)

)
= πk/β − 1

2n
sin(2πk/β) + O(n−2)

where μk = 2 − 2 cos(2πk/β), the corollary is a direct consequence of
Theorem 2. ��
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